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Abstract 

   The diagnostic process of many neurodegenerative diseases, such as Parkinson, Progressive 

Supranuclear Palsy, etc., involves the study of brain MRI scans in order to individuate morphological 

markers that can highlight on the healthy status of the subject. A fundamental step in the pre-

processing and analysis of MRI is the identification of the Mid-Sagittal Plane, which corresponds to 

the mid-brain and allows a coordinate reference system for the whole MRI scans set. To improve the 

identification of the Mid-Sagittal, we have developed an algorithm in Matlab®, based on the k-means 

clustering function. The results have been compared with the evaluation of four experts that manually 

identified the mid-sagittal and whose performances have been crossed with a cognitive decisional 

algorithm in order to define a gold standard. The comparison provided a mean percentage error of 

0.96%. To further refine the automatic procedure, we trained a machine learning considering the 

results coming from the proposed algorithm and the gold standard. Therefore, we tested the machine 

learning and obtained results comparable to medical raters with a mean percentage error of 0.65%. 

Even if the sample of data analyzed needs to be increased, the system is promising and it could be 

directly incorporated into broader diagnostic support systems. 

Keywords: image segmentation, k-means algorithm, machine learning, magnetic resonance 

imaging, mid-sagittal plane 

1 Introduction 

   The use of magnetic resonance imaging (MRI) can provide valuable information in the detection of 

degenerative diseases, not just from a qualitative point of view, but even to measure volumes, areas 
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and distances between different sections, especially when magnitudes vary, due to the presence of 

severe deformation. In these cases, one of the main problems concerns the identification of the 

optimal slice on which to make these measurements. In this framework, the identification of the Mid 

Sagittal Plane (MSP) in MRI brain scans is crucial for detecting many of the most important 

neurodegenerative diseases such as Parkinson Disease (PD) (Nigro et al., 2014), Huntington's disease 

(HD) (Di Paola et al., 2010, 2012), Multiple Sclerosis (MS) (Cerasa et al., 2012, Bilotta et al., 2010, 

2012), Alzheimer disease (AD) (Di Paola et al., 2015). In this paper, we present a fully automated 

method to identify the midsagittal plane, in MRI scans of healthy, Progressive Supranuclear Palsy 

(PSP), Parkinson’s, Alzheimer and Multiple Sclerosis diseases subjects.  

   Parkinson’s disease, for example, comes in a variety of neurological malfunctions determining 

pyramidal cerebellar, vegetative, and cognitive degeneration. The disease causes the nigro-striatal 

pyramidal worsening, involving the cerebellum and deep cerebral structures, but also neuronal 

degeneration of the neo-striatum. An accurate early diagnosis of PD is important both for therapeutic 

purposes – to target therapy more precisely to the various symptoms – and in terms of the prognosis. 

However, although advanced diagnostic techniques have recently been developed for PD (Oba et al., 

2005; Quattrone et al., 2008), this disease suffers from a lack of universally accepted diagnostic 

criteria, making it difficult to distinguish it, and therefore characterized by a high rate of misdiagnosis 

(Litvan et al., 1996). Structural MRI is routinely used to detect early signs of PD, from a hyper-

intensity of the lateral edge of the putamen and an atrophy of the brainstem; a cross-shaped hyper-

intensity of the bridge and middle cerebral peduncles (Bhattacharya et al., 2002) is also an indicator 

of this disease. Axial T2 - weighted MRI is instead used to measure the arrangement of basal ganglia. 

It is particularly worth noting that MRI morphometry (Oba et al. 2005) has allowed the onset of a 

series of studies that led to the creation of the Quattrone Index (Quattrone et al., 2008). To allow this 

index to work properly, it is very important to correctly detect the mid-sagittal slice in MRI. This 

slice, usually seen as an indicator of variation, allows to observe the main internal anatomical 

structures in the MSP (Ruppert et al., 2011), taking advantage of the mirror image symmetry of the 

human brain. Finding the exact location of this plane has many applications. However, there is no 

universal agreement about the identification of MSP, as many times the dividing plane between the 

brain hemispheres does not correspond with the symmetry plane of the head. Instead, in patients with 

Alzheimer's dementia, alterations of the neurotransmitter systems and the signal transduction 

mechanism are very frequent, altering the cholinergic signaling system, and the production of the 

neurotransmitter acetylcholine (Crews & Masliah, 2010). Moreover, we can observe other cerebral 

alterations both macroscopic (decrease in weight and volume of the brain, due to cortical atrophy and 

ventricular dilatation) and microscopic (neuronal loss, glial and astroglial reaction, micro vessel 

alteration). The consequence of these brain modifications is the impossibility for the neurons to 

transmit nerve impulses, and therefore the death of the same, with consequent progressive atrophy of 

the brain as a whole (Crews & Masliah, 2010). 

