
ar
X

iv
:2

20
9.

00
35

4v
1 

 [
m

at
h.

FA
] 

 1
 S

ep
 2

02
2

CONVERGENCE FOR VARYING MEASURES

L. DI PIAZZA, V. MARRAFFA, K. MUSIA L, A. R. SAMBUCINI

Abstract. Some limit theorems of the type
∫

Ω

fn dmn →

∫

Ω

f dm

are presented for scalar, (vector), (multi)-valued sequences of mn-
integrable functions fn. The convergences obtained, in the vector
and multivalued settings, are in the weak or in the strong sense.

1. Introduction

Many problems in measure theory and its applications deal with
sequences of measures (mn)n converging in some sense rather than with
a single measure m. Convergence results have significant applications
to various fields of pure and applied sciences. Examples of areas of
applications include stochastic processes, statistics, control and game
theories, transportation problems, neural networks, signal and image
processing (see, for example, [2, 10, 11, 15, 17, 19, 22, 27, 34]).
In particular, for the last applications, recently, multifunctions have

been applied because the discretization of a continuous signal or im-
age is affected by quantization errors ([23, 26]) and its numerical dis-
cretization can be viewed as an approximation by means of a suitable
sequence of multifunctions (Γn)n (as happens in case of scalar func-
tions [26]) which converges to a (multi)-signal Γ corresponding to the
original signal. Obviously, since the signals are discontinuous ([1, 4])
suitable convergence notions are needed.
In the present paper we continue the research started in [14–17, 21,

25, 28, 36] for the scalar case and we provide sufficient conditions in
order to obtain some kind of Vitali’s convergence theorems for a se-
quence of (multi)functions (fn)n integrable with respect to a sequence
of measures (mn)n . In particular we consider the asympotic properties
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of (
∫

Ω
fndmn)n with respect to setwise and in total variation conver-

gences of the measures in a arbitrary measurable spaces (Ω,A).
The paper is organized as follows: in Section 2, we consider the

case of the scalar integrands and an analogous of the Vitali’s classic
convergence result is obtained for finite and non negative measures in
Theorem 2.11 using the uniform absolute continuity of the involved in-
tegrals and the setwise convergence of measures. We compare also our
results with the existing ones in literature and we extend our result to
signed measures in Corollary 2.13. In Section 3 we consider multifunc-
tions taking values in the hyperspace of non empty, weakly compact
and convex subsets of a Banach space and limit results for the Pettis
integral are provided both in the weak sense (Theorem 3.3) and in the
strong sense making use of the Hausdorff metric, by means of the con-
vergence in total variation of measures and the scalar equi-convergence
in measure of the sequence of multifunctions (Theorem 3.5).
In Subsection 3.1 we get the analogous results when the integrands are
vector valued functions. In this setting we obtain the converge both
in the weak sense (Theorem 3.7) and in the strong sense (Theorem
3.9). Finally in subsection 3.2 we consider the McShane integration
and in this setting we obtain a convergence result for the vector case
(Theorem 3.11). If Γn’s are McShane integrable multifunction and
i : cb(X) → ℓ∞(BX∗) is the R̊adström embedding, then the vector
functions i ◦ Γn’s are also McShane integrable and viceversa. So the
assumptions for multifunctions can be then translated for i ◦ Γn’s and
we can get the convergence from the vector case. Unfortunately, in
general the R̊adström embedding of a Pettis integrable multifunction,
even weakly compact valued, is not necessary Pettis integrable. So the
McShane integrability is essential for this reverse investigation.

2. The scalar case for integrands

Let (Ω,A) be a measurable space and let M(Ω) br the vector space
of finite real-valued measures on (Ω,A). M+(Ω) denotes the cone of
non-negative members of M(Ω). Let |m| be the total variation of a
measure m. By the symbol m ≪ ν we denote the usual absolutely
continuity of m with respect to ν. We recall that

• A sequence (mn)n ⊂ M(Ω) is setwise convergent to m ∈

M(Ω) (mn
s
−→ m) if limn mn(A) = m(A) for every A ∈ A

( [21, Section 2.1], [17, Definition 2.3]).
• A sequence (mn)n ⊂ M(Ω) converges in total variation to m

(mn
tv
→ m) if |m−mn|(Ω) → 0. Then (mn)n is convergent to

m uniformly on Σ, ( [25, Section 2]).
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• A sequence (mn)n ⊂ M(Ω) is bounded if supn |mn|(Ω) < ∞.

Remark 2.1. Since simple functions are dense in the space of bounded
measurable functions, a sequence (mn)n of measures setwise converges
to m if and only if

∫

Ω

fdmn →

∫

Ω

fdm, for all bounded measurable f : Ω → R.

See also ( [28]).

If m is a finite signed measures m, we denote by m± its positive and
negative parts respectively. We recall that every finite signed measure
has finite total variation. Moreover we observe that

Remark 2.2. Let (mn)n, m be measures in M(Ω). If the sequences
(m+

n )n and (m−
n )n are setwise convergent to m+ and m− respectively,

then (mn)n is setwise convergent to m. Unfortunately, the reverse
implication fails in general. In fact, if the reverse implication were
valid, then we would have the convergence m − mn

s
→ 0 and hence

(m − mn)
± s
→ 0. Consequently |m − mn|(Ω) → 0, and this is false.

As a counterexample one can take a sequence (fn)n of functions in
L1(µ) that is weakly convergent to f ∈ L1(µ) but not strongly. Then
take mn(E) :=

∫

E
fn dµ and m(E) =

∫

E
f dµ. The convergence |m −

mn|(Ω) → 0 means
∫

E
|f − fn| dµ → 0, which contradicts the assump-

tion that (fn)n is not convergent in the norm topology of L1(µ).

Question 2.3. What is the relation between convergence in variation
and setwise convergence of (m±

n )n to m±?

In general (mn −m)± 6= m±
n −m±. Using the Jordan decomposition

of a measure and the triangular inequality we have that

m+
n (E)−m+(E) =

1

2

(

|mn|(E) +mn(E)− |m|(E)−m(E)

)

=

=
1

2
(|mn| − |m|)(E) +

1

2
(mn −m)(E) ≤

≤
1

2

∣

∣

∣

∣

|mn| − |m|

∣

∣

∣

∣

(E) +
1

2
(mn −m)(E) ≤

≤
1

2
|mn −m|(E) +

1

2
(mn −m)(E) = (mn −m)+(E).
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Moreover

0 ≤
∣

∣m+
n (E)−m+(E)

∣

∣ =
1

2

∣

∣

∣

∣

|mn|(E) +mn(E)− |m|(E)−m(E)

∣

∣

∣

∣

≤

≤
1

2

∣

∣

∣

∣

|mn|(E)− |m|(E)

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

mn(E)−m(E)

∣

∣

∣

∣

≤

≤
1

2

∣

∣

∣

∣

|mn| − |m|

∣

∣

∣

∣

(E) +
1

2
|mn −m|(E) ≤

≤
1

2
|mn −m|(E) +

1

2
|mn −m|(E) = |mn −m|(E).

