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 1 

ABSTRACT 1 

 2 

In hydrometeorological and environmental studies, it is common to seek relations 3 

between two variables (predictand and predictor), one of which (predictor) is affected by 4 

uncertainties. These errors unavoidably affect the results of the analyses by providing 5 

erroneous estimates of the parameters of the predictor-predictand model. A possible 6 

solution is represented by the SIMulation-EXtrapolation (SIMEX) methodology. This 7 

approach follows two steps: 1) perturbation of the predictor with increasing level of 8 

uncertainties (multiples of the known error variance); and 2) finding a relation between the 9 

model’s parameters and level of uncertainty, which allows their extrapolation to the error-10 

free case. 11 

The application of the SIMEX methodology requires the a priori knowledge of the 12 

mean, variance, and distribution of the measurement errors. However, in hydrologic and 13 

climatologic studies, this is not the case and the impact of an erroneous specification of 14 

these statistical properties on the results of the analyses has received little attention. The 15 

aim of this study is to investigate the sensitivity of the SIMEX methodology to mis-16 

specification of the error characteristics. By using a simulation-based approach, we 17 

investigate the impact of an imperfect knowledge of the characteristics of the errors 18 

associated with the predictor (mean, variance, and probability distribution). Our results 19 

suggest that SIMEX is robust against mis-specification of the moments and distribution of 20 

the measurement errors, that it performs better than standard linear regression, even when 21 

these statistical properties are erroneously specified and that, for these reasons, it could 22 

find an useful application to seasonal forecasting of hydroclimatic variables. 23 
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 2 

1. Introduction 1 

In several disciplines, we are interested in finding the relation between two random 2 

variables, denoted by X and Y, where the former is the predictor and the latter the 3 

predictand. In general, while we usually assume that Y is error-free, this may not be the 4 

case for X: instead of measuring X (latent variable), we actually measure another variable, 5 

W, which represents the combination of X and the measurement errors associated with it. 6 

In hydrometeorological and environmental studies, this is a very common problem. For 7 

instance, consider the case in which we want to relate radar rainfall estimates to the average 8 

of different rain gage measurements within the pixel of interest (considered to be the 9 

“ground truth”). When we relate these two quantities, we generally neglect to account for 10 

the uncertainties associated with computing pixel-averaged rainfall based on a limited 11 

number of rain gages (e.g., Villarini et al. 2008). As mentioned in Hasan et al. (2014), by 12 

neglecting these uncertainties, we introduce a bias when converting radar reflectivity to 13 

rainfall. Another example is related to the impacts of uncertainties in input variables in the 14 

estimation of the parameters of hydrologic models (e.g., Chowdhury and Sharma 2008). 15 

Moreover, consider for instance a time series of precipitation from a global climate model 16 

(GCM) that we want to fit with a gamma distribution. It is well-known that there are large 17 

uncertainties associated with GCM outputs, especially for a variable like precipitation. If 18 

we neglect to account for these uncertainties and apply standard approaches, our estimation 19 

of the parameters of the gamma distribution will be biased (Woldemeskel et al. 2014). 20 

More specifically, let us focus on the case in which X and Y are linearly related: 21 

Y=0+1X+ (1) 22 



 3 

where  represents the uncertainties with respect to the regression line and is normally 1 

distributed with mean equal to zero and standard deviation equal to . 2 

Assuming a classic error model (Carroll et al. 2007), instead of measuring X we 3 

measure W, which accounts for the measurement errors U in X in an additive form: 4 

W=X+U (2) 5 

where U is independent of both X and Y and is described by a Gaussian distribution with 6 

mean U equal to zero and standard deviation U. 7 

Considering Y as the predictand and W as the predictor, ordinary least squares method 8 

(OLS) provides a consistent estimation of β̂1,naïve = λβ1 rather than 1 (e.g., Carroll et al. 9 

2007) where: 10 

λ =
σx

2

σx
2+σU

2 < 1 (3) 11 

and σx
2 represents the variance of the variable X, and  is called the reliability ratio (Fuller 12 

