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The orbital angular momentum (OAM) of light is an infinite-dimensional degree of freedom of light with
several applications in both classical and quantum optics. However, to fully take advantage of the potential
of OAM states, reliable detection platforms to characterize generated states in experimental conditions are
needed. Here, we present an approach to reconstruct input OAM states from measurements of the spatial
intensity distributions they produce. To obviate issues arising from intrinsic symmetry of Laguerre-Gauss
modes, we employ a pair of intensity profiles per state projecting it only on two distinct bases, showing how
this allows to uniquely recover input states from the collected data. Our approach is based on a combined
application of dimensionality reduction via principal component analysis, and linear regression, and thus has
a low computational cost during both training and testing stages. We showcase our approach in a real photonic
setup, generating up-to-four-dimensional OAM states through quantum walk dynamics. The high performance
and versatility of the demonstrated approach make it an ideal tool to characterize high-dimensional states in
quantum information protocols.
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I. INTRODUCTION

The orbital angular momentum (OAM) of light is an in-
ternal degree of freedom associated to nontrivial transverse
spatial wavefronts. As shown by Allen in his seminal paper
[1], helical beams with an azimuthal phase dependence ei�φ ,
with φ the azimuthal angle in cylindrical coordinates, carry an
OAM equal to �h̄ per photon. The OAM finds several optical
applications in the classical regime, ranging from microparti-
cle trapping [2] to communication [3–7]. Because the OAM
can support countably infinitely many distinguishable states,
it is ideally suitable to compress a large amount of information
into single photons’ states. Being able to manipulate high-
dimensional quantum states—which we will refer to as qudits
in the following—is highly beneficial for several quantum in-
formation protocols. Such applications of OAM-based qudits
include quantum simulation [8–11], metrology [12–15], and
communication [16–21].

However, the capability to accurately generate and detect
OAM states remains a challenging task. Detection techniques
that have been proposed in the literature include interferomet-
ric schemes [22–25], the use of diffractive elements [26–30],
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tilted convex lens [31], interference patterns with reference
beams [32–36], methods exploiting Doppler frequency shift
[37–39], weak measurements [40], metamaterials [41–48],
and holographic techniques [49–57].

Machine learning (ML) techniques have recently been
shown as a valuable tool to overcome the many experimen-
tal and theoretical limitations related to reconstructing OAM
states. In particular, neural networks have been used to recog-
nize and classify structured light states such as superposition
of OAM [58–63] and vector vortex beams [64,65], also con-
sidering the propagation in turbulent environments [66–78].
In this context, most of the efforts have been focused on
detecting the probability of finding OAM states in a fixed
basis, as opposed to being able to resolve coherence terms be-
tween different modes. However, the latter is of fundamental
importance to completely reconstruct the state under analysis.
In particular, ML approaches can be used to reduce the num-
ber of measurements needed to recover the amplitudes and
phases of the coefficients, making feasible the execution of
quantum state tomography [79–85], a procedure that requires
a number of measurements scaling quadratically with the state
dimension [86] unless we have prior information about the
state [87].

ML can also be used to directly recover the coefficients
of a state in a given measurement basis. Convolutional neural
networks (CNNs) have in particular been successfully used
for such task [88]. However, the training of these CNN-based
approaches involves in general a high computational cost.

In this work, we present an approach to overcome these
limitations thanks to the combined use of dimensionality
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FIG. 1. Summary of the protocol. (a) PCA is used to find a lower-dimensional representation of the 64 × 64 pixel images. Working in an
unsupervised fashion it derives the axes of the reduced space which best represent the input, in this specific case they are identified as images in
which we can decompose the data. By tuning the number of reduced dimensions obtained via PCA, we have different reconstruction accuracies.
(b) The proposed method works through the following 3 steps. Firstly, the dataset is generated theoretically with a computer simulation or
experimentally exploiting a setup suited for the engineering of OAM states. Secondly, the data are given to the PCA algorithm that, reducing
their dimensions, decreases the noise present in them and speeds up the training phase of the regressor. The latter, is finally used to obtain the
coefficients of arbitrary superpositions of OAM modes.

reduction (DR) [89] and regression techniques in a mixed
unsupervised and supervised fashion ML approach. We find
that, in particular, linear regression approaches are best suited
to solve the task at hand [90–92]. These algorithms allow
us to deduce the Bloch vector of arbitrary superpositions of
OAM states from the intensity profile obtained measuring
them with a charge-coupled device (CCD) camera, directly
accessing the geometrical features of the states. The improved
computational efficiency of the methods we employ enables
a measurement scheme that can be more easily adapted to
changes in the environmental conditions.