   Multiple sclerosis, characterized by inflammation which results in multifocal demyelinating lesions 

and degeneration, with diffuse axonal loss leading to brain atrophy in the central nervous system, is 

a complex neurodegenerative disease. Given its relapsing/remitting cyclical behavior, MRI technique 

is fundamental in the diagnosis and monitoring of treatment. Traditional quantitative parameters 

include whole brain and white and gray matter volumes, as well as the brain lesions load, with the 

use of sequences and complex post processing techniques, usually time-consuming procedure if they 

are not automatized by particular segmentation algorithms (Bilotta et al., 2011; Cerasa et al., 2012).  

Moreover, the improvement of MRI techniques suits to the novel field of Network Physiology, in 

particular in order to reach the main goal to build a first complex atlas of dynamic interactions 



between different brain locations and organ systems (Bartsch et al., 2015). The human organism is 

constituted by a complex and integrated network of different organ systems, each with its own 

regulatory dynamic mechanism and with dynamics of interactions between each other that define 

different physiological states (Ivanov & Bartsch, 2014). Changes in these networks of interactions 

indicate not only the change between different physiological states but also the transition between a 

physiological situation and a pathological one. Since the different organ systems are closely 

connected, a failure in one organ can lead a total failure of the organism, therefore mapping and 

studying changes in the network of interactions could help to early diagnose neurodegenerative 

diseases that involve other organ systems, such as Parkinson and multiple sclerosis. 

   The problem of identifying the mid sagittal (and in general the morphometric measurements of the 

brain) is because measurements are made in an environment whose variability characteristics are 

relevant. Consider, for example, the difference in resolution of the brain scans, depending on the 

employed brain scan, the time taken for the shooting, the variability of the morphology of each 

individual patient, the multiplicity of motion artefacts, due to technical problems or casual movements 

of the skull during records. Moreover, the most used method to analyze these changes in 

measurements of volumes, areas and distances is to return the set of images to the standard model in 

order to segment this new data set. But very often, this approach is not useful because it reveals that 

interpolation techniques modify original data, alter brain images, making subsequent measurements 

unsuitable for the correct identification of the proper diseases’ markers. This happens when, for 

instance, the entire set of MRI scans is tilted in order to have the scan plane parallel to sagittal plane. 

In this case, a rigid rotation is the first step in the pre-processing of the MRI set scans; then, an 

interpolation is required in order to represent the new MRI set as an imaginary cube, the 3D 

reconstructed image of whole brain, and the same is made for each voxel. In this last operation some 

information is lost, e.g. the information about the ratio between the different dimensions of some 

brain areas: the distances and volumes change, especially in the mid-brain, area of interest in the 

diagnostic process of the previously mentioned diseases. 

   To meet these needs and to support medical diagnosis, we have implemented a method for the 

automatic mid-sagittal identification from the raw data. Developed in Matlab, it uses a classic k-

means method to identify the slice of the DICOM file containing the mid-sagittal plane. To advance 

the method, we have compared its performance to a gold standard gained from manual measurements, 

conducted by expert raters, who carefully analyzed healthy, PSP, PD, AD and MS subjects MRI brain 

scans. Moreover, the scans have been performed by machines having different resolutions (from 1.5 

to 3T) in order to verify the independence of the method with respect to the data acquisition systems. 

On the same data, we trained a machine learning system in order to improve much more the system’s 

performance. The idea is to develop fully automated systems with the capability to recognize patters 

relevant to medical diagnosis.  

   The paper is organized as follows. After this introduction, the used data sets and the methods are 

outlined. Results follows together with the main conclusions that can be outlined to develop cognitive 

systems to automatically analyze complex visual data. 

