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INTRODUCTION
Oncogene overexpression is common in cancer. The con-

comitant increase in oncogenic proteins (oncoproteins) 

influences both prognosis and treatment (1). Notable exam-
ples routinely assessed in clinical practice include HER2 
in breast cancer and ALK in lung cancer. However, cancers 
often overexpress more than one oncogene. Whether mul-
tiple oncogenes interact at the single-cell level to influ-
ence clinical outcome remains an important unresolved 
question. This is particularly relevant because cancers are 
a heterogeneous mosaic of tumor cell subpopulations (2), 
and oncogenes show clinically significant intratumor het-
erogeneity (ITH) in expression (1). Clinical techniques for 
estimating oncogene overexpression in cancer (such as IHC) 
study them in isolation, and do not provide information 
on coexpression in subsets of cells within a tumor. It is 
therefore still not known if subsets of cells within a given 
cancer expressing specific combinations of oncogenes drive 
clinical phenotypes.

We aimed to address this question using multiplexed flu-
orescent IHC (mfIHC), a technique that can simultaneously 
and quantitatively evaluate a set of proteins with single-cell 
resolution. This allows measurement of single-cell oncogene 
coexpression from sufficient samples for robust multivari-
ate correlations with clinical outcomes. We chose diffuse 
large B-cell lymphoma (DLBCL) as a model to evaluate the 
clinical impact of ITH in oncogene coexpression. DLBCL 
is the most common aggressive lymphoma worldwide (3), 
and overexpression of the oncogenes MYC, BCL2, and BCL6 
(4–6) influences pathogenesis and prognosis (7–9). How-
ever, there is significant variability among studies regard-
ing the prognostic significance of these oncogenes, with 
debate on appropriate cutoff thresholds to define “positiv-
ity.” These considerations offer an ideal scenario to evaluate 
whether these oncogenes show differential coexpression at 
the single-cell level in DLBCL, and to investigate how they 
cooperate or influence each other at the cellular level to 
affect survival.
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RESULTS
Physiologic Patterns of MYC, BCL2, and BCL6 
Coexpression Are Disrupted in DLBCL

We first compared the coexpression of the oncogenes 
MYC, BCL2, and BCL6 between reactive lymphoid tissue and 
DLBCL by mfIHC (Fig.  1A). Consistent with known physi-
ology, BCL6 and BCL2 expression was restricted to reac-
tive lymphoid germinal centers (GC) and extra-GC regions, 
respectively, whereas MYC showed sparse positivity in the 
GC CD20+ cells (ref.  10; Fig.  1B; Supplementary Fig.  S1A; 
Supplementary Table  S1). A binary  ±  map for each onco-
gene facilitates the quantitation of subpopulations of cells 
based on MYC BCL2 and BCL6 coexpression (Supplemen-
tary Fig. S1B). The repertoire of subpopulations defined by 
MYC/BCL2/BCL6 permutations in reactive lymphoid B cells 
was limited, with the single-positive M-2–6+ subpopulation 
being dominant within the GC and predominantly driv-
ing proliferative capacity (Supplementary Fig.  S1C), and 
M-2+6−  being dominant outside the GC (Fig.  1C). Hardly 
any cells displayed coexpression of all three oncogenes MYC, 
BCL2, and BCL6 in either compartment, consistent across 
several reactive lymphoid tissues analyzed (Fig. 1D; Supple-
mentary Table S1).

In contrast, DLBCL cells frequently coexpress these three 
oncogenes (Fig.  1E and F; Supplementary Fig.  S2; Supple-
mentary Table S2). However, even within cases characterized 
by high overall levels of MYC, BCL2, and BCL6 expression, 
these three oncogenes were not always found in the same 
cells, underscoring ITH in DLBCL. The percentage of each 
subpopulation was variable between patients but was remark-
ably similar in overall distribution and clustering among four 
cohorts (Fig.  1F; Supplementary Fig.  S3). The percentages 
of subpopulations were also stable across different tumor 
cores from the same patient, indicative of patient-specific 
subpopulation profiles (Fig. 1G; Supplementary Fig. S4A and 
S4B). These subpopulations were not consistently associated 
with clinicopathologic features such as age, gender, and Inter-
national Prognostic Index (IPI) Risk Group, nor were they 
associated with MYC/BCL2/BCL6 translocation status (Sup-
plementary Table S3; Fig. 1F), confirming previous observa-
tions that translocations do not account for the majority of 
MYC, BCL2, and BCL6 overexpression in DLBCL (11). Only 
subpopulations with BCL6 expression (irrespective of the 
coexpression of other oncogenes) showed Ki-67 expression 
in two DLBCL cohorts (Fig.  1H). This association was also 
observed in the context of reactive tonsil tissue, consistent 
with the role of BCL6 in B-cell proliferation (Supplementary 
Fig. S1C).

Spatial Interaction of Oncogenic B-cell 
Subpopulations Is Clustered and Nonrandom

Single-cell–resolved image data with spatial coordinates 
enable the assessment of spatial interaction patterns of the 
eight MYC, BCL2, and BCL6 subpopulations. Analyzing spa-
tial subpopulation data of the Singapore General Hospital 
(SGH) and MD Anderson (MDA) cohorts, we first applied a 
pair correlation function (PCF; refs. 12, 13), which quantifies 
how a point (cell) of interest is surrounded by other cells and 

can investigate whether each subpopulation tends to cluster 
or show a random (Poisson) distribution (Supplementary 
Fig.  S5A). In immediate neighborhoods—defined here as 
a range from 0- to 250-μm radius of a given cell—the PCF 
graphs demonstrate that for both cohorts each subpopula-
tion deviates from Poisson spatial patterning (PCF = 1; Sup-
plementary Fig. S5B). For each subpopulation, PCF is high 
at small radii, i.e., 10 to 20 μm, indicative of a clustered cell 
pattern among immediate neighbors. These patterns taper 
off as the radii increase, i.e., when more cells are considered 
across wider regions of the tumor. Supplementary Fig. S5C 
illustrates this visually for a single patient: each subpopula-
tion shows a tendency to group in space within the tissue 
and does not display a random spatial Poisson distribution 
(as per random simulation).

To further quantify spatial heterogeneity between sub-
populations, we calculated for each cell the percentage 
deviation (Δ%) of the observed from the expected sub-
population extent (as quantified across whole-tissue avail-
able) within the cell’s local neighborhood (20 cells). In 
other words, if cells were distributed randomly in space, 
the observed abundance of a particular subpopulation 
in the neighborhood of any given cell would match the 
overall subpopulation extents measured across a tumor. 
However, if an over- or underrepresentation of a particular 
subpopulation occurs in the topological neighborhood of 
a given cell, this deviation provides a quantitative depic-
tion of local interactions for that cell. Supplementary 
Fig.  S5D demonstrates that each subpopulation (defined 
here by MYC, BCL2, and BCL6) has a unique pattern of co-
occurrence with other subpopulations in terms of the range 
of Δ% scores in their local neighborhood. This empirical 
measurement suggests that typically cells of a particular 
subpopulation cluster with the same cell type (as shown in 
Supplementary Fig. S5B). There are patterns of heterotypic 
interaction with one another (Supplementary Fig.  S5D, 
top, e.g., M+2+6−  with M+2–6−), or heterotypic segre-
gation (Supplementary Fig.  S5D, top, e.g., M+2+6+  with 
M−2–6+  in the example tumor sample). Such interactions 
can be empirically established only through spatial inves-
tigation and provide a novel and independent feature of 
tumor heterogeneity that is patient-specific. These interac-
tion patterns can be stable across different regions of the 
tumor for the same patient, or more rarely, heterogene-
ous with spatially varying interaction patterns in different 
tumor regions (Supplementary Figs. S5E and S6). We con-
clude from these investigations that B-cell subpopulations 
of different oncogenic coexpression aggregate spatially in a 
nonrandom manner (likely reflecting clustering due to par-
ent cell–daughter cell relationships or, alternatively, embed-
ding within local microenvironment milieus).