We first demonstrate the effectiveness of our approach
on simulated data, obtained simulating the intensity profiles
resulting from the measurement of generic OAM states with
dimensions up to 8. We then show the effectiveness of the
approach in realistic experimental conditions, using it to
characterise experimentally generated four-dimensional OAM
states. To generate the states, we employ a protocol based
on quantum walk (QW) dynamics in the polarization and
OAM degrees of freedom [52,93], and measure the resulting
states with CCD cameras. An intrinsic issue of this type of
measurement scheme is that it cannot directly distinguish be-
tween states with OAM numbers |�〉 and |−�〉. We tackle this
problem by performing, for each state, a measurement with
two CCD cameras, after splitting the incoming beam with a
polarizing beamsplitter and using a q-plate (QP) on one arm
in order to break the symmetry. Compared to other methods

proposed to break such degeneracy [88], our approach is
fully generalizable and independent from the structure of the
state. The states corresponding to simulated profiles can be
reconstructed with a fidelity of 100%, while the application of
such method on experimental states allows to reach average
fidelities close to 97%. This demonstrates the power of our
regression approach, and its promise to be a valuable tool for
applications in quantum information science. The conceptual
scheme describing the procedure followed in this work is
reported in Fig. 1.

II. MACHINE LEARNING FOR STATES REGRESSION

OAM states can be described via Laguerre-Gaussian (LG)
modes, which form an orthonormal basis of eigenfunctions
for the transverse spatial profile of light. More precisely, these
are solutions of the paraxial Helmholtz equation, that can be
expressed in cylindrical coordinates as

LGp,l (ρ, φ, θ )

= Cp,l
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where p, l are referred to as radial and azimuthal indices, and
are related to the number of nodes of the transverse spatial
profile and to the OAM eigenvalue, respectively. Furthermore,
L|l|

p are the Laguerre polynomials, W (z) is the beam waist
after a propagation distance equal to z, Np,l = 2p + |l| + 1
is the mode order, ζ (z) = arctan(2z/(kW (0)2)) is the Gouy
phase and Cp,l is a normalization constant. The exponen-
tial term eilφ characterizes the beam shape, giving it the
well known helical structure. This phase term generates a
singularity along the beam axis, so the intensity profiles asso-
ciated with such modes present the peculiar doughnut shape.
Throughout the work we consider only LG modes with radial
index p = 0.

Our goal is to retrieve the complex amplitudes of given LG
states with respect to the LG basis |�〉, from measurements
of their intensity profiles. To this end, we use a combination
of dimensionality reduction and a regression algorithm. Di-
mensionality reduction refers to a class of algorithms whose
purpose is to find accurate lower-dimensional representations
of high-dimensional data [94]. More specifically, taking data
in a high-dimensional space Rd , such as datasets of images
with dimension equal to the number of pixels in the image,
and mapping it into a new space Rn whose dimensionality n is
much smaller than the original one d . Using this procedure to
preprocess the dataset allows to reach a consistent speedup on
the learning process performed by the regressor, thanks to the
regression algorithm having to work on a much more compact
representation of the data. More specifically, we use principal
component analysis (PCA) [89] as a dimensionality reduction
algorithm. PCA works by finding the linear subspace that
optimally captures the variation in the input data, and thus
provides a linear mapping from input data to a lower dimen-
sional latent space, defined by the directions maximizing the
variance of the projected data [see Fig. 1(a)]. As shown in
Appendix A, the linear transformation provided by the PCA
preserves the geometrical property of the state, allowing for
a direct interpretation of the reduced dataset. This also has
an added advantage of providing methods more resilient to
noise, due to dimensionality reduction looking for a repre-
sentation of the data that best reflects the relevant features
of the given data. In fact the noise is mapped into the less
representative dimensions that are cut during the reduction.
Moreover, the application of linear dimensionality reduction,
in the form of PCA, is particularly suited to the task of recon-
structing quantum states from measurement outcomes, due
to the linearity intrinsic to this problem [64]. To clarify this
feature and the correlated advantages, consider states of the
form

|�〉 = cos
θ

2
|1〉 + eiφ sin

θ

2
|−1〉, (2)

where θ ∈ [0, π ] and φ ∈ [0, 2π ]. Applying PCA on the
training dataset, three dimensions of the latent space are
sufficient to capture almost all of the relevant information.
We expect to retrieve in the latent space the Bloch sphere
representation of the Hilbert space associated to one qubit.
In fact, focusing only on four distinct classes character-
ized by θ = π, 7π/8, 3π/4, π/2 and arbitrary φ, the
distribution of the dataset in the latent space is character-
ized by four circular structures with a growing radius that

