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Abstract: We sketch the main features of the Noether Symmetry Approach, a method to reduce and
solve dynamics of physical systems by selecting Noether symmetries, which correspond to conserved
quantities. Specifically, we take into account the vanishing Lie derivative condition for general
canonical Lagrangians to select symmetries. Furthermore, we extend the prescription to the first
prolongation of the Noether vector. It is possible to show that the latter application provides a general
constraint on the infinitesimal generator ξ, related to the spacetime translations. This approach can be
used for several applications. In the second part of the work, we consider a gravity theory, including
the coupling between a scalar field φ and the Gauss–Bonnet topological term G. In particular, we
study a gravitational action containing the function F(G, φ) and select viable models by the existence
of symmetries. Finally, we evaluate the selected models in a spatially flat cosmological background
and use symmetries to find exact solutions.

Keywords: Noether symmetries; modified theories of gravity; exact solutions

1. Introduction

Over the years, General Relativity (GR) has been confirmed at various energy and
spacetime scales. It is capable of predicting with high accuracy phenomena in the weak
field limit [1], where the Newton theory of gravity failed, including, e.g., the perihelion
precession of Mercury orbit, the deflection of light by the Sun and the gravitational redshift
of light rays. At the same time, it provided the final evidences of gravitational waves [2] and
black holes [3,4]. On the other hand, GR manifests shortcomings at UV and IR scales, sug-
gesting that it is not the definitive theory of gravity [5–7]. For example, the galaxy rotation
curve [8,9], the current cosmic expansion of the Universe [10,11], the problem of singulari-
ties [12,13], the unification between gravity and the other fundamental interactions [14–16]
represent shortcomings that, to be solved, need further ingredients out of the theory or
new conceptual approaches. Within the formalism of GR, the two former problems are
addressed by considering dark matter and dark energy, respectively, which should account
for the majority of the Universe’s content (∼95%), though they have never been directly
detected. The latter issues is closely related to the lack of a self-consistent quantum gravity
theory, because GR cannot be dealt with under the same standard as the other interactions.
Even considering a semi-classical approach, GR cannot be renormalized by means of the
usual techniques, as incurable divergences occur at UV scales [17–19]. In this framework,
possible extensions/modifications of GR attempt to address these issues either by modify-
ing the gravitational action or relaxing various assumptions of GR. To the latter category
belong theories, e.g., with affine connections different than Levi-Civita [20–23], breaking
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the Lorentz invariance [24], considering higher dimensions [25–28], etc. (see [29,30] for
examples of alternatives to GR). On the other hand, to the former category belong models
including in the gravitational action functions of the scalar curvature [31,32], higher-order
curvature invariants [33,34], coupling between geometry and dynamical scalar fields [35,36].
By relaxing the assumption of a gravitational Lagrangian linearly dependent on the scalar
curvature, higher-order field equations occur in the metric formalism. Most often, extended
theories of gravity are taken into account to address the late-time cosmic expansion of the
Universe without introducing dark energy [37]. This is due to the fact that the right hand
side of the gravitational field equations can be intended as an effective energy-momentum
tensor given by geometry, mimicking dark energy as a curvature quintessence.

One of the most famous extended models is the so-called f (R) gravity, whose action
contains a function of the scalar curvature. GR is restored as soon as f (R) = R. Another
possibility is to consider functions of other higher-order invariants, such as RµνρσRµνρσ

or RµνRµν, with Rµνρσ and Rµν being the Riemann and the Ricci tensors, respectively.
Among all possible combinations given by these three curvature scalars, the only one
providing a topological surface term is G = R2 − 4RµνRµν + RµνρσRµνρσ, which is the
Gauss–Bonnet term. In four dimensions, the latter turns into the Euler density, meaning that
once integrated over the manifold, it provides the Euler characteristic. Being a topological
surface, it does not contribute to the field Equations (in four dimensions); however, a func-
tion of G is not trivial in four dimensions, then its contributions is relevant into dynamics.
The relevance of dealing with the Gauss–Bonnet term is two-fold: on the one hand, being a
topological surface, it can contribute to the reduction of the field equations, allowing to
find analytic solutions; on the other hand, this term naturally emerges in gauge theories of
gravity (such as Lovelock [38,39] or Born-Infield [40] gravity) and can be helpful to address
issues emerging at UV scales. In particular, it can give ghost-free models. Most often,
the action S ∼

∫
(R + f (G)) d4x is taken into account as a starting point, so that GR is safely

recovered when f (G)→ 0 and the latter can account for dynamical contributions to dark
energy [41,42].

In this paper, after reviewing the so-called Noether Symmetry Approach [43], we will
consider a gravitational action with non-minimal coupling between the Gauss–Bonnet term
and a scalar field φ, with corresponding kinetic and potential terms.

