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Abstract. Here we prove an isoperimetric inequality for the harmonic mean of the first N−1 non-
trivial Neumann eigenvalues of the Laplace-Beltrami operator for domains contained in a hemisphere
of SN .

1. Introduction

Let Ω be a bounded domain in RN and let us consider the eigenvalues of the classical Neumann-
Laplacian in Ω,

0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ ...
Isoperimetric inequalities for the µi’s go back to the classical theorem of Szegő [17] and Weinberger
[19]: the ball maximizes µ1(Ω) among all bounded smooth domains Ω in RN having the same mea-
sure. Szegő, using conformal maps, proved it for simply connected domains in R2, while Weinberger
introduced a method that allowed him to get this result in full generality in RN . His technique has
been adapted in different contexts to establish isoperimetric results for combination of eigenvalues
of the Laplacian with Dirichlet or Neumann boundary conditions (see e.g. [2, 5, 6, 8, 9, 11, 12, 16]).
For further references see, e.g., the monographs [10, 14, 15] and the survey paper [1]. Actually, as
well-known, the conformal map technique used by Szegő allows to prove the stronger inequality

(1)
1

µ1(Ω)
+

1

µ2(Ω)
≥ 2

µ1(Ω?)
,

again for simply connected domains in R2. Here and in the sequel, Ω? will denote the disk, or, more
in general, the ball in RN having the same measure as Ω. Inequality (1) is sharp since equality
sign is achieved if and only if Ω is a disk. Later, in [3], the assumption of simply connectedness
was removed. In the same paper the authors conjectured that an inequality analogous to (1) holds
true in RN , namely

1

µ1(Ω)
+ ....+

1

µN (Ω)
≥ N

µ1(Ω?)
.

Very recently, in [18] the authors made an important step toward the proof of this conjecture, by
showing the following inequality

1

µ1(Ω)
+ ....+

1

µN−1(Ω)
≥ N − 1

µ1(Ω?)
.

The aim of this manuscript is to prove an analogous result for the Laplace-Beltrami operator
with Neumann boundary conditions. Precisely, we deal with non-trivial Neumann eigenvalues of
an arbitrary domain Ω contained in a hemisphere of SN , defined by the following boundary value
problem

(2)


−∆SNu = µu in Ω

∂u
∂ν = 0 on ∂Ω,
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where ν is the unit normal to ∂Ω. We still denote the eigenvalues of (2) with µi(Ω) and we intend
them arranged in an increasing way, that is

0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ ...
If we denote by {ui}i a sequence of orthonormal set of eigenfunctions corresponding to µi(Ω), then
the following variational characterization holds true

(3) µi(Ω) = min


∫

Ω
|∇φ|2 dω∫
Ω
φ2 dω

: φ ∈ H1(Ω) \ {0}, φ ∈ span {u0, u1, ..., ui−1}⊥

 .

The analogous of the Szegő-Weinberger result is already known and was proved in [4]. Our main
result is the following

Theorem 1.1. With the notation as above,

(4)

N−1∑
i=1

1

µi(Ω)
≥

N−1∑
i=1

1

µi(Dγ)

where Dγ is a geodesic ball contained in a hemisphere of SN having the same N -volume as Ω, and
γ is its radius. More precisely, γ is determined by

|Ω| = NωN

∫ γ

0
sinN−1 t dt,

where ωN denotes the volume of the unit ball in RN . Equality sign holds in (4) if and only if Ω is
a geodesic ball.

2. Properties of the Neumann eigenvalues and eigenfunctions of a geodesic ball

Let Dγ be a geodesic ball on SN having radius γ. We think to this geodesic ball as the set of points
of SN with angle from the positive xN+1-axis less that γ, that is a polar cap. By standard separation
of variables technique, we find that the eigenvalues of (2), with Ω = Dγ , are the eigenvalues of the
following one-dimensional problems

− 1

sinN−1 θ

d

dθ

(
sinN−1 θ

dy

dθ

)
+
l(l +N − 2)

sin2 θ
y = µl,k y in (0, γ)

y(0) finite, y′(γ) = 0

with l ∈ N0, k ∈ N. Clearly, µ1(Dγ) = min {µ0,2, µ1,1}. In [4] the authors show that µ1(Dγ) = µ1,1

at least if γ ≤ π
2 . Hence, an eigenfunction g (assumed positive) associated to µ1,1 = µ1(Dγ) satisfies

(5)


−g′′ − (N − 1) cot θ g′ +

N − 1

sin2 θ
g = µ g in (0, γ)

g(0) = g′(γ) = 0.

Multiplying the equation in (5) by g and then integrating on Dγ yields

(6) µ1(Dγ) =

∫
Dγ

[
g′(θ)2 + (N − 1)

g(θ)2

sin2 θ

]
dω∫

Dγ

g(θ)2 dω

.
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The following properties are also proved in [4].