1987). The estimate of the slope by means of OLS is therefore biased when σU
2 > 0. In 13 

general, the presence of measurement errors not only introduces an attenuation of the slope 14 

1, but makes the data noisier as well (e.g., Carroll et al. 2007). 15 

Since it is clear how measurement errors may significantly affect the results of our 16 

analyses, they should be accounted for. In the field of applied statistics, this is a well-known 17 

problem and it has been the object of a vast literature (e.g., Fuller 1987; Gleser 1990; 18 

Brown and Mariano 1993; Carroll et al. 2007). Among all of the proposed approaches, a 19 

very effective method to reduce the bias associated with the presence of measurement 20 

errors is the SIMulation-EXtrapolation (SIMEX) method, first introduced by Cook and 21 

Stefanski (1994). SIMEX is based on the idea of adding measurement errors to the data as 22 

multiples of the known error variance and finding a relation between the targeted parameter 23 
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and the level of added noise, allowing the extrapolation of the results to the error-free case. 1 

We will discuss this approach in more details in the next section. Among other fields, this 2 

simulation-based method has been widely used in ecology (e.g., Kangas 1998 , Stoklosa et 3 

al. 2015; Ponzi et al. 2019; Kinane et al. 2021), and biostatistics and medicine (e.g., Lauzon 4 

et al. 2013; Guolo 2014; Alexeeff et al. 2016; Oh et al. 2018). However, in 5 

hydrometeorological and environmental studies, it has found limited application. The first 6 

application of this methodology was discussed by Chowdhury and Sharma (2007) to infill 7 

values of the Southern Oscillation Index based on sea surface temperature anomalies. 8 

Chowdhury and Sharma (2008) used the SIMEX methodology to quantify the bias in key 9 

storage parameters in the Sacramento Model. Then Woldemeskel et al (2012) showed the 10 

improvement in the estimation of the parameters of future droughts when SIMEX was used 11 

to account for uncertainties in the GCM outputs. Finally, Hasan et al. (2014) used this 12 

method when relating radar reflectivity to the ground truth, accounting for the uncertainties 13 

associated with a “ground truth” obtained from the average of multiple point 14 

measurements.  15 

One of the possible obstacles towards a more widespread use of this methodology is 16 

the required knowledge of the statistical characteristics (i.e., mean, variance, and 17 

probability distribution) of the measurement error U. For the case of unknown variance, 18 

Devanarayan and Stefanski (2002) proposed a modification of the SIMEX approach, which 19 

however requires independent replicate measurements. However, as described in 20 

Chowdhury and Sharma (2008), an outstanding “issue to be investigated in greater detail 21 

is the specification of the error distribution for various hydro-climatological variables.” 22 

Therefore, what would happen if we mis-specify the error variance, or the mean, or even 23 
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the entire probability distribution still remains open questions. Carroll et al. (2007) wrote 1 

that “minor violations to the assumption of normality of the measurement errors is not 2 

critical in practice.” To the best of our knowledge, this is one of the very few indications 3 

about the robustness of SIMEX to mis-specification of the statistical characteristics of U. 4 

Therefore, a study in which this issue is addressed is still lacking and it would be important 5 

to show that even an imperfect knowledge of the measurement error characteristics could 6 

lead to more accurate results compared to the case in which we neglect them. In this study 7 

we tackle this question in a simulation framework, where we know the underlying relation 8 

between X and Y (Section 2). In Section 3 we will show that SIMEX tends to perform 9 

better than OLS even under mis-specification of the error characteristics, while Section 4 10 

discusses the main points made and closes the article. 11 

2. SIMulation-EXtrapolation: SIMEX 12 

There are several papers describing the SIMEX methodology in details for linear and 13 

non-linear models, homoschedastic or heteroschedastic errors, both in additive or 14 

multiplicative forms. The reader is pointed to Carroll et al. (2007) and references therein 15 

for more information. Here we consider the linear model in equation (1), and the additive 16 

error model in equation (2) to describe the measurement errors in X. We also assume that 17 

we know that U is normally distributed with mean equal to zero and variance equal to σU
2 .  18 

