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Abstract: Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging tech-
nique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI
can provide useful information in pre-surgical mapping aimed to balancing long-term survival by
maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional con-
nectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly
in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic
patients. Although rest-fMRI is still under standardization, this technique has been demonstrated
to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with
intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI
can provide valuable information for the depiction of glioma-related functional brain network im-
pairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s
ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of
eloquent brain structures and neuronal networks responsible for the integrity of executive functions.
In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the
clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors,
before and after tumor resection.

Keywords: brain mapping; brain tumors; functional connectivity; resting-state fMRI

1. Introduction

In the setting of brain tumors, the primary goal of the surgery aims to maximize the
tumor resection while preserving brain function [1–3]. Resting-state functional magnetic
resonance imaging (rest-fMRI) represents an emerging technique to assess brain func-
tional network connectivity y providing useful information in the presurgical planning
and the postoperative follow-up for brain tumor surgery [4]. Indeed, in the literature,
there is evidence that rest-fMRI can demonstrate glioma-related functional brain network
impairment [5,6]. In this scenario, high-grade gliomas (HGG) are characterized by biologi-
cal properties which lead to rapid clinical progression and poor prognosis [7]. Maximal
safe resection is one of the main prognostic factors to increase the survival of affected pa-
tients [8,9]. Moreover, current investigations have focused on pathophysiology mechanisms
and therapeutic approaches to improve HHG patients’ outcome [10–12].
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Rest-fMRI is a novel neuroimaging technique that explores functional connectivity
networks associated with both normal and pathologic neurologic function [13]. It works
at “rest,” which requires minimal participant collaboration, and may replace or can be
complementary to task-driven fMRI, particularly in patients who are sedated, aphasic, or
paretic, thus unable to cooperate for the acquisition of task-driven fMRI, or in children [13].

Although rest-fMRI is still under standardization, there is evidence that it can provide
useful information about brain neuronal networks organization in the routine clinical
setting. In particular, it can be used to in vivo map eloquent areas. Thus, rest-fMRI could
be used for detecting glioma-related functional brain network alterations, improving the
surgeon’s ability to increase the tumor resection and simultaneously minimize the risk of
damage to brain neuronal networks responsible for executive functions integrity [5,6].

In this review, we illustrate the principles and the value of rest-fMRI in the clinical
setting for presurgical mapping of neuronal networks in patients affected by brain tumors,
and after tumor resection.

2. Principles of Rest-fMRI

Rest-fMRI is an emerging neuroimaging technique depending on the quantification of
hemodynamic changes following the activation of brain areas. The increase in neuronal
activity involves a greater demand of energy, and therefore oxygen, by neurons. Thus,
neuronal activity induces a hemodynamic response that alters local brain concentrations of
oxyhemoglobin and deoxyhemoglobin. This process produces time-dependent alterations
in T2- and T2*-relaxation times, constituting the basic principles of the blood oxygen level-
dependent (BOLD) contrast imaging [13]. Since the oxyhemoglobin has a diamagnetic effect
and the deoxyhemoglobin has a paramagnetic effect, voxels having a low concentration
of deoxyhemoglobin increases the BOLD signal, and those with a high concentration
contribute to a decrease in the BOLD signal. Different from task-driven fMRI, the rest-fMRI
does not require any stimulus (i.e., motor, language, visual task). The result is a color brain
map reflecting the spontaneous low-frequency BOLD signal fluctuation which implies
activation of distinct patterns of cerebral areas during the resting state underlying the
cerebral connectivity (Figure 1).
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 Figure 1. 3D brain surface with color map overlay reflecting the spontaneous low-frequency BOLD
signal fluctuation which implies activation of distinct patterns of cerebral areas during the resting
state underlying the cerebral connectivity.

