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Abstract
Grassmann tensors arise from classical problems of scene reconstruction in computer 
vision. In particular, bifocal Grassmann tensors, related to a pair of projections from a pro-
jective space onto view spaces of varying dimensions, generalize the classical notion of 
fundamental matrices. In this paper, we study in full generality the variety of bifocal Grass-
mann tensors focusing on its birational geometry. To carry out this analysis, every object of 
multi-view geometry is described both from an algebraic and geometric point of view, e.g., 
the duality between the view spaces, and the space of rays is explicitly described via polar-
ity. Next, we deal with the moduli of bifocal Grassmann tensors, thus showing that this 
variety is both birational to a suitable homogeneous space and endowed with a dominant 
rational map to a Grassmannian.

Keywords Multi-view Geometry · Grassmann Tensors · Fundamental Matrices · Group 
Actions

Mathematics Subject Classification 14L30 · 14M15 · 14N05

1 Introduction

Recently, several authors have been interested in the study of some algebraic varieties, 
which arise within the branch of computer vision called Multiple View Geometry. In this 
context, the most investigated varieties are the multiview varieties (see, for example, [2, 
13, 15, 16]), the varieties of trifocal and quadrifocal tensors [1, 3, 4, 12, 17] and the critical 
loci varieties [6, 7, 9].
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The analysis of the varieties of trifocal and quadrifocal tensors concerns tensors 
which are defined in the classical case of reconstruction of a three-dimensional static 
scene from three or four two-dimensional images. Moreover, they fit in the wide study 
of Grassmann tensors and their moduli spaces. Grassmann tensors (or multifocal ten-
sors) have been introduced in [18] as a means of reconstructing a scene in a high-dimen-
sional space from its projection by a suitable number of images. More specifically, they 
describe the relationships existing between different images of the same point of the 
scene taken from different cameras. Moreover, the first and the third authors have stud-
ied critical loci for projective reconstruction from multiple views, [7, 10], and in this 
setting Grassmann tensors play a fundamental role [6, 9].

In this context, we propose to study in full generality the variety of bifocal Grass-
mann tensors (or generalized fundamental matrices), which may be viewed as a param-
eter space of Grassmann tensors of two views from a k-dimensional projective space to 
two image spaces of dimensions h1 and h2 , respectively. The generalized fundamental 
matrices have been introduced and studied in [8], as a generalization of the well-known 
fundamental matrix for two projections with k = 3 and h1 = h2 = 2 . In particular, we 
focus on the birational geometry of the variety described by these matrices. Hence, this 
paper takes into account the behavior of generic bifocal Grassmann tensors and can be 
thought of as a first step toward the analysis of the birational geometry of the variety of 
trifocal Grassmann tensors.

To carry out this analysis, we preliminarily need to translate some basic notions from 
multiview geometry into a purely algebraic setting. More precisely, computer vision and 
algebraic geometry are classically linked because taking a picture is described as a lin-
ear projection from the ambient space ℙ3 to a view plane ℙ2 . Additionally, other types 
of shootings, like videos or segmented scenes, have been more recently interpreted as 
projections from higher dimensional spaces ℙk to ℙh , for suitable k and h.

In this setting, a scene is a set of points {Xi} ∈ ℙ
k, i = 1, ...,N, a camera is a pro-

jection from ℙk onto a view space ℙh , (h < k) , from a linear center. Once homogene-
ous coordinates have been chosen in ℙk and ℙh , the camera can be identified with a 
(h + 1) × (k + 1) matrix P of maximal rank, and the center CP is its right annihilator, 
hence a (k − h − 1)-space defined by the linear subspaces of ℙk , given by the rows of 
P. These subspaces can also be identified with points of the dual space (ℙk)∨ where 
they span a linear space of dimension h. Finally, the right action of GL(k + 1) on P cor-
responds to a change of coordinates in ℙk , while the left action of GL(h + 1) can be 
thought of as a change of coordinates in the view space ℙh.

In the first section of the paper (Section  2), we frame the above definitions in an 
algebraic context and we provide the corresponding geometric interpretation of all the 
involved spaces, i.e., the ambient space, the view space, the space of rays (where a ray 
is a fiber of the projection map) and the wedge product spaces of all of them. In par-
ticular, in the case of one projection, we give an explicit interpretation of the duality 
between the space of rays and the view space via a polarity correspondence associated 
with a suitable quadric in ℙk , which naturally arises from the projection matrix. Next, 
we focus on the case of two projections because this is the setting where bifocal Grass-
mann tensors can be defined, and we describe the action of the natural groups on all 
these spaces and, again, on their wedge products.

Finally, in the paper [5], the authors have computed the rank of bifocal and trifo-
cal Grassmann tensors using a canonical form of the tensors obtained via the actions 
described above. Here, in the case of bifocal tensors, we use this canonical form in 
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order to give a minimal decomposition of the tensor which has a particular and interest-
ing geometric interpretation.

As a conclusion of this first part, in order to clarify all the previous reasonings, we 
provide an example for which we perform explicitly all the computations (Example 3.9).

In Sections 3 and 4, we deal with bifocal Grassmann tensors and their moduli. Bifo-
cal Grassmann tensors (or generalized fundamental matrices) have been extensively 
studied in [8], where their rank is computed and where, in Section 4 a seminal idea on 
the structure of their variety is contained. Starting from that, in this paper we describe 
the birational structure of the variety X(�1,�2)

 of bifocal Grassmann tensors for pairs of 
projections from ℙk to ℙh1 and to ℙh2 for any admissible choice of k, h1, h2 and of a profile 
(�1, �2) with �1 + �2 = k + 1 , 1 ≤ �i ≤ hi , i = 1, 2 . The notion of profile has been intro-
duced in [11] to fix the dimensions of corresponding spaces in the construction of the 
Grassmann tensors.

The main results obtained in the paper are the following:

Theorem 1 (see Theorem 4.1) For each pair (�1, �2) corresponding to a profile, the variety 
of bifocal Grassmann tensors X(�1,�2)

 is birational to a homogeneous space with respect to 
the action of GL(h1 + 1) × GL(h2 + 1).

Theorem  2 (see Theorem  4.5) Let �1, �2 be a pair of non-negative integers such that 
�1 + �2 = k + 1 . Fix h1, h2 such that k > max{h1, h2} and k ≤ h1 + h2 + 1 , as well as a 
(k + 1)-dimensional vector space U. Set sj = hj + 1 − �j for j = 1, 2 . Then, there exists a 
dominant rational map Ψ ∶ X(�1,�2)

⤏ G(i,U∨) such that the following hold:

• G(i,U∨) is birationally G-equivariant, that is, there exists a non-empty open set � of 
X(�1,�2)

 such that Ψ(g.p) = Ψ(p) for every p ∈ � and every g ∈ G;
• the general orbit is isomorphic to PGL(i),

where the group G is the (ℂ∗)2∕ℂ∗ quotient of a group isomorphic to 
GL(i) × GL(h1 + 1) × GL(h2 + 1).

Actually, in Theorem 4.5 we prove this result for the variety X(s1,s2)
 which is birational to 

X(�1,�2)
 , as introduced and discussed before Remark 4.2.

Throughout, we work over the field of complex numbers.

2  A review on linear projections

2.1  Notations

Let V be a finite dimensional vector space. We denote by ℙ(V) the projective space of 
one-dimensional subspaces of V. In what follows, V∨ will denote the dual vector space of 
V. Let F∨ ∶ V∨

2
→ V∨

1
 be the transpose map of a linear map F ∶ V1 → V2 between finite 

dimensional vector spaces. If W is a subspace of V, the orthogonal space W⟂ ⊆ V∨ con-
sists of all the linear forms on V vanishing on W. Then, the dual vector space (V∕W)∨ is 
isomorphic to W⟂ . This isomorphism sends a linear form f ∶ V∕W → ℂ to the linear form 
f◦pW ∶ V → ℂ , where pW ∶ V → V∕W denotes the natural linear projection.
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2.2  The case of one projection

Let U be a (k + 1)-dimensional vector space. Fix a proper subspace C ⊂ U of dimension 
k − h (with h < k) , and consider the quotient map pC ∶ U → U∕C . Notice that U/C can be 
identified with the (h + 1)−dimensional space of all the (k + 1 − h)-dimensional subspaces 
of U containing C. Recall the isomorphism C⟂ ≃ (U∕C)∨.