Analogously we could prove the inequality with (mn −m)− and so the
convergence in (total) variation is stronger that the setwise convergence
of (m±

n )n to m±.

Remark 2.4. Observe that if νn = mn − m, with mn, m ∈ M+(Ω)
for every n ∈ N, then ν+

n ≤ mm and ν−
n ≤ m. In fact, if (Pn, Nn) is a

Hahn decomposition for νn then, for every E ∈ A it is

ν+
n (E) = νn(E ∩ Pn) = mm(E ∩ Pn)−m(E ∩ Pn) ≤ (1)

≤ mn(E ∩ Pn) ≤ mn(E);

ν−
n (E) = −νn(E ∩Nn) = m(E ∩Nn)−mn(E ∩Nn) ≤

≤ m(E ∩Nn) ≤ m(E).

If f is a non-negative function integrable with respect m and mn for
every n ∈ N then, for every E ∈ A

∫

E

fdν+
n ≤

∫

E

fdmn,

∫

E

fdν−
n ≤

∫

E

fdm.

(This is true for simple functions s and then we apply with 0 ≤ s ≤ f .)
So, if f ∈ L1(mn) ∩ L1(m), then f ∈ L1(|νn|). Moreover, since

∫

E

fd(mn −m) =

∫

E

fdmn −

∫

E

fdm,

we have that, by formulas (1)
∣

∣

∣

∣

∫

E

fdνn

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

E

fdmn −

∫

E

fdm

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

E

fdν+
n −

∫

E

fdν−
n

∣

∣

∣

∣

(2)

≤

∫

E

|f |dν+
n +

∫

E

|f |dν−
n =

∫

E

|f |d|νn| ≤

≤

∫

E

|f |dmn +

∫

E

|f |dm < +∞.

✷
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From now on we assume that all the measures we consider belong to
M+(Ω) unless otherwise specified.

Let’s start by proving an analogue of Vitali’s classic theorem for
varying measures. We can have different versions of it depending on
the assumptions we use on (fn)n and on the varying measures (mn)n.

Definition 2.5. Let (mn)n be a sequence of measures. We say that:

(u.a.c.) a sequence of measurable functions (fn)n : Ω → R has uni-
formly absolutely continuous (mn)-integrals on Ω, if for every
ε > 0 there exists δ > 0 such that for every n ∈ N

(A ∈ A and mn(A) < δ) =⇒

∫

A

|fn| dmn < ε. (3)

If fn = f for all n ∈ N, then we say that f has uniformly
absolutely continuous (mn)-integrals on Ω.
If mn = m for all n ∈ N, then we say that f ′

ns have uniformly
absolutely continuous m-integrals on Ω.

(u.i.) a sequence of measurable functions (fn)n : Ω → R is uniformly
(mn)-integrable on Ω, if

lim
α→+∞

sup
n

∫

{|fn|>α}

|fn| dmn = 0. (4)

If fn = f for all n ∈ N, then we say that f is uniformly (mn)-
integrable on Ω.
If mn = m for all n ∈ N, then we say that f ′

ns are uniformly
m-integrable on Ω.

It is obvious that if a sequence (fn)n of measurable fuctions is uni-
formly bounded, then it is uniformly (mn)n-integrable for an arbitrary
(mn)n such that supnmn(Ω) < +∞.

The following result is contained in Serfozo’s paper [36, Lemma 2.5 (i)
⇐⇒ (iii)] where the author gives a different proof using Markov’s ine-
quality and the tight (mn)n-integrability condition of (fn)n. Moreover,
in [36], the uniform absolute continuity is given in a slightly different
form, but Serfozo’s and our definitions are equivalent.

Proposition 2.6. Let (mn)n be a bounded sequence of measures and
(fn)n be a sequence of real valued measurable functions on Ω. Then,
the sequence (fn)n is uniformly (mn)-integrable on Ω if and only if it
has uniformly absolutely continuous (mn)-integrals and

sup
n

∫

Ω

|fn| dmn < +∞ . (5)
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Proof. Assume that (fn)n is uniformly (mn)-integrable on Ω. Let ε > 0
be fixed and α0 > 0 be such that supn

∫

{|fn|>α0}
|fn| dmn < ε/2. Let

δ = ε/2α0. If mn(A) < δ, then

∫

A

|fn| dmn =

∫

A∩{|fn|≤α0}

|fn| dmn +

∫

A∩{|fn|>α0}

|fn| dmn

≤ α0mn(A) + ε/2 < ε .

Let K := supnmn(Ω) < +∞. The inequality (5) is a consequence of

sup
n

∫

Ω

|fn| dmn ≤ α0 sup
n

mn({|fn| ≤ α0}) + ε/2 ≤ Kα0 + ε/2.

Assume now the uniform absolute continuity of (fn)n and the validity
of (5). Let a := supn

∫

Ω
|fn| dmn < +∞. We have

a ≥ sup
n

∫

{|fn|>α}

|fn| dmn ≥ α sup
n

mn{|fn| > α}

and so limα→∞ supn mn({|fn| > α}) = 0. If ε and δ are as in (3), then
there exists α0 such that for all α > α0 supnmn({|fn| > α}) < δ .
Since the sequence has uniformly absolutely continuous (mn)-integrals,
for all α > α0 we get the inequality

sup
n

∫

{|fn|>α}

|fn| dmm < ε

and that proves the required uniform (mn)-integrability. �

Before proceeding we would observe that the boundedness of (mn)n
is used only in the if part of the previous proof. Moreover we want to
highlight that it implies the tightly (mn)n-integrability of the sequence
(fn)n as observed in [36, Formula (2.5) pag 283].

As a consequence of the previous result we obtain

Corollary 2.7. Let (mn)n be a bounded sequence of measures. A mea-
surable function f : Ω → R is uniformly (mn)-integrable on Ω if and
only if f has uniformly absolutely continuous (mn)-integrals and

sup
n

∫

Ω

|f | dmn < +∞ . (6)

Corollary 2.8. If the sequence (mn)n is setwise convergent to m, then
a measurable function f : Ω → R has uniformly absolutely continu-
ous (mn)-integrals if and only if f is uniformly (mn)-integrable on Ω.
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Moreover,

sup
n

∫

Ω

|f | dmn < +∞ . (7)

Proof. Assume that f has uniformly absolutely continuous (mn)-integrals
and (mn)n is setwise convergent to m. Given ε > 0 let δ > 0 be such
that (3) is fulfilled. For each a > 0 let Ea := {t ∈ Ω : |f(t)| > a}.
There exists a0 with m(Ea0) < δ/2. In fact if we suppose by absurd
that such a0 does not exist, then we can construct a sequence of pos-
itive numbers (bn)n ↑ +∞ for which m(

⋂

n Ebn) = limnm(Ebn) ≥ δ/2,
since Ebn+1

⊆ Ebn for every n ∈ N.
So the set

⋂

nEbn = {t ∈ Ω : f(t) = +∞} has positive measure which
is in contradiction with the hypothesis f : Ω → R. Moreover, due to
the setwise convergence of the measures, there exists n0(a0) ∈ N such
that supn≥n0

mn(Ea0) < δ/2.
Then, analogously, for each i ≤ n0, there exists ai > 0 with mi(Eai) <
δ/2. Let a = max{a1, . . . , an0

, a0}.
So, by the monotonicity, supn

∫

Ea
|f | dmn < ε for every a ≥ a. The

inequality (7) follows from Corollary 2.7. �

Remark 2.9. If we assume that f is R valued then we obtain the
inequality (7) of Corollary 2.8 under the additional hypothesis f ∈
L1(m), or m{|f | = +∞} = 0.