Cells Coexpressing MYC and BCL2 without BCL6 
Confer Poor Survival in DLBCL

We next evaluated the relationship between MYC/
BCL2/BCL6 subpopulations and prognosis, using pre-
treatment biopsies of R-CHOP (rituximab, cyclophospha-
mide, doxorubicin, vincristine, and prednisone)–treated 
DLBCL patients, with clinical data available from three 
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Figure 1.  Quantitative single-cell analysis of MYC, BCL2, and BCL6 protein expression in B cells in nonmalignant tissues and diffuse large B-cell 
lymphoma. A, Schematic workflow of a quantitative digital pathology experiment. B, Spectrally unmixed multiplexed fluorescent images for CD20, MYC, 
BCL2, and BCL6 and nuclear counterstaining in tonsil tissue. The germinal center (GC) and extragerminal center (extra-GC) zones are indicated. C, Spatial 
map of MYC/BCL2/BCL6 subpopulations, i.e., possible permutations of MYC/BCL2/BCL6-positivity and -negativity within the CD20-positive cell popula-
tion in a tonsil image. D, Quantitation of subpopulation extent within CD20-positive cells in tonsils and reactive lymph nodes resolved spatially between 
the GC and extra-GC zones. E, Example of pseudocolored MYC/BCL2/BCL6/CD20 mfIHC staining in diffuse large B-cell lymphoma (DLBCL; left). Cell 
segmentation and single oncogene positivity masks are shown within the CD20-positive cell population (right). (continued on next page)
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cohorts—National University Hospital, Singapore (NUH, 
n =  98), SGH (n =  41), and MDA (n =  36). To avoid arbi-
trary cutoffs, we initially evaluated the percentage of cells 
with oncogenic combinations as a continuous variable in 
a univariate Cox proportional hazards (Cox PH) analy-
sis for overall survival (OS). Despite expected variability 
between cohorts in the prognostic impact of MYC, BCL2, 
and BCL6 as individual oncogenes (14), the percentage 
of M+2+6−  cells stood out as a consistently poor prog-
nostic variable (Fig.  2A). In this context, we define con-
sistency as when hazard ratios (HR) for death, including 
95% confidence intervals, for all cohorts have the same 
directionality (either consistently greater than 1 or less 
than 1). The M+2+6−  subpopulation showed the greatest 
effect size and exclusively remained highly statistically 
significant in a pooled analysis across cohorts (Fig.  2A; 

Supplementary Table  S4). This prognostic association is 
also illustrated in a dichotomized Kaplan–Meier survival 
analysis (Fig.  2B). Higher M+2+6−  percentage remained 
statistically significant for poor OS in a multivariate 
Cox PH model adjusted for clinically relevant DLBCL 
clinicopathologic parameters of IPI Risk Group and MYC 
fluorescence in situ hybridization (FISH) status (Table  1; 
Supplementary Table  S5). These results suggest that the 
prognostic impact of these oncogenes in DLBCL is driven 
by a unique subpopulation of cells expressing MYC and 
BCL2 without BCL6.

A Probabilistic Metric Accurately Predicts MYC, 
BCL2, and BCL6 Coexpression in DLBCL Cells

As the percentage of MYC+BCL2+BCL6−  (M+2+6−) cells 
correlates with poor survival, we wanted to check if this 
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Fig. S3. Patients were ordered arbitrarily according to extent of the triple-positive M+2+6+ subpopulation extent. IPI Risk Group, International Prognos-
tic Index Risk Group; FISH, fluorescence in situ hybridization. G, Intrapatient spatial stability of subpopulations – proportion of subpopulations measured 
across four spatially distinct biopsies from the same patient (rows). Biopsy comparison overview is shown across 11 representative example DLBCL 
patients (columns). See also Supplementary Fig. S4A and S4B for a correlation analysis for all patients with multiple biopsies available. H, Proliferation 
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percentage could be inferred from knowledge of the indi-
vidual oncogene components. For this, we first describe 
three possible “scenarios” of oncogene coexpression within 
a tumor: interdependent expression of each oncogene result-
ing in overlapping distribution patterns in a population of 
cells; independent/stochastic expression of each oncogene 

resulting in random distribution patterns across cells; mutu-
ally exclusive expression of each oncogene resulting in 
spatially excluded distribution patterns (depicted schemati-
cally in Fig. 3A). In terms of percentage extent between two 
oncogenes within a tumor, an interdependent expression 
would result in a strong positive correlation, an independent/

Figure 2.  Prognostic significance of subpopulations after R-CHOP therapy. A, Pooled univariate Cox PH model analysis for MYC, BCL2, and BCL6 
single oncogene and subpopulations percentage extent as predictors of OS across multiple DLBCL cohorts. Percentage extent was used as a continu-
ous variable in the model at 5% increments (see Survival Analysis) for an unbiased comparison between the variables. Pooled P values were Bonferroni 
corrected for single oncogenes and subpopulations independently to adjust for multiple testing and are shown for each variable. Hazard ratio (HR) with 
95% confidence interval (CI) per 5%-positivity increment is shown (see also Supplementary Table S4). B, Kaplan–Meier OS analysis of dichotomized 
into M+2+6− high and low groups. Log-rank test, shading denotes 95% CI. An optimal dichotomization cutoff was used for stratification; total patient 
numbers in each group are shown.
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stochastic expression would result in no correlation, and 
a mutually exclusive expression would result in a strong 
negative correlation. In contrast to the mutually exclusive 
expression pattern observed within specific topological com-
partments in reactive lymphoid tissues, MYC, BCL2, and 
BCL6 did not show strong correlation or anticorrelation with 
each other in DLBCL (Fig. 3B).

These results suggest that independent gene regulatory 
mechanisms drive the expression of MYC, BCL2, and BCL6 
in DLBCL, and that single-cell coexpression of these onco-
genes is largely stochastic. This implies that the percent-
age of any oncogenic coexpression subpopulation can be 
inferred by a simple probabilistic metric based on the 
percentage extent of each component oncogene. If the over-
all percentages of each component oncogene are known, 
such a metric describing the percentage of any given sub-
population is derived by multiplying proportions for the 
presence or absence of each individual oncogene com-
prising the subpopulation (see Methods). We validated 
this hypothesis using our single-cell–resolved mfIHC data, 
observing a highly concordant correlation between observed 
and predicted percentages for each subpopulation (Fig. 3C; 
Supplementary Fig. S7).

An extension of this hypothesis is that any quantita-
tive data of MYC, BCL2, and BCL6 allow estimation of 
the percentage of their coexpressed subpopulations. One 
such semiquantitative data source of clinical interest is 
the visual scoring of MYC, BCL2, and BCL6 percentage on 
chromogenic IHC, which remains the reference method 
for the assessment of these oncogenes. We checked if 
our metric could estimate prognostic MYC, BCL2, and 
BCL6 subpopulations from clinical-grade pathologist 
scores for chromogenic IHC in a well-characterized cohort 
of DLBCL from the British Columbia Cancer Agency 
(BCA; ref.  15). We first performed mfIHC on the BCA 
cohort to obtain empiric values of the MYC/BCL2/BCL6 
coexpressing subpopulations (Supplementary Table S2). 

M+2+6−  percentage extents measured by mfIHC were 
used to determine an optimal clinically relevant cutoff to 
classify a patient as a high M+2+6−  expressor and there-
fore likely to have a poor outcome. A dichotomized cutoff 
of 15% of the M+2+6−  subpopulation percentage extent 
produces the greatest effect size of OS stratification as 
determined by the Cox PH model between high and low 
groups in this cohort (Fig.  3D). We then calculated the 
inferred M+2+6− metric from retrospective semiquantita-
tive chromogenic IHC values. A Kaplan–Meier analysis of 
the cohort dichotomized into high (≥15% M+2+6− metric) 
and low (<15%) demonstrated the poor survival of the 
high metric group (Fig.  3E), confirming the applicabil-
ity of this probabilistic metric to clinical IHC scoring 
in DLBCL.