2.2.1  Geometric interpretation

Let ℙ(U) be the projective space associated with U, and �C ∶ ℙ(U) ⤏ ℙ(U∕C) , the rational 
map induced by pC , which is well defined everywhere except on ℙ(C) . As mentioned in 
Introduction, in the computer vision setting, we will call �C camera and ℙ(C) center of the 
camera �C ; the target space ℙ(U∕C) is the space of rays. We deduce that a point of ℙ(U∕C) 
can be identified with a projective linear (k − h)-dimensional subspace of ℙ(U) containing 
the center ℙ(C) , which will be called a ray. As usual, we will identify ℙ(U∨) with the linear 
space of hyperplanes of U so that we can identify ℙ((U∕C)∨) with the subspace of hyper-
planes containing ℙ(C) , as (U∕C)∨ ≃ C⟂ . According to the standard setting introduced for 
the study of algebraic varieties arising in computer vision (see, e.g., [1, 17]), we will call 
ℙ((U∕C)∨) the view space.

In the following, it will be useful to have a model of the target space embedded in ℙ(U) : 
for this purpose, one can choose a projective subspace L ⊂ ℙ(U) of dimension h, i.e., 
a screen, such that L ∩ C = � . Indeed, in this case, the projection map sends a point of 
ℙ(U)⧵ℙ(C) to the point of intersection of its ray with L.

2.2.2  The coordinate framework

Fix bases in U and in U/C. Then, we obtain a representative projection matrix A of size 
(h + 1) × (k + 1) and rank h + 1 for h < k (defined only up to a non-zero constant). The col-
umns of A generate U/C and the rows of A generate C⟂ ⊂ U∨.

2.3  The case of two projections

Let us choose two proper subspaces C1 and C2 in U such that dim(C1) = k − h1 , 
dim(C2) = k − h2 and C1 ∩ C2 = {0} . By Grassmann’s Formula, the dimension of the 
span C1 + C2 is 2k − h1 − h2 = k + 1 − (h1 + h2 + 1 − k) . Thus, C1 + C2 has codimension 
i ∶= h1 + h2 − k + 1 in U.

Denote by p1 ∶ U → U∕C1 and p2 ∶ U → U∕C2 the corresponding projection maps. 
Let us focus on p1 ∶ U → U∕C1 ; a similar statement holds for p2 . The image E2

1
 of C2 

via p1 is the subspace p1(C2) = (C1 + C2)∕C1 in U∕C1 , which is isomorphic to C2 , as 
C2 ∩ C1 = {0} . Let us consider the projection with center E2

1
,

and its composition with p1 , namely

p2
1
∶ U∕C1 → (U∕C1)∕((C1 + C2)∕C1) ≃ U∕(C1 + C2)

(2.1)U
p1
⟶ U∕C1

p2
1

⟶ U∕(C1 + C2).
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Analogously, with obvious meaning of the symbols, we have

Since p1 and p2 are the projections onto U∕C1 and U∕C2 , respectively, and p2
1
 , p1

2
 are 

induced by p1 and p2 , we have the following commutative diagram:

In the dual setting, the vector space U∨ will contain the subspaces C⟂
1
 and C⟂

2
 of dimen-

sion h1 + 1 and h2 + 1 , which are isomorphic to (U∕C1)
∨ and (U∕C2)

∨ , respectively. Since 
(C1 + C2)

⟂ = C⟂
1
∩ C⟂

2
 , we have

As a consequence of Grassmann’s formula, we get

By dualizing Diagram 2.2, we have

In other words, 
(
U∕

(
C1 + C2

))∨ is the fiber product of p∨
1
∶ (U∕C1)

∨ → U∨ and 
p∨
2
∶ (U∕C2)

∨ → U∨.

Lemma 2.1 Assume C1 ∩ C2 = {0} . The vector space 
(
U∕

(
C1 + C2

))∨ is isomorphic to 
ker(�∨) , where

Proof Since C1 ∩ C2 = {0} , � is injective and the following exact sequence holds:

If we dualize the short exact sequence above, we have

where 𝜂∨ = p∨
1
⊕ (−p∨

2
). We construct an explicit isomorphism between coker(�) and 

U∕(C1 + C2) , so that the thesis will follow by duality.
It is easy to check that an isomorphism

U
p2
⟶ U∕C2

p1
2

⟶ U∕(C1 + C2).

U

p2

p1
U/C1

p2
1

U/C2
p1
2

U/(C1 + C2).

(2.2)

(2.3)
(
U∕C1

)∨
∩
(
U∕C2

)∨
=
(
U∕

(
C1 + C2

))∨
.

dim

((
U∕C1

)∨
∩
(
U∕C2

)∨)
= dim

((
U∕C1

)∨)
+ dim

((
U∕C2

)∨)

− dim

((
U∕C1

)∨
+
(
U∕C2

)∨)
= i.

(U/(C1 + C2))∨ (U/(C1))∨ ∩ ((U/C2))∨
p2
1
∨

p1
2
∨

(U/C1)∨

p∨
1

(U/C2)∨
p∨
2

U∨.

(2.4)

(2.5)𝜂 ∶= p1 ⊕ (−p2) ∶ U ⟶ U∕C1 ⊕ U∕C2.

0 → U → U∕C1 ⊕ U∕C2 → coker(𝜂) → 0.

0 → ker(𝜂∨) → (U∕C1)
∨ ⊕ (U∕C2)

∨ → U∨ → 0,
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can be defined as follows:

where a, b ∈ U , and where [−]1, [−]2, [−]� , [−]1,2 denote the equivalence classes modulo 
C1,C2, �(U),C1 + C2 , respectively.   ◻

2.3.1  Geometric interpretation

Let �j ∶ ℙ(U) ⤏ ℙ(U∕Cj) , be the map induced by pj onto the target space of rays. From 
the assumptions on the centers C1 and C2 , we have ℙ(C1) ∩ ℙ(C2) = � . We can view 
ℙ(U∕(C1 + C2)) as the set of rays through the linear span of ℙ(C1) and ℙ(C2) ; denote 
by �j

12
∶ ℙ(U∕Cj) ⤏ ℙ(U∕(C1 + C2)) the natural projections, j = 1, 2 . Finally, Dia-

gram  2.2 allows us to define �12 ∶ ℙ(U) ⤏ ℙ(U∕(C1 + C2)) , as �12 = �1

12
◦�1 = �2

12
◦�2 . 

As it is standard in computer vision, we call epipole the projective linear space 
ℙ(Ei

j
) = 𝜋j(ℙ(Ci)) ⊆ ℙ(U∕Cj) . The epipole ℙ(Ei

j
) can be viewed as the center of the projec-

tion �j

12
 and can be identified with ℙ((C1 + C2)∕Cj), j = 1, 2.

As before, one could also choose, for j = 1, 2 , projective subspaces Lj ⊂ ℙ(U) of 
dimension hj such that Lj ∩ Cj = � as screens, i.e., models of the view spaces embed-
ded in ℙ(U) . If the screens are in general position, their intersection L1 ∩ L2 is a projec-
tive subspace of dimension i − 1 , where i ∶= h1 + h2 − k + 1 , and one can also inter-
pret the composition �1

12
◦�1 = �2

12
◦�2 as the projection of ℙ(U) onto the intersection 

L1 ∩ L2 of the screens. We can also interpret some subspaces in the dual setting: as we 
said above ℙ((U∕Cj)

∨) is the subspace of hyperplanes containing ℙ(Cj) , and similarly, 
ℙ((U∕(C1 + C2)

∨) = ℙ((U∕C1)
∨) ∩ ℙ((U∕C2)

∨) is the subspace of hyperplanes containing 
ℙ(C1) and ℙ(C2).

Finally, we recall the definition of corresponding rays and corresponding subspaces 
coming from the setting of Computer Vision. Let R1 ∈ ℙ(U∕C1),R2 ∈ ℙ(U∕C2) be a pair 
of rays. We say that R1 and R2 are corresponding rays if their intersection is not empty, 
as subspaces of ℙ(U) . Let Λj be a general linear subspace of ℙ(U∕Cj) of codimension �j , 
j = 1, 2 . We say that Λ1 and Λ2 are  corresponding subspaces if their intersection is not 
empty, as subspaces of ℙ(U).