The SIMEX methodology consists of a simulation and an extrapolation step. In the 19 

simulation step, we generate m-1 additional datasets which are obtained by increasing the 20 

level of measurement error by (1 + ζ)σU
2 , with ζϵ[0; ζm] and known. By using OLS, we 21 

would consistently estimate β1σx
2/[σx

2 + (1 + ζ)σU
2 ]. We can now focus our attention to a 22 
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nonlinear regression problem, in which the independent variable is  and the dependent 1 

one is β̂1. Asymptotically, we have: 2 

E(β̂1|ζ) = G(ζ) =
β1σx

2

σx
2+(1+ζ)σU

2  (4) 3 

where 𝐺(0) = �̂�1,𝑛𝑎ï𝑣𝑒 (i.e., the slope estimated by OLS) while G(−1) = β̂1,SIMEX. Here β̂ 4 

represents the estimated value of the  coefficient.  5 

We can summarize this methodology in the following steps: 6 

1- We consider m to be equal to 7, with  that set to assume the values [0.5; 1.0; 1.5; 7 

2.0; 2.5; 3.0]. Simulate independent errors with variance equal to ζσU
2  and add it to 8 

the measured variable W. For each , we repeat this step 200 times (we have 9 

explored the sensitivity of the results to the number of replicates, without finding 10 

them to be sensitive). 11 

2- Estimate the slope 1 for each of the new simulated datasets. For each value of , 12 

we have 200 estimates of the slope; for each one of them, take the average value. 13 

Therefore, we have six points (plus the naïve estimate). 14 

3- Plot 1 as a function of  and fit a quadratic function (see Section 5.3.2 in Carroll 15 

et al. (2007) for considerations about the extrapolant function). Once parameterized 16 

G(), we want to obtain the value of the function for  = -1, so that G(-1) is the 17 

targeted 1,SIMEX. 18 

It is clear that we need to have information about the statistical properties of the 19 

measurement errors. As mentioned before, we analyze the impacts of mis-specification of 20 

the statistical properties of the measurement errors on the SIMEX methodology in a 21 

simulation framework. Similar to Chowdhury and Sharma (2007), we start by simulating 22 
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X from a standard uniform distribution. To generated Y, we use the linear model in 1 

equation (1), and consider four possible sets of values for 0 and 1: 2 

1. 0 = 0 and 1 = 0.3; 3 

2. 0 = 0 and 1 = 0.8; 4 

3. 0 = 0 and 1 = 2.0; 5 

4. 0 = 0.8 and 1 = 0.8. 6 

These values could be representative of changes in hydroclimatic variables of annual 7 

to decadal to centennial time scales, including precipitation, temperature, and discharge. 8 

Moreover, we consider  to have a normal distribution with mean equal to zero and standard 9 

deviation equal to 0.1. As far as the measurement error U is concerned, we assume that it 10 

is normally distributed with mean equal to zero and u = 0.3. We perform our analysis 11 

using the SIMEX package (Lederer and Seibold 2019) in R (R Core Team 2022).  12 

For case 2 (0 = 0 and 1 = 0.8), we show how SIMEX can correct for the bias in the 13 

regression coefficient in Figure 1. By neglecting the measurement uncertainties, OLS 14 

would return a slope value β̂1,naïve equal to 0.64. On the other hand, using the SIMEX 15 

approach we have that β̂1,SIMEX is equal to 0.78. Therefore, given an additive error model 16 

and knowing the measurement error mean, variance, and distribution, SIMEX can remove 17 

the bias from the estimation of the parameters. Similar improvements were observed for 18 

the other three scenarios as well: the SIMEX methodology was able to provide an estimate 19 

of the slope and intercept that was close to the target values, much more so than by using 20 