The first part of the following result is contained in [36, Lemmata
2.2 and 2.5, Theorem 2,4]. For the convenience of the reader we prefer
to give here a direct proof.

Proposition 2.10. Let m and (mn)n be measures such that the se-
quence (mn)n is setwise convergent to m. Moreover let f : Ω → R have
uniformly absolutely continuous (mn)-integrals on Ω. Then f ∈ L1(m)
and for all A ∈ A

lim
n

∫

A

f dmn =

∫

A

f dm. (8)

Proof. By Corollary 2.8 we have that supn

∫

Ω
|f |dmn < +∞ . The

equality (8) holds for simple functions. So if 0 ≤ fk ր |f | are simple,
then

∫

Ω

fkdm ≤ lim inf
n

∫

Ω

|f |dmn ≤ sup
n

∫

Ω

|f |dmn

Cor.2.8
< +∞ . (9)

Now we apply the Lebesgue Monotone Convergence Theorem and ob-
tain that f ∈ L1(m).
We will show now that (8) holds. It is sufficient to prove it for Ω. Let
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ε > 0 be fixed. By the hypothesis and Corollary 2.8 there exists αε

such that

sup

{
∫

{|f |>αε}

|f |dm,

∫

{|f |>αε}

|f |dmn, n ∈ N

}

< ε. (10)

Moreover by the classical Dominated Convergence Theorem for vary-
ing measures (see e.g. [35] Ch.11 Proposition 18) if A ∈ A is fixed, then
there exists n0 such that for every n > n0

∣

∣

∣

∣

∫

{|f |≤αε}

f dm−

∫

{|f |≤αε}

f dmn

∣

∣

∣

∣

< ε. (11)

Then by (10) and (11) for n > n0 we have
∣

∣

∣

∣

∫

Ω

f dmn −

∫

Ω

f dm

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

{|f |≤αε}

fdmn −

∫

{|f |≤αε}

fdm

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∫

{|f |>αε}

fdm

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

{|f |>αε}

fdmn

∣

∣

∣

∣

< 3ε,

and the thesis follows.
�

The next convergence result is obtained also in [36, Theorems 2.7
and 2.8] using the thightness and the uniform (mn)n-integrability of
f and (fn)n, and later extended in [17, Corollary 5.3], in which the
above hyphoteses on f are omitted. We give here a proof involving the
uniform absolute continuity.

Theorem 2.11. Let f, fn : Ω → R be measurable functions and let m
and (mn)n, be measures. Suppose that

(2.11.i ) (fn)n has uniformly absolutely continuous (mn)-integrals on Ω;
(2.11.ii) fn(t) → f(t), in m-measure, as n → ∞;
(2.11.iii) f has uniformly absolutely continuous (mn)-integrals on Ω;
(2.11.iv) (mn)n is setwise convergent to m.

Then, for all A ∈ A,

lim
n

∫

A

fndmn =

∫

A

fdm. (12)

Proof. From (2.11.ii) there exists a subsequence of (fn)n which con-
verges m-a.e. to f , for simplicity we denote it again (fn)n. It is suf-
ficient to prove the equality (12) for A = Ω. By Proposition 2.10
f ∈ L1(m). Fix ε > 0. Let δ := min {ε, δ(ε/6), δf(ε/6)} > 0, where
δ(ε/6) satisfies (3) with ε/6 and δf(ε/6) is that of the absolute conti-
nuity of

∫

fdm corresponding again to ε/6.
By (2.11.ii) and the Egoroff’s Theorem, we can find a set E ∈ A such
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that fn → f uniformly on Ec and m(E) < δ/2.
Taking into account (2.11.iv) let now N0 ∈ N be such that

|mn(E)−m(E)| <
δ

2
and |mn(E

c)−m(Ec)| < 1, (13)

for every n > N0. Moreover, since the convergence is uniform on Ec,
let N1 ∈ N be such that

|fn(t)− f(t)| <
ε

6
·

1

m(Ec) + 1
, (14)

for every t ∈ Ec and for every n > N1. Then, for every n > N1,
∫

Ec

|fn − f |dm <
ε

6
. (15)

Therefore by (13) and (14) we obtain, for every for n > max{N0, N1},
∫

Ec

|fn − f |dmn <
ε

6
·

mn(E
c)

m(Ec) + 1
<

ε

6
·
m(Ec) + 1

m(Ec) + 1
=

ε

6
. (16)

Since, m(E) < δ/2, by (13) we have also mn(E) < δ for every for
n > N0. Then by (2.11.i), for every n > N0 we get

sup

{
∫

E

|fn|dmn,

∫

E

|f | dm

}

<
ε

6
. (17)

Now taking into account hypothesis (2.11.iv) and Proposition 2.10, let
N2 be such that

∣

∣

∣

∣

∫

Ω

fdm−

∫

Ω

fdmn

∣

∣

∣

∣

<
ε

2
(18)

for every for n > N2. Therefore by (15–18), for n > max{N0, N1, N2}
we infer

∣

∣

∣

∣

∫

Ω

fdm−

∫

Ω

fndmn

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω

(fn − f)dmn

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

fdm−

∫

Ω

fdmn

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ec

(fn − f)dmn

∣

∣

∣

∣

+

∫

E

|fn|dmn +

∫

E

|f |dmn +

∣

∣

∣

∣

∫

Ω

fdm−

∫

Ω

fdmn

∣

∣

∣

∣

≤

∫

Ec

|fn − f |dmn +

∫

E

|fn|dmn +

∫

E

|f |dm+

∣

∣

∣

∣

∫

Ω

fdm−

∫

Ω

fdmn

∣

∣

∣

∣

<
ε

2
+

∣

∣

∣

∣

∫

Ω

fdm−

∫

Ω

fdmn

∣

∣

∣

∣

<
ε

2
+

ε

2
= ε.