One key consideration for applicability of this metric as a 
biomarker would be the size of the region to be sampled for 
adequate representation. As our cohorts were studied in tis-
sue microarray format with small (1 mm) cores, we also evalu-
ated our multiplexed analysis on whole-tissue DLBCL tumor 
sections (n = 8; UP; Supplementary Table S2). The variance in 
M+2+6− percentage extent in different tissue regions/image 
fields was low (Supplementary Fig.  S8A). Importantly, with 
the low variance, sampling just two or more high-power diag-
nostic fields is generally reliable to determine M+2+6− high 
vs. low samples using a single threshold cutoff of 15% (Sup-
plementary Fig.  S8B). Overall, these findings speak to the 
possible clinical applicability of the M+2+6−  metric for 
pathologist scored chromogenic IHC, which requires valida-
tion in future prospective studies.

Estimation of MYC, BCL2, and BCL6 Coexpressing 
Subpopulations Can Be Extended to Gene-
Expression Data

We hypothesized that if the percentage of MYC/BCL2/
BCL6 subpopulations could be inferred from individual 
oncogene components on IHC, then our metric could 

Table 1. Multivariate analysis of continuous M+2+6− percentage extent at 5% increments as a predictor of OS in the 
NUH, SGH, and MDA cohorts of DLBCL (Cox proportional hazards model)

NUH SGH MDA
Total cases (n = 87)  

missing values (n = 11)
Total cases (n = 37)  

missing values (n = 4)
Total cases (n = 34)  

missing values (n = 2)
HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Subpopulation
M+2+6− (continuous, per 5% of extent) 1.3 (1.1–1.6) 0.004 1.6 (1.1–2.3) 0.026 1.6 (1.1–2.3) 0.010
IPI Risk Group 0.402 0.015 0.195
 Low Ref. Ref. Ref.
 Intermediate 1.6 (0.63–4.3) 0.314 4.4 (0.88–21.7) 0.299 1.3 (0.19–9.2) 0.780
 High 2.0 (0.72–5.6) 0.187 12.6 (2.3–70.1) 0.005 4.5 (0.75–27.1) 0.099
c-MYC translocation status 0.503 — — 0.536
 Negative Ref. — — Ref.
 Positive 0.61 (0.14–2.6) — — 1.6 (0.35–7.7)

Abbreviations: IPI Risk Group, International Prognostic Index Risk Group; 95% CI, 95% confidence interval; Ref., reference group.
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Figure 3.  MYC, BCL2, and BCL6 protein coexpression in DLBCL can be inferred from individual marker data. A, Schematic of possible relationships 
between expression of three oncogenes in a population of cells. The distribution of these oncogenes can either reflect interdependent expression, 
independent/stochastic expression, or mutually exclusive expression. These relationships result in the percentage extent of oncogenes in the tumor 
being either strongly positively correlated, not correlated, or strongly negatively correlated, respectively. Created with BioRender.com. B, Correlation of 
MYC, BCL2, and BCL6 percentage extent across patients in DLBCL cohorts. Spearman correlation; axes are equivalent in all panels. C, Good correlation 
between probabilistically predicted subpopulation percentage extent based on single oncogene positivity and observed percentage extent in the NUH 
cohort. Cases of double-hit lymphoma (DHL, MYC+BCL2+ translocations or MYC+BCL6+ translocations) or triple-hit lymphoma (THL) are highlighted. 
Spearman rho for each correlation is shown; axes are equivalent in all panels. Correlation for other cohorts can be found in Supplementary Fig. S7. 
D, Prospective evaluation of an optimal dichotomization cutoff for M+2+6− percentage extent in the BCA cohort. Univariate Cox PH model at 1% extent 
positivity increment, HR for death with 95% CI. HR scale is exponential. Optimal dichotomization cutoff is highlighted in blue. E, Kaplan–Meier OS analysis 
of the chromogenic IHC BCA cohort evaluation stratified into M+2+6− metric high and low groups across an absolute value of 15% M+2+6−metric. 
Log-rank test, shading denotes 95% confidence interval. CMMC, Chi-Mei Medical Center.
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Figure 4.  Validation of prognostic significance of the M+2+6− subpopulation metric in gene-expression datasets. A, Distribution of single oncogene 
positivity in DLBCL cohorts as assessed by mfIHC (see Supplementary Fig. S9A and S9B). B, Impact of subpopulation metrics in GEP datasets on OS. 
Pooled univariate Cox PH model analysis; metric was used as a continuous variable in the model at 5% increments. HR per 5% increment with 95% CI is 
shown; CI are proportional on both tails but are capped at the graph’s edges. Pooled P values were Bonferroni corrected to adjust for multiple testing and 
are shown for each subpopulation. C, Kaplan–Meier OS analysis of GEP cohorts stratified uniformly across absolute 15% M+2+6− metric into -high and 
-low groups. Log-rank test, shading denotes 95% CI. Total patient numbers in each group are shown. CMMC, Chi-Mei Medical Center.
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also be computed from other quantitative data measur-
ing MYC/BCL2/BCL6 expression. This could also extend 
to gene-expression profiling (GEP) with the assumption 
of positive mRNA-protein correlation (which has been 
reported for MYC and BCL2 expression in DLBCL; ref. 16). 
To transform gene-expression data into predicted percent-
age extents, we first established an empirical cumulative 
distribution function (eCDF) for each individual protein 
marker (MYC/BCL2/BCL6 percentage extents) across five 
mfIHC cohorts (n  =  712). Importantly, the eCDFs of 
single-marker protein and subpopulation percentages are 
similar across all five mfIHC cohorts of patients (Fig. 4A), 
allowing compilation of an aggregated consensus protein 
distribution for each oncogene (Supplementary Fig.  S9A 
and S9B). We then perform eCDF mapping (matching 
percentile points in the eCDF of mRNA measurements to 
those in the eCDF of the corresponding protein scores) 
and convert the oncogene’s quantitative mRNA score into 
an inferred single-marker percentage extent (see Meth-
ods; Supplementary Fig.  S9C). These inferred percentage 
extents from mRNA data could be used to generate our 
aforementioned metric, estimating proportions of sub-
populations (Supplementary Table S6).

We then utilized GEP cohorts with available survival 
data after R-CHOP treatment (8 cohorts, n  =  2,521) to 
evaluate the prognostic impact of the RNA-based metric 
for M+2+6− prediction. The M+2+6− metric remained the 
only RNA-inferred subpopulation consistently associated 
with poor survival across eight distinct cohorts of DLBCL 
patients (Fig.  4B; Supplementary Table  S7). As with the 
mfIHC-based results, the pooled analysis revealed that 
the M+2+6− metric had the greatest effect size and most 
statistically significant P value with respect to HR for 
death. In the GEP analysis, metrics representing other sub-
populations did show occasional statistically significant 
survival associations—but these were not consistent, of a 
smaller effect size and by many orders of magnitude less 
statistically significant compared with the M+2+6−  met-
ric. The M+2+6−  metric was consistently prognostic in 
both microarray gene-expression–based cohorts (17–22) 
and RNA sequencing (RNA-seq)–based cohorts (23, 24), 
attesting to its validity for mRNA quantified from vary-
ing platforms. The significance of the M+2+6− metric was 
further corroborated in a multivariate Cox PH analysis 
correcting for IPI Risk Group and cell-of-origin (COO) 
gene-expression signature, where M+2+6− remained a sta-
tistically significant predictor of poor survival in seven out 
of eight cohorts as a continuous variable (Supplementary 
Table S8).