OLS. 21 

We apply SIMEX to seasonal forecasting to explore its potential applicability to 22 

hydroclimatological variables. Figure 2 shows an example related to the prediction of the 23 
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Southern Oscillation Index (SOI) in February using the sea surface temperature (SST) 1 

averaged over the Niño3.4 region and forecasted from the beginning of February (i.e., 0.5-2 

lead time forecast) to the beginning of November of the previous year (i.e., 3.5-lead time 3 

forecast). Results are based on the average of 12 members of the GFDL-CM2p5-FLOR-4 

B01 by the Geophysical Fluid Dynamics Laboratory and part of the North American Multi-5 

Model Ensemble (NMME; Kirtman et al. 2014). The study period ranges from 1981 to 6 

2020, and we use 1981-2204 for calibration, and 2005-2020 for validation. As a first step, 7 

we compute u from the 12 members of the GFDL model, and we then apply the SIMEX 8 

methodology to estimate the slope and intercept. For short lead times, the regression lines 9 

between SOI and Niño3.4 SST based on SIMEX and OLS are almost identical. As the lead 10 

time increases, there is more separation between the two lines, with a slightly better 11 

performance by SIMEX in terms of root mean squared error. These results point to the 12 

potential suitability of SIMEX for seasonal forecasting, especially for long lead times. 13 

3. Results 14 

Let us start by investigating the impact of mis-specification of the mean and variance 15 

of the measurement errors under the above mentioned four scenarios. To accomplish this 16 

task, we apply the SIMEX methodology assuming that U is normally distributed with mean 17 

equal to zero and standard deviation equal to 0.3, and investigate what happens if we 18 

increase the value of U from 0 to 1, and at the same time we have U ranging from 0.3 to 19 

0.6.  20 

In Figures 3-6, we have plotted the results for our analysis. On the x-axis we have 21 

increasing values of U from 0 to 1, while on the y-axis we have plotted the uncertainties 22 
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associated with U in percentage of its true value. As far as the intercept is concerned (left 1 

panels), we show Δβ0,i = (β0 − β̂0,i)/β1, where β̂0,i is the estimated intercept using OLS 2 

or SIMEX (indexed by i), β0 is its true value, and β1 is value of the true slope. As far as 3 

the slope is concerned (right panels), we show Δβ1,i = 100(β1 − β̂1,i)/β1, where β̂1,i is the 4 

value of the slope estimated from the data using OLS or SIMEX (indexed by i). Here we 5 

normalize by the differences in the intercept with respect to the true slope rather than the 6 

true intercept because the latter is set to zero in some of our simulations, affecting the 7 

computation of the ratio. More generally, the normalization of the results with respect to 8 

β1 provides indications on the generalization of these results.  9 

As expected, the slope is sensitive only to mis-specifications of the standard deviation 10 

of the measurement errors (Figures 3-6). This statement is valid for both OLS and SIMEX 11 

methodologies. We have increasing errors for increasing uncertainties in U, since we only 12 

partially account for the measurement errors: based on equation (3), the reliability ratio  13 

is still smaller than 1, resulting in an attenuated slope. Overall, with OLS we make an error 14 

between 20% and 50% of the true slope value for uncertainties in U from 0% to 100%. 15 

On the other hand, using SIMEX we have errors in the estimation of the slope ranging from 16 

5% to 30%. Based on our results, the improvements from the use of the SIMEX 17 

methodology with respect to OLS are larger as the uncertainties in U are smaller. On the 18 

other hand, as the uncertainties in the measurement error standard deviation increase, the 19 

advantage of using SIMEX with respect to OLS decreases. This is made clearer from the 20 

bottom-right panels in Figures 3-6, in which the ratio between the OLS and SIMEX errors 21 

(Δβ1,naïve/Δβ1,SIMEX)  decreases from a value greater than 10 for small errors in U to 22 

values closer to 1 (i.e., they perform in a similar way) for large uncertainties in the 23 
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measurement error. Comparing the results for scenarios 1 to 3 (Figures 3-5), we notice a 1 

slightly reduced sensitivity of both OLS and SIMEX to mis-specification of U. Comparing 2 