This implies that equality (12) is valid for the initial sequence because
if, absurdly, a subsequence existed in which it is not valid, there would
be a contradiction. �
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Remark 2.12. In light of the quoted result in [17] the question if
the setwise convergence of mn to m, the convergence in m-measure of
fn to f and the uniformly absolutely continuous (mn)-integrability on
Ω of fn permit to obtain the uniformly absolutely continuous (mn)-
integrability on Ω of the function f arises spontaneously.
A partial positive answer can be given at least under the additional
hypothesis that mn ≤ m for each n (this means that the measures mn

are dominated by m but no monotonicity is required to the sequence
(mn)n). Indeed let assume conditions (2.11.i), (2.11.ii), (2.11.iv) and
mn ≤ m for each n, then fix ε > 0, let δ > 0 be such that (3) is satisfied
and let A ∈ A with mn(A) < δ. By the Fatou Lemma for converging
measures (see [35, p.231]) we have

∫

A

|f | dmn ≤

∫

A

|f | dm ≤ lim inf
n

∫

A

|fn| dmn < ε.

So f has uniformly absolutely continuous (mn)-integrals and taking
into account Proposition 2.4, condition (2.11.iii) follows.
The same holds if f is measurable and bounded thanks to the setwise
convergence. What happens if f is unbounded is unknown.
Comparing the Feinberg-Kasyanov-Liang result [17, Corollary 5.3] with
Theorem 2.11 we can observe also that the hypotheses assumed in the
quoted paper imply that supn

∫

Ω
|fn|dmn < +∞ which is not assumed

in our theorem; instead of it we require the condition (2.11.iii).

If we consider signed measures in M(Ω) we get

Corollary 2.13. Let f, fn : Ω → R be measurable functions and let m
and (mn)n, be measures on M(Ω). Suppose that

(2.13.i) (fn)n has uniformly absolutely continuous (|mn|)-integrals on
Ω;

(2.13.ii) fn(t) → f(t), in |m|-measure as n → ∞;
(2.13.iii) f is uniformly (m±

n )-integrable on Ω;
(2.13.iv) (m±

n )n is setwise convergent to m±.

Then, for all A ∈ A,

lim
n

∫

A

fndmn =

∫

A

fdm. (19)

Proof. It is enough to apply Remark 2.2 and Theorem 2.11 to the pair
(m±

n , m
±). �

3. The multivalued case for integrands

Let X be a Banach space with dual X∗ and let BX∗ be the unit
ball of X∗. The symbol c(X) stands for the collection of all nonempty
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closed convex subsets of X and cwk(X) (resp. cb(X)) denotes the fam-
ily of all weakly compact (resp. bounded) members of c(X). For every
C ∈ c(X) the support function of C is denoted by s(·, C) and defined on
X∗ by s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, for each x∗. If C,D ∈ cwk(X)
(resp. cb(X)) then dH(C,D) := sup||x∗||≤1 |s(x

∗, C) − s(x∗, D)| is the
Hausdorff metric on the hyperspace cwk(X) (resp. cb(X)).

Let us recall some fact on multifunctions. Any map Γ : Ω → c(X)
is called a multifunction. A multifunction Γ is said to be scalarly mea-
surable if for every x∗ ∈ X∗, the function t → s(x∗,Γ(t)) is measurable;
Γ is said to be scalarly integrable if for each x∗ ∈ X∗, the function
t → s(x∗,Γ(t)) is integrable.
The multifunction Γ is said to be Pettis integrable in cwk(X) with

respect to a measure m if Γ is scalarly integrable with respect to m
and for every A ∈ A, there exists MΓ(A) ∈ cwk(X) such that

s(x∗,MΓ(A)) =

∫

A

s(x∗,Γ) dm for all x∗ ∈ X∗.

We set
∫

A
Γ dm := MΓ(A). For what concerns the multivalued integra-

bility in cwk(X) we refer, for example, to [6, 7, 13, 31]. If Γ is single-
valued we obtain the well known definition for the vector functions. As
regards Pettis integrability we refere to [30–33].

Definition 3.1. Let (mn)n be a sequence of measures. Moreover, for
each n ∈ N, let Γn : Ω → cwk(X) be a multifunction scalarly integrable
with respect to mn. We say that the sequence (Γn)n has uniformly
absolutely continuous scalar (mn)-integrals on Ω if for every ε > 0
there exists δ > 0 such that for every n ∈ N and A ∈ A

mn(A) < δ ⇒ sup

{
∫

A

|s(x∗,Γn)|dmn : ‖x
∗‖ ≤ 1

}

< ε. (20)

If Γn = Γ for every n ∈ N we obtain the uniformly absolutely continuous
scalar (mn)-integrability of Γ on Ω.

We recall that the space X is said to be weakly compactly generated
(WCG) if it contains a weakly compact subset that is linearly dense in
X (see for example [31]).

Theorem 3.2. Let Γ,Γn : Ω → cwk(X), n ∈ N, be scalarly measurable
multifunctions. Morover let (mn)n, m be measures. Assume that

(3.2.j) the sequence (Γn)n has uniformly absolutely continuous scalar
(mn)-integrals on Ω;

(3.2.jj) (mn)n setwise converges to m;
(3.2.jjj) each multifunction Γn is Pettis integrable with respect to mn;
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(3.2.jv) Γ is scalarly integrable with respect to m.

If for every A ∈ A and every x∗ ∈ X∗

lim
n

∫

A

s(x∗,Γn) dmn =

∫

A

s(x∗,Γ) dm (21)

then Γ is Pettis integrable in cwk(X) with respect to m.

Proof. At first we show that the operator TΓ : X∗ → L1(m), defined as
TΓ(x

∗) = s(x∗,Γ) is bounded. Since the function Γ is scalarly integrable
with respect to m, Γ is Dunford-integrable in cw∗k(X∗∗), where in
X∗∗ we consider the w∗-topology, and for every A ∈ A there exists
MD

Γ (A) ∈ cw∗k(X∗∗) such that, for every x∗ ∈ X∗,

s(x∗,MD
Γ (A)) =

∫

A

s(x∗,Γ)dm, (22)

see for example [8, Theorem 3.2].
Moreover the set {s(x∗,Γ) : ‖x∗‖ ≤ 1} is bounded in L1(m). Indeed it
follows by (22)

∫

Ω

|s(x∗,Γ)|dm ≤ 2 sup
A∈A

∣

∣

∣

∣

∫

A

s(x∗,Γ)dm

∣

∣

∣

∣

= 2 sup
A∈A

|s(x∗,MD
Γ (A))| < ∞,

where the last equality follows from the fact that for each x∗ ∈ X∗,
s(x∗,MD

Γ (·)) is a scalar measure. Hence, by the Banach–Steinhaus

Theorem the set
⋃

A∈A

MD
Γ (A) ⊂ X∗∗ is bounded and then

sup
‖x∗‖≤1

∫

Ω

|s(x∗,Γ)|dm ≤ 2 sup

{

‖x‖ : x ∈
⋃

A∈A

MD
Γ (A)

}

< ∞.

