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In recent years, research on phytochemicals has underscored pleiotropic actions and
medicinal and health-promoting properties which certainly deserve serious attention.
Natural-derived molecules, such as phytohormones, glycosides, terpenoids, alkaloids,
and phenolic compounds, offer a protective or preventative shield against many several
pathological conditions such as aging, cardiovascular diseases, diabetes, obesity, cancer,
asthma, and neurodegenerative disorders [1,2]. On the other hand, the multi-faceted
potentials of phytocompounds isolated from different parts of plants or fruits stimulate the
interest of the pharmaceutical, nutraceutical, and cosmetic industries. A main goal of these
companies is to identify new and innovative phytomolecules to use as they are as natural
reservoirs in plants or to appropriately modify them with the insertion of pharmacophore
groups to design enhanced derivatives [3].

In the light of these considerations, we put together this Special Issue, titled “Advances
in the Astonishing World of Phytochemicals: State-of-the-Art for Antioxidants”, containing
seventeen papers (fourteen research articles, one review, one comment, and a reply).

The scientific evidence reported in the SI analyzed both distribution and pleiotropic
beneficial effects (antidiabetic, antitumor, antiflogistic, antibacterial, etc.) of some bioactive
compounds with antioxidant properties. However, it also has to be considered that the
relative abundance as well as the distribution of phytochemicals in plants or fruits is
consistently affected by different parameters, such as environmental edaphic conditions,
ripeness degree of fruits, and right season harvest [4].

In their contribution, Ali et al., for example, demonstrated that Australian fruits and
spices such as mountain pepper berries (Tasmannia lanceolata), rosella (Hibiscus sabdariffa),
lemon aspen (Acronychia acidula), and strawberry gum (Eucalyptus olida) represent a rich
reservoir of bioactive phenolic metabolites (phenolic acids, flavonoids, isoflavonoids, tan-
nins, stilbenes, lignans, and limonoids). Among these, the analysis provided evidence
that both Eucalyptus olida and Tasmannia lanceolata possess the highest antioxidant and
antidiabetic potential [5], a property that could be exploited in the development of specific
biopharmaceuticals.

The effect of environmental conditions on the content and quality of phytochemicals
was recently reported in studies performed on Amaranth, a leafy vegetable capable of
growing under several salinity and drought-stress-induced conditions [6]. Salt stress
has been demonstrated to enrich the amount of bioactive compounds with antioxidant
properties. Indeed, the application of salt eustress conditions (25–100 mM NaCl) was able
to boost the profile of microelements, macro-elements, phytochemicals, and phenolic acids
in Amaranthus gangeticus, contributing to providing excellent quality in the end product for
its antioxidant properties [7].

Studies performed on Romanian Armoracia rusticana L., a horseradish plant widely
appreciated for its medicinal and aromatic properties, offered a complete profile of the
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low-molecular-weight metabolites of the plant grown in Romania. Nine categories of
secondary metabolites (glucosilates, fatty acids, isothiocyanates, amino acids, pheno-
lic acids, flavonoids, terpenoids, coumarins, and miscellaneous) were identified, and
the development of phyto-engineered carrier systems capable of merging the biological
properties of horseradish and kaolinite was proposed [8]. As a whole, the conclusion is
that these systems could represent a possible controlled drug release system to apply to
cancer-specific targeting.

In another study, Rani et al. explored the biological potential of dichloromethane
and methanol root and shoot extracts of Dryopteris juxtapostia, a species belonging to the
Dryopteris genus growing in the states of the north temperate zone. The study demonstrated
that both extracts exerted radical-scavenging and anti-inflammatory and antitumoral effects
in vitro as well as hepatoprotective actions in rats. D. juxtapostia root dichloromethane
extracts exhibited the highest biological potential compared to other extracts, thus demon-
strating the importance of using dichloromethane to obtain extracts enriched in phenolic
components [9].

In addition, Vieira et al. demonstrated the anti-inflammatory effects of roots and
flowers extracts of E. purpurea, a plant whose extracts are traditionally used to treat cold
and flu. The study compared the effects of dichloromethanolic and ethanolic root and
flowers extracts with alkylamide-rich extracts obtained by using the accelerated solvent
extractor system, a green and innovative extraction technique. The authors concluded that
all the extracts were capable of reducing the IL-6 levels as well as the intracellular levels
of ROS/RNS in lipopolysaccharide-stimulated human-monocyte-derived macrophages.
However, the alkylamide fractions possessed the strongest anti-inflammatory effects, thus
evidencing these compounds as the main active extract components [10].