Example 2.2 For k = 3 and h1 = h2 = 2 , we have two linear projections in ℙ3 from two dis-
tinct points ℙ(C1) and ℙ(C2) onto two distinct planes, which intersect along a line, as i = 2 
in this case. The map �12 is the linear projection from the line connecting the two points 
ℙ(C1) and ℙ(C2) . Moreover, the maps �1

12
 and �2

12
 are projections from the epipoles onto the 

line of intersections of the screens embedded in 3-dimensional projective space.

2.3.2  The coordinate framework

Assume we have two projections �j ∶ ℙ(U) ⤏ ℙ(U∕Cj) for j = 1, 2 and consider the maps 
�
j

12
∶ ℙ(U∕Cj) ⤏ ℙ(U∕(C1 + C2)) for j = 1, 2, where �12 ( = �1

12
◦�1 = �2

12
◦�2 ) is intro-

duced before.

𝜙 ∶ (U∕C1 ⊕ U∕C2)∕𝜂(U) → U∕(C1 + C2)

�([([a]1, [b]2)]�) = [a + b]1,2,
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Fix bases B , B1 , B2 and B12 , for U,U∕C1,U∕C2 and U∕(C1 + C2) , respectively. Denote 
by A (resp. B) the full rank (h1 + 1) × (k + 1) (resp. (h2 + 1) × (k + 1) ) representative 
matrix of �1 (resp. �2 ) with respect to B and B1 (resp. B and B2 ). Also, consider full rank 
representative matrices P,N1 and N2 of �12,�1

12
 and �2

12
 , respectively, with the bases chosen 

above. By construction, we have P = N1A and P = N2B.
In what follows, we need to make a natural choice of the bases in order to have a very 

simple form for the two matrices A ∈ Mat(h1 + 1, k + 1) and B ∈ Mat(h2 + 1, k + 1) of 
maximal rank, which canonically represent the projections �1 and �2 . For these purposes, 
we pick a basis C1 ∶= {a1,… , ak−h1} of C1 and a basis C2 ∶= {b1,… , bk−h2} of C2 . Since 
C1 and C2 have zero intersection, the union of these two bases gives a basis C of the sum 
C1 + C2 . Complete C to a basis B ∶= {u1,… , ui, a1,… , ak−h1 , b1,… , bk−h2} of U, where 
uj ∉ C1 + C2 . As for U∕C1 , we choose the basis B1 ∶= {[u1]1,… , [ui]1, [b1]1,… , [bk−h2 ]1} , 
where [−]1 denotes the equivalence class modulo C1 . Analogously for U∕C2 , we choose the 
basis B2 ∶= {[u1]2,… , [ui]2, [a1]2,… , [ak−h2 ]2} , where [−]2 denotes the equivalence class 
modulo C2 . With this choice, the matrices associated with �1 and �2 are given by

where It is the t × t identity matrix and 0a,b is the zero matrix with a rows and b columns. 
By definition, the epipole E2

1
 in U∕C1 (resp. the epipole E1

2
 in U∕C2 ) is generated by the 

vectors [b1]1,… , [bk−h2 ]1 (resp. [a1]2,… , [ak−h1 ]2 ). The matrix associated with �1

12
 has i 

rows and h1 + 1 columns; the matrix associated with �2

12
 has i rows and h2 + 1 columns. If 

we choose the bases B1 , B2 and B12 = {[u1]12,… , [ui]12} , where [−]12 denotes the equiva-
lence classes modulo C1 + C2 , the matrices corresponding to �1

12
,�2

12
 and �12 are given by

2.4  Polarity with respect to the quadric ATA

Two symmetric matrices are naturally associated with a projection matrix A, that is, the 
matrix AAT of size h + 1 and the matrix ATA of size k + 1 . Both have rank h + 1 so the former 
defines a non-singular quadric in the ray space ℙ(U∕C) ; the latter quadric QA lies in ℙ(U) and 
has vertex the center of the camera ℙ(C) . The polarity defined by the quadric QA induces an 
explicit isomorphism �A between ℙ(U∕C) and ℙ(C⟂) , which associates a ray with its polar 
hyperplane with respect to the quadric QA , which passes through the vertex ℙ(C) . If we fix 
a basis in U, thus introducing homogeneous coordinates [X] in projective space ℙ(U) , the 
quadric QA is the set of points [X] ∈ ℙ(U) such that XTATAX = 0 . Thus, setting �A([AX]) 
the hyperplane with dual coordinates ATAX , we get a well defined bijective map. As recalled 
before, the projective space ℙ(C⟂) is isomorphic to ℙ((U∕C)∨) . Therefore, the polarity with 
respect to QA gives a canonical map between a ray and the corresponding polar hyperplane. 
Thus, we give an explicit geometric interpretation of the isomorphism between the ray space 
and the view space, and we describe—from a more explicit viewpoint—the map associated 
with a projection matrix introduced by Aholt and Oeding [1, 17].

Ã =

(
Ii 0i,k−h2

0i,k−h1
0k−h2,i

Ik−h2 0k−h2,k−h1

)
,

B̃ =

(
Ii 0i,k−h2

0i,k−h1
0k−h1,i

0k−h1,k−h2
Ik−h1

)
,

(2.6)Ñ1 = (Ii 0i,k−h2 ), Ñ2 = (Ii 0i,k−h1 ), P̃ = (Ii 0i,k+1−i).
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In the case of two projection matrices, we deal with 3 quadrics, QA,QB and QP in ℙ(U) . 
They correspond to the symmetric matrices ATA , BTB and PTP , respectively. The quadrics QA 
and QB are quadric cones with vertices ℙ(C1) and ℙ(C2) ; the vertex of the quadric QP is the 
span of the centers ℙ(C1) and ℙ(C2) . Up to projective transformations in ℙ(U) , we can choose 
P to be an i × (k + 1) matrix, given as P = (T|0) , where T is an i × i invertible matrix and 0 
is the zero matrix with i rows and k + 1 − i columns. The intersection of QA (resp. QB ) with 
the projection screen L1 (resp. L2 ) is a non-singular quadric ΓA (resp. ΓB ). Generically, the two 
screens intersect along an (i − 1)-dimensional space L12 , which can be taken as the screen of 
the projection with associated matrix P. The intersection of QP with L12 is a rank i quadric Q12 
in L12 ; hence, it is non-singular if i ≥ 3 (the case i = 2 is shown below in a specific example). 
As mentioned before, Q12 can also be obtained as the quadric associated with the projection of 
ΓA (resp. ΓB ) onto L12 from ℙ(E2

1
) (resp. ℙ(E1

2
)).

Example 2.3 Let us go back to Example 2.2. The quadrics QA and QB are two cones with 
vertices the centers of projections. Without loss of generality, assume C1 = (0 ∶ 0 ∶ 0 ∶ 1) 
and C2 = (0 ∶ 0 ∶ 1 ∶ 0) . Up to projective transformations in ℙ3 , we can assume A = (I3|0) , 
where 0 is a 3 × 1 zero column. The matrix B can be written as (M|n) where M is a 3 × 3 
matrix and n is a 3 × 1 column vector with entries n14, n24, n34 . Moreover, the third column 
of M has to be the zero column because of the choice of C2 . In this case a natural, not 
unique, choice of the matrix P is the 2 × 4 matrix given by (T|02) where T is a 2 × 2 invert-
ible matrix and 02 is the 2 × 2 matrix of zeros. As a consequence, the equations of QA and 
QB are x2

0
+ x2

1
+ x2

2
= 0 and XTBTBX = 0 , where [X] are homogeneous coordinates in ℙ3.