The human brain networks are active even during the resting or relaxing state. Fur-
thermore, resting-state brain activity is far more significant than task-related activity,
consuming 60–80% of the brain’s energy [14]. These networks of the brain are called
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resting-state networks (RSNs) [6,15]. Rest-fMRI can reliably depict temporally coherent
networks, and they are codified in the literature based on their different functions, such as
the default mode network (DMN), the sensorimotor network, the auditory network, the
visual network, the executive control network, the lateralized frontoparietal network, and
the temporoparietal network [5,16–19] (Figure 2, Table 1).
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Figure 2. 3D color brain map depicting resting-state functional magnetic resonance imaging (fMRI)
functional regions. In each region, resting-state networks (RSNs) are subdivided on the basis of
their different functions, such as the default mode network (DMN), the sensorimotor network, the
auditory network, the visual network, the executive control network, the lateralized frontoparietal
network, and the temporoparietal network.

Table 1. Brain resting-state networks (RSNs) nomenclature.

Id Extensive Name Short Name Id Extensive Name Short Name

1 DefaultMode.MPFC DM.MFPC 17 Salience.SMG l SA.SMG_L
2 DefaultMode.LP l DM.LP_L 18 Salience.SMG r SA.SMG_R
3 DefaultMode.LP r DM.LP_R 19 DorsalAttention.FEF l DA.FEF_L
4 DefaultMode.PCC DM.PCC 20 DorsalAttention.FEF r DA.FEF_R
5 SensoriMotor.Lateral l SML_L 21 DorsalAttention.IPS l DA.IPS_L
6 SensoriMotor.Lateral r SML_R 22 DorsalAttention.IPS r DA.IPS_R
7 SensoriMotor.Superior SM.S 23 FrontoParietal.LPFC l FP.LPFC_L
8 Visual.Medial VM 24 FrontoParietal.PPC l FP.PPC_L
9 Visual.Occipital VO 25 FrontoParietal.LPFC r FP.LPFC_R

10 Visual.Lateral l VL_L 26 FrontoParietal.PPC r FP.PPC_R
11 Visual.Lateral r VL_R 27 Language.IFG l LA.IFG_L
12 Salience.ACC SA.ACC 28 Language.IFG r LA.IFG_R
13 Salience.AInsula l S.A_L 29 Language.pSTG l LA.pSTG_L
14 Salience.AInsula r S.A_R 30 Language.pSTG r LA.pSTG_R
15 Salience.RPFC l SA.RPFC_L 31 Cerebellar.Anterior CA
16 Salience.RPFC r SA.RPFC_R 32 Cerebellar.Posterior CP

The proof of the existence of the RSNs is based upon the reproducibility of the
networks in the single subject, the consistency of the networks between different sub-
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jects, and the correspondence of the cortical areas identified with different methods of
study [5,6,20,21]. Therefore, rest-fMRI is a valid method to evaluate the intrinsic functional
architecture, or “connectome,” of the human brain [5] (Figure 3) with high reproducibility
and reliability.
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connectome.

Brain MR imaging accurately demonstrates the morphological aspects of brain tumors
with standard sequences, such as the three-dimensional (3D) magnetization-prepared
rapid acquisition with gradient echo (MPRAGE) T1-weighted images obtained before and
after gadolinium enhancement. Echo-planar imaging (EPI) sequence for rest-fMRI can be
performed in a routine clinical setting, instructing the patient to stay still with their eyes
closed while relaxing [5,6]. The rest-fMRI sequence is largely available on MRI scanners.
By contrast, the main limitation for the clinical implementation of rest-fMRI is the lack of
methodology standardization for data processing, which is based on a variety of different
software tools and methods that require trained personnel and high skill of expertise [5,6].

3. Clinical Application of Rest-fMRI

Rest-fMRI is an emerging technique valuable for the exploration of brain physiology.
Recent studies have explored the potential applications of rest-fMRI in various neurologic
diseases (e.g., epilepsy, and neurodegenerative and psychiatric diseases) [22–25]. How-
ever, the value of rest-fMRI in the neurosurgical planning for brain tumors was not fully
investigated [6,15,26–31].