FIG. 2. Principal component analysis. Representation of the sim-
ulated data reduced via PCA in the space composed by the first three
components {c1, c2, c3} of the latent space. Here, we consider states
of the form described by Eq. 2. Each color corresponds to a set of
states corresponding to a fixed value of θ . More specifically, θ = π

(green), 7π/8 (purple), 3π/4 (red), and π/2 (blue). It can be noted
that the circular structure given by the phase φ is preserved in latent
space. This statement is also supported by the fact that the states with
θ = π , in green, are invariant with respect to the parameter φ and are
mapped in the same region and not on a circle.

corresponds to the different θ values, while each of such
circumferences is given by the parameter φ ∈ [0, 2π ] (see
Fig. 2). Therefore PCA preserves the geometrical feature
of the space directly correlating the original parameters θ

and φ with the position in the latent space. Such properties
of the algorithm made it particularly suitable for prelimi-
nary data processing for both classification and regression
tasks [64].

Therefore, in order to retrieve the mapping between output
intensity profiles and corresponding probabilities amplitudes,
we train a linear regression algorithm on the data in the latent
space obtained from PCA. More specifically, we perform a su-
pervised training of the regression using as objective the Bloch
vector of the state under analysis. Therefore, in this stage, the
regressor finds a map between the latent space representation
of the images and the Bloch one by adjusting its parameter
based of the provided labels. The ability of the trained model
(PCA and linear regressor) to generalize beyond the training
set is then evaluated by applying it to the test dataset—i.e., a
group of images that it has never seen before. To address this
problem in an high-dimensional Hilbert space, we decompose
the density matrix associated to the state using the generalized
Gellmann matrices (GGM), a basis of orthogonal traceless
operators, which can be used to define a Bloch representation
for high-dimensional states [95]. To assess the accuracy of the
results, we compute the fidelity as the squared inner product
between the state obtained from the Bloch vector predicted by
the algorithm, and the corresponding true target state. In order
to avoid the possibility of nonphysical state that might result
from the algorithm, each state gets projected to the nearest
pure physical state before calculating the fidelity. In particular,
in this projection procedure, the predicted state is considered
as the eigenvector associated to the higher eigenvalue of the
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density matrix recovered from the Bloch representation out-
putted by the regressor. This constitutes our best guess for an
input pure state.

The main problem for what concerns the regression of
arbitrary OAM states using their intensity pattern is related
to the following symmetry intrinsic to LG modes:∣∣∣∣∣∣

∑
p,l

cp,l LGp,l

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
p,l

c∗
p,l LGp,−l

∣∣∣∣∣∣
2

. (3)

This is due to LG modes having a dependence on � such
that LGp,−� = LG∗

p,�. A consequence of this symmetry is that
different states might result in the same intensity profile,
making it impossible to fully characterize input states from
the acquired intensity profiles. We addressed this problem
both theoretically and experimentally acting on the modes
for breaking this symmetry. In particular, our approach con-
sists in a transformation of the reference state modifying the
azimuthal index for all the modes which appear in the su-
perposition. This produces two different superpositions and,
hence, two distinct images that can be employed to reconstruct
the state encoded in the initial image. For example, let us
consider the state

|�〉 = a|−2〉 + b|−1〉 + c|0〉 + d|+1〉 + e|+2〉. (4)

The symmetry rule in Eq. (3) implies that the state |	〉 which
is indistinguishable from |�〉 according to the intensity profile
measurements is

|	〉 = e∗|−2〉 + d∗|−1〉 + c∗|0〉 + b∗|+1〉 + a∗|+2〉. (5)

By increasing by one unit the OAM value of each mode in the
superposition, we obtain

|� ′〉 = a|−1〉 + b|0〉 + c|+1〉 + d|+2〉 + e|+3〉
|	′〉 = e∗|−1〉 + d∗|0〉 + c∗|+1〉 + b∗|+2〉 + a∗|+3〉. (6)

The resulting states {|� ′〉, |	′〉} are thus always distinguish-
able when |�〉 and |	〉 are not identical.