Therefore the operator TΓ is bounded.
Now fix ε > 0 and x∗ ∈ BX∗ . By (3.2.j) there exists δ > 0 satisfying
(20). Let E ∈ A be such that m(E) < δ/2 and set E+ = {t ∈ E :
s(x∗,Γ(t)) ≥ 0} and E− = {t ∈ E : s(x∗,Γ(t)) < 0}. From (21) and
(3.2.jj) we find N1 ≥ N such that mn(E) < δ for every n ≥ N1 and

∫

E+

s(x∗,Γ)dm <

∣

∣

∣

∣

∫

E+

s(x∗,ΓN1
)dmN1

∣

∣

∣

∣

+
ε

2

and
∣

∣

∣

∣

∫

E−

s(x∗,Γ)dm

∣

∣

∣

∣

<

∣

∣

∣

∣

∫

E−

s(x∗,ΓN1
)dmN1

∣

∣

∣

∣

+
ε

2
.
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So, by (3.3.j), we get
∫

E

|s(x∗,Γ)|dm =

∫

E+

s(x∗,Γ)dm+

∣

∣

∣

∣

∫

E−

s(x∗,Γ)dm

∣

∣

∣

∣

<

∣

∣

∣

∣

∫

E+

s(x∗,ΓN1
)dmN1

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

E−

s(x∗,ΓN1
)dmN1

∣

∣

∣

∣

+ ε

≤

∫

E

|s(x∗,ΓN1
)|dmN1

+ ε < 2ε

and the scalar uniform integrability with respect to m of Γ follows.
Then the operator TΓ : X∗ → L1(m) is weakly compact.
Now we are proving that Γ is determined by a WCG generated sub-
space of X . Since, for each n ∈ N, Γn is Pettis integrable, by [31, Teo-
rem 2.5], let Yn be a WCG subspace of X generated by a weakly
compact convex set Wn ⊂ BX∗ and determining the multifunction Γn.
The set

∑

2−nWn is a weakly compact set generating a space Y . We
want to prove that Γ is determined by Y .
Let y∗ ∈ Y ⊥, let Ω+ = {t : s(y∗,Γ(t)) ≥ 0} and An := {t ∈ Ω+ :
s(y∗,Γn(t)) = 0}. Then mn(An) = mn(Ω

+). Let A := lim supnAn =
⋂∞

k=1

⋃∞
p=k Ap. Then

m(A) = lim
k

m(

∞
⋃

p=k

An) ≥ lim sup
k

m(Ak) ≥ lim sup
k

mk(Ak)

= lim sup
k

mk(Ω
+) = m(Ω+).

It follows by equality (21) that s(y∗,Γ(t)) = 0 m-a.e. on the set Ω+.
Analogously if we denote by Ω− = {t : s(y∗,Γ(t)) < 0} it follows that
s(y∗,Γ(t)) = 0 m-a.e. on the set Ω−. Thus, Y determines the mul-
tifunction Γ and the Pettis integrability of Γ follows by [31, Theorem
2.5]. �

As a consequence of Theorem 3.2 we obtain

Theorem 3.3. Let Γ,Γn : Ω → cwk(X), n ∈ N, be scalarly measurable
multifunctions. Morover let (mn)n, m be measures. Suppose that

(3.3.j) the sequence (Γn)n has uniformly absolutely continuous scalar
(mn)-integrals on Ω;

(3.3.jj) s(x∗,Γn) → s(x∗,Γ), in m-measure, for each x∗ ∈ X∗;
(3.3.jjj) Γ has uniformly absolutely continuous scalar (mn)-integrals on

Ω;
(3.3.jv) (mn)n setwise converges to m;
(3.3.v) each multifunction Γn is Pettis integrable with respect to mn.
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Then the multifunction Γ is Pettis integrable with respect to m in
cwk(X) and

lim
n

s

(

x∗,

∫

A

Γn dmn

)

= s

(

x∗,

∫

A

Γ dm

)

,

for every x∗ ∈ X∗ and for every A ∈ A.

Proof. First of all we observe that, by Theorem 2.11, we have that for
every A ∈ A

lim
n

∫

A

s(x∗,Γn) dmn =

∫

A

s(x∗,Γ) dm. (23)

Moreover by Proposition 2.10 Γ is scalarly integrable, therefore the
Pettis integrability of Γ with respect to m is a consequence of Theorem
3.2. �

The following definition is a generalization of the notion of the scalar
equi-convergence in measure for a sequence of scalarly measurable mul-
tifunctions (Γn)n (see [32, p.852] and [3] for the vector case).

Definition 3.4. Let Γ, Γn : Ω → cwk(X) be scalarly measurable mul-
tifunctions. We say that the sequence (Γn)n is scalarly equi-convergent
in measure with respect to a sequence of measures (mn)n to Γ if, for
every δ > 0,

lim
n

sup
‖x∗‖≤1

mn{t ∈ Ω : |s(x∗, Γn(t))− s(x∗, Γ (t))| > δ} = 0. (24)

If in the Theorem 3.3 we substitute the convergence in condition
(3.3.jj) with the scalar equi-convergence in measure and the setwise
convergence of mn to m with the convergence in total variation, we get
a stronger result.

Theorem 3.5. Let Γ,Γn : Ω → cwk(X), n ∈ N, be scalarly measurable
multifunctions. Morover let (mn)n, m, be measures. Suppose that

(3.5.j) the sequence (Γn)n has uniformly absolutely continuous scalar
(mn)-integrals on Ω;

(3.5.jj)) the sequence (Γn)n, n ∈ N, is scalarly equi-convergent in mea-
sure with respect to (mn)n and m to Γ ;

(3.5.jjj) Γ has uniformly absolutely continuous scalar (mn) and m in-
tegrals;

(3.5.jv) (mn)n is convergent to m in total variation;
(3.5.v) each multifunction Γn is Pettis integrable with respect to mn.
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Then the multifunction Γ is Pettis integrable with respect to m in
cwk(X) and

lim
n

dH(MΓn
(A),MΓ(A)) = 0

uniformly in A ∈ A, where MΓn
, (MΓ) : A → cwk(X) are the mn

(m)-Pettis integrals of the multifunction Γn (Γ) respectively.

Proof. For every x∗ ∈ X∗ and A ∈ A it is enough to apply [36, Theorem
2.8] to get

lim
n

∫

A

s(x∗,Γn) dmn =

∫

A

s(x∗,Γ) dm

and as in Theorem 3.3 the multifunction Γ is Pettis integrable with
respect tom. In order to prove the convergence in the Hausdorff metric,
fix A ∈ A, ε > 0 and δ > 0 that satisfy (24) also in case of m1 = m2 =
. . . = m and Γ1 = Γ2 = . . . = Γ. Fix also 0 < η < ε. For each n ∈ N

and x∗ ∈ BX∗ denote by Hn,x∗ the set

Hn,x∗ := {t ∈ Ω : |s(x∗, Γn(t))− s(x∗, Γ (t))| > η}.