 

 

 

 



2 Materials and Methods 

2.1 Data set 

   The data set consists of 109 MRI scans, grouped as follows: 

   37 subject brain scans, 14 Healthy Control subjects (mean age: 52, 6 female, 8 male), 13 PD subjects 

(mean age: 69, 4 female, 9 male), and 10 Progressive Supranuclear Palsy (PSP) subjects (mean age: 

71, 3 female, 7 male) were provided by the CNR Catanzaro (CZ, Italy) and were acquired using a 3.0 

T magnetic resonance (MR) scanner (GE MEDICAL SYSTEMS  DISCOVERY MR750). We used 

3D T1-weighted sequence (Acquisition Plane = SAGITTAL, Inversion Time = 650 ms, Repetition 

Time (TR) = 9.15 ms, Echo Time (TE) = 3.67 ms, Slice Thickness = 1.0 mm, Resolution 256 x 256 

pixels, Voxel Size 1.0 x 1.0 x 0.5 mm). This set of data has been used in a previous paper of some of 

the authors (Nigro et al., 2014). 

   To test if our methods are independent in respect to the specific MRI scanner used and from the 

Parkinson disease and its variants, 15 MS Subjects (mean age: 45, 12 female, 3 male). Data related 

to MS have been collected at the Neurodiagnostic Unit of the Hospital of Cetraro (CS), in compliance 

with the Privacy Act and current legislation (Declaration of Helsinki), provided MRI files. Brain 

scans were acquired using a 1.5 T MR scanner (Philips Achieva Rev R5 v3-rev.00) with Slice 

Thickness = 1.0 mm, Resolution 336 x 336 pixels, Voxel Size 0.762 x 0.762 x 1.0 mm, TR = 7.0286 

ms, TE = 3.178 ms. Subjects data were treated according to the current privacy rights protection laws. 

The Ethics Committee of the Cetraro Hospital has approved the research. 

   Furthermore, 57 AD Subjects (mean age: 75, 29 female, 28 male) were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment (MCI) and 

early Alzheimer’s disease (AD). For up-to- date information, see www.adni-info.org. All these brain 

MRIs were acquired using a 3.0 T MR scanner (SIEMENS) with inversion time = 900 ms, TE = 2.98 

ms, TR = 2300.0 ms, Resolution 240 x 256 pixels, Slice Thickness = 1.0 mm, Voxel Size 1.0 x 1.0 x 

1.0 mm).  

   In synthesis, for each group of subjects there are different technical specifications related to the type 

of brain scan performed and the physical characteristics of the used system. For testing our methods, 

we used 3D T1-weighted sequences (Acquisition Plane = SAGITTAL), restricting our interest on a 

range of 100/101 central slices, depending on whether the total number of slices was even or odd, 

respectively, in order to always choose a central interval and do not weigh down computationally the 

software. Technical features of the datasets are summarized in Table I. All data scans have been 

anonymized, in obedience with the current Ethical laws. 

 

 

 

 

 



TABLE I 

TECHNICAL FEATURES OF DATASETS USED IN THIS WORK 

Table I: Technical features of the datasets used in this work 
 

2.2 K-means 

  K-means is part of the exclusive or partitioning-type algorithms. Given a set of 𝑛 objects 𝐷 and the 

number 𝑘 of clusters, it organizes objects into separate partitions 𝑘 (𝑘 ≤ 𝑛), where each one 

represents a cluster (Mac Queen, 1967). Clusters are used in order to optimize a grouping criterion, 

generally a function based on the distance; in this case, the similarity measure is based on the average 

value of the objects in a cluster, which can be seen as the centroid or the center of gravity. 