The intersection of QA (resp. QB ) with the screen of projections is a non-singular conic. 
In the case of C1 , we can choose x3 = 0 as a projection screen, so the image of QA is the 
conic x2

0
+ x2

1
+ x2

2
= 0 , which is non-singular in the plane x3 = 0 . In the case of C2 , we 

can choose x2 = 0 as a projection screen, and the image of QB is the nonsingular conic 
XTBTBX = 0, x2 = 0 . The epipole ℙ(E2

1
) is the point (0 : 0 : 1 : 0) while the epipole ℙ(E1

2
) 

is the point (n14 ∶ n24 ∶ 0 ∶ n34) . The line ℙ(C1 + C2) has equation x0 = x1 = 0 and the line 
l of equation x2 = x3 = 0 can be chosen as a screen for the projection from ℙ(C1 + C2) . 
The projection of the conic x2

0
+ x2

1
+ x2

2
= 0, x3 = 0 from ℙ(E2

1
) onto the line l gives 

two points V1

1
 and V2

1
 . For a generic choice of n14, n24, n34 , the projection of the conic 

XTBTBX = 0, x2 = 0 from the epipole ℙ(E1

2
) gives two points U1

2
 and U2

2
 on l. The pairs 

of points V1

1
,V2

1
 , and U1

2
,U2

2
 are the same. Indeed, the quadric with vertex ℙ(C1 + C2) is 

given by (t2
11
+ t2

21
)x2

0
+ (t2

12
+ t2

22
)x2

1
+ (t11t12 + t21t22)x0x1 = 0 , where T = (tij) is the matrix 

above. It has two irreducible components that are planes through ℙ(C1 + C2) . Generically, 
the two components intersect the line x2 = x3 = 0 in two sets of distinct points, {V1

1
,V2

1
} 

and {U1

2
,U2

2
} , which coincide due to the commutativity of Diagram 2.2.

2.5  A group action on the space of rays and the space of views

Coming back to the case of one projection, the general linear group GL(k + 1) acts on U on 
the left. Precisely, pick a basis B in U, any (k + 1) × (k + 1) invertible matrix M induces an 
automorphism LM of U such that a vector u ∈ U is mapped to Mu. Let us consider the sta-
bilizer SC of C in GL(k + 1) . Fix the basis B ∶= {a1,… , ak−h, u1,… , uh+1} in U, which is 
obtained by fixing a basis C ∶= {a1,… , ak−h} of C and completing it to a basis of U. Then, a 
matrix of SC is a block matrix of the following form:
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where D1 ∈ GL(k − h) and D2 ∈ GL(h + 1) . Let us consider U/C, with the induced basis 
B
� ∶= {[u1],… , [uh+1]} where, as in the previous sections, [−] denotes the equivalence 

class modulo C. If M ∈ SC , there exists a commutative diagram

such that AM = NMA . As remarked above, the rows of A are linearly independent, so there 
exists a pseudo-inverse A† such that AA† = I , where I is the identity matrix of size (h + 1) . 
As a consequence, we can take NM as AMA†.

Therefore, the stabilizer SC induces a left action on U/C. Indeed, for [r] ∈ U∕C there 
exists u ∈ U such that [r] = [Au] . Then, NM([r]) = (AMA†)([r]) ∶= [A(Mu)] . It is an exer-
cise to verify that this action is well defined. Accordingly, the left action of PGL(k + 1) on 
ℙ(U) induces a left action of the image of SC in PGL(k + 1) on the space of rays ℙ(U∕C).

Now, let us start from U/C, with the basis fixed before. A matrix N ∈ GL(h + 1) acts on 
the left on U/C. Since a linear map preserves the zero vector, there exists a matrix MN ∈ SC 
such that the following diagram commutes:

where MN = A†NA is a matrix in SC . Therefore, we have N([r]) = N([Au]) = [A(MNu)] for 
r and u such that [Au] = [r] . If we consider the transpose maps of the diagram above, we 
get the natural actions induced by MN

T on the dual space U∨ and by NT on the space of 
views (U∕C)∨ , where ATMN

T = NTAT .

Finally, any matrix N ∈ GL(h + 1) inducing a linear transformation on the space of rays 
U/C yields a transformation on the wedge spaces 

⋀j
(U∕C) and 

⋀j
(U∕C)∨ : the former is 

given by the matrix ΛjN and the latter is given by 
⋀j

NT.

3  Bifocal Grassmann tensors

We recall here the basic elements of the construction of Grassmann tensors [18], in the 
case of our interest, i.e., for two projections.

Let us consider a pair of projections �j ∶ ℙ(U) ⤏ ℙ(U∕Cj) for j = 1, 2 , fix a pro-
file (�1, �2) and choose bases for U and U∕Cj . Let {Sj} for j = 1, 2, where Sj ⊂ ℙ(U∕Cj) 
be a set of general sj-dimensional spaces, with sj = hj − �j . Let Sj be the matrix of size 
(hj + 1) × (sj + 1) of maximal rank whose columns are a basis for Sj . By definition, if all 

the Sj are corresponding subspaces there exists a point X ∈ ℙ(U) such that �j(X) ∈ Sj for 

j = 1, 2. In other words, there exist 2 vectors �� ∈ ℂ
sj+1 j = 1, 2, such that

(
D1 T

0 D2

)

U
M
→ U

A ↓ ↓ A

U∕C
NM

→ U∕C

U
MN

→ U

A ↓ ↓ A

U∕C
N
→ U∕C
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The existence of a non-trivial solution {X, ��, ��} of the linear system (3.1) implies that the 
system matrix has zero determinant. This determinant can be thought of as a bilinear form, 
i.e., a tensor, in the Plücker coordinates of the spaces Sj. This tensor is called the bifocal 

Grassmann tensor T, and T ∈ V1 ⊗ V2 where Vj =
⋀sj+1(U∕Cj) is the 

(
hj + 1

sj + 1

)
-dimen-

sional vector space such that G(sj + 1, hj + 1) ⊂ ℙ(Vj). More explicitly, the entries of the 
Grassmann tensor are some of the Plücker coordinates of a point in the Grassmannian 
G(k + 1,U∕C1 ⊕ U∕C2) , i.e., of the matrix

up to sign. More specifically, they are the maximal minors of the matrix (3.2) obtained by 
selecting �1 columns from the matrix AT and �2 columns from the matrix BT.

Remark 3.1 In what follows, we give a more abstract description of Grassmann ten-
sors. For these purposes, recall first the Hodge operator. Let V be an n-dimen-
sional vector space. Pick {b1,… , bn} a basis of V such that 1 ∈ ℂ corresponds to 
the vector b1 ∧… ∧ bn ∈

⋀n
V ≃ ℂ . Recall that the Hodge operator is a linear map 

∗∶
⋀k

V →
⋀n−k

V  defined as follows. Let I ∶= {i1 < … < ik} be a multi-index and 
denote by J ∶= {j1 < … < jn−k} the complementary multi-index in {1,… , n} . Then, we 
have ∗ (bI) ∶= (−1)�(I,J)bJ , where bI ∶= bi1 ∧… ∧ bik , where �(I, J) is +1 or −1 according 
to the parity of the permutation (I, J).

The subspaces Sj in (U∕Cj) may be viewed as elements of the wedge powers of the 
direct sum (U∕C1)⊕ (U∕C2) . Therefore, for any profile (�1, �2) we have

Moreover, by the isomorphisms induced by the Hodge operator, we have

Therefore, any Grassmann tensor can be viewed as a linear map, thus yielding a matrix � 

which is called a generalized fundamental matrix of size 
(

h2 + 1

h2 − �2 + 1

)
×

(
h1 + 1

h1 − �1 + 1

)
 . 

The entries of � can be described explicitly. Let I = {i1 < ⋯ < is1+1}, J = {j1 < ⋯ < js2+1} 
be two multi-indices in {1,… , h1 + 1} abd {1,… , h2 + 1} , respectively. Denote by Ic, Jc 
the (ordered) sets of complementary indices. Moreover, denote by AI and BJ the matrices 
obtained from AT and BT by deleting the columns corresponding to the indices i1,… , is1+1 

(3.1)
�
P1 S1 0

P2 0 S2

�
⋅

⎡
⎢⎢⎣

X

��
��

⎤
⎥⎥⎦
=

�
0

0

�
.

(3.2)
[
AT BT

]
,

(3.3)
k+1⋀(

(U∕C1)⊕ (U∕C2)
)
=
⨁
𝛼1,𝛼2

(
𝛼1⋀(

U∕C1

)
⊗

𝛼2⋀(
U∕C2

))
.