(1) If 0 < γ ≤ π
2 , then g′ > 0 in [0, γ), thus g is strictly increasing in [0, γ].

(2) µ1(Dγ) is a strictly decreasing function of γ for 0 < γ ≤ π
2 .

(3) µ1(Dγ) > N = µ1(Dπ/2) for 0 < γ < π
2 .

We also recall that µ1(Dγ) is N -fold degenerate, that is

µ1(Dγ) = µ2(Dγ) = ... = µN (Dγ).

Now, define G :
[
0, π2

]
→ [0,+∞) by

(7) G(θ) =

{
g(θ) θ ≤ γ
g(γ) θ > γ.

Lemma 2.1. The function
G(θ)

sin θ
is strictly decreasing in

[
0, π2

]
.

Proof. By Taylor-Frobenius expansion we have G(θ) = θ − a θ3 + o(θ3), where

a =
µ1(Dγ)− 2

3(N − 1)

2N + 4
> 0.

In order to get the claim it is enough to prove that

W (θ) := G′(θ)−G(θ) cot θ < 0.

Using the behavior of G(θ) near θ = 0 we have

W (θ) =

(
1

3
− 2a

)
θ2 + o(θ2) =

(
N − µ1(Dγ)

N + 2

)
θ2 + o(θ2).

Property (3) implies that W (θ) < 0 close to 0. We also know that W (γ) < 0. Assume by

contradiction that W (θ) attained a positive maximum at a point θ̃ ∈ (0, γ). Hence

W (θ̃) > 0, W ′(θ̃) = G′′(θ̃)−G′(θ̃) cot θ̃ +
G(θ̃)

sin2 θ̃
= 0.

Using the equation in (5) we gain

N

[
G′(θ̃) cot θ̃ − G(θ̃)

sin2 θ̃

]
= −µ1(Dγ)G(θ̃),

that is

N
[
W (θ̃) cot θ̃ −G(θ̃)

]
= −µ1(Dγ)G(θ̃).

Since we are assuming that W (θ̃) > 0, property (3) immediately gives a contradiction.
�

3. Some mathematical tools needed for the proof of Theorem 1.1

For the proof of our main result, Theorem 1.1, it is convenient to parametrize the points of Ω in
terms of the coordinates of their stereographic projection (see, for example, [7, 13]). For a point
P ∈ Ω, we denote by P ′ its stereographic projection from the South Pole S onto the “equator” (as
illustrated in Figure 1).

For P ′ we use cartesian coordinates (x1, x2, ..., xN , 0). We also use s =
√∑N

i=1 x
2
i , the euclidean

distance from P ′ to the origin O. As used we denote by θ the azimuthal angle, i. e. the angle
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Figure 1. Stereographic coordinates

between ON and OP , where N stands for the North Pole. Moreover we denote by ϕ the angle
between SN and SP . It is clear that θ = 2ϕ and tanϕ = s. Hence,

(8) θ = 2 arctan s

from which we immediately get

(9)
dθ

ds
=

2

1 + s2
= p(s),

the conformal factor associated to the differential structure on SN . In terms of the conformal factor
p we can write

∇SN =
1

p
∇RN ,

where ∇RN is the standard gradient on the equator. We also have

−∆SN = −p−Ndiv
(
pN−2∇RNu

)
.

Finally, from the figure (or directly from (8) and (9)) we also have that

(10) sin θ = p · s.

In the sequel we also need to compute θ,i :=
∂θ

∂xi
. Using (9), the definition of s and the chain rule

we have

θ,i =
∂θ

∂s
· s,i = p

xi
s
, i = 1, ..., N,

and

(11)

N∑
i=1

θ2
,i = p2.

With the notation introduced above, we define

(12) Φi(x) = G(θ)
xi
s
, i = 1, ..., N,



5

where G(θ) is defined in (7). In order to use Φi as test function in (3), we need the following
orthogonality conditions

(13)

∫
Ω

Φi uj dω = 0, i = 1, ..., N, j = 0, ..., i− 1,

where, as we said, uj is an eigenfunction corresponding to µj(Ω). To fulfill these conditions we
need a special “orientation” of the sphere SN . When j = 0, conditions (13) can be immediately
deduced from Theorem 2.1 in [4] via the following identity∫

Ω
Φi dω =

∫
Ω
G(θ)

xi
s
dω =

∫
Ω

G(θ)

sin θ
yi dω,

choosing G̃(θ) =
G(θ)

sin θ
. When j > 0, conditions (13) can be proved arguing in an analogous way

as in the proof of Theorem 2.1 in [3].

4. Proof of Theorem 1.1

Recalling the definition of Φi given in (12), we get

(14) (∇Φi)j ≡ Φi,j = G′(θ) p
xixj
s2

+G(θ)
δij
s
−G(θ)

xixj
s3

, j = 1, ..., N.