   Given a set of n elements 𝑆 = {𝑥𝑖,   𝑖=1,…,𝑛} defined in a space where it is possible to state a metric 

𝑑, and the number 𝑘 of clusters in which to partition the set, 𝑘 elements 𝑐𝑗 𝜖 𝑆 , 𝑗 𝜖 {1, … , 𝑘},  settled 

in a random manner,  will be at first the centroids of the clusters 𝐶𝑗. Then, another element  𝑥𝑖  𝜖 𝑆, 

that will be associated with the cluster whose centroid is closer, in according to the metric 𝑑, is 

randomly chosen as follows: 

𝑥𝑖  𝜖 𝐶𝑗0
           𝑠𝑜 𝑡ℎ𝑎𝑡           𝑑 (𝑥𝑖 , 𝑐𝑗0

) =  𝑚𝑖𝑛 1≤𝑗≤𝑘 𝑑(𝑥𝑖 , 𝑐𝑗) 

Cluster 𝐶𝑗0
 will have a new centroid, calculated considering both 𝑐𝑗0

 and 𝑥𝑖. This is repeated by 

identifying the cluster to which another random point belongs. The process ends when the whole set 

has been partitioned as follows: 

∀ 𝑖 𝜖 {1, … , 𝑛}  ∃ 𝑗 ∈  {1, … , 𝑘}   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑥𝑖 ∈  𝑐𝑗 

   For the aim of this paper, the brains of the experimental subjects have been partitioned into slices 

on the sagittal plane and, using the k-means algorithm, we got a subdivision into 4 clusters (Fig.1). 

   Since we want to locate the Mid-Sagittal reference slice, we can only consider the 100/101 central 

slices that we will place in an INPUT folder, repeating the procedure for each subject. The goal is to 

identify the slice in which the difference between the different brain tissues is more marked. In our 

algorithm we used two main MatLab codes: k_mean.m and peaks.m. 

1. k_mean.m             

We can divide this code into three sub-parts: 

a. Iteration of k-means method to all DICOM files in the INPUT folder of each subject. 

In this case:  

Dataset Subsets Scanner 

Machine 

Slice 

Resolution 

[pixels] 

Voxel Size [mm] Slice 

Thickness 

[mm] 

Slices total 

number 

Range considered [slice 

number] 

 

CNR 

Catanzaro 

Healthy 

PD 

PSP 

GE 

MEDICAL 

SYSTEMS  

DISCOVERY 

MR750             

3.0 T 

256 x 256 

256 x 256 

256 x 256 

1.0 x 1.0 x 0.5 

1.0 x 1.0 x 0.5 

1.0 x 1.0 x 0.5 

1.0 

1.0 

1.0 

367 / 368 

367 / 368 

367 / 368 

133-233 / 134-233 

133-233 / 134-233 

133-233 / 134-233 

 

Hospital of 

Cetraro 

 

MS 

Philips 

Achieva Rev 

R5 v3-rev.00                    

1.5 T 

 

336 x 336 

 

0.762 x 0.762 x 1.0 

 

1.0 

 

210 

 

55-154 

ADNI AD SIEMENS  

3.0 T 

240 x 256 1.0 x 1.0 x 1.0 1.0 176 / 208 38-137 / 54-153 



 the set S is an image 2D (the slice on sagittal plane) 

 the elements 𝑥𝑖 are the points correspondents to the pixels 

 the metric 𝑑 is defined by        

           

    𝑑(𝑥𝑖, 𝑥𝑗) = |𝑣(𝑥𝑖) –  𝑣(𝑥𝑗)|       

                    

where 𝑣(𝑥𝑖) is the value in grey scale corresponding to point 𝑥𝑖   

 𝑘 = 4            

We chose a clusters number equal to 4 because experimentally we saw that in this 

way we can obtain the best slice partition. In fact, this choice makes it possible to 

distinguish quite well the different areas of the brain and in particular the mid-brain 

that is the region of greatest interest in defining the mid-sagittal (Fig.1).                 

Next, the clusters are sorted in ascending order depending on the number of pixels 

they contain. This means that cluster 1 will contain the points corresponding to 

pixels representing the cerebrospinal fluid, cluster 2 representing gray matter, 

cluster 3 representing white matter, and finally cluster 4 corresponding to the pixels 

representing the background. Determining this order is possible because at the 

variation of the slice, at least for the central ones, the ratio between the quantity of 

pixels present in the various regions is always the same. The process is repeated 

iteratively for all files in the folder for each subject.    

  

b. Graph creation.            

The code manages to create graphs representing the amount of pixels contained in 

each cluster by varying the slice number, always considering only the 100/101 central 

   
                 

Fig. 1  First step of the code. The 2D MRIs are divided into four clusters according to the values of the 

gray scale. Each cluster corresponds, approximately, to a different brain tissue.   