Finally, we performed an independent study on the mRNA-
based M+2+6− metric in samples with biomarker data avail-
able from the GOYA clinical trial cohort (25). GOYA was a 
randomized phase III trial (NCT01287741) comparing two 
different anti-CD20 antibodies (rituximab and obinutu-
zumab) in combination with CHOP chemotherapy. Although 
the trial did not show differences in survival between the two 
arms, it remains a valuable source of evaluating molecular 
determinants of survival in chemoimmunotherapy-treated 
DLBCL. Although BCL6 IHC was not available for the GOYA 

samples, MYC and BCL2 IHC scores showed statistically 
significant correlations with mRNA levels of MYC and BCL2, 
respectively, supporting the rationale for the extension of our 
metric from protein to mRNA (Supplementary Fig. S10A and 
S10B). The M+2+6− metric was associated with progression-
free survival and OS in this dataset, in both univariate 
and multivariate analyses (Supplementary Table S9). Finally, 
Kaplan–Meier OS analysis on GOYA as well as other pub-
licly available GEP datasets confirmed that our previously 
established 15% threshold cutoff was relevant for prognostic 
stratification (Fig. 4C; Supplementary Fig. S10C; Supplemen-
tary Table S10).

Molecular Characteristics of M+2+6− High DLBCL
Inference of oncogene coexpression from GEP datasets 

allows an extended avenue for comparative analysis with 
other molecular characteristics in DLBCL, which can be 
utilized to describe molecular features characterizing the 
M+2+6−  subpopulation. We first investigated the rela-
tionship between (mfIHC-generated) M+2+6− percentage 
extent and GEP-determined COO data available for the 
BCA cohort. M+2+6−  percentage extent was associated 
with the ABC COO subtype (Fig.  5A), and this asso-
ciation with ABC COO was consistent for the inferred 
M+2+6− metric across the GEP datasets (Fig.  5B). The 
M+2+6−  subpopulation and M+2+6−  metric also was 
associated with the unfavorable MCD and A53 genetic 
subtypes of DLBCL (Fig. 5C; ref. 26). These relationships 
are depicted categorically in an integrated fashion in 
Fig. 5D.

To derive single-gene associations with the M+2+6− sub-
population on the bulk level, we correlated the M+2+6− met-
ric with gene expression across seven GEP cohorts (n = 3,180 
samples, Fig. 5E; Supplementary Table S11). One-hundred 
sixty genes consistently correlated either positively or nega-
tively with the M+2+6−  metric (Fig.  5E). To narrow down 
those of key biological significance in the first instance, 
we leveraged on the observation that M+2+6− percentages 
are strongly correlated with a poor prognosis, whereas 
the survival association with M+2+6+  is much weaker. We 
compared gene expression of DLBCL with gene expression 
of primary human tonsil-derived GC B cells immortalized 
by either the overexpression of MYC and BCL2 (M+2+6−) or 
MYC, BCL2, and BCL6 (M+2+6+; ref.  27). Because BCL6 is 
a transcriptional repressor (28), we hypothesized that the 
absence of BCL6 could influence the transcriptional profile 
of the M+2+6− subpopulation (Fig. 5F; Supplementary Table 
S12). Cross-comparing genes enriched in the M+2+6− GC B 
cells with genes correlated with the M+2+6−  population 
from bulk clinical GEP datasets, we found that CCND2 
(which codes for cyclin D2) was highly enriched in both 
groups (Fig. 5G and H). Furthermore, single-cell RNA-seq 
(scRNA-seq) of a tonsil-derived GC B-cell sample clearly 
demonstrated an inverse correlation between CCND2 and 
BCL6 expression (Fig.  5I), confirming prior observations 
that CCND2 is transcriptionally repressed by BCL6 (29, 
30). We then transduced CCND2 in M+2+6+  immortal-
ized B cells, which were characterized by low background 
levels of cyclin D2 expression (Supplementary Fig.  S11). 
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The transduced M+2+6+/CCND2High population started 
as a relatively small fraction, but rapidly expanded over 
time eventually outgrowing the M+2+6+/CCND2Low popu-
lation (Fig.  5J; Supplementary Fig.  S11), confirming that 
increased cyclin D2 expression can confer a fitness advan-
tage to cells with MYC and BCL2. Cyclin D2 expression 
has been reported as a marker for an adverse outcome in 
DLBCL (31, 32).

Single-Cell Transcriptomic Analyses of 
M+2+6− Cells in DLBCL

To further understand other molecular determinants 
underlying poor prognosis in cases with high numbers of 
M+2+6− cells, we leveraged on scRNA-seq datasets to profile 
the transcriptomic characteristics of M+2+6−  malignant B 
cells within DLBCL samples. We first harmonized single-cell 
transcriptomic data from 6 DLBCL patient samples from 
two independent datasets (refs. 33, 34; Fig.  6A). Figure 6B 
demonstrates that the M+2+6−  subpopulation is well rep-
resented in all samples. We identified genes associated with 
the M+2+6− B-cell subpopulation (Fig. 6C) and confirmed 
CCND2 expression being more abundant in M+2+6− B cells 
compared with all other malignant B cells. In total, 13 
concordant genes were enriched in both the scRNA-seq 
data and the bulk RNA-seq data (Supplementary Table 
S13). These include ABC-DLBCL–related genes such as the 
ROCK1 target PES1, which intersects MYD88 and NF-κB 
signaling (35), the PIM2 kinase whose overexpression has 
been associated with unfavorable DLBCL biology (36), and 
the IRF4 interactor BATF (37). Finally, Fig.  6D depicts 
a pathway analysis on this single-cell–resolved transcrip-
tomic data revealing that the PI3K–AKT pathway, immune 
responses (including the complement pathway), as well 
as G-protein receptor–coupled signaling, were among the 
significantly enriched terms in M+2+6−  B cells compared 
with all other malignant B cells (Fig.  6D; Supplementary 
Table  S14). The enrichment of PI3K–AKT signaling signa-
tures is particularly intriguing, as inhibitors of this path-
way (e.g., copanlisib) are clinically applicable, suggesting a 
possible therapeutic strategy for unfavorable M+2+6− high 
tumors. Additional mechanistic studies will be needed to 
understand the relative significance and interplay between 
these genes and pathways in conferring poor outcome in 
M+2+6−. Of general significance, however, these results 
illustrate how the estimation of oncogene coexpression 

phenotypes through gene-expression data, coupled with 
single-cell resolved transcriptomic data, may uncover novel 
biological insight.

DISCUSSION
In this paper, we show for the first time that subpopula-

tions of tumor cells expressing combinations of oncogenes at 
the single-cell level influence patient prognosis. We also show 
that (under conditions of independently regulated expres-
sion), these subpopulations can be inferred from quantitative 
single oncogene expression data, generating a metric that 
has a remarkable concordance to actual observed single-cell 
coexpression on multiplex IHC. We show two applications 
of predicting oncogenic subpopulations in the setting of 
DLBCL. First, the M+2+6−  metric can be generated from 
diagnostic IHC scores, offering a refined method for utiliz-
ing MYC, BCL2, and BCL6 expression for prognostic use in 
DLBCL. Secondly, by estimating subpopulation percentages 
from GEP datasets, we demonstrate the feasibility of identi-
fying molecular features associated with a poor prognostic 
oncogene combination from the plethora of gene-expression 
studies available for a given disease. Such features could 
identify therapeutic targets or offer biological insight–as 
with our demonstration that the cell-cycle regulator cyclin 
D2 (CCND2) may play a role in the aggressive phenotype of 
M+2+6−  cells. Cyclin D2 promotes the G1–S transition of 
hematopoietic cells (38), enhances cytokine induced-prolifer-
ation (39), and is stabilized by EBV infection (40), highlight-
ing the rationale for further studies of CCND2 in DLBCL 
pathogenesis and evolution.