The presence of the scalar field can be potentially useful to properly evaluate the very
early times of the Universe’s evolution, when the inflationary epoch is supposed to be
dominant. More precisely, we consider a function of both G and φ, F(G, φ), a kinetic term
ω(φ) and a potential term V(φ). This choice is due to the fact that, in some cosmological
contexts, the Gauss–Bonnet term can act similar to the Ricci curvature according to the
relation

√
|G| ∼ R, so that GR can be restored even without the presence of the scalar

curvature. The unknown functions are, thus, derived by using the Noether Symmetry
Approach, a selection criterion aimed at finding models with symmetries [29,44,45]. In the
majority of applications, the Noether Theorem is used to find out integrals of motion,
arising from transformation laws that leave the action invariant. This procedure allows
to reduce dynamics and, eventually, to integrate it. Here, we show how to reverse the
usual approach and select theories with symmetries starting from undefined actions. This
point of view is taken into account in several works, as it represents a physical criterion
capable of unveiling viable models among several possible choices [46–49]. The resulting
constants of motion can be used to perform a proper change of variables (suggested by
the Noether theorem), leading to a reduction of the minisuperspace dimension [50–52].
Reducing the dynamics of the system turns out to be physically relevant in any branch of
physics, especially in those fields in which the equations of motion are difficult to handle,
as well as theories of gravity. Here, by applying the Noether symmetry existence condition
to the most general canonical field Lagrangian, we show that some constraints on the
infinitesimal generator can be given from the beginning, so that the Noether system can be
highly simplified. This is of extreme utility especially in those cases where the given model
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involves more curvature invariants and the application of the Noether system can result in
many differential equations see, e.g., refs. [29,53].

The paper is organized as follows: in Section 2, we introduce the Lie derivative and
the Noether vector, also outlining their main features and possible applications. We apply
the Noether symmetry approach to general canonical Lagrangians; as a result, we obtain
a general constraint on the symmetry generator, which is of particular interest in the
application to modified theories of gravity. In Section 2.1, we outline the features of the
Noether vector and its relation with the Lie derivative pointing out the role of Noether
charges. Realizations of the method are reported in Sections 2.2–2.4. In Section 3, we adopt
the Noether Symmetry Approach to a scalar-tensor action, containing the coupling between
a dynamical scalar field and the Gauss–Bonnet term. We also find cosmological solutions
for all selected models. Conclusions are drawn in Section 4.

2. The Noether Symmetry Approach: An Overview

Let us start by considering a Noether vector X = αi ∂

∂qi + α̇i ∂

∂q̇i and a generic La-

grangian L; let LX be the Lie derivative along the flux of the vector X. Here, qi represents
the configuration space variables, namely the generalized coordinates, with the index i
running from 1 to the number of variables of the configuration space; αi represent functions
of the coordinates qi and the dot denotes the time derivative. The Noether theorem states
that the condition LXL = 0 implies that the phase flux is conserved along X and a constant
of motion exists. This is an alternative formulation of the theorem, which allows to suitably
find integrals of motion by means of the vanishing Lie derivative condition. Specifically,
if LXL = 0, then the following quantity:

Σ0 ≡ αi ∂L
∂q̇i , (1)

is a constant of motion. The proof for this statement is straightforward and can be found,
e.g., in [29,47]. Moreover, it can be shown that the above formulation of the Noether
theorem is a simplification involving only internal symmetries. To this purpose, let us
consider a coordinate transformation of the following form:

L(t, qi q̇i)→ L(t, qi, q̇i
)

t = t + εξ(t, qi) + O(ε2)

qi = qi + εαi(t, qi) + O(ε2),

(2)

where {t, qi} are the variables of the transformed space-time, ε is an arbitrary constant and
ξ and αi are scalar and vector functions, respectively, of the coordinates. The corresponding
generator is:

X[1] = ξ
∂

∂t
+ αi ∂

∂qi + αi [1] ∂

∂q̇i = ξ
∂

∂t
+ αi ∂

∂qi + (α̇i − q̇i ξ̇)
∂

∂q̇i (3)

and it is the first prolongation of Noether vector. Moreover, assuming that the transforma-
tions (2) leave the Euler–Lagrange equations invariant, the following identity:

X[1]L+ ξ̇L = ġ(t, qi), (4)

must hold; g is an arbitrary function of coordinates and fields. It is called a “gauge function”.
The resulting conserved quantity is a generalization of (1):

I = ξ

(
L− q̇i ∂L

∂q̇i

)
+ αi ∂L

∂q̇i − g(t, qi). (5)

Equation (5) turns into Equation (1) when ξ = 0, that is when internal symmetries are
considered. The demonstration of the above Noether theorem can be found in [29,54]. In
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the next subsections we apply the Noether Theorem to the general canonical Lagrangians,
with the purpose to put general constraints on the symmetry generator.