In other words, even though directly measuring the inten-
sity profile of a given |�〉 we cannot univocally determine
that the input was |�〉 rather than |	〉, such degeneracy is
lifted if for each state we measure both the intensity profile
of |�〉 and of the state obtained from |�〉 after applying
a transformation that increases each OAM values by one
unit.

III. RESULTS

In this section, we showcase the usefulness of our approach
by applying it to both simulated and experimental data.

A. Numerical simulations

We describe in this section the performances of our
approach to retrieve a description of the quantum states cor-
responding to the observed intensity profiles, in a simulated
regime.

The first scenario we consider is when the input states
are superposition of only two orthogonal states, which can
thus be described on a Bloch sphere. In the simplest case, in
which we only use one image for each state, the algorithm

FIG. 3. Two-dimensional symmetry breaking. Representation of
the output of the regression algorithm on theoretical superpositions
with l ∈ {−1,+1}, after the projection on the nearest pure state. We
compare the position of each state on the Bloch sphere obtained
from the regressor using one image (a) and two images (b) per
state. In (a) the higher values of the fidelity are obtained on the
equator, when considering the poles to be along the z axis, this is
the strategy adopted by the regressor to minimize the errors. In fact,
not being able to distinguish states placed on the two semispheres,
this approach enables the regressor to obtain a higher mean fidelity.
Instead in (b) the effects of symmetry breaking are evident, here the
regressed states are placed near their real position.

is unable to discern whether the state belongs to the left or
the right hemisphere of the Bloch sphere. This usually results
in the model placing the states in the middle of the two
hemispheres, along the equator. To avoid the degeneracy due
to the symmetry inherent to OAM states, we use the protocol
previously described, using a pair of intensity profiles per
state.

In this condition, thanks to the additional information pro-
vided by the images obtained augmenting the topological
charge by one, the algorithm is capable of mapping the states
on the spherical surface instead of accumulating them on the
equator. This behavior is explicitly shown in Fig. 3, in which
the positions of the states in the Bloch space are reported for
both the approaches. Similar results are also observed when
the number of dimensions increases, more details on it and on
the symmetry breaking can be found in Appendix B. For our
tests, we used random superpositions of states spanned by d ∈
[2, 8] orthogonal OAM basis states. For any d , we simulate
104 random pure states, using 80% to train the algorithm and
the remaining 20% as a test dataset. In particular, the principal
dimensions of the latent space are found by applying PCA on
the training set that maps fairly uniformly the Hilbert space
Hd . Such compressed data are passed to the regressor during
the supervised training stage. After that, the accuracy of the
protocol is evaluated on the test dataset by first representing
the latter in the latent space that best describes the training
set, and then applying the trained linear regressor. For each
state, we generate both the image associated to its intensity
profile, and the image corresponding to the state obtained by
increasing the values of the OAM to break the degeneracy.
Both images, composed of 64 × 64 pixels, are used as input of
the PCA, and their resulting compressed representation is then
fed to the linear regressor [92] to solve the regression task.
To show the effectiveness of the procedure, we compared the
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FIG. 4. Experimental results. (a) Comparison between the intensity distributions of collected experimental states and of reconstructed
states whose coefficients of the LG superposition are retrieved through the regression analysis. To showcase the performances of the method,
results for values of the fidelity equal to F = 99.9% and F = 83.2% are reported. (b) Trend of average fidelity obtained by increasing the
number of PCA dimensions passed to the regression algorithm by state in the space spanned by l ∈ {−3, −1, +1, +3}. Theoretically, the
regression algorithm approach its maximum fidelity with PCA dimensions close to 15. Using single images does not allow to reach fidelity
higher that F = 90% (blue line), while employing double images the fidelity value approach the 100% (orange line). Although experimental
imperfections appear to break the symmetry feature also in the single image configuration (green line), the exploitation of double images
increases the performances (red line). The points constituting all line are obtained averaging over 2000 random states, while the correspondent
error is not appreciable with respect the size of the marker. (c) Experimental fidelity distributions calculated over 2000 random states in the
double image configuration for state experimentally engineered in the space spanned by l ∈ {−3,−1, +1, +3}. The mean value of the fidelity
is F = 0.9661 ± 0.0009, where the error is given by the standard deviation on the average.

results of the regression obtained using only the intensity
profile of the state with those reached by processing the
augmented dataset, containing also the profile of the super-
position with increased azimuthal index.