                     

slices. Note the clusters for each slice are sorted in an increasing order. This is because 

the choice of the number, associated with each cluster, occurs randomly when 

choosing the centroids between all points in the image. Consequently, once number 1 

can be associated with the cluster containing the points representing the cerebrospinal 



fluid, another time, applying the same method to another slice, the number 1 can be 

associated with the cluster corresponding to the white matter and so on for the other 

brain tissues. Sorting clusters every time in ascending order we can establish a two-

way correspondence between the cluster identification number and the cerebral tissue 

(Fig.2a).  

 

     
Fig. 2  (a) Second step of the code. The graph shows the amount of pixels present in each cluster by 

varying the slice number. (b) Third step of the code. Every curve shows the difference of quantities in 

pixels between two different clusters.       

  

c. Finally, the code creates a graph representing the differences of the amount of pixel 

between different tissues, by varying the slice number (Fig.2b). Note that pixel 

quantity differences between region 4 and the other ones are not considered because 

cluster 4 contains pixels corresponding to background and there are, of course, no 

substantial differences in the number of pixels representing the background between 

one slice and the another, at least for the central slices.   

2. peaks.m                    

This code makes it possible to automatically identify the peaks of each difference curve for 

each subject, whether they are absolute or relative maximum or minimum, provided that the 

jump between the value that the function takes at the critical point and the average of the 

values that the function assumes elsewhere is quite relevant. In particular, we suppose to 

analyze a difference curve that we call v. Now we can consider two cases:  

a. the peak of the curve is situated among the 40 central slices       

In this case are considered only the 40 central slices to establish if the curve has a 

maximum or a minimum, in formulas   

 if | 𝑚𝑖𝑛30≤𝑖≤70 𝑣(𝑖) −
𝑣(30)+𝑣(70)

2
| >  | 𝑚𝑎𝑥30≤𝑖≤70 𝑣(𝑖) −

𝑣(30)+𝑣(70)

2
|, then 𝑣 has 

an absolute minimum in 𝑗 such that (𝑗) =  𝑚𝑖𝑛30≤𝑖≤70 𝑣(𝑖)  

  if |𝑚𝑖𝑛30≤𝑖≤70 𝑣(𝑖) −
𝑣(30)+𝑣(70)

2
| <   | 𝑚𝑎𝑥30≤𝑖≤70 𝑣(𝑖) −

𝑣(30)+𝑣(70)

2
|, then 𝑣 has 

an absolute maximum in j such that 𝑣(𝑗) =  𝑚𝑎𝑥30≤𝑖≤70 𝑣(𝑖).          

We can note that is not considered the average of the values that 𝑣 assumes 

elsewhere to make the code faster and because experimentally is seen that are not 

substantial changes between 𝑣(30) and 𝑣(𝑖), 𝑖  {1, … , 30}, the same thing is valid 

for the values assumed in the last 30 central slices.  

b. the peak of the curve is situated outside the 40 central slices or close enough to the 

edges (in particular if the peak is located in [𝑚, 𝑚 + 3] or in [𝑀 − 3, 𝑀] where 𝑚 and 

𝑀 are respectively the minimum and the maximum extremes of the central 40 slices 

range) to have a bifurcation point in the evaluation of the criticality o that point in the 

curve.               



In this case we consider the whole interval of the 100/101 central slices. The minimum 

or the maximum of the curve is chosen in the same manner, but the edges considered 

are the first slice and last one. 

   We indicated the difference curve between clusters 𝑖 and 𝑗 as 𝑑𝑖𝑗, 𝑖, 𝑗 ∈ {1,2,3}. 

   Finally, we computed the arithmetic average between the number of the slice corresponding to the 

peak of each curve. The output of the previous code is a vector 𝑝 = (𝑝1, 𝑝2, 𝑝3), where 𝑝ℎ,ℎ{1,2,3} is 

the number of the slice correspondent to the maximum or minimum of the difference curve. We 

calculated the average 𝑚 =  
1

3
 (𝑝1 + 𝑝2 + 𝑝3)  and the value is approximated to the nearest integer.              

The same procedure is repeated for all subjects. 

2.3 Implementation of the system 

  The block diagram of our proposed algorithm is represented in Fig.3.  