A fruit particularly rich in phytocompounds is tomato (Lycopersicon esculentum Mill.),
a food largely consumed for its nutritive and nutraceutical properties [11]. Noteworthy, the
different phytonutrient composition and antioxidant properties of the tomato are related
to the different ripening times. On these bases, the study of Gambino et al. compared the
different phytonutrients composition and properties of golden tomato (GT), a food product
harvested at an incomplete ripening stage with respect to red tomato (RT), harvested
at full maturation [12]. The authors demonstrated that GT contains a higher level of
naringenin and chlorogenic acid, two polyphenols with antilipemic effects [13,14], than RT.
Regarding biological activities, GT displays a better reducing power compared to RT [15].
Interestingly, GT oral supplementation in high-fed rats reduced body-weight gain and LDL
cholesterol levels, as well as lowered oxidative stress markers both in the blood and liver,
thus suggesting a potential of “GT” oral supplementation.

The biological properties of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya
koenigii (MK), traditionally used in Ayurvedic medicine as nerve relaxants and cognition
enhancers [16], were evaluated in the study of Shabir et al. [17]. Considering the effects
of these plants on the nervous system, the authors investigated the ability of aqueous
and ethanolic extracts of UD, MC, and MK to ameliorate the toxic effects of rotenone, a
neurotoxic natural pesticide, in wild-type Drosophila melanogaster. The study evidenced the
ability of plant extracts to exert neuroprotective effects on Drosophila melanogaster by allevi-
ating rotenone-induced oxidative stress, enhancing locomotion, and restoring acetylcholine
levels, thus suggesting a potential use of these extracts to treat neurological diseases. Of
course, the right recovery of phytochemicals also depends either on the type of extraction
techniques or solvents applied in the extraction procedure. This aspect was clearly ad-
dressed by Boyadzhieva et al., demonstrating a good recovery efficiency of phytochemicals
from different parts (leaves, flowers, and stems) of Gnaphalium viscosum (Kunth, such as
the antioxidants kaempferol, kaempferol-3-O-β-d-glucoside, and chlorogenic acid). In-
terestingly, for the first time, this study also demonstrated the presence in this species of
leontopodic acids A and B, two highly potent antioxidants derived from glucaric acid [18].

In a study performed in yarrow (Achillea millefolium L.), a flowering plant commonly
used in folk medicine to alleviate symptoms related to gastrointestinal discomfort [19],
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Villalva at al. used a supercritical antisolvent fractionation process [20] to obtain two
different fractions containing polar phenolic compounds and monoterpenes and sesquiter-
penes, respectively. Both the fractions explained the antibacterial effects observed against
Helicobacter pylori strains. Furthermore, the extracted fractions exerted antioxidant and
anti-inflammatory effects in Helicobacter pylori-infected human gastric AGS cells. From
this study, we can conclude that yarrow extracts can be useful against Helicobacter pylori
infection. The Villalva’s data have been criticized by Franski and Beszterda-Buszczak [21].
Although they do not question the quality of the paper, these authors raised questions
about the correctness of some compounds identified by Villalva et al. However, Villalva
clarified all the doubts of Franski and Beszterda-Buszczak in a reply paper [22].

Nowadays, there is great interest in the bio-waste products of agriculture for the
presence of bioactive healthy compounds [23,24]. Thinning young apples (TAPs) are
usually discarded to guarantee the output and to increase the quality of harvested apples.
However, it has been shown that TAPs contain more than 10-fold polyphenols with respect
to harvested apples [25]. In their contribution, Ferrario et al. characterized the profile of
polyphenols in TAP using a dual LC-HRMS metabolomic approach to identify a total of
68 polyphenols. According to this investigation, TAP fractions exert both antioxidant and
anti-inflammatory effects by up-regulating the nuclear-factor-erythroid-2-related factor
(Nrf2) signaling pathways and inhibiting NF-kB activation in cell models [26]. These results
evidenced TAP as a source of bioactive molecules endowed with antioxidant properties.