Let us then consider a canonical system with kinetic term:

T = Aij

(
qi
)

q̇i q̇j (6)

and potential:
U = V

(
qi
)
+ Ai

(
qi
)

q̇i. (7)

In the above equations, Aij represents matrix elements depending on the generalized
coordinates qi, V(qi) is a scalar function of the coordinates and Ai is a vector function of qi.
Therefore, the Lagrangian L = T − U can be written as:

L(q, q̇) = Aij(q)q̇i q̇j −V(q)− Ai(q)q̇i, (8)

which is the most general canonical Lagrangian depending on the coordinates qi and on
their first derivatives. Note that, except for some particular cases, most modified gravity
Lagrangians can be recast as in Equation (8). For this reason, the constraint on the symmetry
generator, provided in the next section, is of particular interest for several applications. It
allows to constrain the space of solutions. In this way, the Noether system of differential
equations can be reduced such that the approach can provide exact solutions.

2.1. The Lie Derivative and the Noether Charges

Before considering some applications of the above approach, let us discuss the general
capability of Noether theorem to reduce the minisuperspace dimension, as well as the
link between the condition (4) and the Lie derivative. Let GL(n,R) be the Lie group onR
consisting of a set of matrices DR(θ). Let us consider a generic transformation belonging to
such a group. For each transformation generator, the corresponding conserved quantities,
ruled by the same algebra of the generator, are as follows:{[

Xi, X j] = i f ij
k Xk{

Σi, Σj} = i f ij
k Σk,

(9)

where Σi are the integrals of motion, with the indexes i, j, k running from 1 to the total
number of symmetries, and f ij

k is the structure constants of the given Lie algebra. The
Noether Theorem associates to any generator the corresponding conserved quantity, i.e., the
so-called “Noether’s current”, which integrated over the hypersurface of the considered
minisuperspace leads to the so-called Noether’s charge. Notice that when the Lagrangian
depends on the spacetime variables xµ, the condition (4) can be generalized as:

X[1]L + ∂µξµL = ∂µgµ, (10)

with L being the Lagrangian density and X[1] the generalized first prolongation of the
following Noether vector:

X[1] = ξµ∂µ + αi ∂

∂φi + (∂µαi − ∂µφi∂νξν)
∂

∂(∂µφi)
. (11)

Therefore, the application of (10) to a given Lagrangian density L , can be made
explicit as:
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X[1]L + ∂µξµL = ∂µgµ →

→
{

ξµ∂µ + δφi ∂

∂φi + (∂µδφi − ∂µφi∂νξν)
∂

∂(∂µφi)
+ ∂µξµ

}
L = ∂µgµ →

→
{

LX − ∂νξν

(
∂µφi ∂

∂(∂µφi)
− 1
)}

L = ∂µgµ →

→ LXL − ∂νξνT = ∂µgµ, (12)

where T is the trace of the energy-momentum tensor. For time-depending fields, the con-
dition (12) becomes:

LXL− ξ̇H = ġ , (13)

where H is the associated Hamiltonian, as we will see the example below. Equation (13)
generalizes the condition of vanishing Lie derivative along the flux of X to its first prolon-
gation X[1].

In addition, besides finding the symmetries of the given Lagrangians, the Lie derivative
can also be used to find the symmetries of the metric tensor. Indeed, the application of the
operator L along the flux of a given vector field X to the metric tensor, yields:

LX gµν = 2gµνφ(xµ), (14)

from which the conformal Killing vectors can be split in three categories:

• Proper Killing Vector → φ(xµ) 6= 0 → LX gµν = 2gµνφ(xµ);
• Special Killing Vector → φ(xµ) = 0 → LX gµν = 0;
• Homotetic Killing Vector → ∂µφ(xµ) = 0 → LX gµν ∼ const.

In particular, for Special Killing vectors, the well-known Killing equation:

Lξ gµν = [ξ, gµν] = 0 → Dνξµ − Dµξν = 0, (15)

for the isometries automatically follows. With these considerations in mind, let us now
develop some specific examples.

2.2. Noether Symmetries in the Canonical Two-Particle Lagrangian

Starting from Equation (8), let us apply the Noether Symmetry Approach to a two-
particle Lagrangian:

L(q1, q2, q̇1, q̇2) =A11(q1, q2)q̇ 2
1 +A12(q1, q2)q̇1q̇2 +A21(q1, q2)q̇1q̇2+

+A22(q1, q2)q̇ 2
2 −V(q1, q2)− A1(q1, q2)q̇1 − A2(q1, q2)q̇2.