Our single-cell–resolved quantitative imaging confirms 
that ITH in coexpression of MYC, BCL2, and BCL6 exists 
in almost every case of DLBCL. This coexpression shows 
distinct spatial organization with nonrandom clustered pat-
terns, supporting the concept that forces beyond genetic 
heterogeneity shape DLBCL evolution. These findings also 
suggest that quantitative assessment of the M+2+6−  sub-
population potentially refines the MYC-BCL2 “dou-
ble expressor lymphoma” (DEL), a term used to describe 
DLBCL with overexpression of MYC and BCL2 protein in 
the absence of underlying genetic rearrangements (7, 41, 
42). DEL is typically defined as  >40% MYC-positive cells 
and  >50% BCL2-positive cells (measured independently). 
As these DEL classifications do not take DLBCL ITH (43, 

Figure 5.  Transcriptomic analysis of M+2+6− high cases and potential role of CCND2. A, Correlation of observed M+2+6− percentage extent in 
the BCA cohort with the cell-of-origin (COO) DLBCL90-COO signature. Bonferroni corrected Kruskal–Wallis test for ABC vs. others. B, Correlation of 
M+2+6− metric in GEP cohorts with COO signatures. Mean M+2+6− metric value per group per cohort is shown. Bonferroni corrected paired-samples 
t test. C, Correlation of the M+2+6− percentage extent and metric evaluated by mfIHC and mRNA inference, respectively, with genetic subtypes (Lym-
phGen classification). D, Sankey plot of M+2+6− dichotomized grouping matched with molecular features. E, Volcano plot of pooled direct correlation 
of gene mRNA expression and M+2+6− metric across seven GEP cohorts. Genes highly correlated with M+2+6− metric across datasets at absolute 
Spearman rho ≥0.2 and FDR≤0.001 are shown (see also Supplementary Table S11). The abscissa is scaled exponentially. F, Differential gene expression 
between primary GC B cells overexpressing M+2+ and M+2+6+ (see also Supplementary Table S12). Analysis is generated from 4 biological replicates 
from each condition, from cells of independent donors. G, Genes highly enriched in M+2+6− cells: correlation of results from E and F. H, CCDN2 gene 
expression in GEP cohorts in patients dichotomized by M+2+6− 15% metric (left) and in primary B cells (right). Paired t test (left); mean with standard 
deviation and FDR (FDR as per Supplementary Table S12) for t test (right). I, Single-cell RNA-seq of GC primary B cells transduced either with BCL2 and 
MYC (MYC-transduced) or BCL2 and BCL6 (BCL6-transduced). Untransduced GC primary B cells are also included. Expression of CCND2 is indicated in 
color. J, Proliferation analysis of M+2+6+ primary GC B cells overexpressing cyclin D2 (CCND2) compared with M+2+6+ primary GC B cells transduced 
with an empty vector (EV). Analysis performed with 3 biological replicates for each condition, using cells from 3 independent patients; mean with stand-
ard deviation; t test. UMAP, Uniform Manifold Approximation and Projection.
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44) into account, it was not known if DELs represent two 
distinct and coexisting clonal phenotypes within a lym-
phoma—one expressing MYC and the other BCL2. Nor was 
it understood why the poor outcome of DEL is exacerbated 
when BCL6 expression is absent (9, 45). These issues are 
addressed by the description of the M+2+6− subpopulation, 
which describes the phenomenon at single-cell resolution. 
DEL remains relevant in the era of genetic DLBCL classifica-
tion (46) and novel targeted therapies. For example, patients 
with the DEL phenotype show improved survival on the 

polatuzumab arm in comparison with the R-CHOP arm of 
the POLARIX trial (47). Additional studies are required to 
clarify the relevance of the M+2+6−  percentage extent in 
this setting.

Lymphomas that harbor translocations in MYC, BCL2, 
and/or BCL6, termed double-hit or triple-hit lymphomas 
(DHL/THL; ref. 48), have a particularly poor outcome 
(49–52). Recently, prognostic gene-expression signatures 
have been developed that accurately classify such DHL 
or THL cases: double-hit signature (DHITsig; ref. 49) and 

Figure 6.  Evaluation of M+2+6− cells in scRNA-seq datasets of DLBCL. A, Uniform Manifold Approximation and Projection (UMAP) of malignant B 
cells from the Roider and Steen cohorts. B, Proportion of subpopulations across samples and annotation of M+2+6− cells in UMAP. C, Correlation of 
genes enriched in the M+2+6− subpopulation as evaluated by scRNA-seq with hits from the bulk GEP cohorts (Fig. 5E). CCND2 is highlighted and is among 
the concordant hits (see also Supplementary Table S13). D, WikiPathways terms enrichment among genes positively associated with M+2+6− cells. Both 
axes in C and D are scaled exponentially for clarity (see also Supplementary Table S14).
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molecular high-grade (MHG; ref. 17). Of DLBCL that are 
DHITsig positive, the majority fall within the EZB genetic 
subtype (26). Using our single-cell–resolved approach 
to DEL, we saw that cases with higher M+2+6−  met-
rics were typically assigned to either the A53 or MCD 
genetic subtype (Fig.  5C). These results are consistent 
with double-hit (and DHL-like/MHG) lymphoma being 
biologically distinct from DEL, though both types display 
poor prognoses. Figure 5 demonstrates an association 
between the M+2+6−  subpopulation and the ABC COO 
subtype as well as the MCD genetic subtype, consistent 
with observations that the MCD subtype is almost exclu-
sively ABC (26). However, the M+2+6− subpopulation also 
shows enrichment in both A53 and “other” unclassified 
genetic subsets, and we posit that distinct genetic back-
grounds can converge on this final phenotype through 
distinct mechanisms.

This is a proof-of-concept study with some limitations. 
First, the prognostic impact of M+2+6− percentages derive 
from retrospective analyses and need prospective valida-
tion. In this article, we have, where possible, presented HRs 
as a continuous variable, ascribing a risk score per unit 
of measure (per 5% of M+2+6−  percentage extent). This 
is an unbiased method by which to assess the risk of 
the M+2+6−  subpopulation, however, a more pragmatic 
approach for clinical biomarker use is to develop a standard-
ized cutoff for the M+2+6− percentage. Our initial analyses 
from the BCA cohort and GEP datasets (including the 
GOYA trial) suggest that  ≥15% M+2+6−  percentage extent 
may be a suitable starting point for such prospective vali-
dation studies. Second, the prevalence of staining artifacts 
within FFPE tissue samples required us to use a semiauto-
mated method (manual checking of intensity threshold per 
image), which is not optimal for upscaling of this approach. 
The development of deep learning approaches refined for 
evaluating marker positivity based on fluorescence inten-
sity but also considering other background/morphologic 
features would be key toward implementing this diagnostic 
method into the clinic. Finally, although we use threshold-
based positivity scoring in this study, per-cell quantitative 
proteomic data (ideally obtained through an amplification-
free method such as imaging mass spectrometry) is an 
understudied area that may yield even greater resolution 
toward assessing prognostic outcomes.

The probabilistic metric we describe, which predicts 
oncogenic coexpression, holds true only when the expres-
sion of the oncogenes is independently regulated and will 
need validation in the setting of other oncogenes/cancers. 
Nonetheless, our demonstration that the M+2+6−  phe-
notype confers poor survival in four empirically evalu-
ated cohorts (mfIHC) and nine inferred cohorts (GEP) of 
DLBCL underscores the clinical importance of evaluating 
the ITH generated by the coexpression of oncogenes and 
suggests that similar studies in other cancer types will be 
informative. Oncogene ITH occurs at multiple molecular 
levels in cancer: genetic (53, 54), epigenetic, transcrip-
tomic, and proteomic (55), and affects clinical phenotypes 
(1, 56). Single-cell approaches to evaluate genetic (57), 
transcriptomic (58, 59), and proteomic ITH have pro-
vided valuable insight into microevolutionary processes 

operating in cancer (60, 61). However, due to high experi-
mental costs, the number of patients represented in scRNA-
seq and mass cytometry datasets are invariably small, thus 
precluding clinically meaningful multivariate analyses. 
Here we demonstrate that multiplexed microscopy through 
mfIHC, though limited in multiplexing potential com-
pared with scRNA-seq, is well suited to measure the clinical 
impact of single-cell–resolved ITH in clinically annotated 
patient cohorts.