Several studies reported high overlap between rest-fMRI and task-driven fMRI in
various neurologic diseases when comparing the motor network, as well as high con-
cordance with cortical stimulation mapping [32]. Other studies have demonstrated high
reproducibility of rest-fMRI-derived motor maps comparable to that of task-driven fMRI
in healthy subjects [33].

Resting-state fMRI can reliably detect common functional connectivity networks in
patients with glioma, and has the potential to anticipate network alterations after surgical
resection. Alterations of RSNs can be analyzed at the level of the single subject and in group
analysis, with a functional mapping demonstrating a good correspondence with cortical
stimulation mapping [32]. Although task-driven-fMRI is used to provide preoperative
localization of eloquent areas to reduce the risk of surgery-induced functional deficits,
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several functional networks can be identified using rest-fMRI, such as language, visual, and
sensorimotor networks with precise cortical parcellation identification [34,35] (Figure 4).
This MR technique does not require any patient activity and can be performed in young
children and in patients who are unable to collaborate due to being aphasic, paretic, or
sedated patients. Functional connectivity in patients with brain tumors can be carried
out by recognizing the different RSNs and their alterations [36–39]. Different RSNs can
be evaluated with the same sequence and in the same examination, showing normal
connectivity or impairment of selected functional RSNs.
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Clinical presurgical rest-fMRI can be merged with standard anatomic sequences
(FLAIR, T1-precontrast, and postcontrast) and imported onto the neuronavigational system,
thus can be used to guide intraoperative stimulation.

4. Postprocessing of Resting-State fMRI and Analysis of Brain Networks

Rest-fMRI evaluation of functional brain connectivity has demonstrated different
RSNs, which depict specific functions and varied spatial location [6,15,18] (Figure 4).
Anatomical connectivity is the physical connections for the interactions between two
anatomical areas of the brain, whereas functional connectivity represents the connection
between two or more spatial regions whose activity shows a linear temporal correlation.

Different post-processing and statistical approach have been described to assess the
functional connectivity by rest-fMRI. There are mainly three widely used techniques for
rests-fMRI connectivity analysis: the seed-based analysis, the independent component
analysis (ICA), and the graph theory analysis. The seed-based analysis was the first method
used to identify the resting state networks by the selection of a seed region of interest
(ROI) to locate by computational and statistical analysis the linear correlation of the seed
regions with all the other voxels of the entire brain [18,40,41]. The ICA method investigates
multiple simultaneous voxels to voxel interactions of distinct networks in the brain, where
the low-frequency spontaneous fluctuations of the rest-fMRI signal may be automatically
recovered from the noise [42–44].

The graph theory analysis is used to define a mathematical model of complex network
functions within the human brain. With this method, the resting-state networks are
represented by groups of nodes connected by edges [5,6,45,46] (Figure 5).

Therefore, the graph theory analysis shows the relation between the nodes and edges
and describes these interactions through different graph parameters (e.g., clustering coeffi-
cient). Using these analysis methods for functional connectivity, different RSNs in the brain
can be identified, such as the salience network, auditory network, basal ganglia network,
higher visual network, visuospatial network, default mode network, language network, ex-
ecutive network, precuneus network, primary visual network, and sensory-motor network.
Importantly, for rest-fMRI image processing, a variety of different post-processing software
packages can be used, mainly freely available as open-sources, such as Statistical Paramet-
ric Mapping (SPM Available online: https://www.fil.ion.ucl.ac.uk/spm/ (accessed on 1
September 2021)), FSL (Available online: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki (accessed
on 1 September 2021)), Analysis of Functional NeuroImages (AFNI Available online:
https://afni.nimh.nih.gov/ (accessed on 1 September 2021)), and CONN toolbox (Avail-
able online: https://web.conn-toolbox.org/ (accessed on 1 September 2021)). However,
these software require a high knowledge and expertise to conduct postprocessing analysis
as they lack standardization, thus requiring ad hoc adjustments or custom-made scripts to
tailor the postprocessing pipeline.

Single-subject and group rest-fMRI analysis for the commonly used functional net-
works, can be performed and graphically displayed as a circular graph named “connec-
tome” (Figure 2) [5,47].