(16)

The search for internal symmetries can be pursued by setting the Lie derivative of L equal
to zero. The Noether vector, corresponding to a general transformation of variables qi,
reads as:

X = α(q1, q2)∂q1 + β(q1, q2)∂q2 + α̇(q1, q2)∂q̇1 + β̇(q1, q2)∂q̇2 , (17)

where α (β) is a generic function of the two variables q1 and q2 and α̇ (β̇) its total time
derivative, namely q̇1∂q1 α + q̇2∂q2 α, with ∂qi denoting the derivative with respect to qi. The
condition LXL = 0, asking for the cancellation of derivative terms, leads to the following
system of differential equations:
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α∂q1 V + β∂q2 V = 0 (18a)

q̇1 : α∂q1 A1 + β∂q2 A1 + A1∂q1 α + A2∂q1 β = 0 (18b)

q̇2 : α∂q1 A2 + β∂q2 A2 + A1∂q2 α + A2∂q2 β = 0 (18c)

q̇ 2
1 : α∂q1A11 + β∂q2A11 + 2

(
∂q1 α

)
A11 +

(
∂q1 β

)
A12 +

(
∂q1 β

)
A21 = 0 (18d)

q̇ 2
2 : α∂q1A22 + β∂q2A22 +

(
∂q2 α

)
A12 +

(
∂q2 α

)
A12 + 2

(
∂q2 β

)
A22 = 0 (18e)

q̇1q̇2 :

α∂q1A12 + α∂q1A21 + β∂q2A12 + β∂q2A21+

+ 2
(
∂q2 α

)
A11 +

(
∂q1 α

)
A12 +

(
∂q1 α

)
A21+

+
(
∂q2 β

)
A12 +

(
∂q2 β

)
A21 + 2

(
∂q1 β

)
A22 = 0.

(18f)

According the same procedure, it is possible to get a system of differential equations
coming from the application of the identity (4) to the Lagrangian (16). Specifically, being
the condition LXL = 0 contained in the general identity (4), the system related to the latter
will be contained in the former one. As a matter of fact, the system involving also external
transformations reads:

α∂q1 V + β∂q2 V + (∂tα)A1 + (∂tβ)A2 + (∂tξ)V − ∂tg = 0 (19a)

q̇1 :
− α∂q1 A1 − β∂q2 A1 − A1∂q1 α + 2(∂tα)A12 − A2∂q1 β+

+ (∂tβ)A12 + (∂tβ)A21 − ∂q1 g = 0
(19b)

q̇2 :
− α∂q1 A2 − β∂q2 A2 − A1∂q2 α + (∂tα)A12 + (∂tα)A21−
− A2∂q2 β + 2(∂tβ)A22 − ∂q2 g = 0

(19c)

q̇ 2
1 :

α∂q1A11 + β∂q2A11 + 2
(
∂q1 α

)
A11

− (∂tξ)A11 +
(
∂q1 β

)
A12 +

(
∂q1 β

)
A21 = 0

(19d)

q̇ 2
2 :

α∂q1A22 + β∂q2A22 +
(
∂q2 α

)
A12+

+
(
∂q2 α

)
A21 + 2

(
∂q2 β

)
A22 −

(
∂qξ
)
A22 = 0

(19e)

q̇1q̇2 :

α∂q1A12 + α∂q1A21 + β∂q2A12 + β∂q2A21+

+ 2
(
∂q2 α

)
A11 +

(
∂q1 α

)
A12 +

(
∂q1 α

)
A21 − (∂tξ)A12−

− (∂tξ)A21 +
(
∂q2 β

)
A12 +

(
∂q2 β

)
A21 + 2

(
∂q1 β

)
A22 = 0

(19f)

q̇ 2
1 q̇2 : −

(
∂q1 ξ

)
A12 −

(
∂q1 ξ

)
A21 −

(
∂q2 ξ

)
A11 = 0 (19g)

q̇1q̇ 2
2 : −

(
∂q2 ξ

)
A12 −

(
∂q2 ξ

)
A21 −

(
∂q1 ξ

)
A22 = 0 (19h)

q̇ 3
1 : − 2

(
∂q1 ξ

)
A11 +

(
∂q1 ξ

)
A11 = 0 (19i)

q̇ 3
2 : − 2

(
∂q2 ξ

)
A22 +

(
∂q2 ξ

)
A22 = 0, (19j)

which is a generalization of the above one. Note that Aij are arbitrary functions, so that
the only possible solution of the last two equations is ξ ≡ ξ(t), which means that the
infinitesimal generator ξ must depend on time only. In view of this result, we can neglect
all terms containing other partial derivatives of ξ, as well as ∂q1 ξ or ∂q2 ξ. The function
ξ(t) plays an important role in the Noether approach, since it gives rise to the spacetime
transformations. Once we set ξ = 0, the generator X[1] turns into X and the identity (4)
folds into the condition of vanishing Lie derivative. This relation can be explicitly obtained
by considering the application of the Lie derivative, namely:

LXL = XL =
(

αi∂qi + α̇i∂q̇i

)
L. (20)

By merging Equations (4) and (20), we obtain:

LXL+ ξ̇H = ġ, (21)

beingH the Hamiltonian function, defined as:
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H = q̇i ∂L
∂q̇i −L. (22)

Considering that the gauge field g can be arbitrarily set to zero, the above result shows
that the imposition ξ̇ ∼ const implies:

LXL = ξ0H. (23)

Notice that, in this example, we only considered time-depending Lagrangians, though the
method can be even applied to general systems depending on other spatial
coordinates [54–56]. In the next subsections, we analyze canonical Lagrangians of differ-
ent form, finding out the corresponding symmetry generators and conserved quantities.