We show in Fig. 4(b) the behavior of the fidelity as a
function of the number of PCA dimensions in the d = 4 case.
Using the information stored in the second image allows the
regressor to achieve better performances in all cases consid-
ered. In fact, we achieve fidelities above 90% considering only
five dimensions for the reduced space, while a unit fidelity
is reached using PCA to obtain a compressed representation
in d2 − 1 = 15 dimensions. Figure 4(b) also shows the effect
of the symmetry breaking: in fact, using only one image per
state, even in higher dimensional latent spaces, the perfor-
mances are always significantly worst.

Similar results are obtained for d ∈ {2, 3, 5, 6, 7, 8}: the
protocol always achieves unit fidelity applying linear re-
gression on d2 − 1 dimensions, and using the informa-
tion stored in the second image (for more details see
Appendix C).

In conclusion, the additional information enables the
regressor to solve the degenerancy and to make more accu-
rate predictions. Moreover, using linear regression turns out
to be optimal to directly connect the outputs of the PCA to the
coefficients in the Bloch vector representation, allowing for
better performances, compared to more complex regression
algorithms such as the nonlinear Extra tree regressor (ETR).
The latter leverages on the construction of a decision tree
in which the branches are followed relying on the features
of the input data, in this case, the regressed Bloch vector
is contained in the final leaf of the tree. In particular, the
ETR reaches an accuracy equal to 100% only in the bidimen-
sional case, showing a damping in the performances when the
state dimension increases (see Appendix C for a comparison
analysis).

B. Experimental implementation

To showcase the performance of the developed methodol-
ogy we apply it to a real experimental scenario. Through a
QW-based architecture [52,93] we engineer OAM states of
the form

|ψ〉 = a|−3〉 + b|−1〉 + c|1〉 + d|3〉, (7)

where a, b, c, d ∈ C can be chosen arbitrarily by tuning the
parameters of the setup.

The implemented QW dynamics in a photonic platform
exploits the two components of the photons angular momen-
tum, the spin angular momentum and the OAM to encode
respectively the coin and walker states [52]. By acting on
the polarization degree of freedom it is possible to control
the generated OAM states. In particular, as shown in Fig. 5,
the setup is composed of three blocks containing a series of
waveplates, acting on the coin state, followed by a q-plate.
The latter is a device composed of a birefringent and inho-
mogeneous material capable of modify the photons’ OAM
conditionally on their polarization [96], and is thus suitable
to engineer nontrivial OAM states [52,97].

At the end of the QW, after a projection on the polarization
space, the intensity distribution of the state is collected with
CCD cameras. More specifically, the beam obtained at output
of the QW is passed through a beam splitter (BS). We directly
measure the beam with a CCD on one output arm (CCD1 in
Fig. 5), while on the other arm the measurement is performed
after the evolution through an HWP and a QP, in order to
increase each OAM value in the superposition by one unit and
thus break the symmetry in Eq. (3) (CCD2 in Fig. 5). We thus
generate and measure 104 random states.

The images collected by the CCDs are 1280 × 1024 pixels,
but we scale them down to 64 × 64 pixels before feeding them
to the algorithm. We employ two different PCAs separately
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FIG. 5. Experimental setup. Diagram of the experimental apparatus used in the generation and measurement of spatially modulated
photonic beams. The setup is composed by three blocks containing a cascade of waveplates, half-waveplate (HWP) and quarter-waveplates
(QWP), followed by a q-plate (QP). Each block implements a step of the quantum walks dynamics. The input state is a Gaussian mode
obtained thorught the coupling of a 808 nm laser to single mode fiber (SMF). After tracing out the polarization degree of freedom, the intensity
profile corresponding to the resulting OAM state is recorded with a CCD camera. To uniquely retrieve input states from intensity profiles, the
measurement stage uses two CCD cameras, one of which is placed after a QWP and a QP. This arrangement allows to break the symmetry
inherent to LG modes. In this configuration the last waveplate is rotated at the angle −π/4 in order to change the horizontal polarization coming
from the projection step, into the left circular one (|H〉 → |L〉). This allows the Q-Plate (QP) to increase the Orbital Angular Momentum (OAM)
of each mode by one.

on the dataset. In particular, the first one is used to reduce
the dimensions of the image of the states, while the second
one is applied in the same manner to the superposition state
with the augmented OAM values. This approach shows an
increase in the performances of the method. The compressed
representations of the images are then used to train the re-
gressor. Indeed, the two-image method allows us to reach
a faster convergence to mean fidelities that are obtained by
the one-image approach only when a large number of PCA
dimensions is used. The results reported in Fig. 4 are averaged
on a test dataset consisting of 2000 images for the case in
which the training step is performed on 8000 samples and the
regression algorithm is applied on the information stored in
the first 50 PCA dimensions.