By the assumption of the scalar equi-convergence in measure with re-
spect to mn and m, there exists k ∈ N such that for all n ≥ k

sup
‖x∗‖≤1

max

{

mn(Hn,x∗), m(Hn,x∗)

}

< δ.

Then, for all n ≥ k and ‖x∗‖ ≤ 1

sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A

s(x∗, Γn) dmn −

∫

A

s(x∗, Γ ) dm

∣

∣

∣

∣

≤

≤ sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hn,x∗

s(x∗, Γn) dmn −

∫

A∩Hn,x∗

s(x∗, Γ ) dm

∣

∣

∣

∣

+

+ sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hc
n,x∗

s(x∗, Γn) dmn −

∫

A∩Hc
n,x∗

s(x∗, Γ ) dm

∣

∣

∣

∣

.

Observe that, by (3.5.j-3.5.jjj) and formula (24), we have

sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hn,x∗

s(x∗, Γn) dmn −

∫

A∩Hn,x∗

s(x∗, Γ ) dm

∣

∣

∣

∣

≤

sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hn,x∗

s(x∗, Γn) dmn

∣

∣

∣

∣

+ sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hn,x∗

s(x∗, Γ ) dm

∣

∣

∣

∣

≤ 2ε.
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Relatively to the second summand we apply Remark 2.4 and formula
(2) and we obtain

sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hc
n,x∗

s(x∗, Γn) dmn −

∫

A∩Hc
n,x∗

s(x∗, Γ ) dm

∣

∣

∣

∣

≤

≤ sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hc
n,x∗

s(x∗, Γn) dmn −

∫

A∩Hc
n,x∗

s(x∗, Γ ) dmn

∣

∣

∣

∣

+

+ sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hc
n,x∗

s(x∗, Γ ) dmn −

∫

A∩Hc
n,x∗

s(x∗, Γ ) dm

∣

∣

∣

∣

≤

≤ sup
‖x∗‖≤1

ηmn(A ∩Hc
n,x∗) + sup

‖x∗‖≤1

∣

∣

∣

∣

∫

A∩Hc
n,x∗

s(x∗, Γ ) d(mn −m)

∣

∣

∣

∣

≤

≤ ε sup
n

mn(Ω) + sup
‖x∗‖≤1

∫

A∩Hc
n,x∗

|s(x∗, Γ )|d|mn −m|.

Let m :=
∑∞

k=1
|mn−m|(E) · (2n(1+ |mn−m|(Ω)))−1 be a probability

measure on A such that |mn −m| ≪ m for every n ∈ N. According to
[31, Proposition 1.2] there exists a measurable function ϕΓ : Ω → [0,∞)
such that for each x∗ ∈ X∗ the inequality |s(x∗, Γ (t))| ≤ ϕΓ(t)‖x

∗‖
holds true m-a.e. In particular the inequality holds true also |mn−m|-
a.e., for each n ∈ N separately.
Let a > 0 and F ∈ A be such that ϕΓ(t)χF ≤ a m-a.e. and m(F c) <

δ. Since (mn)n converges to m, there exists N ∋ k̃ ≥ k such that

mn(F
c) < δ for every n ≥ k̃. Then, let N ∋ ǩ > k̃ be such that

|mn −m|(F ) < ε/a for every n ≥ ǩ. If n ≥ ǩ, then

sup
‖x∗‖≤1

∫

Ω

|s(x∗, Γ )| d|mn −m|

≤ sup
‖x∗‖≤1

∫

F

|s(x∗, Γ )| d|mn −m|+ sup
‖x∗‖≤1

∫

F c

|s(x∗, Γ ) d|mn −m|

≤ a|mn −m|(F ) + sup
‖x∗‖≤1

∫

F c

|s(x∗, Γ )| dm+ sup
‖x∗‖≤1

∫

F c

|s(x∗, Γ )| dmn ≤ 3ε.

Then,

dH(MΓn
(A),MΓ(A)) = sup

‖x∗‖≤1

|s(x∗,MΓn
(A))− s(x∗,MΓ(A))|

≤ sup
‖x∗‖≤1

∣

∣

∣

∣

∫

A

s(x∗, Γn) dmn −

∫

A

s(x∗, Γ ) dm

∣

∣

∣

∣

≤ 3ε+ ε sup
n

mn(Ω).
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Since k is indipendent to A ∈ A, then the previous convergence is
uniform with respect to A. �

3.1. The vector case for integrands. We consider now vector val-
ued functions which are a particular case of the multivalued one. There-
fore Theorem 3.2 can be rewritten as follows:

Theorem 3.6. Let f, fn : Ω → X, n ∈ N, be scalarly measurable
functions. Morover let (mn)n, m be measures. Assume that

(3.2.j) the sequence (fn)n has uniformly absolutely continuous scalar
(mn)-integrals on Ω;

(3.2.jj) (mn)n setwise converges to m;
(3.2.jjj) each function fn is Pettis integrable with respect to mn;
(3.2.jv) f is scalarly integrable with respect to m.

If for every A ∈ A and every x∗ ∈ X∗

lim
n

∫

A

x∗fn dmn =

∫

A

x∗f dm (25)

then f is Pettis integrable in X with respect to m.

The following theorem is the vector valued formulation of Theorem
3.3. We present here a proof of the Pettis integrability of the limit
function f using a characterization of weakly compact sets and without
using the multivalued case.

Theorem 3.7. Let f, fn : Ω → X be scalarly measurable functions.
Moreover let (mn)n and m be measures. Suppose that

(3.7.j) (fn)n has uniformly absolutely continuous scalar (mn)- inte-
grals on Ω;

(3.7.jj) x∗fn(t) → x∗f(t), in m-measure, for each x∗ ∈ X∗;
(3.7.jjj) f has uniformly absolutely continuous scalar (mn)-integrals on

Ω;
(3.7.jv) (mn)n is setwise convergent to m;
(3.7.v) each function fn is Pettis integrable with respect to mn.

Then f is Pettis integrable with respect to m and

lim
n

∫

Ω

fndmn =

∫

Ω

fdm,

weakly in X.