2.3. Example I: The Free Particle

The simplest case is the free particle Lagrangian, which can be obtained from
Equation (8) by setting V(q) = A(q) = 0. Moreover, for the sake of simplicity, we also set
Aij = δij. The Lagrangian therefore takes the following form:

L = (q̇)2. (24)

The application of the vanishing Lie derivative condition to the above Lagrangian
yields the following equation:

∂α

∂q
= 0, (25)

which automatically leads to α = α0, with α0 constant. The system is invariant under local
translation whose symmetry generator is X = α0∂q. The conserved quantity can be found
as a subcase of Equation (5), which provides:

Σ0 = α
∂L
∂q̇

= α0
∂L
∂q̇

= α0πq, (26)

namely, the conjugate momentum, as expected.

2.4. Example II: The Harmonic Oscillator

Let us apply the Noether Symmetry Approach to a Lagrangian with harmonic po-
tential, considering only the vanishing Lie derivative condition. Starting from the above
general Lagrangian, it contains only one set of generalized coordinates qi. Thus, the
two methods turns out to be equivalent.

We expect the angular momentum to be the conserved quantity provided by the
Noether theorem. The canonical form for the harmonic potential and the kinetic term can
be obtained by setting A11 = A22 = 1, A12 = A21 = A1 = A2 = 0 and V = q 2

1 + q 2
2 , so

that Lagrangian (16) becomes:

L = q̇ 2
1 + q̇ 2

2 − q 2
1 − q 2

2 . (27)

The system (11) reduces to four differential equations:

2αq1 + 2βq2 = 0 (28a)

2∂q1 α = 0 (28b)

2∂q2 β = 0 (28c)

2∂q2 α + 2∂q1 β = 0. (28d)

whose solution provides the following symmetry generator:

X = q2∂q1 − q1∂q2 , (29)
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which is nothing but the SO(2) group generator, as expected. Similarly, the conserved

quantity Σ0 can be found by means of the condition Σ0 = αi ∂L
∂q̇i , that is:

Σ0 = 2q2q̇1 − 2q1q̇2, (30)

which is the orbital angular momentum.

3. An Application: Coupling Gauss–Bonnet Gravity to a Scalar Field

Let us now apply the prescription of the previous section to a modified gravity
Lagrangian including the coupling between the Gauss–Bonnet term G and a scalar field φ
through the coupling function F(G, φ), the kinetic and the potential terms (namely ω(φ)
and V(φ), respectively). It reads as:

S =
∫ √

−g
[

F(φ,G) + ω(φ)∂µφ∂µφ + V(φ)

]
d4x, (31)

with g being the determinant of the metric and with µ running from 0 to 4. We focus on a
Friedman–Robertson–Walker (FRW) spatially flat line element of the following form:

ds2 = dt2 − a2(t)δijdxidxj,

where δijis the three-dimensional unitary matrix, xi the spatial coordinates and a(t) the scale
factor, depending on the cosmic time t only. By this choice, the Gauss–Bonnet term becomes:

G = 24
ȧ2 ä
a3 =

8
a3

d
dt

(
ȧ3
)

(32)

and can be adopted to obtain the point-like Lagrangian. To this purpose, let us consider
the Lagrange multipliers method with constraint given by Equation (32) and integrate the
three-dimensional hypersurface, so that the action can be recast as:

S =
∫

a3
[

F(G, φ)− λ

(
G − 8

a3
dȧ3

dt

)
+ ω(φ)φ̇2 + V(φ)

]
dt, (33)

with λ being the Lagrange multiplier.Notice that, with the above ansatz for the line element,
a function of the Gauss–Bonnet term can behave similar to the Ricci scalar curvature, as soon
as f (G) ∼

√
G, due to the reasons mentioned in the introduction. Therefore, in cosmological

space-times, the most known scalar-tensor actions can be recovered by proper choices of
the coupling function. For instance, the Brans–Dicke model can be obtained by setting
F(φ,G) ∼ φ

√
G , ω(φ) ∼ 1/φ and V(φ) = 0. This is of note since, as shown in Figure 1,

most symmetries can yield the Brans–Dicke action by setting w = 1, k = 1/2, q = −1 and
V0 = 0.