These results illustrate the high performance of our ap-
proach to characterize input states from measurement data in
real experimental scenarios.

IV. CONCLUSIONS

We proposed and experimentally demonstrated a machine-
learning-based approach to tackle the regression task of
characterizing input OAM states from measurement out-
comes. We demonstrated our method for simulated states
spanning up to eight dimensional spaces, showcasing its high
performances even in noisy experimental conditions in a four
dimensional space. To solve the issue arising from the in-
trinsic symmetry of LG modes, we implemented a strategy
to augment the number of intensities acquired per each state,
thus allowing to unambiguously reconstruct input states from
outcome intensity profiles. From an experimental point of
view, this approach is simply obtained through a beam splitter,
and a set composed of a quarter-waveplate followed by a
q-plate. This setup allows collecting two intensity distribu-
tions per state corresponding to projection on two distinct

bases. Therefore, acting on the beam on a line without the
need for interferometric or holographic techniques, we are
able to perform the required measurement of the intensity pro-
file. This approach is thus easily implementable, and effective
to break the symmetry causing different OAMs to appear iden-
tical. Moreover, the demonstrated protocol is not restricted by
the dimension of the input states. Together with the feasibility
of the experimental implementation, this make our approach
an effective tool to characterize OAM states. The fast training
allowed by the use of PCA and linear regression makes for
a highly versatile experimental detection scheme. Although
in this paper we used coherent states generated from a laser
source, the same approach can be used at the single photon
level using single-photon CCD cameras, and thus paving the
way for ML-based quantum state tomography protocols. Our
protocol is thus promising for quantum technology applica-
tions that require the information encoded in OAM states and
need fast and direct tracking.
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APPENDIX A: LINEARITY OF PCA AND PHASE
MAPPING IN THE LATENT SPACE

The principal component analysis is one of the most em-
ployed dimensionality reduction algorithms. Since the PCA is
an example of unsupervised learning it does not have informa-
tion about the data that are given to it other than the data itself.
The operation done by PCA can be described as mapping the
data into a linear combination along the most representative
axes, the ones that maximize the variance among the data in
the new space.

To clearly describe the process performed by the PCA, let
us consider our data in the form of m d-dimensional vectors
{x1, x2, . . . , xm} in Rd . The aim is to reduce the dimensionality
of these vectors using a linear transformation. Firstly, a matrix
W ∈ Rn,d , with n < d , defines a map from the input data x ∈
Rd to a vector belonging to a lower-dimensional space y ∈
Rn. Then, it is possible to recover an approximation of the
original vector x from its compressed version. More precisely,
given the compressed vector y = W x in the low dimensional
space Rn, usually referred to as latent space, it is possible to
construct the recovered version x̃ = Uy = UW x of the vector
x, which also resides in the original high-dimensional space

FIG. 6. PCA latent space. Position along the latent space prin-
cipal components of the intensity profiles of a simple experimental
superposition of Laguerre-Gauss (LG) modes |ψ〉 = 1/

√
2(|+1〉 +

eiφ |−1〉). The various points correspond to different values of the
phase angle φ. The five images at the bottom correspond to the red
star symbols in the main graph at the top. It should be noted that the
change in the phase angle φ generates a rotation in the respective
images. This effect is then reflected in the angle at which each image
can be found in the latent space representation.

Rd . In the PCA the compression W and recovery U matrices
are obtained by minimizing the squared distance between the
original x and recovered x̃ vectors. Formally, we aim to solve
the following minimization problem:

min
W ∈Rn,d ,U∈Rd,n

m∑
i=1

|xi − UW xi|2. (A1)

The linearity of the described mapping gives as a result
that many intuitive properties are kept in the latent space. For
example, a shift in the phase of a state in a superposition of
LG modes is generally represented by a sort of rotation in the
intensity profile, more evident when there are only two states.
As a result the images that show this type of difference are
generally mapped to circularly shaped clusters in the latent
space. This gives, for example, easy access to information
regarding the phase difference between modes directly from
the latent space, since the linearity of the mapping preserves
the inner structure of the data. This concept is illustrated in
Fig. 6 where the position of different images in the latent space
representation is compared to their contents. Therefore this
showcases how the latent space description is directly linked
to the geometrical properties of the state.