Proof. Let A ∈ A. For every x∗ ∈ X∗ it is enough to apply Theorem
2.11 to get

lim
n

∫

A

x∗fndmn =

∫

A

x∗fdm. (26)
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Therefore to get our thesis it is enough to prove that f is Pettis inte-

grable. By equality (26) we have that the sequence

(
∫

Ω

fndmn

)

n

is

weakly Cauchy.
By a Grothendieck characterization of weakly compact sets ( [20]) and
taking into account hypothesis (3.7.v), it is enough to show that for
each (fnj

)j and (x∗
k)k ⊂ BX∗

α := lim
k

lim
j

〈

x∗
k,

∫

Ω

fnj
dmnj

〉

= β := lim
j

lim
k

〈

x∗
k,

∫

Ω

fnj
dmnj

〉

,

(27)
provided all above limits exist.
Since the function f is scalarly integrable with respect to m, f is
Dunford-integrable and the set {x∗f : ‖x∗‖ ≤ 1} is bounded in L1(m).
To see it let ν be the Dunford integral of f . Then the set {ν(E) : E ∈
A} being the range of A in X∗∗ is a bounded set (because it is weak∗

bounded).
If π = {E1, ..., En} is a partition of Ω into pairwise disjoint members
of A, and x∗ ∈ BX∗ , then

∑

Ei∈π

|x∗ν(Ei)| =
∑

Ei∈π+

x∗ν(Ei)−
∑

Ei∈π−

x∗ν(Ei) =

= x∗{
∑

Ei∈π+

ν(Ei)} − x∗{
∑

Ei∈π−

ν(Ei)} ≤

≤ 2 sup{‖ν(E)‖ : E ∈ Σ}

where π+ = {Ei : x
∗ν(Ei) ≥ 0} and π− = {Ei : x

∗ν(Ei) < 0}, Hence,
if x∗ ∈ BX∗ , then

∫

Ω

|x∗f | dm = |x∗ν|(Ω) ≤ 2 sup{‖ν(E)‖ : E ∈ A} < ∞. (28)

At first we are proving that the sequence (x∗
kf)k has uniformly abso-

lutely continuous integrals with respect to m on Ω.
Now let E ∈ A be such that m(E) < δ/2. Set E+

k = {t ∈ E : x∗
kf(t) >

0} and E−
k = {t ∈ E : x∗

kf(t) ≤ 0}. Moreover let Nk(ε) ∈ N be such
that for all n > Nk(ε)

sup

{
∣

∣

∣

∣

∣

∫

E+

k

x∗
kfndmn −

∫

E+

k

x∗
kfdm

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∫

E−

k

x∗
kfndmn −

∫

E−

k

x∗
kfdm

∣

∣

∣

∣

∣

}

< ε. (29)
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Let nk > Nk(ε) be such that mnk
(E) ≤ m(E) + δ/2 < δ. Therefore,

taking into account hypothesis (3.7.j), by (29) we have

∫

E

|x∗
kf |dm =

∣

∣

∣

∣

∣

∫

E+

k

x∗
kfdm

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

E−

k

x∗
kfdm

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

E+

k

x∗
kfn0

dmn0
−

∫

E+

k

x∗
kfdm

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∫

E−

k

x∗
kfn0

dmn0
−

∫

E−

k

x∗
kfdm

∣

∣

∣

∣

∣

+

∫

E+

k

|x∗
kfn0

|dmn0
+

∫

E−

k

|x∗
kfn0

|dmn0
< 4ε.

Since the sequence (x∗
kf)k has uniformly absolutely continuous inte-

grals with respect to m on Ω and it is bounded in L1(m), it is weakly
relatively compact. So we have the existence of a subsequence (z∗k)k
of (x∗

k)k and of a real valued function g ∈ L1(m) such that z∗kf → g
weakly in L1(m). Mazur’s Theorem yields the existence of functionals
w∗

k ∈ co{z∗j : j ≥ k} such that

lim
k

∫

Ω

|w∗
kf − g|dm = 0 and lim

k
w∗

kf = g, m-a.e. .

If w∗
0 is a weak∗-closter point of (w∗

k)k, then g = w∗
0f m-a.e.. There-

fore α =
∫

Ω
w∗

0fdm. On the other hand

lim
k

〈

x∗
k,

∫

Ω

fnj
dmnj

〉

= lim
k

〈

w∗
k,

∫

Ω

fnj
dmnj

〉

=

〈

w∗
0,

∫

Ω

fnj
dmnj

〉

=

∫

Ω

w∗
0fnj

dmnj
.

By the hypothesis (3.7.j-3.7.jv) and by Theorem 2.11 it follows

β := lim
j

∫

Ω

w∗
0fnj

dmnj
=

∫

Ω

w∗
0fdm.

So α = β and this completes the proof. �

In particular

Corollary 3.8. Let (mn)n be a sequence of measures that is setwise
convergent to a measure m. If f : Ω → X has uniformly absolutely
continuous scalar (mn)-integrals on Ω, then f is scalarly m-integrable.
If moreover f is Pettis integrable with respect to mn for each n ∈ N,
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then f is Pettis integrable with respect to m and for every A ∈ A it is

lim
n

∫

A

fdmn =

∫

A

fdm,

weakly.

Proof. The first assertion follows from Proposition 2.10. The Pettis
integrability of f with respect to m follows from Theorem 3.7 when
fn = f for every n ∈ N. �

As in Theorem 3.5, if we consider the scalarly equi-convergence in
measure and the convergence in total variation, we have

Theorem 3.9. Let f, fn : Ω → X be measurable functions and let
(mn)n, m be measures. Suppose that

(3.9.i) (fn)n has uniformly absolutely continuous scalar (mn)-integrals
on Ω;

(3.9.ii) (fn)n is scalarly equi-convergent in measure to f with respect
to (mn)n and m;

(3.9.iii) f has uniformly absolutely continuous scalar (mn) and m in-
tegrals;

(3.9.iv) (mn)n is convergent to m in total variation;
(3.9.v) each function fn is Pettis integrable with respect to mn.

Then, f is Pettis-integrable with respect to m and

lim
n

∥

∥

∥

∥

∫

A

fn dmn −

∫

A

f dm

∥

∥

∥

∥

= 0

uniformly with respect to A ∈ A.

3.2. The vector case for McShane integrable integrands. Now
we are going to examine the behavior of McShane integrable integrands.
The McShane integral is a “gauge defined integral” and, also in the case
of the generalized McShane integral introduced in 1995 by D. Fremlin
in a measure space Ω, we need a topology in Ω. Briefly we recall the
definition (see [18]). For simplicity we prefer to use finite partitions.
So our framework Ω is a compact Radon measure space.
Let (Ω,A) be a compact Radon measure space space with measure m
and topology T . A finite strict generalized McShane partition of Ω is a
family {(Ai, ti)}i≤p such that A1, ..., Ap is a finite disjoint cover of Ω by
elements of A and ti ∈ Ω, i = 1, . . . , p. A gauge ∆ on Ω is a function
∆ : Ω → T such that t ∈ ∆(t) for every t ∈ Ω. We say that a (finite
strict generalized) McShane partition {(Ai, ti)}i≤p is subordinated to a
gauge ∆(t) if Ai ⊂ ∆(ti) for i = 1, ..., p.
A function f : Ω → X is said to be m-McShane (m-(MS)) integrable
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on Ω with m-(MS)-integral w ∈ X if for every ε > 0 there exists a
gauge ∆ such that for each partition {(Ai, ti)}i≤p subordinated to ∆,
we have

∥

∥

∥

∥

∥

p
∑

i=1

f(ti)m(Ai)− w

∥

∥

∥

∥

∥

< ε. (30)

We set w := (MS)
∫

Ω
fdm.