By varying the action with respect to G and equating the result to zero, we straight-
forwardly find λ = FG(G, φ), where the subscript denotes the derivative with respect to
the Gauss–Bonnet term. Now, integrating by parts the second derivatives occurring in
Equation (33) and neglecting the boundaries, the point-like Lagrangian can be written as:

L = a3
(

F− ∂F
∂G G

)
+ a3ω(φ)φ̇2 + a3V(φ)− 8ȧ3

(
∂2F
∂G2 Ġ +

∂2F
∂φ∂G φ̇

)
. (34)

In the three-dimensional minisuperspace S ∼ {a, φ,G}, there are three Euler–Lagrange
equations that, together with the energy condition, provide the following dynamical system:
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8ȧ2
(
G̈ ∂2F

∂G2 + 2Ġφ̇
∂3F

∂φ∂G2 + Ġ2 ∂3F
∂G3 + φ̈

∂2F
∂φ∂G + φ̇2 ∂3F

∂φ2∂G

)
+ 16ȧä

(
Ġ ∂2F

∂G2 + φ̇
∂2F

∂φ∂G

)
+a2

(
F− G ∂F

∂G + V(φ) + ω(φ)φ̇2
)
= 0

−24ȧ2 ä
∂2F

∂φ∂G + a3
(
−∂F

∂φ
+ G ∂2F

∂φ∂G −
∂V(φ)

∂φ
+ 2ω(φ)φ̈ + φ̇2 ∂ω(φ)

∂φ

)
+ 6a2 ȧω(φ)φ̇ = 0

G = 24
ȧ2 ä
a3

24ȧ3
(
Ġ ∂2F

∂G2 + φ̇
∂2F

∂φ∂G

)
+ a3

(
F− G ∂F

∂G + V(φ)−ω(φ)φ̇2
)
= 0.

(35)

The first two equations are the Euler–Lagrange equations with respect to the cos-
mological scale factor and the scalar field, respectively. Specifically, the second equation
corresponds to the Klein–Gordon equation coming from the variation of the action with
respect to the scalar field. The third equation is the one related to the Gauss–Bonnet term
given by the Lagrange multiplier. Finally, the last equation is the energy condition, namely
EL = q̇i∂L/∂q̇i −L = 0, where qi are the generalized coordinates of the considered minisu-
perspace. In order for the Lagrangian approach to be equivalent to the variational approach,
the latter equation must be included to recover the “00” component of the field equations.
Specifically, the zero energy condition accounts for a further constraint completing the dy-
namical system, physically implying the Hamiltonian is zero on the constraint surface due
to time reparameterization invariance [57]. As a result, the variational approach, naturally
providing two different Friedman equations by the variation with respect to the metric,
turns out to be completely equivalent to the Lagrangian approach.

Figure 1. Possible forms of the Lagrangian function selected by the existence of symmetries.

Before applying the Noether symmetry prescription to the above Lagrangian, let us
point out that the minisuperspace is three-dimensional, and therefore, the first prolongation
of the Noether vector in this case reads:

X[1] = ξ∂t + α∂a + β∂G + γ∂φ + (α̇− ξ̇ ȧ)∂ȧ + (β̇− ξ̇Ġ)∂Ġ + (γ̇− ξ̇φ̇)∂φ̇ (36)
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where α, β, γ and ξ are functions of a,G, φ and t, with t being the cosmic time. By applying
the Noether identity (4) to the Lagrangian (34), we get a system of differential equations
that can be slightly simplified by the imposition ξ = ξ(t). According to the discussion of the
previous section, this can be assumed a priori for canonical point-like Lagrangians. Thanks
to this ansatz, the system can be solved analytically, providing the explicit expressions of
F, ω and V. Eighteen possible solutions are summarized in Figure 1 ( f0, ω0, V0, k, w, p, q are
real constants).

For cosmological purposes, here, we focus on the most interesting cases, which in
Figure 1 are marked by a rectangle,since they are the only symmetries leading either to
time power-law or exponential de Sitter-like solutions. The other symmetries yield more
complicated cosmological solutions, or equations of motions not solvable analytically.
Though the latter category is still worth to be analyzed, the study of numeric solutions is
not the main goal of this paper. In the next subsections, we analyze each case and find the
corresponding cosmological solutions to the Euler–Lagrange equations.

3.1. First Case

The first symmetry of the Lagrangian (34) occurs by setting ω(φ) ∼ ω0 and V(φ) = 0,
with ω0 being constant. In this case, the point-like Lagrangian reduces to:

L = a3ω0φ̇2 − f0(k− 1)Gkφwa3 − 8 f0kȧ3Gk−2φw−1[(k− 1)φĠ + wGφ̇]. (37)

with infinitesimal symmetry generators of the form:

α(a) = α0a, β(G) = −4ξ0G, γ(φ) =
6(1− 2k)α0

−2 + 8k− w
φ, ξ(t) = − 3(w− 2)α0

−2 + 8k− w
t, (38)

where α(a), β(G), γ(φ) and ξ(t) are the infinitesimal generators of the coordinate transfor-
mations. Notice that, in agreement with Equation (19j), the infinitesimal generator ξ is a
function of the sole time. In order to find analytic solutions to the equations of motion
related to the Lagrangian (37), we can set w = 2, so that the coupling function becomes
F(φ,G) = f0φ2Gk, meaning that the general gravitational action is:

S =
∫ √

−g
[

f0φ2Gk + ω0∂µφ∂µφ
]
d4x. (39)

By these ansatz, the explicit forms of the scale factor and the scalar field are:

a(t) = a0emt, φ(t) = φ0ent, G = 24m4, (40)

namely, de Sitter-like solutions. Here a0, m, φ0 and n are real constants. A further constraint
arising from the solution of the Euler–Lagrange equations concerns the relation among
ω0, f0, n and m. Specifically, these four constants must satisfy the following system of
algebraic equations:

f0(24m4)k[3(k− 1)m2 − 4kmn− 4kn2]− 3m2n2ω0 = 0
f0(24m4)k − nω0(3m + n) = 0
f0(24m4)k[(k− 1)m− 2kn] + mn2ω0 = 0.