Figures 4 and 6, when estimating the slope the presence of a larger intercept tends to 3 

attenuate the sensitivity of both of the approaches to mis-specifications.  4 

While the slope is sensitive exclusively to erroneous specification of the measurement 5 

error standard deviation, the intercept is mostly sensitive to mis-specification of its mean 6 

U. This feature was expected, because errors with a mean different from zero would 7 

introduce an offset that would be compensated by creating or shifting an intercept. For 8 

small values of U, the intercept is not sensitive to the error standard deviation. On the 9 

other hand, as U increases, the sensitivity of the intercept to increasing uncertainties in U 10 

increases: the attenuation in the estimation of the slope tends to reduce the impact of the 11 

increasing values of U. Based on Figures 3-6 (bottom-left panel) where we show 12 

Δβ0,naïve/Δβ0,SIMEX, the intercept estimated with SIMEX tends to be very close to what 13 

estimated from OLS.  14 

Finally, we have looked at the impact of mis-specification of the measurement error 15 

distribution and the role of sample size (Figure 7). Throughout this study, we have assumed 16 

to know the error distribution, and, in particular, that it can be described by a Gaussian 17 

distribution. However, in many hydrometeorological applications we do not have this type 18 

of information. Therefore, we want to consider the case in which we erroneously assume 19 

that the errors are normally distributed, even though they are actually described by another 20 

distribution. In particular, we consider U to follow Laplace, logistic, lognormal, and 21 

gamma distributions (e.g., Johnson et al. 1994). The Laplace and logistic distributions have 22 

a mean and standard deviation equal to 0 and 0.3, respectively. As far as the lognormal 23 
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distribution is concerned, these values are also the values of the mean and standard 1 

deviation of the corresponding Gaussian distribution. Finally, the gamma distribution has 2 

a mean of 0.5 and a standard deviation of 0.3. To focus on the impact of higher moment 3 

orders (e.g., skewness, kurtosis), we have linearly transformed the gamma and lognormally 4 

distributed errors to match the values 0.0 and 0.3 for mean and standard deviation, 5 

preserving the shape of their distributions. We consider six sample sizes (i.e., n = 25, 50, 6 

100, 200, 400, and 800), and present our results in Figure 7, where the true values of 7 

intercept and slope are 0 = 0 and 1 = 0.8. 8 

Regardless of the distribution and the sample size, the SIMEX method outperforms 9 

OLS in estimating 1. If we use the median of the β̂1 by SIMEX and OLS as reference, the 10 

gap between the two approaches tends to remain constant, with OLS estimating a slope 11 

value around 0.6, while SIMEX is closer to the target value of 0.8. As we increase the 12 

sample size, the variability associated with the estimation of the slope decreases, especially 13 

as we go from 25 to 100. For sample sizes larger than 100, the marginal improvement in 14 

terms of performance decreases. Neither of the approaches displays a strong dependence 15 

on the distribution of U. Not surprisingly, when the measurement error follows a Gaussian 16 

distribution, SIMEX performs well. However, even when U follows a Laplace, gamma or 17 

logistic distribution, the sensitivity of the results is very limited and indeed almost 18 

indistinguishable from what observed for the Gaussian case. The largest departure is for 19 

the lognormal distribution, whose mis-specification has a detectable signal for both SIMEX 20 

and OLS. Therefore, based on these results and in agreement with Carroll et al. (2007), the 21 

SIMEX methodology is robust to violations to the assumption of Gaussian distribution of 22 

the measurement errors. 23 
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4. Discussion and Conclusions 1 

In studies investigating the existence of a relation between two variables, the presence 2 

of errors in a predictor could significantly affect the results of the analyses. A possible 3 

approach to account for measurement errors is represented by the SIMEX methodology. It 4 

is a simple albeit powerful methodology in the case in which we have information about 5 

the statistical properties of the measurement errors. However, its sensitivity to an erroneous 6 

specification of these errors has received little attention and was the topic of this study. Our 7 

findings can be summarized as follows: 8 

1- The slope is sensitive to mis-specifications of the measurement error standard 9 

deviation U and insensitive to mis-specification of the measurement error mean 10 