Definition 3.10. Let mn, n = 1, 2, ... be measures. We say that a
sequence of mn-(MS)integrable functions fn : Ω → X is (mn)-equi-
integrable on Ω, if for every ε > 0 there exists a gauge ∆ such that for
every n ∈ N

∥

∥

∥

∥

∥

p
∑

i=1

fn(ti)mn(Ai)− (MS)

∫

Ω

fndmn

∥

∥

∥

∥

∥

< ε (31)

for each partition {(Ai, ti)}i≤p subordinated to ∆.

If mn = m for all n ∈ N, then we have the classical condition of
equi-integrability.

Theorem 3.11. Let m and (mn)n be measures, let fn : Ω → X be
mn − (MS)-integrable functions, n ∈ N, and let f : Ω → X. Suppose
that

(3.11.i) the sequence (fn)n is (mn)-equi-integrable on Ω;
(3.11.ii) fn(t) → f(t), for all t ∈ Ω;
(3.11.iii) (mn)n is setwise convergent to m.

Then, f is m-(MS)integrable and for all A ∈ A,

lim
n
(MS)

∫

A

fndmn = (MS)

∫

A

fdm. (32)

Moreover if we substitute condition (3.11.iii) with the convergence in

total variation (mn
tv
→ m), then (32) holds uniformly in A ∈ A.

Proof. Let A ∈ A be fixed. If ∆ is the gauge on Ω satisfying (3.11.i)
corresponding to the value ε > 0, then for any n ∈ N

∥

∥

∥

∥

∥

p
∑

i=1

fn(ti)mn(Ai ∩ A)− (MS)

∫

A

fndmn

∥

∥

∥

∥

∥

< ε (33)

for every partition {(Ai, ti)}i≤p of Ω subordinated to ∆ (see [18, Theo-
rem 1N]). Since the partition is fixed the pointwise convergence of fn
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to f and the setwise convergence of mn to m imply that

lim
n→∞

p
∑

i=1

fn(ti)mn(Ai ∩ A) =

p
∑

i=1

f(ti)m(Ai ∩ A). (34)

Choose n0 ∈ N so that if n, s > n0
∥

∥

∥

∥

∥

p
∑

i=1

fn(ti)mn(Ai ∩A)−

p
∑

i=1

fs(ti)ms(Ai ∩ A)

∥

∥

∥

∥

∥

< ε.

Then we have
∥

∥

∥

∥

(MS)

∫

A

fndmn − (MS)

∫

A

fsdms

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

(MS)

∫

A

fndmn −

p
∑

i=1

fn(ti)mn(Ai ∩ A)

∥

∥

∥

∥

∥

+

+

∥

∥

∥

∥

∥

p
∑

i=1

fn(ti)mn(Ai)−

p
∑

i=1

fs(ti)ms(Ai ∩ A)

∥

∥

∥

∥

∥

+

+

∥

∥

∥

∥

∥

p
∑

i=1

fs(ti)ms(Ai ∩A)− (MS)

∫

A

fsdms

∥

∥

∥

∥

∥

< 3ε,

which shows that the sequence
(

(MS)
∫

A
fndmn

)

n
is Cauchy, therefore

it converges to xA ∈ X . Then we have
∥

∥

∥

∥

∥

p
∑

i=1

f(ti)m(Ai ∩ A)− xA

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

p
∑

i=1

f(ti)m(Ai ∩A)−

p
∑

i=1

fn(ti)mn(Ai ∩A)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

p
∑

i=1

fn(ti)mn(Ai ∩ A)− (MS)

∫

A

fndmn

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

(MS)

∫

A

fndmn − xA

∥

∥

∥

∥

< 3ε.

Therefore it follows that f is m-(MS)integrable on A and

lim
n
(MS)

∫

A

fndmn = (MS)

∫

A

fdm.

Finally, if mn
tv
→ m, n0 does not depend on A. Then formula (34) holds

uniformly on A and the convergence in formula (32) is uniform. �

We now can consider the variety of multifunctions, including not
only those with weakly compact values but also those with bounded
closed convex values. We remember that

Definition 3.12. A multifunction Γ : Ω → cb(X) is said to be m-
McShane integrable on Ω, if there exists ϕΓ ∈ cb(X) such that for
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every ε > 0 there exists a gauge ∆ on Ω such that for each partition
{(Ai, ti)}i≤p of Ω subordinated to ∆, we have

dH

(

ϕΓ,

p
∑

i=1

Γ(ti)m(Ai)

)

< ε . (35)

Since the McShane integral is “gauge defined”, by a R̊adström em-
bedding it is immediate to extend the previous Theorem 3.11 for vec-
tor valued functions to the McShane integrable multifunctions. A
R̊adström embedding theorem states that the nonempty closed convex
subsets of a Banach space X can be identified with points of ℓ∞(BX∗)
such that the embedding map i : cb(X) → ℓ∞(BX∗) is additive, posi-
tively homogeneous, and isometric (see for example [5,9,12,24]). This
allows us to reduce the McShane integrability of multifunctions to the
McShane integrability of functions by embedding cb(X) →֒ ℓ∞(BX∗).
The key point is that i(cb(X)) is a closed cone, consequently, if z ∈
ℓ∞(BX∗) is the value of the integral of i ◦ Γ , then there exists a set
I ∈ cb(X) with i(I) = z.

In the following theorem the notion of (mn)-equi-integrability for
multifunctions is analogous to that we have for functions (Definition
3.10).

Theorem 3.13. Let m and (mn)n be measures, let Γn : Ω → cb(X) be
mn − (MS)-integrable multifunctions, n ∈ N, and let Γ : Ω → cb(X).
Suppose that

(3.13.i) the sequence (Γn)n is (mn)-equi-integrable on Ω;
(3.13.ii) limn→∞ dH(Γn(t), Γ (t)) = 0, for each t ∈ Ω;
(3.13.iii) (mn)n is setwise convergent to m.

Then, Γ is m-(MS)integrable and for all A ∈ A,

lim
n
(MS)

∫

A

Γn dmn = (MS)

∫

A

Γ dm. (36)

Moreover if we substitute condition (3.13.iii) with the convergence in

total variation (mn
tv
→ m), then (36) holds uniformly in A ∈ A.

Proof. We apply Theorem 3.11 and the R̊adström embedding since

lim
n→∞

i ◦

(

(MS)

∫

A

Γn dmn

)

= lim
n→∞

(MS)

∫

A

i ◦ Γn dmn =

(MS)

∫

A

i ◦ Γdm = i ◦

(

(MS)

∫

A

Γ dm

)

.

�
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Conclusions Convergence results for varying measures are obtained
both in weak and strong sense making use of the setwise convergence
and the convergence in total variation respectively. By means of the
Pettis integrability we are able to obtain the vector case as a particular
case of the multivalued one. When we consider the McShane integra-
bility we are able to pass from the vector case to the multivalued one.
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