APPENDIX B: OBSERVATION OF SYMMETRY BREAKING

As explained in the main text, OAM superpositions show
a symmetry that makes impossible to distinguish some states
through an intensity measurement because they present the
same spatial profile for it. One aspect of particular interest is
the behavior of the regressor in the case it does not have access
to the information required to break the symmetry, namely
the image in which the value of the OAM is increased by
one for each mode in the superposition. In order to better
understand this process, we began working on the simplest
space, i.e., with l ∈ {−1,+1}, whose Bloch representation,
the Bloch sphere, is well known and easy to analyze. We
observed the results of the regression for both the case in
which we break and don’t break the symmetry and compared
the positions of the regressed states on the Bloch sphere,
these results are reported in Fig. 3 in the main text. These
results give us precise insight into what strategy the regression
algorithm takes in order to mitigate the effect of the missing
information. First of all, it is obvious that the states at the poles
of the Bloch sphere (along the z axis), which correspond to
either |ψ〉 = |−1〉 or |ψ〉 = |+1〉, would be the ones on which
regression would completely fail. Secondly, it can be seen that
the effect on the Bloch sphere of the transformation described
by Eq. (3) is the reflection symmetry along the x-y plane.
As a consequence, the points on the equator are invariant
under this transformation and, for the same reasoning, it is not
surprising that these points are correctly identified. Therefore,
when the algorithm fails to break the symmetry, it tends to
put the states near the equator in order to limit the errors in
the state reconstruction. In fact, as shown in Fig. 3(b), as soon
as we give the algorithm the necessary information, the states
are placed in the right positions on the Bloch sphere. To verify
this behavior, in both single and double image configuration,
we compared the regressed state with the expected theoretical
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FIG. 7. Two-dimensional fidelities distribution. Fidelity calcu-
lated on superpositions with l ∈ {−1,+1}. Using only one image
per state, the values of fidelity were calculated between the output
of the regression with both the expected theoretical state (a) and
the theoretical state after the inversion of the coefficients described
by Eq. (3) (b). The mean value of the fidelity in both graphs is
F̄a = 0.923(2) and F̄b = 0.923(2), respectively. They are compatible
within the statistical error and thus the process can not distinguish
the two cases. Computing the same fidelity in the double image
configuration, the mean value of graph in panel (c) is F̄c = 1, while
the mean value of graph in panel (d) is F̄d = 0.764(6). They are
incompatible and thus the process has broken the symmetry.

state and the theoretical state on which Eq. (3) has been
applied.

Figures 7(a) and 7(b) show the resulting distribution of the
computed fidelities in the single image configuration and they
are indistinguishable. Moreover, the relative mean fidelities
are compatible within their statistical errors. Therefore the
regressor is not able to break the symmetry using a single
image but only if two images are provided. Indeed, in Fig. 7(c)
is reported the resulting distribution of the computed fidelity
with the exact theoretical state and it is equal to 1, while
the distribution obtained comparing the regressed state with
the theoretical state on which Eq. (3) has been applied is
lower than 80% [see Fig. 7(d)]. Therefore the distributions are
completely incompatible and the algorithm managed to break
the symmetry.

The same study was conducted for higher dimension super-
position, in particular for l ∈ {−3,−1,+1,+3}. As expected,
we observe that the two profiles still match and the two
mean values are still compatible within their statistical er-
rors [Figs. 8(a) and 8(b)]. On the other side, comparing the
distributions obtained in the double image configuration a
substantial difference can be observed. The comparison with
the correct theoretical state results in a unitary fidelity, while

FIG. 8. Four-dimensional fidelities distribution. Fidelity calcu-
lated on theoretical superpositions with l ∈ {−3,−1, +1, +3}. The
values of fidelity were calculated between the output of the regres-
sion with both the exact theoretical state (a) and the theoretical state
after the inversion of the coefficients described by Eq. (3) (b). The fi-
delity values are worse than those presented in Fig. 7 (Fa = 0.904(2)
and Fb = 0.904(2)), but they still are similar, meaning that the system
does not distinguish the two cases. Computing the same fidelity in the
double image configuration, the mean value of graph in panel (c) is
F̄c = 1, while the mean value of graph in panel (d) is F̄d = 0.664(5).
They are incompatible and thus the process has broken the symmetry.