  Regardless of the brain scans’ resolution, the central 100/101 slices for each subject were provided 

as input to the developed system. The code works on each slice improving k-means method, shown 

from second cycle. Then code creates a quantity cluster graphic and computes the difference between 

quantities in pixels of different clusters. Finally, the average number of slices, which correspond to 

critical point of difference functions, detects the number of reference slice of Mid-Sagittal. 

2.4 Inter raters reliability and gold standard definition 

   To obtain a gold standard on which compare the performance of the developed algorithm, 4 expert 

raters manually segmented the mid-sagittal plane for each subject of the considered sample.  

   In order to arrive to a perfect agreement by mathematical algorithms in delineating the mid-sagittal 

slice that could be used as standard to compare the performance of the algorithm, we used a statistical-

mathematical model, which allows to outline either an evaluation of the performance of the individual 

rater, and an analysis of characteristics of each item studied (Lord and Novick, 1968). There are two 

ways of applying this method: dichotomous and polychromous ratings.  For dichotomous rating, 

values correct/incorrect are assigned to each response of raters, obtaining, then, a proportional rating. 

The results gave us a percentage of agreement among raters. This means that if, for example, raters 

agree in 61% of the cases, out of the 109 cases considered, they do not agree in the remaining 39% 

of the considered sample.  Some limitations of this method are related to the fact that this measure 

does not discriminate exactly between agreement on positive and negative ratings and, having a so 

low percentage of success, it could not be considered an optimal gold standard on which test the 

performance of our automatic algorithm. 

The central problem the raters found in the measurement of the mid-sagittal, was that there is no 

one unique slice that identifies the subtle morphological differences of the midbrain pattern in the 

mid-sagittal, but rather a dynamical interval with the rise and fall of the proper mid-sagittal 

configuration. Therefore, the choice could be among the slices, which belong to previously defined 

sets of slices, to which we assigned the values for the rating categories or levels. For satisfying this 

need, we implemented the polychromous rating, giving a score of 2, 3 and 4, for difference among 

raters of 2, 3 and 4 slices. This method, while showing improved agreement percentages, exhibited 

many downsides as well: we can have a percentage of agreement high enough only when the raters 

individuate exactly the same slice. 

To establish the agreement between the raters on individuation of the mid-sagittal for each subject 

the following procedure was applied. 

 In the case of the presence of a majority of agreement among the raters upon a slice as mid-

sagittal reference, that slice was chosen as gold standard 

 Otherwise, a random way to choose the mid-sagittal reference slice between the different 

slices individuated by raters was employed 
 



  
Fig. 3  The diagram  of the implemented algorithm. 

 

    Then the gold standard was compared with the results obtained from the algorithm for each subject. 

In particular, the slice corresponding to the peak for each difference curve was taken into account as 

well as the arithmetic average between the slices corresponding to the peak of all curves, in order to 

study the reliability of each curve and the average to the gold standard. 
 

2.5 Machine learning approach 

Finally, to try to further improve these results, we built a machine learning tool that can be used to 

find a better algorithm than the arithmetic average. 

In this case, the three results of the algorithm are entered as input and the target value represented 

by the gold standard is the output. The method used is the Random Forest, chosen automatically by 

Mathematica®. 



The machine learning allowed for the automatic forecasting of the mid-sagittal, with any new 

sample of data, as all the procedures have been embodied into the system and they automatically use 

the stored data as a computational benchmark. 

 

3 Results 

3.1 The algorithm performance 

Results obtained by the automatic detection of the MSP as explained in the previous section are 

displayed in Fig.4.  

 
 

Fig. 4.  Results of the automatic k-means algorithm for the entire dataset of    subjects analyzed in this study. 𝑅𝑖𝑗 , 𝑖, 𝑗 ∈

{1,2,3} indicates the slice number result coming from the critical point of the corresponding difference curve 𝑑𝑖𝑗 .  

 

Observing the first results of the algorithm, we can notice that the first 37 subjects have a MRI set 

of 367/368 slices, thus the automatic method returns a value corresponding to the MSP around the 

186𝑡ℎ, whereas the rest of the subjects, who have a MRI set of 176/210 slices, show a value around 

the 98𝑡ℎ for the MSP. 