METHODS
Samples and Datasets

Tonsils (n = 15) from patients diagnosed with chronic tonsillitis, 
reactive lymph nodes (n = 2), and DLBCL [n = 152, tissue micro-
array (TMA) format] were obtained from the NUH [approved 
by the Singapore NHG Domain Specific Review Board B study 
protocol (2015/00176)]. Additional DLBCL TMAs for quantita-
tive mfIHC analyses were from the CMMC cohort (n =  150), the 
SGH cohort (n = 67), and the MDA cohort (n = 40). Pretreatment 
biopsies of the NUH, SGH, and MDA cohorts were used for sur-
vival analysis following standard first-line R-CHOP-like therapy. 
A TMA from the BCA cohort (n  =  274) with first-line R-CHOP-
like follow-up data was used as a validation cohort (49). Eight 
whole-slide DLBCL sections retrieved from the archives of the 
Tumor Immunology Laboratory of the University of Palermo were 
included in the study as approved by the University of Palermo 
Institutional Review Board (IRB) 09/2018. Full patient charac-
teristics for all the above cohorts are provided in Supplementary 
Table S15. Samples from all institutions were obtained through 
IRB-approved ethics protocols, with written informed consent 
from the patients, or with IRB-approved waivers of consent where 
applicable in accordance with the ethical guidelines of the Dec-
laration of Helsinki. Material transfer agreements from all pro-
viding institutions were incorporated into the framework of an 
NUS IRB-approved translational study (H-19-055E). Preprocessed 
gene-expression data were obtained from Gene Expression Omni-
bus (GEO; RRID: SCR_005012; ref.  62) for datasets GSE117556 
(n  =  928; ref.  17), GSE125966 (n  =  553; ref.  63), GSE31312 
(n  =  498; ref.  18), GSE10846 (n  =  420; ref.  19), GSE87371 
(n  =  221; ref.  20), GSE32918 (n  =  172; ref.  21), and GSE98588 
(n  =  137; ref.  22). Raw gene-expression data for Reddy and col-
leagues (n  =  775; ref.  23) were obtained through The European 
Genome-phenome Archive (EGA; https://ega-archive.org/) at the 
European Bioinformatics Institute, Study ID: EGAS00001002606. 
Raw gene-expression data from Schmitz and colleagues (n = 481; 
ref.  24) were obtained from the NIH database of Genotypes 
and Phenotypes (dbGaP; RRID:SCR_002709), accession number: 
phs001444.v2.p1; The Genomic Variation in Diffuse Large B-Cell 
Lymphomas study was supported by the Intramural Research 
Program of the National Cancer Institute, NIH, Department of 
Health and Human Services. Clinical data associated with the 
GOYA dataset (GSE125966) were analyzed in collaboration with 
F. Hoffmann-La Roche Ltd.

Quantitative mfIHC and Scoring
Quantitative mfIHC was performed using sequential OPAL-TSA 

staining as described in detail previously (ref.  64; Supplemen-
tary Tables  S16 and S17). Images were acquired using the Vectra 
2 imager and analyzed using inForm2.4.8 (RRID: SCR_019155). 
DAPI nuclear staining and CD20 membrane staining were used to 
segment cells. The mean membrane intensity per cell was captured 
for CD20; the mean cytoplasm intensity per cell for BCL2; and the 
mean nuclear intensity per cell for both MYC and BCL6. For each 

https://ega-archive.org/
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image, cells with a marker intensity above a given intensity thresh-
old for that image were declared to be positive for that marker. A 
pathologist manually inspected each image to determine a reliable 
threshold for each marker that resulted in minimal false-positive 
and false-negative assignments. Images were examined in pseudo-
color brightfield. All cohorts were evaluated in a tissue microarray 
(TMA) format; depending on tissue availability, between 1 and 9 
high-power 700 × 500 μm imaging fields were captured and evalu-
ated per patient in the NUH cohort, and two 1,400 × 1,000 μm fields 
were evaluated in the CMMC, SGH, MDA, and BCA cohorts. For 
each of the DLBCL whole-tissue sections, 5 to 8 700  ×  500 μm 
imaging fields were evaluated. Once positivity thresholds were 
set for each marker per image, the quantitative image data (mean 
intensity per cell and the intensity threshold per marker for each 
image) were exported to calculate per-cell marker positivity and 
coexpression status. Subsequently, the percentage of cells within 
the CD20+ B-cell compartment that were ascribed a given subpopu-
lation (M+2+6+, M+2+6−, M+2−6+, M+2−6−, M-2+6+, M−2+6−, 
M−2–6+, and M−2–6−) were calculated for each patient. Scores 
from patients with multiple cores were a mean across all cores, 
weighted on cell number per core.

Survival Analysis
For unbiased survival associations, subpopulations percent-

age extents were evaluated as continuous variables in Cox PH 
models at 5% unit increments (albeit 0%–1% compromising the 
first unit, followed by 1%–5%, 5%–10%, etc.). HRs are displayed 
per unit (of 5% extent). Variables satisfied proportional hazards 
assumptions. To leverage on the multicohort design of this study, 
associations of each subpopulation extent were evaluated in a 
univariate model in individual cohorts, which was followed by 
effect size and P value pooling. Effect sizes were pooled by a 
random-effects model to mitigate interstudy heterogeneity, and 
Paule–Mandel heterogeneity variance estimator was applied due 
to the small number of cohorts. The pooled P values were adjusted 
for multiple hypothesis testing using Bonferroni correction (8 
hypotheses). Tests were performed using the R “survival” package 
(RRID: SCR_021137) and pooled using the R “poolr” package. 
Multivariate Cox PH models were performed in SPSS 23 (RRID: 
SCR_002865). For Kaplan–Meier analyses, a log-rank test was per-
formed using GraphPad Prism 9 (RRID: SCR_000306). Cohorts 
were dichotomized at an optimal cutoff in exploratory analyses, 
and subsequently, analyses were dichotomized at an established 
positivity threshold of  ≥15% of M+2+6−  extent (actual or using 
the metric). Statistical tests were two-sided and P ≤ 0.05 was con-
sidered statistically significant.

Probabilistic Inference of Colocalization
Assuming the independent distribution of positivity between 

MYC, BCL2, and BCL6, a probability-based algorithm using single 
oncogene scores was derived to predict the percentage extent of sub-
populations, i.e., permutations of MYC, BCL2, BCL6-positivity and 
-negativity in CD20+ cells in DLBCL samples:
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Mapping of mRNA Expression Data into Percentage Extent
Transformation of MYC, BCL2, and BCL6 mRNA levels into 

predicted percentage extent values requires an initial transforma-
tion step to map percentile points from RNA data onto protein 
data distributions, similar in principle to QQ plots where data 
are transformed into equivalent Gaussian data. For each pro-
tein marker aggregated across five mfIHC cohorts (n =  712), the 
empirical cumulative distribution function (eCDF) of mfIHC-
based MYC/BCL2/BCL6 percentage extents was estimated as 
the benchmark distribution. With a biological assumption that 
mRNA expression is correlated with protein percentage scores 
for these oncogenes (16), we perform eCDF mapping (matching 
percentile points in the eCDF of mRNA measurements to those 
in the eCDF of the corresponding protein percentage scores), 
and then convert the quantitative mRNA score into an inferred 
single-marker percentage extent from the mRNA mapped CDF 
(mCDF). Subpopulation extents are subsequently inferred from 
the mapped single-marker mRNA values using the probabilistic 
cellular co-occurrence assumption.