(3.4)
𝛼1⋀(

U∕C1

)
⊗

𝛼2⋀(
U∕C2

)
≃

s1+1⋀(
U∕C1

)∨
⊗

s2+1⋀(
U∕C2

)∨

(3.5)=Hom

(
s1+1⋀(

U∕C1

)
,

s2+1⋀(
U∕C2

)∨
)
.
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and j1,… , js2+1, respectively. Then, the entries of � are given by FI,J = �(I, J) det
[
AI BJ

]
 

where �(I, J) is +1 or −1 according to the parity of the permutation (I, J, Ic, Jc), with lexico-
graphical order of the multi-indices {I} for the rows and {J} for the columns. In [8] and [5], 
the authors proved the following result:

Theorem 3.2 Let us consider two projections of maximal rank with profile ( �1 , �2 ). Moreo-
ver, assume the intersection of the centers is empty. Then, the rank of the corresponding 
bifocal Grassmann tensor � is given by

3.1  An action on the set of projection matrices

In what follows, fix a (k + 1)-dimensional vector space U. Define � to be the vector space of 
all pairs of matrices (M1,M2) , where Mi is a matrix of size (k + 1) × (hj + 1) for j = 1, 2 . It 
contains an open set � of pairs of matrices (M1,M2) such that Mj has maximal rank hj + 1 . 
Naturally, it can be identified with an open set in

Lemma 3.3 Assume k ≥ hj + 1, j = 1, 2 and k ≤ h1 + h2 + 1 . The matrix [M1|M2] of size 
(k + 1) × (h1 + h2 + 2) has rank k + 1 if and only if C1 ∩ C2 = {0} , where Cj is the null-
space Ker(MT

j
) for j = 1, 2.

Proof Choose M1 and M2 as above so dim(Cj) = k − hj . The matrix [M1|M2] has rank k + 1 
isomorphic to

Therefore, the matrix [M1|M2] has rank k + 1 if and only if i = k + 1 − dim(C1 + C2) , i.e., 
dim(C1 ∩ C2) = 0 by Grassmann’s formula.   ◻

Remark 3.4 Let A and B two projection matrices of size (hj + 1) × (k + 1) for j = 1, 2 . If we 
set M1 = AT and M2 = BT , the matrix [M1|M2] gives a point in G1 = G(k + 1, h1 + h2 + 2) . 
By choosing suitable bases in U, U∕C1 and U∕C2 , the matrices M1 and M2 correspond to 
the linear maps p1 and p2 in Diagram 2.2.

Now, let �0 ⊆ � be the subset of matrices [M1|M2] such that C1 ∩ C2 = {0} . There is a 
left action of GL(k + 1) on �0 , as well as a right action of GL(h1 + 1) × GL(h2 + 1) on �0 , 
namely

rk (�) =

(
(h1 − �1 + 1) + (h2 − �2 + 1)

h1 − �1 + 1

)
.

�
(k+1)(h1+h2+2) ≃ �

(k+1)(h1+1) × �
(k+1)(h2+1) ≃ �.

Im(M1) ∩ Im(M2) ≃Ker(M
T
1
)⟂ ∩ Ker(MT

2
)⟂

≃
(
Ker(MT

1
) + Ker(MT

2
)
)⟂

=(C1 + C2)
⟂ ≃

(
U∕(C1 + C2)

)∨
.
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where 0 is the zero matrix. Let us describe this action more explicitly. For j = 1, 2 let 
LMj

=< Mj
1
,… ,Mj

hj+1 > be the vector space of dimension hj + 1 , which is spanned by the 
columns of Mj . Moreover, set ΛMj

= ℙ(LMj
) . Then, with the same notation as before, the 

dimension of IM1,M2
∶= LM1

∩ LM2
 is equal to i = h1 + h2 − k + 1 > 0 . Moreover, we choose 

bases {v1,… , vi,wi+1,… ,wh1+1
} for LM1

 and {v1,… , vi,w
�
i+1

,… ,w�
h2+1

} for LM2
 such that 

{v1,… , vi} is a basis for IM1,M2
 . As a consequence, there exist matrices K1 ∈ GL(h1 + 1) 

and K2 ∈ GL(h2 + 1) such that

Under our assumptions, {v1,… , vi,wi+1,… ,wh1+1
,w�

i+1
,… ,w�

h2+1
} is a basis of U∨ , so 

there exists G ∈ PGL(k + 1) such that

where {e1,… , ek+1} is the canonical basis of ℂ̌k+1 . This implies that

where Ia denotes the a × a identity matrix. The matrix in (3.7) is called the canonical form 
for matrices  [M1|M2] ∈ �0.

Finally, if we look at the Grassmannian G1 = G(k + 1, h1 + h2 + 2) as a quotient by 
the action of PGL(k + 1) of rank (k + 1) matrices of size (k + 1) × (h1 + h2 + 2) , the 
image of �0 under the corresponding quotient map is an open subset, which is denoted 
by �0 . By duality, the Grassmannian G1 = G(k + 1, h1 + h2 + 2) is isomorphic to the 
Grassmannian G2 = G(i, h1 + h2 + 2) . As a consequence, the image �0 of �0 under this 
isomorphism is an open set in G2 . An element of it can be described by means of a 
matrix [�1|�2]T where �T

j
 has size (hj + 1) × i and maximal rank i. Thus, there is an 

action of the group GL(h1 + 1) × GL(h2 + 1) × GL(i) on set �0 of such matrices [�1|�2]T , 
namely

where 0 is the zero matrix.

GL(k + 1)×W0 × (GL(h1 + 1)× GL(h2 + 1)) −→ W0

G, [M1|M2] ,
H1 0
0 H2

−→ [G M1 H1|G M2 H2] ,

(3.6)

[
M1 M2

][ K1 0

0 K2

]

=
[
v1,… , vi,wi+1,… ,wh1+1

v1,… , vi,w
�
i+1

,… ,w�
h2+1

]
.

G
[
v1,… , vi,wi+1,… ,wh1+1

,w�
i+1

,… ,w�
h2+1

]
=
[
e1,… , ek+1

]
,

(3.7)

G
�
v1,… , vi,wi+1,… ,wh1+1

v1,… , vi,w
�
i+1

,… ,w�
h2+1

�

=

⎡⎢⎢⎣

Ii 0 Ii 0

0 Ih1+1−i 0 0

0 0 0 Ih2+1−i

⎤⎥⎥⎦
,

(3.8)

GL(h1 + 1) × GL(h2 + 1) ×�0 × GL(i) ⟶ �0

([
Δ1 0

0 Δ2

]
, [�1|�2]T ,Γ

)
⟶

[
(Δ1�

T
1
Γ), (Δ2�

T
2
Γ)
]T

,



The varieties of bifocal Grassmann tensors  

1 3

Remark 3.5 As explained in (3.43.5), after choosing suitable bases, any fundamen-
tal matrix � can be viewed as the matrix associated with a linear map from 

⋀�1 U∕C1 
to 

⋀�2 (U∕C2)
∨ , which are isomorphic to 

⋀s1+1(U∕C1)
∨ and 

⋀s2+1(U∕C2) via the Hodge 
isomorphism. Therefore, � is related to the fundamental matrix associated with the matrix 
[�1|�2]T , where the dual Plücker coordinates appear.

3.2  Decomposition of a bifocal Grassmann tensor as sum of indecomposable 
tensors

Here we explicitly describe a minimal—not necessarily unique—decomposition of the 
generalized fundamental matrix � as the sum of rank(�) indecomposable tensors (for 
different definitions of rank see, for instance, [14]). For these purposes, we describe the 
action on the set of generalized fundamental matrices, which is induced by that in the 
previous section.