U. 11 

2- For low values of the mean U (i.e., measurements that are unbiased or have small 12 

biases), the intercept is sensitive only to mis-specifications of the measurement 13 

error mean. As the values of U increases, it tends to depend on U as well. 14 

3- Departure of the statistical distribution of the measurement error from a Gaussian 15 

distribution was found to be not very sensitive to the case of Laplace, logistic and 16 

gamma distribution, while a comparatively worse performance was exhibited by 17 

for the case of the lognormal distribution. Therefore, mis-specifications of the 18 

distribution of the measurement errors do not affect the results of the SIMEX 19 

methodology. 20 

In this study we have focused on linear regression. However, SIMEX has been 21 

successfully applied to other and more complex models (e.g., Carroll et al. 2007), and the 22 
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sensitivity of SIMEX to error mis-specification in these setups should be evaluated in 1 

future studies. 2 

Even under mis-specifications of the statistical properties of the measurement errors, 3 

the SIMEX method performs better than the standard OLS. Therefore, our findings suggest 4 

that SIMEX could be a very valuable approach in those applications where the 5 

measurements of a predictor are affected by errors for which limited information about 6 

their statistical characteristics are available, including for sub-seasonal to seasonal 7 

forecasting of hydroclimatic variables (e.g., precipitation, temperature, large-scale climate 8 

indices) or to account for the role of representativeness errors in rain gauges in ground 9 

validation of remote sensing estimates (e.g., Villarini and Krajewski 2008). 10 
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 1 

Figure 1. Plot of the slope 1 as a function of  for 0 = 0 and 1 = 0.8. A value of  equal 2 

to 0 corresponds to the naïve estimator (β̂1,naïve= 0.64), while a value of -1 represents the 3 

SIMEX estimator (β̂1,SIMEX= 0.78). 4 

  5 
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 1 
Figure 2. Example of the applicability of SIMEX in seasonal forecasting of the Southern 2 

Oscillation Index (SOI) in February as a function of sea surface temperature (SST) 3 

forecasts in the Niño3.4 region. Each row has a different lead time (from shortest to longest 4 

moving from the top to the bottom). The left column shows the scatterplot between the two 5 

variables, together with the regression lines based on OLS (blue) and SIMEX (red). The 6 

right panels show the time series of SOI used for the training of the model (black circles), 7 

the SOI values used for validation (white circles) and the forecasts based on the regression 8 

lines in the left panels, together with the corresponding root mean squared error (RMSE) 9 

values.  10 
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1 
Figure 3. Sensitivity of the intercept (left panels; Δβ0,naïve and Δβ0,SIMEX, respectively) and 2 

slope (right panels; Δβ1,naïve and Δβ1,SIMEX, respectively) estimates based on the OLS (top 3 

row) and SIMEX (middle row) methodologies to mis-specification of the mean and 4 

standard deviation of the measurement error U. The value of the true slope 1 is 0.3, while 5 



 19 

the value of the true intercept 0 is equal to 0. The panels in the bottom row show 1 

Δβ0,naïve/Δβ0,SIMEX (bottom-left) and Δβ1,naïve/Δβ1,SIMEX (bottom-right), which represent 2 

the ratios of the two panels above. 3 
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 1 

Figure 4. Same as Figure 3, but for case in which the true slope 1 is 0.8, while the value 2 

of the true intercept 0 is equal to 0. 3 
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 1 

Figure 5. Same as Figure 3, but for case in which the true slope 1 is 2.0, while the value 2 

of the true intercept 0 is equal to 0. 3 

 4 
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1 
Figure 6. Same as Figure 3, but for case in which the true slope 1 is 0.8, while the value 2 

of the true intercept 0 is equal to 0.8. 3 
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 1 

Figure 7. Boxplots showing the performance of SIMEX and the naïve estimation of the 2 

slope 1 as a function of sample size and for different error distributions. In each boxplot, 3 

the solid line within the box represents the median, while the limits of the box the 25th and 4 

75th percentiles; the limits of the whiskers indicate the 5th and 95th percentiles. 5 

 6 