(41)

Solving the third equation with respect to n, we obtain two solutions. After choosing
one, we can solve the energy equation with respect to the constant f0 to obtain two other
solutions. As a result, we have a total of four possible combinations, but only three of these
are valid. For example, let us consider the cases k = 1 and k = 1/2; in particular, the latter
is the value of k allowing to recover GR at cosmological scales [42]. For these two values,
we get the following solutions:

k = 1/2, n = −3
2

m, f0 = −3
√

6
16

ω0, (42)
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k = 1, n = −5
2

m, f0 = − 5ω0

96m2 . (43)

3.2. Second Case

Another symmetry leading to exact cosmological solutions occurs once considering a
vanishing potential, a power-law form of the kinetic term ω(φ), i.e., ω(φ) = ω0φq, and a
coupling function of the form F(φ,G) = f0φwGk. The Lagrangian, thus, reads:

L = a3[ω0φqφ̇2 − f0(k− 1)Gkφw]− 8 f0kȧ3Gk−2φw−1[(k− 1)φĠ + wGφ̇]. (44)

The existence of the Noether symmetry selects the following infinitesimal generators:

α(a) = α0a, β(G) = −4ξ0G, γ(φ) =
6(1− 2k)α0

(2 + q)(4k− 1)− w
φ, ξ(t) = − 3(2 + q− w)α0

(2 + q)(4k− 1)− w
t, (45)

and, as before, the infinitesimal generator ξ is a function of the sole time. The system of
Euler–Lagrange equations, together with the energy conditions, can be solved by setting
w = 2 + q and provides the following exponential solution:

a(t) = a0emt, φ(t) = φ0ent, G = 24m4 (46)

where n and m are real constants. Due to the constraint imposed by the equations of motion,
the infinitesimal generators become:

α(a) = α0a, β(G) = 0, γ(φ) = − 3α0

q + 2
φ, ξ(t) = 0 (47)

and the modified scalar-tensor action results in:

S =
∫ √

−g
[

f0φq+2Gk + ω0φq∂µφ∂µφ
]
d4x. (48)

Also here, there is a further constraint coming from the equations of motion which
sets the relation among the constants f0, ω0, m, n, namely:

f0(24m4)k[3(k− 1)m2 − 2kmn(q + 2)− kn2(q + 2)2]− 3m2n2ω0 = 0
nω0[6m + n(q + 2)]− f0(q + 2)(24m4)k = 0
f0(24m4)k[(k− 1)m− kn(q + 2)] + mn2ω0 = 0.

(49)

As in the previous case, the solution of the above system results in four possible
combinations for f0 and n, but again only three are cosmologically meaningful. Considering
the same values of k as before, we obtain:

k = 1/2, n = − 3
q + 2

m, f0 = − 3
√

6
4(q + 2)2 ω0, (50)

k = 1, n = − 5
2 + q

m, f0 = − 5ω0

24(q + 2)2m2 . (51)

3.3. Third Case

The third symmetry arising from the solution of the Noether system involves both the
coupling function, the kinetic and the potential terms. Specifically, the Noether system can
be solved if ω(φ) = ω0φq, V(φ) = V0φp and F(φ,G) = f0φwGk, with:

q =
w− 4k + p(2k− 1)

2k
. (52)
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The Lagrangian (34), thus, becomes:

L = a3[ω0φqφ̇2 − f0(k− 1)Gkφw]− 8 f0kȧ3Gk−2φw−1[(k− 1)φĠ + wGφ̇] + a3V0φp (53)

and it satisfies the existence condition of Noether symmetry, provided that the infinitesimal
generators take the form:

α(a) = −1
3
[ξ0 + kpγ0]a, β(G) = −4ξ0G, γ(φ) = γ0φ, ξ(t) = − (p− w)γ0

4k
t. (54)

A possible solution to the field equations consists of exponential scale factor and scalar
field of the form:

a(t) = a0emt, φ(t) = φ0ent, G = 24m4, (55)

with additional constraints given by the following system of algebraic equations:

f0(24m4)k[kn2w2 + 2kmnw− 3m2(k− 1)] + 3m2n2ω0 + 3m2V0 = 0
w = q + 2
p = w
f0(24m4)kw− nω0(6m + n(q + 2)) + pV0 = 0
f0(24m4)k[knw−m(k− 1)]−mn2ω0 + mV0 = 0 .