Denote by �c the generalized fundamental matrix associated with the canonical form 
(3.7). As recalled in Sect. 2.5, the connection between the bifocal Grassmann tensor � 
associated with [M1|M2] and the bifocal Grassmann tensor �̃ arising from (3.6) is given 
by

Moreover, since G ∈ GL(k + 1) , we have �c = det(G)�̃ . In other words, the fundamental 
matrix associated with [M1|M2] ∈ �0 is related to �c as follows:

where G, K1 and K2 are introduced in Sect. 3.1.
Now, fix bases in W, (U∕C1)

∨ , (U∕C2)
∨ where W = (U∕C1)

∨ ∩ (U∕C2)
∨ . Then, the 

matrix �T
j

 induces a linear map from W to (U∕Cj)
∨ for j = 1, 2 ; hence, �T

j
 is a (hj + 1) × i 

matrix. Recall that the Hodge operator ∗ induces an isomorphism between 
⋀s1+1 W∨ and ⋀s2+1 W  , as the dimension of W is i and s1 + 2 + s2 = i . Also, we have the following 

commutative diagram, namely

where � is by definition a bifocal Grassmann tensor. Let I be a multi-index of length 
s1 + 1 in {1,… , i} and denote by Ic its complement of length i − (s1 + 1) = s2 + 1 . 
As I varies, denote by EI the basis of 

⋀s1+1 W∨ induced by a fixed basis of W. Set 
FIc =∗ (EI) ∈

⋀s1+1 W.

(3.9)�̃ =

(
s2+1⋀

K−1
2

)
⋅�

s1+1⋀
(K−1

1
)T .

(3.10)� = (det(G))−1

(
s2+1⋀

K2

)
�c

(
s1+1⋀

KT
1

)
,
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Proposition 3.6 Let

be matrices such that [AT
c
|BT

c
] is a (k + 1) × (h1 + h2 + 2) matrix, as introduced in Lemma 

3.3. Then, the corresponding bifocal Grassmann tensor �c has the following minimal 
decomposition up to sign:

Proof Take the basis EI in 
⋀s1+1 W∨ as above. The Hodge operator corresponds—

up to sign—to the tensor 
∑

I EI⊗ ∗ (EI) =
∑

I EI ⊗ FIc ∈
⋀s1+1 W ⊗

⋀s2+1 W . 
If we apply 

⋀s1+1 𝜏1,c ⊗
⋀s2+1 𝜏2,c to 

∑
I EI⊗ ∗ (EI) , we have an element in ⋀s1+1(U∕C1)

∨ ⊗
⋀s2+1(U∕C2)

∨ , namely Fc . Thus, we have

  ◻

Remark 3.7 The sum in (3.11) has 
(

i

s1 + 1

)
= rk (�c) addenda, so that (3.11) is a mini-

mal decomposition of �c as sum of rank 1 tensors. Notice that this decomposition may not 
be necessarily unique.

The combination of (3.10) and (3.11) allows us to prove the following result.

Corollary 3.8 Let [�1,c|�2,c]T be the (h1 + h2 + 2) × i matrix corresponding to �c . With the 
same notation adopted in this section, the following holds (up to sign):

where PI ∈
⋀s1+1(U∕C1) and QIc ∈

⋀s2+1(U∕C2)
∨.

Example 3.9 Set (�1, �2) = (3, 3) , so k = 5 . Moreover, set h1 = 4 and h2 = 3 . Consider two 
projections from ℙ5 to ℙ4 and ℙ3 with profile (3,  3). In this case i = 3 . Pick the matrix 
[AT |BT ] of size 6 × 9 where A and B are the projection matrices, namely

Ac =
(
Ih1+1 0h1+1,k−h1

)
, Bc =

(
Ii 0i,k−h2

0i,k−h1
0k−h1,i

0k−h1,k−h2
Ik−h1

)

(3.11)�c =
∑
I

((
s1+1⋀

𝜏1,c

)
EI

)
⊗

((
s2+1⋀

𝜏2,c

)
FIc

)
.

�c =
∑
I

((
s1+1⋀

𝜏1,c

)
EI

)
⊗

((
s2+1⋀

𝜏2,c

)
FIc

)
.

� =
1

det(G)

∑
I

((
s1+1⋀

K1

s1+1⋀
𝜏1,c

)
EI

)
⊗

((
s2+1⋀

K2

s2+1⋀
𝜏2,c

)
FIc

)

=
1

det(G)

∑
I

PI ⊗ QIc ,
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Set

We have

i.e., we have turned the matrix into the form 3.6. Finally, we consider the matrix

and get

which is the canonical form of [AT |BT ] . Notice that det(G) = −
1

2
.

The 5 × 3 matrix �T
1

 and the 4 × 3 matrix �T
2

 are given by:

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 � 0 0 0 1

0 1 0 0 0 � 0 0 1 0

0 0 1 0 0 � 0 1 0 0

0 0 0 1 0 � 1 0 0 0

0 0 0 0 1 � 1 0 1 0

1 1 1 1 1 � 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

K1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 − 1 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
, K2 =

⎡⎢⎢⎢⎣

0 − 1 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤⎥⎥⎥⎦
.

�
AT BT

�� K1 0

0 K2

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 � 1 0 0 0

0 1 0 0 0 � 0 1 0 0

0 0 1 0 0 � 0 0 1 0

0 − 1 0 1 0 � 0 − 1 0 1

0 0 0 0 1 � 0 0 0 1

1 0 1 1 1 � 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1∕2 1∕2 − 1∕2 1∕2 − 1∕2 1∕2

−1∕2 − 1∕2 − 1∕2 − 1∕2 1∕2 1∕2

1∕2 1∕2 1∕2 1∕2 1∕2 − 1∕2

⎤⎥⎥⎥⎥⎥⎥⎦

G
�
AT BT

�� K1 0

0 K2

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 � 1 0 0 0

0 1 0 0 0 � 0 1 0 0

0 0 1 0 0 � 0 0 1 0

0 0 0 1 0 � 0 0 0 0

0 0 0 0 1 � 0 0 0 0

0 0 0 0 0 � 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�T
1
=

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 − 1 0

0 0 0

⎤
⎥⎥⎥⎥⎦
, �T

2
=

⎡⎢⎢⎢⎣

0 − 1 0

0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎦
.
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The transpose of the generalized fundamental matrix �c of the canonical form above is 
given by

which can be decomposed as follows:

Notice that (det(G)−1)�c
T =

�⋀2
K−1
1

�
�T (K−1

2
)T where

which, up to the constant det(G)−1, can be decomposed as follows:

as predicted in Corollary 3.8. In particular, PI ∈
⋀2

(U∕C1) and QIc ∈ (U∕C2)
∨ for every 

choice of multi-indices I.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − 1 0

0 1 0 0

0 0 0 0

0 0 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
[
1 0 0 0 0 0 0 0 0 0

]
⊗

[
0 0 1 0

]

+
[
0 1 0 0 0 0 0 0 0 0

]
⊗

[
0 1 0 0

]

−
[
0 0 0 0 1 0 0 0 0 0

]
⊗

[
1 0 0 0

]
.

�T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0

2 0 − 2 0

0 − 2 0 0

0 0 0 0

0 0 0 2

0 0 0 0

0 0 0 0

0 0 0 2

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
[
1 0 −1 0 0 0 0 0 0 0

]
⊗

[
0 1 0 0

]

+
[
0 1 0 0 0 0 0 0 0 0

]
⊗

[
−1 0 1 0

]

−
[
0 0 0 0 1 0 0 1 0 0

]
⊗

[
0 0 0 1

]
,
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4  Moduli spaces of Bifocal Grassmann Tensors

4.1  The varieties of generalized fundamental matrices

Fix a vector space U of dimension k + 1 . Assume �1 and �2 are two positive integers such that 
�1 + �2 = k + 1 . Let [M1|M2] be a general point in �0 . Recall that MT

1
 and MT

2
 are two gen-

eral projection matrices, in the sense of Lemma 3.3. Notice that Cj = Ker(MT
j
) for j = 1, 2 . 