The presence of bioactive compounds has also been Identified in marine environments.
For example, seaweeds, such as red (Rhodophyta), green (Chlorophyta), and brown algae
(Phaeophyta), which are not included in the diet of the Western world, are widely spread in
Asian and Chinese nutrition for their high-quality profile in bioactive molecules as phenolic
compounds, vitamins, pigments, and essential minerals. The use of a green pressured liquid
extraction technique allowed Perez-Vazquez et al., under specific experimental conditions
of temperature, type of used solvent, extraction time, and pressure, to recover a high yield
of active biomolecules to exploit on both a pharmaceutical and food industrial scale [27].

Notably, a recent study of Liberti et al. demonstrated the antioxidant and anti-
inflammatory properties of sulfated exopolysaccharides (s-EPSs) and phycoerythrin (PE),
two molecules naturally produced by the red marine microalga Porphyridium cruentum.
In particular, s-EPSs were able to prevent GSH depletion and lipid peroxidation on a
cell-based system but not in vitro, while PE showed high ROS scavenging capacity both
in vitro and on a cell-based system. Interestingly, both the compounds were capable of
inhibiting the pro-inflammatory enzyme COX-2 and promoting a fast scratch closure [28].
Altogether, the data obtained support the use of these compounds isolated by P. cruentum
as anti-inflammatory components of medical patches.

The identification of phytomolecules with potential tailored applications represents
a significant goal in the phytochemistry field. Particularly significant is the research
discussed by Notaro et al. exploring the biochemical action of methyl gallate (MG), a
gallotannin widely used in traditional Chinese phytotherapy to alleviate several cancer
symptoms [29]. The findings reported by the authors shed light on the antitumor potential
of MG. This phytocompound preferentially targeted HCT116 colon cancer cells, with
respect to differentiated Caco-2 cells, an enterocyte-like cell model. In colon cancer cells,
MG induced an oxidative injury sustained by ROS generation and endoplasmic reticulum
stress as well as an upregulation in intracellular calcium content. In the first phase of
treatment, oxidative events were accompanied by an autophagic process, that, for longer
times of incubation, culminated in the apoptotic cell demise with DNA fragmentation and
p53 and H2Ax activation. A particular role in the MG-induced mechanism was played
by the oncosuppressor p53 protein. The conclusion of this research revealed the existence
of an intertwined relationship between oxidative stress and p53 as a causative event in
apoptotic cell death. Such a study paves the way to future investigations of MG alone or in
combination treatment as a preventative or adjuvant phytocompound to apply in colon
cancer treatment.
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However, beyond these effects, bioactive compounds present in plants have also
been demonstrated to play a protective role against oxidative injury, an aspect recently
studied by Lv et al. in Caco-2 cells. The use of proanthocyanidins purified from kiwi
leaves (Actinidia chinensis) counteracted both H2O2-induced oxidative damage as well as
malondialdehyde increase [30]. Such an effect was accompanied with an upregulation
of antioxidant systems (GSH-px, CAT, T-SOD) and the corresponding mRNA targets of
Nrf2, the master regulator of the cellular stress response [31]. The conclusion of this
interesting study is that the characterization of the antioxidant properties of kiwi leaves
proanthocyanidins emphasizes their possible functional application either for a policy of
circular economy or for sustainable industrial use.

The whole antioxidant activity of a sample cannot be ascribed only to a single bioactive
component, but in many cases the overall potential is the result of the combinatorial
effect of more components, acting in a synergistic, antagonistic, or additive manner. The
comparative analysis of 10 phenolic acids (protocatechuic, gentisic, gallic, vanillic, syringic,
p-coumaric, caffeic, ferulic, sinapic, and rosmarinic acid) used alone and in different
combination mixtures provided evidence of the high antioxidant activity of gallic acid by a
ferric reducing antioxidant power (FRAP) technique and a good oxygen radical absorbance
capacity of rosmarinic acid by ORAC assays [32]. A relevant aspect of this study relied
on the observation that hydroxybenzoic acid mixtures containing gentisic acid showed a
clear synergistic action. These data strongly sustain the idea that the biological activity of a
mixture, in some cases, cannot be ascribed to a single compound, but it has to be searched
in the combination of compounds present and their ability to interact with each other.

We would like to share our gratitude to all authors who submitted their outstanding
research to this Special Issue. Their manuscripts highlighted the role of natural-derived com-
pounds with antioxidant potential action to apply as preventative or adjuvant molecules in
the treatment of some chronic human diseases. Additionally, the identification of extraction
techniques and solvents that can maximize the extraction of bioactive compounds is of
great importance.
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