(56)

By replacing the second and the third equation into Equation (54), the latter becomes:

α(a) = − kwγ0

3
a, β(G) = 0, γ(φ) = γ0φ, ξ(t) = 0. (57)

According to the discussion in Section 2, the generators of Equation (57) describe an
internal symmetry, due to the condition ξ(t) = 0. Therefore, symmetries corresponding
to this third case can be also selected by the vanishing Lie derivative condition. Unlike
the other cases, here, the system (56) yields different solutions, but only one of these is
completely real. The other solutions, in fact, contain at least one imaginary parameter and
have been excluded for obvious physical reasons. For k = 1 and k = 1/2, the solution takes
the form:

k = 1/2, n = − 3w
2ω0

m +

√
m

2ω0

3w2 − 4wω0√
(w4 + 4ω2

0)
2 − 4w2ω0

, f0 = −
√

6
2

, (58)

k = 1, n = −6
√

6w
ω0

m3 − 4
√

6w
ω0

m3
(

3
√

6m2w2 −ω0

2
√

6m2w2 −ω0

)
, f0 = −

√
6

2
. (59)

3.4. Fourth Case

Let us finally analyze the last symmetry selected by the approach, consisting of an
exponential kinetic term (i.e., ω(φ) = ω0eqφ), a vanishing potential and a coupling function
of the form F(φ,G) = f0ewφG 1

2 . The corresponding Lagrangian is:

L = 2G−
3
2 f0 ȧ3ewφ

(
Ġ − 2wGφ̇

)
+ a3

(
1
2

f0G
1
2 ewφ + ω0eqφφ̇2

)
. (60)

It is interesting to notice that, here, the power of G selected by the Noether Symmetry
Approach is not a general constant as the previous cases, but the only coupling function
containing symmetries set the value of k to 1/2. This means that the equivalence with
GR in cosmological backgrounds (since R2 ∼ G in FRW cosmology) naturally arises from



Symmetry 2023, 15, 1625 13 of 15

symmetry considerations and has not to be imposed as a requirement. The Noether
symmetry existence condition also selects the following infinitesimal generators:

α(a) = − β0

12
a, β(G) = β0G, γ(φ) = 0, ξ(t) = − β0

4
t, (61)

where ξ is a function of time. A possible solution to the equations of motion is given by:

a(t) = a0emt, φ(t) = φ0t, (62)

where m, a0 and φ0 are integration constants. In addition, from the Euler–Lagrange equa-
tions, we get three constraints on the free parameters, resulting in the following system:

2 f0m2(3m2 + 2mwφ0 + w2φ2
0) +

√
6m2ω0φ2

0 = 0
w = q
2
√

6 f0m2w−ω0φ0(6m + wφ0) = 0√
6m2ω0φ2

0 − 6 f0m3(m + wφ0) = 0.

(63)

To solve the above system, we find f0 from the third equation and then we solve the
energy condition with respect to φ0, so that we get two different solutions, namely:

φ0 = −3m
w

, f0 = −
(

3
2

) 3
2 ω0

w2 , (64)

φ0 = −2m
w

, f0 = −2

√
2
3

ω0

w2 . (65)

The above solutions can be further simplified by choosing f0 =
√

6/2. In this way,
we get:

φ0 = −3m
w

, f0 =

√
6

2
, ω0 =

2
3

w2, (66)

φ0 = −2m
w

, f0 =

√
6

2
, ω0 =

4
3

w2. (67)

4. Conclusions

We outlined the main properties of the Noether Symmetry Approach, discussing
some applications and showing how to use the Noether theorem as a method to select
theories containing symmetries. Starting from canonical Lagrangians, we first introduced
the prescriptions aimed at constraining the generator of the symmetry. This approach is
particularly useful in modified theories of gravity [29], or in quantum cosmology, where
the conserved quantity allows to restrict the variables superspace to integrable minisuper-
spaces [52,58]. The first prolongation of the Noether vector yields a more general class of
symmetries, which reduce to those coming from the application of vanishing Lie deriva-
tive when the functions determining prolongations are g = const and ξ = 0. Moreover,
an important result arises from the application of Noether symmetry approach to canonical
Lagrangians: the infinitesimal generator ξ related to spacetime translations turns out to be
a function of the sole time. This result permits to further simplify the approach by reducing
the system of differential equations.

This feature becomes evident when applying the prescription to modified theories
of gravity; specifically, in the second part of the manuscript, we focused on a modified
gravitational action containing both the Gauss–Bonnet topological term and a dynamical
scalar field. The selection of viable models has been pursued by searching for symmetries.
In other words, viable modified theories of gravity can be selected adopting a physical
criterium based on symmetry considerations.
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Each symmetry can be related to a conserved quantity that can, thus, be used to reduce
dynamical equations. As output of the process, viable cosmological solutions are derived
as power-law or de Sitter behaviors. In this perspective, the Noether Symmetry Approach
results in a method capable of selecting physically viable models.
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