Therefore, we have a linear projection

The open set �0 (introduced at the end of section 3.1) lies in G1 , which lies in the projec-
tive space ℙ

�⋀k+1
(U∕C1 ⊕ U∕C2)

�
 by the Plücker embedding. The (Zariski) closure of 

the image in ℙ
�⋀𝛼1 (U∕C1)⊗

⋀𝛼2 (U∕C2)
�
 of �0 under � is called the variety X(�1,�2)

 of 
generalized fundamental matrices or bifocal Grassmann tensors with profile (�1, �2) . As 
proved in [8], it has dimension (k + 1)(h1 + h2 − k + 1) − 1 . Notice that the dimension does 
not depend on the profile. In fact, for each choice of (�1, �2) such that �1 + �2 = k + 1 , there 
exists a variety of bifocal Grassmann tensors X(�1,�2)

 . In other words, different profiles give 
different birational connected components. Moreover, as a consequence of [18], a general 
point p ∈ X(�1,�2)

 corresponds to a 
(
(ℂ∗)2∕ℂ∗

)
-orbit [z�M1|z�M2] for z, �,� ∈ ℂ

∗ . Every 
point of such an orbit corresponds to the generalized fundamental matrix zk+1��1��2� , 
where � is the generalized fundamental matrix associated with [M1|M2] . As a consequence, 
X(�1,�2)

 can be viewed as a moduli space of 
(
(ℂ∗)2∕ℂ∗

)
-orbits of Grassmann tensors.

Theorem 4.1 For each pair (�1, �2) corresponding to a profile, the variety of bifocal Grass-
mann tensors X(�1,�2)

 is birational to a homogeneous space with respect to the action of 
GL(h1 + 1) × GL(h2 + 1).

Proof As seen in the previous section, there is a right action of GL(h1 + 1) × GL(h2 + 1) on 
�0 , which induces an action on �0 . Notice that �0 is a homogeneous space with respect to 
the action of the group GL(h1 + 1) × GL(h2 + 1) because any matrix can be put in canonical 
form. This implies that for each pair (�1, �2) there exists a (Zariski) non-empty open set in 
X(�1,�2)

 that is a homogeneous space with respect to the action of GL(h1 + 1) × GL(h2 + 1) .  
 ◻

Now, set sj = hj + 1 − �j and recall that i = s1 + s2 + 2 . Recall that by the Hodge 
operator we have

Therefore, any p ∈ X(�1,�2)
 corresponds to a 

(
(ℂ∗)2∕ℂ∗

)
-orbit of an i-dimensional subspace 

Tp ⊂ (U∕C1)
∨ ⊕ (U∕C2)

∨ , i.e., a point in G2 = G(i, (U∕C1)
∨ ⊕ (U∕C2)

∨) , which is 
mapped to ℙ

�⋀i �
(U∕C1)

∨ ⊕ (U∕C2)
∨
��

 under the Plücker embedding. As before, the lin-
ear projection

𝜋 ∶ ℙ

(
k+1⋀

(U∕C1 ⊕ U∕C2)

)
⤏ ℙ

(
𝛼1⋀
(U∕C1)⊗

𝛼2⋀
(U∕C2)

)

𝛼1⋀
(U∕C1)⊗

𝛼2⋀
(U∕C2) ≃

s1+1⋀
(U∕C1)

∨ ⊗

s2+1⋀
(U∕C2)

∨.
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maps G2 to a projective variety X(s1,s2)
 , which is birational to X(�1,�2)

 , as G2 is 
the dual Grassmannian of G1 . In what follows, we will focus our attention on 
X(s1,s2)

 ; statements for X(�1,�2)
 can be deduced in a similar fashion. Recall that 

dim(X(�1,�2)
) = dim(X(s1,s2)

) = (k + 1)(h1 + h2 − k + 1) − 1 = (k + 1)i − 1.

Remark 4.2 By the decomposition described in 3.8, there exists a rational map � from the 
variety X(s1,s2)

 to the secant variety Secr(G(s1 + 1, i) × G(s2 + 1, i)) . This map sends a gen-
eral fundamental matrix F′ in dual Plücker coordinates to the subspace generated by the 
r-tuple {(PI ,QIc ) : I   multi-index of length s1 + 1 } where r is the rank of F′ . More precisely, 
there exists an isomorphism between G(s1 + 1, i) and G(s2 + 1, i) which is induced by the 
Hodge operator. Denote by Graph(h) ⊂ G(s1 + 1, i) × G(s2 + 1, i) the graph of this isomor-
phism, and by Secr(Graph(h)) ⊂ Secr(G(s1 + 1, i) × G(s2 + 1, i)) the corresponding secant 
variety. Therefore, by the decomposition recalled before, the rational map � sends X(s1,s2)

 to 
Secr(Graph(h)) . Since any linear combination of points PI yields a different fundamental 
matrix with the same image, the map � has a positive dimensional fiber.

4.2  A natural action on X(s1,s2)

First, we investigate the action induced by (3.8) on this variety of bifocal Grassmann ten-
sors. As recalled before, any general point any p ∈ X(s1,s2)

 corresponds to a 
(
(ℂ∗)2∕ℂ∗

)
-orbit of an i-dimensional subspace Tp ⊂ (U∕C1)

∨ ⊕ (U∕C2)
∨ , which identifies a unique 

generalized fundamental form. The group GL(h1 + 1) × GL(h2 + 1) × PGL(i) involved 
in 3.8 acts on p by sending it to the point corresponding to the generalized fundamental 
matrix, which is identified by the 

(
(ℂ∗)2∕ℂ∗

)
-orbit [(Δ1�

T
1
ΓT )|(Δ2�

T
2
ΓT )]T.

Lemma 4.3 Under the action 3.8, and with the same notation adopted therein, a fundamen-
tal matrix

is sent to

Proof Let [�1,c|�2,c]T be the (h1 + h2 + 2) × i matrix defining the bifocal Grassmann ten-
sor associated with the canonical form. Under the action in (3.8), this is mapped to 
[(Δ1�

T
1,c
ΓT )|(Δ2�

T
2,c
ΓT )]T . Corollary 3.8 tells us how to associate the fundamental matrix 

with it.   ◻

In particular, the right action of the group GL(i) sends any generalized fundamental 
matrices to itself, as proved by the following result.

ℙ

(
i⋀(

(U∕C1)
∨ ⊕ (U∕C2)

∨
))

⤏ ℙ

(
s1+1⋀

(U∕C1)
∨ ⊗

s2+1⋀
(U∕C2)

∨

)

� =
1

det(G)

∑
I

((
s1+1⋀

K1

s1+1⋀
𝜏1,c

)
EI

)
⊗

((
s2+1⋀

K2

s2+1⋀
𝜏2,c

)
FIc

)

∑
I

((
s1+1⋀

K1

s1+1⋀
(ΓT𝜏1,cΔ

T
1
)

)
EI

)
⊗

((
s2+1⋀

KT

s2+1⋀
(ΓT𝜏2,cΔ

T
2
)

)
FIc

)
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Proposition 4.4 For any Γ ∈ GL(i) one has

Proof Recall that, for h = 1, 2 , the elements of 
⋀sh+1 ΓT are the minors m

(j1…jsh+1
)

(i1…ish+1
)
 of the 

rows (i1 … ish+1) (with i1 < ⋯ < ish+1 ) and of the columns (j1 … jsh+1) (with j1 < ⋯ < jsh+1 ) 
of ΓT . The rows of (

⋀s1+1 ΓT ) are indexed following the lexicographic order for the s1 + 1−

tuples (i1 … is1+1) , while the columns of (
⋀s1+1 Γ) are indexed following the lexicographic 

order for the s1 + 1−tuples (j1 … jsh+1). Recall also that the only nonvanishing entries of 
∑

I EI ⊗ FIc correspond to the ±1 on the secondary diagonal, as 
∑

I EI ⊗ FIc is the matrix 
associated with the Hodge operator. To prove the result, it suffices to apply the generalized 
Laplace expansion by complementary minors in order to see that the element of row 
(i1 … is2+1) and column (h1 … hs1 ) of the matrix at the left side of the equality in the state-
ment is ± det(Γ) if (i1 … is2+1) and (h1 … hs1 ) are complementary multi-indices, and zero 
otherwise.   ◻

Analogously to Lemma 4.1, the left action of GL(h1 + 1) × GL(h2 + 1) is transitive, so 
X(s1,s2)

 is birational to a homogeneous space, which also follows from the birational equiva-
lence with X(�1,�2)

.