 

3.2 Inter-raters agreement and gold standard emergence 

   To improve the results, we thought to use the expert manual identification in order to arrive to an 

inter-raters reliability that can be considered a gold standard on which compare the performance of 

the algorithm.  Results for the manual segmentation of the mid-sagittal performed by expert raters in 

the different data subsets are reported in Fig.5. The agreement between raters has a standard deviation  

SD = 1.85549 for Healthy Subject, SD = 1.277988 for PD subjects, SD = 1.919522 for PSP subjects,  

SD = 2.320752 for MS Subjects, SD = 1.400329 for AD Subjects.  

We can observe that raters differ among themselves in a relevant way, if we consider a dichotomous 

approach, whereby they can reach the identification target or not. To start optimizing the performance 

of our system, we calculated the arithmetic average between the evaluations of the raters and 

evaluated the performance of the raters on the average (Fig.6). In this way, we obtained the 

distribution of the performances of the raters on the arithmetic average.  We realized that each rater 

has a different performance which can diverge very much on the frequency of right evaluation. 



 
Fig. 5  Medical expert identification of the mid-sagittal – Agreement between raters. 

 

For the gold standard ratings, as said before, we used different steps. The first step foresaw the use 

of the dichotomous model. With this function we have obtained results of manual segmentation 

agreement among raters, which is more than 0.61 in a range [0,1], where 0 is complete disagreement 

and 1 is complete agreement between raters. This means that the mathematical model implemented 

is built on a function that evaluates agreements or non-agreements among raters. This basic model 

considered an agreement where the variation is “yes, it is the same”, “no, it is different”. 

 



 

Fig. 6  Distribution of the raters performance on the arithmetic mean. 

3.3 Going further to create a cognitive decisional algorithm 

  The previous algorithm is not completely convincing for the determination of the gold standard, 

even because it could be useful if we could assign a weight to some of the raters, but obviously all 

the raters are all experts as well so their opinions have the same weight in the manual identification 

of the mid-sagittal. Besides, a gold standard based on the arithmetic average between the slices 

individuated by raters as mid-sagittal is not much reliable. For example, if we have three raters that 

have indicated the same value 𝑥 and only one that has indicated the value 𝑦, it seems reasonable that 

the correct value is 𝑥 and not the average of {𝑥, 𝑥, 𝑥, 𝑦}. We have, therefore, created the "gold 

standard" sequence, incorporating a decision-making process and creating a cognitive algorithm to 

support the choice. The decision-making process is as follows: 

1. If three or four raters agree on the 𝑥 value, choose that value; 

2. If 2 raters agree on the value 𝑥 and the other two indicate a different value 𝑦 and 𝑧 with 𝑦 and 𝑧 

different, choose 𝑥; 

3. If two raters agree on 𝑥 and the other two on y, choose one of the two random values; 

4. If all the four raters indicate different values, choose one randomly. 

3.4 Comparison gold standard -  algorithm 

  Fig.7 shows results about slices distributions individuated as peak of the three curves compared 

to the gold standard, shown in the histograms (Fig.7a), distribution of the results grouped according 

to the error’s frequency (Fig.7b), and the corresponding distribution in quartiles of the results of the 

algorithms (Fig.7c). From the tables in Fig.7b we see that the first curve nicks the target slice 17 times 

while the other two algorithms hit the objective slice 26 and 25 times respectively. The means of 

absolute errors are 𝑒12 = 5.00917, 𝑒13 = 3.33028, 𝑒23 = 3.08257 respectively. It is evident that the 

best prediction curve turns out to be the 𝑑23, whose error average is 3 slices. The standard deviations 

of the three prediction curve are 𝑆𝐷12 = 6.06523, 𝑆𝐷13 = 4.70826, 𝑆𝐷23 = 4.49718 respectively. 

We can notice that the third algorithm has the least dispersion, as is also clear from the observation 

of Fig.7c. 

 
 



 
 

Fig. 7  Results about slices distributions compared to the gold standard, shown in the histograms (a), distribution of 

the results grouped according to the error’s frequency (b), and the distribution in quartiles of the results of the 

algorithms (c). 