To this end, eCDF of the corresponding mRNA expression 
levels was obtained from the individual subjects in the external 
datasets. Both eCDFs, mfIHC and mRNA, were smoothed by a 
Gaussian kernel smoother with a bandwidth parameter set at 1% 
of the entire range, and the percentile points on the smoothed 
CDFs were matched between the two datasets. Because eCDF 
is a monotone increasing function, this operation guarantees 
one-to-one mapping between the two eCDFs, and we used this 
map to translate the mRNA measurements into the approximate 
protein percentages across the individual subjects in the external 
dataset. The mapping procedure is performed independently for 
each mRNA dataset with the consensus protein eCDF to mitigate 
batch effects between datasets that are created through differ-
ent technologies, and also thus retaining the mRNA cohorts as 
independent datasets.

The mapping source code for this approximation is available at  
GitHub (RRID: SCR_002630): https://github.com/MichalMarekHoppe/ 
Patterns-of-oncogene-co-expression-at-single-cell-resolution-influence- 
survival-in-lymphoma.

Correlation of Gene Expression and M+2+6− Metric
Preprocessed gene-expression matrices submitted by the original 

authors were used for microarray-based datasets (Sha and colleagues, 
ref. 17; McCord and colleagues, ref. 63; Visco and colleagues, ref. 18; 
Lenz and colleagues, ref. 19; and Dubois and colleagues, ref. 20) and 
RNA-seq datasets were processed in-house (Reddy and colleagues, 
ref.  23; Schmitz and colleagues, ref.  24). Analyses were done for a 
consensus of 15,314 genes annotated in-house. Barrans and col-
leagues (21) and Chapuy and colleagues (22) data were not evalu-
ated in exploratory analyses due to a lower number of genes in the 
original mapping and lower number of samples. Standardized gene 
expression was correlated with the M+2+6− metric (Spearman corre-
lation) − Spearman rho with 95% confidence intervals was obtained 
using the R “DescTools” package and results were pooled using the 
R “poolr” package. Genes with a pooled Spearman rho value of ≥0.2 
and a false discovery rate (FDR)  ≤0.001 were considered hits in 
this analysis.

Differential Gene Expression in Primary GC B Cells
Total RNA was isolated from primary transduced B cells using the 

TRIzol extraction method. Insert cDNA library creation (250–300 
bp eukaryotic mRNA) and standard polyA paired-end sequencing 
on Illumina Hiseq-4000 (RRID: SCR_016386) PE150 was performed 
by NovogeneAIT. Raw sequencing files were processed using stand-
ard pipelines available publicly on the CSI NGS Portal (65). Gene 

https://github.com/MichalMarekHoppe/Patterns-of-oncogene-co-expression-at-single-cell-resolution-influence-survival-in-lymphoma
https://github.com/MichalMarekHoppe/Patterns-of-oncogene-co-expression-at-single-cell-resolution-influence-survival-in-lymphoma
https://github.com/MichalMarekHoppe/Patterns-of-oncogene-co-expression-at-single-cell-resolution-influence-survival-in-lymphoma


Cellular Coexpression of Oncogenes in Lymphoma RESEARCH ARTICLE

	 MAY  2023 CANCER DISCOVERY | 1159 

expression of 18,252 genes was compared between four transduced 
GC B cells samples of M+2+6+ and four M+2+6− samples from inde-
pendent donors (see “Generation of immortalized patient-derived 
GC B cells, and CCDN2 analysis” section for details on GC B-cell 
transduction and refs. 27 and 66). FDR of a two-sided t test was 
used to define differently expressed genes. The R package “stats” was 
used to perform the t test. Hits were defined by meeting an arbitrary 
dynamic threshold criterion defined by the rational function (see the 
dashed line Fig. 5F):

� � � � �log FDR
log FDR
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10

5

5

( )

where FDR gene is the FDR value of the gene tested, FDRsig is an 
arbitrary threshold of significance of 0.05, and | |FC  is the absolute 
value of log2 fold change difference between mean expression in 
M+2+6− and M+2+6+ samples.

Generation of Immortalized Patient-Derived GC B Cells, 
and CCDN2 Analysis

Discarded tonsil tissue was collected after tonsillectomy at Adden-
brooke’s ENT Department, Cambridge, UK, with written informed 
consent from the patient’s parent/guardian. Ethical approval for 
human tissue use was granted by the Health Research Author-
ity Cambridgeshire Research Ethics Committee (REC no. 07/
MRE05/44). Human primary GC B cells were isolated from fresh 
tonsils with Human B-cell Negative Selection Isolation Kit II (MACS, 
Miltenyi Biotec, cat. no. 130-091-151) supplemented with anti-IgD 
and anti-CD44 antibodies as described previously (27, 66). GC B cells 
were frozen immediately after isolation. Tissue from two female and 
one male donor ages 4 to 5 years was collected in September 2018. 
As these were primary cells, authentication and Mycoplasma testing 
were not performed.

After thawing, cells were cultured in vitro on irradiated YK6-
CD40lg-IL21 follicular dendritic feeder cells in Advanced RPMI-
1640 (Invitrogen, cat. no. 12633020) supplemented with 20% 
Gibco FCS (Thermo Fisher Scientific, cat. no. 10270-106) and 
1× Gibco penicillin–streptomycin–glutamine (from 100×, Thermo 
Fisher Scientific, cat. no. 10378016) as previously described (27, 
66). GC B cells were passaged 1 to 3 times before they were sta-
bly transduced with BCL6-T2A-BCL2 (27) and MYC-IRES-GFP 
retrovirus according to the protocol described previously (27, 
66). MYC was cloned into the MSCV-IRES-GFP plasmid (RRID: 
Addgene_20672) to create the MSCV-MYC-IRES-GFP construct 
expressing MYC and GFP. The pBMN-IRES-Lyt2 (EV) retroviral 
vector was a kind gift from Dr. Louis Staudt, National Cancer 
Institute, USA; CCND2 was cloned into pBMN-IRES-Lyt2 to cre-
ate the pBMN-CCND2-IRES-Lyt2 construct. Subsequently, cells 
were stably transduced with either EV (pBMN-IRES-Lyt2) or 
CCND2-IRES-Lyt2 lentivirus. The live-cell fractions of EV or 
CCND2-transduced cells were assessed by flow cytometry after 
staining for Lyt2 with antimurine CD8a-APC antibody (Miltenyi 
Biotec; cat. # 130-117-776, RRID: AB_2728039) and observed for 
30 days. GFP protein was quantified by flow cytometry as a proxy 
for MYC expression.

Analysis of CCND2 in scRNA-seq Data
For scRNA-seq experiments, primary human GC B cells from a sin-

gle donor were transduced with BCL2 and BCL6, or BCL2 and MYC 
(see “Generation of immortalized patient-derived GC B cells, and 
CCDN2 analysis” section for transduction details and refs. 27 and 
66). Seven days after transduction, cells were pooled and subjected 
to scRNA-seq using the 10X Genomics platform. Fresh transduced 

GC B cells from the same donor were spiked into the sequencing 
reaction. Raw fastq files were processed using cellranger (v3.1.0); the 
alignment was performed against the GRCh38-3.0.0 version of the 
Homo sapiens reference genome; the quantification and filtering of 
cells were done using default parameters.