computing the fidelity with the theoretical state on which
Eq. (3) has been applied, each state is reconstructed almost
randomly and it results in a mean fidelity lower than 70%.
[Figs. 8(c) and 8(d)]. This allows us to extend the same con-
clusion we had on the two-dimensional case to this higher
dimensional one. However, since the dimension of the Bloch
vector space increases from three to fifteen, it is more complex
to perform a comparison like that in Fig. 3. Nevertheless, in
Fig. 9, it is shown an example similar to that shown before,
obtained by projecting the results on the first three dimensions
of the Bloch vector.

The results reported in this section point out one more time
how it is necessary to break the symmetry in order to cor-
rectly detect the OAM content of arbitrary high-dimensional
superpositions.

APPENDIX C: COMPARISON BETWEEN LINEAR
AND NONLINEAR REGRESSION ALGORITHMS

In this section, we compare the performances of the linear
regressor used in this work with those of a nonlinear regressor
called Extra tree regressor [92]. The latter is a predictor that
exploits the structure of decision trees to associate each input
with its correct label. The decision tree is composed of several
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FIG. 9. Four-dimensional symmetry breaking. Representation of
the output of the regression algorithm on theoretical superpositions
with l ∈ {−3, −1, +1, +3}, after the projection on the nearest pure
state. We compare the position of each state on the Bloch space ob-
tained from the regressor using one image (a) and two images (b) per
each of them. The distribution of the states in this three dimensional
space is quite different. As for the bi-dimensional case of Fig. 3, this
give an intuition on how the information stored in the image with
augmented OAM values helps in obtain the correct states. This is
explicitly shown in the fidelities distribution reported in Fig. 8. Each
plot shows only the first three dimensions of a fifteen-dimensional
space.

nodes. In each of these, a condition on the input space deter-
mines which direction has to be followed and which of the
children nodes will be the next. This process is repeated until
the arrival at any leaf node without children which contains
the value of the regressor output.

We compare the performances of the ETR with the linear
regressor used in the work, by considering simulated OAM
superposition states with a dimension of the Hilbert space d ∈
[2, 8]. In particular, we generated 10 000 random states, using
8000 of them as training set and the remaining as test set,
and gave them as input to the PCA and thereafter to the two
regressors. In all the cases under analysis, the double image
approach described in the main text is used. In particular, we
studied the fidelity behavior of the predicted states changing
the number of PCA components given to the regressors. The
resulting mean values of the fidelity, obtained averaging over
the test set, are reported in Fig. 10. These showcase how
the linear regressor outperforms the ETR for all the cases
considered, in fact it reaches higher values for the fidelity not
having the damping in the performances presented by ETR
when the dimension increases. This effect is mostly caused
by the purely interpolating action of the ETR model, meaning
that for high-dimensional spaces it usually concentrates the
states towards the origin of the Bloch space. This generates
additional error that increases with dimension of the space,
making such model less suitable for high dimensions. We
also note that the linear regressor obtains a value for the

(a) Linear Regressor

(b) Extra Tree Regressor

FIG. 10. Comparison between regressor algorithms. The plots
show the results of the linear regressor (a) and of the extra tree
regressor (b) when applied to theoretically simulated states with
Hilbert space dimension up to 8. The number of PCA components
given to the regressors is reported on the x axis, in order to consider
various dimensions in a single plot we normalize it to the factor d2.
From the computed fidelities it can be seen that the linear regressor
outperforms the ETR, reaching a value of the fidelity nearly equal to
1 for all the dimensions when we approach the value of (d2 − 1) PCA
components, which is the dimension of the Bloch vector. Moreover,
only the ETR presents a damping in the performances when the
dimensions of the regressed states augment. All the fidelity values
are obtained averaging over 2000 random states.

mean fidelities nearly equal to 1 when the number of PCA
components is close to (d2 − 1), i.e., the dimension of the
Bloch vector describing the state. The obtained results high-
light how, due to the linearity in the PCA action, an approach
based on the use of a linear regressor is better suited to solve
the task without the need of more complex approaches.
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