Using (11), the definition of s and (14) we have

(15)
1

p2
|∇Φi|2 = G′(θ)2xi

s2
+G(θ)2 1

s2p2
−G(θ)2 x2

i

p2s4
.

Hence, from (10) and (15),

N∑
i=1

||∇SNΦi||2 =
1

p2

N∑
i=1

|∇Φi|2 = G′(θ)2 +G(θ)2N − 1

s2p2
= G′(θ)2 +G(θ)2N − 1

sin2 θ
.

Using Φi as test function in the variational characterization (3) of µi(Ω), and taking into account
the orthogonality conditions (13), we get∫

Ω
Φ2
i dω ≤ 1

µi(Ω)

∫
Ω
G′(θ)2 x

2
i

s2
dω +

1

µi(Ω)

∫
Ω

G(θ)2

sin2 θ

(
1− x2

i

s2

)
dω

=
1

µi(Ω)

∫
Ω∩Dγ

G′(θ)2 x
2
i

s2
dω +

1

µi(Ω)

∫
Ω

G(θ)2

sin2 θ

(
1− x2

i

s2

)
dω

≤ 1

µi(Ω)

∫
Dγ

G′(θ)2 x
2
i

s2
dω +

1

µi(Ω)

∫
Ω

G(θ)2

sin2 θ

(
1− x2

i

s2

)
dω

=
1

N µi(Ω)

∫
Dγ

G′(θ)2 dω +
1

µi(Ω)

∫
Ω

G(θ)2

sin2 θ

(
1− x2

i

s2

)
dω.(16)

Summing over i = 1, ..., N we get∫
Ω
G(θ)2 dω ≤ 1

N

N∑
i=1

1

µi(Ω)

∫
Dγ

G′(θ)2 dω +

N∑
i=1

1

µi(Ω)

∫
Ω

G(θ)2

sin2 θ

(
1− x2

i

s2

)
dω.

Now notice that
N∑
i=1

1

µi(Ω)

(
1− x2

i

s2

)
−
N−1∑
i=1

1

µi(Ω)
=

1

µN (Ω)
−

N∑
i=1

1

µi(Ω)

x2
i

s2
≤ 0,
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which follows from µi(Ω) ≤ µN (Ω) for all i = 1, ..., N − 1 and the definition of s. Hence,

(17)

∫
Ω
G(θ)2 dω ≤ 1

N

N∑
i=1

1

µi(Ω)

∫
Dγ

G′(θ)2 dω +
N−1∑
i=1

1

µi(Ω)

∫
Ω

G(θ)2

sin2 θ
dω.

By Lemma 2.1 we know that the function
G(θ)

sin θ
is decreasing in (0, γ). Recalling that |Ω| = |Dγ |,

we get ∫
Ω

G(θ)2

sin2 θ
dω =

∫
Ω∩Dγ

G(θ)2

sin2 θ
dω +

∫
Ω\Dγ

G(θ)2

sin2 θ
dω

≤
∫

Ω∩Dγ

G(θ)2

sin2 θ
dω +

G(γ)2

sin2 γ
|Ω \Dγ |

=

∫
Ω∩Dγ

G(θ)2

sin2 θ
dω +

G(γ)2

sin2 γ
|Dγ \ Ω|

≤
∫

Ω∩Dγ

G(θ)2

sin2 θ
dω +

∫
Dγ\Ω

G(θ)2

sin2 θ
dω

=

∫
Dγ

g(θ)2

sin2 θ
dω.(18)

On the other side, since G(θ) is non-decreasing in
(
0, π2

)
, we have∫

Ω
G(θ)2 dω =

∫
Ω∩Dγ

G(θ)2 dω +

∫
Ω\Dγ

G(θ)2 dω

≥
∫

Ω∩Dγ
G(θ)2 dω +G(γ)2|Ω \Dγ |

=

∫
Ω∩Dγ

G(θ)2 dω +G(γ)2|Dγ \ Ω|

≥
∫

Ω∩Dγ
G(θ)2 dω +

∫
Dγ\Ω

g(θ)2 dω

=

∫
Dγ

g(θ)2 dω.(19)

Using (17), (18), (19) and the monotonicity of the sequence {µi(Ω)}i we have∫
Dγ

g(θ)2 dω ≤ 1

N

N∑
i=1

1

µi(Ω)

∫
Dγ

g′(θ)2 dω +
N−1∑
i=1

1

µi(Ω)

∫
Dγ

g(θ)2

sin2 θ
dω

≤ 1

N − 1

N−1∑
i=1

1

µi(Ω)

∫
Dγ

[
g′(θ)2 + (N − 1)

g(θ)2

sin2 θ

]
dω.

Finally, from (6) we conclude

(20)
1

N − 1

N−1∑
i=1

1

µi(Ω)
≥ 1

µ1(Dγ)
.

The equality sign holds in (20) if and only if Ω is a geodesic ball.
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