4.3  A less natural action on X(s1,s2)

In what follows, we will prove a result on the geometric structure on X(s1,s2)
 . More pre-

cisely, pick a general point p in X(s1,s2)
 . There exists a 

(
(ℂ∗)2∕ℂ∗

)
-orbit of a subspace 

[Tp ⊂ (U∕C1)
∨ ⊕ (U∕C2)

∨] ∈ G2 = G(i, h1 + h2 + 2) . Let us consider the group H of pairs 
g = (Δ1,Δ2) where

and H ∈ GL(i) and Vj ∈ GL(hj + 1 − i) for j = 1, 2 . The group 
(
(ℂ∗)2∕ℂ∗

)
 acts on H by 

sending g = (Δ1,Δ2) to (��Δ1, ��Δ2) . Denote by G the quotient of H with respect to such 
an action, which has dimension i2 + (h1 + 1 − i)2 + (h2 + 1 − 1)2 − 1 . The group G acts 
on X(s1,s2)

 as follows. A general point p, which corresponds to a Grassmann tensor � and 
is associated with the orbit [z��1|z��2]T , is sent to the point q ∈ X(s1,s2)

 associated with 
[z����1Δ

T
1
|z����2ΔT

2
]T . The main result of this section is the following theorem, which 

will be proved in different steps.

Theorem 4.5 Let �1, �2 be a pair of non-negative integers such that �1 + �2 = k + 1 . Fix 
h1, h2 such that k > max{h1, h2} and k ≤ h1 + h2 + 1 , as well as a (k + 1)-dimensional vec-
tor space U. Set sj = hj + 1 − �j for j = 1, 2 . Then there exists a dominant rational map 
Ψ ∶ X(s1,s2)

⤏ G(i,U∨) such that the following hold:

(
s1+1⋀

Γ

)(∑
I

EI ⊗ FIc

)(
s2+1⋀

Γ

)T

= det(Γ)
∑
I

EI ⊗ FIc .

Δ1 =

(
H 0

0 V1

)
, Δ2 =

(
H 0

0 V2

)
,
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• G(i,U∨) is birationally G-equivariant, that is, there exists a non-empty open set � of 
X(s1,s2)

 such that Ψ(g.p) = Ψ(p) for every p ∈ � and every g ∈ G;
• The general orbit is isomorphic to PGL(i).

4.3.1  Step 1: the definition of Ψ

With the same notation adopted before, the inclusion of Tp in (U∕C1)
∨ ⊕ (U∕C2)

∨ yields 
the horizontal short exact sequence in the diagram below. The map j is given by [�1|�2]T 
after choosing suitable bases. Moreover, the matrix [�1|�2]T corresponds to a matrix 
[M1|M2] where Cj = ker(MT

j
) . As a consequence, the map 𝜂 ∶ U → (U∕C1)⊕ (U∕C2) in 

(2.5), which maps u ∈ U to M1u −M2u , gives the vertical short exact sequence by duality; 
recall that ker(�∨) is isomorphic to (U∕C1)

∨ ∩ (U∕C2)
∨ : see Lemma 2.1.

By the Grassmann formula and the inequality i < k + 1 , the linear map �∨ generically maps Tp to 
a subspace of U∨ , which is isomorphic to Tp , as generically we have �(ker(�∨)) ∩ j(Tp) = {0} . 
Then for a general point p ∈ X(s1,s2)

 we set Ψ(p) = [(𝜂∨◦j)(Tp) ⊂ U∨] ∈ G(i,U∨).

Remark 4.6 In general, for any i-dimensional subspace Tp the intersection j(Tp) ∩ Ker(�∨) 
has dimension in [0, i]. When this dimension is 0, we saw that j(Tp) can be projected iso-
morphically onto U∨ , as in Step 1. Therefore, the exceptional locus Exc(Ψ) of Ψ is given by 
the points p such that the intersection j(Tp) ∩ Ker(�∨) has dimension greater than or equal 
to 1. If we denote by Excj(Ψ) the points p such that dim(j(Tp) ∩ Ker(�∨)) ≤ j for 1 ≤ j ≤ i , 
we have a stratification

4.3.2  Step 2: the general fiber of Ψ

Lemma 4.7 The map Ψ is birationally G-equivariant.

(4.1)

Exc1(Ψ) ⊆ Exc2(Ψ) ⊆ … ⊆ Exci(Ψ).
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Proof As claimed in Theorem 4.5, it suffices to prove that there exists a nonempty open 
set � of X(s1,s2)

 such that Ψ(g.p) = Ψ(p) for every p ∈ � and every g ∈ G . Let � be the 
maximal domain of definition of Ψ . By Step 1, any point p ∈ � defines a vector space Tp 
such that j(Tp) ∩ �(ker(�∨)) = {0} . By definition of the group G , and its elements g, the 
subspace Tp is transformed by H into another i-dimensional subspace Tg.p , which can not 
intersect �(ker(�∨) , as the transformation is bijective. Therefore, Tp and Tg.p are mapped one 
another by H. As a consequence, they define the same point in the Grassmannian G(i,U∨) . 
This can be summarized by saying that Ψ(g.p) = Ψ(p) for a general point p ∈ X(s1,s2)

 and 
every g ∈ G .   ◻

Proposition 4.8 The stabilizer of the action of G on X(s1,s2)
 is given by the subgroup of 

matrices

where Vj ∈ GL(hj + 1 − i) for j = 1, 2 and � ∈ ℂ
∗ . Therefore, the general fiber of Ψ has 

dimension i2 − 1.

Proof Pick the point pc ∈ X(s1,s2)
 which corresponds to the 

(
(ℂ)2

∗
∕ℂ∗

)
-orbit of Tpc 

and the Grassmann tensor �c . An element g belongs to the stabilizer of pc if and only 
if g.pc = pc . The Grassmann tensor Fc is associated with the orbit [z�1�1,c|z�2�2,c]T , 
where �j,c is given in (2.6) for j = 1, 2 . The action g.pc is associated with the 

(
(ℂ)2

∗
∕ℂ∗

)
-orbit [��1�1,cΔT

1
|��2�2,cΔT

2
]T . An element g belongs to the stabilizer of pc if and only if 

g.pc = pc . Therefore, for every z and �j we have

This implies that H =
Ii

��j
 . Hence the claim is proved because the dimension of the stabi-

lizer is

where Z(GL(i)) is the group of scalar matrices in GL(i).   ◻

Remark 4.9 Let us consider the point pc ∈ X(s1,s2)
 that corresponds to the tensor �c . The 

image Ψ(pc) is the i-dimensional subspace in U∨ generated by the rows of the matrix 
(Ii|0i,h1+1−i|0i,h2+1−i) due to (2.6). According to Proposition 4.8, the preimage of it with 
respect to Ψ is a G-orbit corresponding to Grassmann tensors of type 

⋀s2+1 Δ1�c

⋀s1+1 ΔT
1
 , 

where

and H ∈ PGL(i).

Δ1 =

(
�Ii 0

0 V1

)
, Δ2 =

(
�Ii 0

0 V2

)
,

(
z�j
0

)
= �T

j,c
= �j,cΔ

T
j
=

(
z�j��jH

T

0

)

dim(GL(h1 + 1 − i)) + dim(GL(h2 + 1 − i)) + dim(Z(GL(i)) − dim((ℂ∗)2∕(ℂ∗)) =

= (h1 + 1 − i)2 + (h2 + 1 − i)2,

Δ1 =

(
H 0

0 Ih1+1−i

)
, Δ2 =

(
H 0

0 Ih2+1−i

)
,
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4.3.3  Step 3: the map Ψ is surjective

Corollary 4.10 The rational map Ψ ∶ X(s1,s2)
⤏ G(i,U∨) is dominant.

Proof Let I  be closure of Ψ(X(s1,s2)
) . By Lemma 4.8, there is an orbit of maximal dimen-

sion (that of the point corresponding to �c ) which is dim(G) − dim(Stab(�c)) = i2 − 1 . 
Therefore, by the Fiber Dimension Theorem, we have

Thus, the claim follows. Since a dominant map between projective varieties is surjective, 
every i-dimensional subspace in U∨ has a preimage under Ψ .   ◻

Remark 4.11 In other words, at least theoretically, given an i-dimensional space W in U∨ it is 
possible to “reconstruct a bifocal Grassmann tensor," i.e., a point in the preimage of W under 
Ψ.
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