Further filtering applied on the expression matrix was based on 
upper and lower bounds on the distributions of counts and features, 
and on the proportions of reads incident to mitochondrial DNA 
(mt%) and ribosomal genes (rp%). Cells with values outside these 
ranges (counts per cell/sequencing depth  >5,000, number of fea-
tures <2,000 or >8,000, mt%>15% rp%>50%) were considered outliers 
and excluded from downstream analyses. Post filtering, mitochon-
drial and ribosomal genes were excluded from the expression matrix. 
The expression matrix was log-normalized using the NormalizeData 
function in the Seurat package (v3.2.2; ref. 67).

Dimensionality reductions [PCA followed by Uniform Mani-
fold Approximation and Projection (UMAP)], as well as cluster-
ing (Louvain method) were conducted in Seurat; the optimal 
number of clusters was selected based on default clustering 
parameters. Following an assessment of the stability of cluster-
ing results, for the subsequent steps, we focused on the 2,000 
most abundant genes, determined across all cells in the dataset. 
Marker genes, determined for each cluster against all other genes, 
were identified based on differential expression tests (in Seurat)  
i.e., genes with log2(FC)  >0.25, and adjusted P values, under 
a Benjamini–Hochberg multiple testing correction, less than 
0.05. The data were also made available as a Shiny app (RRID: 
SCR_022756; ref. 68) at the link: https://bioinf.stemcells. cam.ac.uk/ 
shiny/hodson/MYC-BCL2- BCL6_project.

Reprocessing of scRNA-seq Datasets
In this study, six DLBCL samples from two publicly available 

DLBCL scRNA-seq datasets were utilized. Dataset GSE182434 (33), 
containing sample pairs of B cells and non B cells for 3 ABC-DLBCL 
tumors and 1 GCB DLBCL tumor, was downloaded from the GEO 
database. B-cell samples were provided with annotations containing 
cell type and condition (i.e., tumor or normal). Only cells annotated 
as tumor and B cells were used for the analysis. DLBCL scRNA-seq 
dataset generated by Roider and colleagues (34) was downloaded 
from the heiDATA database (https://heidata.uni-heidelberg.de) 
from the link https://doi.org/10.11588/data/VRJUNV. The dataset 
contained four GC-derived DLBCLs, two of which were trans-
formed follicular lymph nodes, which were excluded from the 
analysis and one nongerminal center-derived DLBCL. Upon further 
examination of the shared nearest neighbor clusters of the samples 
(original paper, Fig.  3B; ref.  34), one of the GC-derived DLBCL 
samples clustered closely with the transformed follicular lymph 
node cluster and was hence excluded from the analysis. Samples 
were provided with cell annotations denoting malignant B cells, 
healthy B cells, and myeloid cells. Only cells annotated as malignant 
B cells were used for the analysis. In total, 8,235 cells were used for 
subsequent analysis.

Seurat (v4.3.0; ref. 69) was used for the analysis of the single-cell 
datasets. All functions were run with default parameters unless 
specified otherwise. Low-quality cells, defined by  <200 genes per 
cell and  >10% mitochondrial genes, were excluded from the analy-
sis. Genes expressed in less than 3 cells were excluded from the 
analysis. The two datasets were integrated using the Seurat Integra-
tion protocol for data normalized with the “sctransform” method 
(RRID: SCR_022146; ref.  70); https://satijalab.org/seurat/articles/
integration_introduction.html#performing-integration-on-datasets-
normalized-with-sctransform-1. The data were integrated with each 
study and treated as a batch. Default parameters were used with 
2,000 genes being used for the SelectIntegrationFeatures() function. 
Following this, based on the count data, each cell was assigned an 

https://bioinf.stemcells.cam.ac.uk/shiny/hodson/MYC-BCL2-BCL6_project
https://bioinf.stemcells.cam.ac.uk/shiny/hodson/MYC-BCL2-BCL6_project
https://heidata.uni-heidelberg.de
https://doi.org/10.11588/data/VRJUNV
https://satijalab.org/seurat/articles/integration_introduction.html#performing-integration-on-data sets-normalized-with-sctransform-1
https://satijalab.org/seurat/articles/integration_introduction.html#performing-integration-on-data sets-normalized-with-sctransform-1
https://satijalab.org/seurat/articles/integration_introduction.html#performing-integration-on-data sets-normalized-with-sctransform-1
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expression status with double expressors being defined as below and 
the rest assigned as others.

double expressors { MYC 0 and BCL2 0 and BCL6 0}

with MYC , B

� � � � � �
� �

� � �

CCL2 , BCL6 denoting count values� � � �

Differential gene-expression analysis was conducted using the 
FindMarkers() function in Seurat with ident.1 being M+2+6−  cells 
and ident.2 being others. Nonparametric Wilcoxon rank sum test was 
used for the FindMarkers function. Next, functional enrichment was 
conducted using the gProfiler2 (v0.2.1; RRID: SCR_018190; ref. 71) 
package utilizing the WikiPathways (RRID:SCR_002134; ref.  72) 
database as source via the gost() function. FDR was the correction 
method used for multiple testing and all enriched pathways survived 
an FDR of 5%. Upregulated genes (defined by avg_log2FC  >0 and 
P < 0.05) from the differential expression analysis were interrogated 
in gprofiler2.

Software and Statistical Analysis
Graphical representations of data were generated in either Graph-

Pad Prism 9 (RRID: SCR_000306) or R (RRID: SCR_001905). All 
relevant statistical tests were performed in GraphPad Prism 9 unless 
indicated otherwise. For Supplementary Table S3, Mann–Whitney 
and Kruskal–Wallis tests were performed using the R “stats” pack-
age; pooling of P values was performed using the R “poolr” package.

Supplementary Methods
Additional details on IHC, spatial analysis, and unsupervised clus-

tering can be found in the Supplementary Methods section within 
the Supplementary Appendix.

Data Sharing Statement
•	 RNA-seq data generated from GC B cells overexpressing either MYC 

and BCL2 or MYC, BCL2, and BCL6 are deposited to GEO (RRID: 
SCR_005012; ref. 62) under the accession number: GSE203446.

•	 scRNA-seq data of GC primary B cells transduced either with 
BCL2 and MYC (MYC-transduced) or BCL2 and BCL6 (BCL6-
transduced), or untransduced, have been made available as a 
Shiny app (68): https://bioinf.stemcells.cam.ac.uk/shiny/hodson/ 
MYC-BCL2-BCL6_project.

•	 Source code for custom pipelines has been deposited to GitHub 
at the link: https://github.com/MichalMarekHoppe/Patterns-of- 
oncogene-co-expression-at-single-cell-resolution-inf luence- 
survival-in-lymphoma, and includes:

°	 “Mapping of MYC, BCL2, BCL6 mRNA DLBCL cohort 
expression data”

°	 “Pair correlation function clustering”

°	 “Spatial analysis – calculating delta between cellular phenotypes”

°	 “DLBCL scRNA-seq re-analysis”
•	 Publicly available gene-expression data for Sha and colleagues (17), 

GSE117556; McCord and colleagues (63), GSE125966; Visco and 
colleagues (18), GSE31312; Lenz and colleagues (19), GSE10846; 
Dubois and colleagues (20), GSE87371; Barrans and colleagues 
(21), GSE32918; and Chapuy and colleagues (22), GSE98588; can 
be found on GEO under the indicated accession numbers.

•	 Restricted access gene-expression data can be found at the follow-
ing repositories under the respective accession numbers:

°	 Reddy and colleagues (23); The EGA (https://ega-archive.org/), 
Study ID: EGAS00001002606

°	 Schmitz and colleagues (24); NIH database of Genotypes and 
Phenotypes (dbGaP; RRID:SCR_002709), accession number:  
phs001444.v2.p1

•	 GEP-derived COO scores and LymphGen genetic subtype classifi-
cations for the BCA cohort and for Schmitz and colleagues were 
obtained from (49) and (24), respectively.

•	 Publicly available scRNA-seq data for Steen and colleagues (33) 
can be accessed through GEO under the accession number 
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