 

However, it is interesting to observe these averages in relation to the mean absolute errors of the 

raters and their standard deviations, which are respectively equal to: 𝑒1 = 1.77982, 𝑒2 =
1.5412, 𝑒3 =  0.834862, 𝑒4 = 1, and 𝑆𝐷1 = 4.04882, 𝑆𝐷2 = 3.18956, 𝑆𝐷3 = 2.41502, 𝑆𝐷4 =
2.46281. Indeed, we can consider the results coming from the three curves as the opinion of three 

different persons that can provide results more or less close to the gold standard. 

From this it emerges that the best algorithm has a 1.5-slice error compared to the worst rater, whereas 

the standard deviation of the best algorithm is close enough to the standard deviation of that obtained 

by the worst rater. 

   Rather than searching for an average absolute error, it is more logical to compute the relative error 

among the whole set of slices. Therefore, we must divide the absolute error by the total number of 

slices for each subject and compute the average across the subjects. The relative errors averaged 

across all subjects are equal to 𝑒12 = 0.02025, 𝑒13 = 0.01439, 𝑒23 = 0.01195 respectively, thus the 

error drops to about 1.20% in the case of the best algorithm, while it is at 2.03%, in the case of the 

worst algorithm. 

Since we want to localize the reference slice where the differences between brain tissues is more 

marked and there is no reason to assign a larger weight to a difference curve than another, we 

computed an arithmetic average of results extracted from the three curves. The relative error averaged 

across the subjects is 𝑒𝑎𝑣𝑒 = 0.00961, obtaining a better result even than the best algorithm 𝑑23. The 

standard deviation is 𝑆𝐷𝑎𝑣𝑒 = 4.23703, lower than 𝑆𝐷23 = 4.49718. A comparison with the other 

distributions (considering the absolute errors on the slices) is shown in Fig.8. 

 



 
    Fig. 8.  Comparison with the distributions of the three algorithms and their average, considering the absolute error on 

the slices. 

 

For whom to concern the machine learning approach, we employed the first step in the application 

of machine learning techniques. We trained the machine with the dataset of 109 subjects and we 

tested it on the same dataset. Comparing the results with the gold standard, we obtained an average 

relative error 𝑒𝑚𝑙𝑟 = 0.00654 and an average absolute error 𝑒𝑚𝑙𝑎 = 1.9633, a value that is very close 

to the absolute error of the worst rater (𝑒1 = 1.77982). Instead, the standard deviation is 𝑆𝐷𝑚𝑙= 

2.06347, lower than the standard deviation of the best rater (𝑆𝐷3 = 2.41502). All these results show 

that the developed system is already comparable to the performance of the raters and less dispersive.  

4 Conclusions 

From the obtained results, we demonstrated how the system improved its performance, increasing 

its sensitivity and accuracy, making the extreme variability of the identification task more flexible. 

The human brain is highly variable. Although MRI systems are currently the most powerful machines 

to detect this variability, in turn they have many drawbacks in the visual rendering of data. So, the 

problem we faced is highly sensitive to the initial data. Consequently, each subject of the sample has 

been carefully analyzed, adopting the technique of polychromous ratings, which by enlarging the 

intervals, specified better the sensitivity and accuracy of the developed tool. Moreover, the machine 

learning developed allows the forecasting of the mid-sagittal from a MRI file, in an automatic way, 

without passing through the repetition of the procedure that we have described in this work. In fact, 

by means of the training set of data in this article, which are used as a computational benchmark, we 

can forecast any set of data, independently of the MRI systems and neurodegenerative diseases. 

Continuing along this path can provide excellent results, optimizing the system to make it as sensitive 

and reliable as a human expert. Indeed, the next step in this framework is collecting a larger dataset 

and test the trained machine learning on it. Cognitive systems are very important and potentially they 

can be embodied into the same MRI machine, as can be done for cognitive function developed for 

smart robots (Bertacchini et al., 2017), for improving visual systems (Abdechiri et al., 2017), or to 

mathematically model specific patterns of multiple sclerosis (Lombardo et al., 2017). Besides, this 

method could find applications in the individuation of different brain locations, key points in the 

understanding of brain network interactions and in the connections with other organ systems. Indeed, 

detecting particular brain areas responsible of the strongest connection with a particular organ system 

during a particular physiological state could help to discriminate a pathological picture in the whole 

organism from a physiological one (Bashan et al., 2012). 
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