An overview of the workflow routinely used in our institution, consisting of rest-fMRI
post-processing and analysis pipeline is shown in Figures 6 and 7. Real-time quality control
using the processing pipeline is performed during real-time rest-fMRI acquisition. A trained
observer evaluates the quality control parameters on the MR acquisition workstation
to determine the scan success or repeat the scan after instructing the patient to reduce
their head motion or to improve their compliance. Offline quality control and correction
of rest-fMRI images is done, and analysis of connectome is assessed by co-registration
with structural MRI to measure the Euclidean distances between intraoperative mapping
coordinates and the edges of the corresponding connectivity and activation clusters using
the graph theory analysis. The entire preprocessing and post-processing pipeline can be
implemented using various procedures and opensource fMRI analysis software.

https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://afni.nimh.nih.gov/
https://afni.nimh.nih.gov/
https://web.conn-toolbox.org/
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In our clinical setting, we implemented a post-processing pipeline based on the open-
source software fMRIPrep (Available online: https://fmriprep.org/en/stable/ (accessed on
1 September 2021)) and FreeSurfer (Available online: https://surfer.nmr.mgh.harvard.edu/
(accessed on 1 September 2021)), and the Conn Toolbox (Available online: https://web.
conn-toolbox.org/ (accessed on 1 September 2021)) running under MatLab (MathWoks,
Natick, MA, USA, Available online: https://it.mathworks.com/products/matlab.html
(accessed on 1 September 2021)), using a 64-bit Intel-based High Performance Computer
(HPC) with a 16 core CPU, 64 GB RAM, nVidia Tesla 100 graphic board, and 7 TB storage
hard disk.

The preprocessing steps of the rest-fMRI steps included: rigid body motion correction,
spatial smoothing (4 mm Gaussian spatial filter kernel), spatial normalization using the
Montreal Neurological Institute (MNI) atlas (Available online: https://brainmap.org/
training/BrettTransform.html (accessed on 1 September 2021)) on the subjects, and a
low pass filter to reduce signal fluctuations due to cardiac and respiratory pulsations.
A 10% intensity threshold was applied to the raw images to remove spurious corre-
lations outside of the brain. Atlas-based cortical parcellation before and after surgery
was obtained with FreeSurfer (Figure 8), and seed selection was carried out using Brod-
mann areas (BAs) (Available online: https://www.brainm.com/software/pubs/dg/BA_
10-20_ROI_Talairach/functions.htm (accessed on 1 September 2021)) after transform-
ing the coordinates from the MNI atlas into the Talairach atlas (Available online: https:
//brainmap.org/training/BrettTransform.html (accessed on 1 September 2021)). The senso-
rimotor network (SMN), encompassing primary sensory and motor areas, was mapped us-
ing the atlas-based left BAs 1–3 (BA1-3L). The language network was mapped using either
left Bas 44 and 45 (BA44, 45L) for Broca’s area or left BAs 22, 39, and 40 (BA22,39,40L) for
Wernicke’s area. Detailed post-processing steps used included each 3D MPRAGE T1w (T1-
weighted) volume being corrected for intensity non-uniformity and skull-stripped. Brain
surfaces were reconstructed with recon-all of FreeSurfer, and the brain mask estimated
previously was refined with FreeSurfer-derived segmentation of the cortical gray-matter.
Spatial normalization was performed through nonlinear registration using brain-extracted
versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted
3D MPRAGE T1w with FSL (Available online: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
(accessed on on 1 September 2021)). EPI rest-fMRI images were slice time-corrected using
AFNI (Available online: https://afni.nimh.nih.gov/ (accessed on 1 September 2021)) and
motion-corrected using FSL. This was followed by co-registration to the corresponding
3D MPRAGE T1w images using boundary-based registration with six degrees of freedom,
using FreeSurfer. Motion-correcting transformations, BOLD-to-T1w transformation, and
T1w-to-template (MNI) warp were concatenated and applied in a single step using ANTs
(Avatailable online: https://github.com/ANTsX/ANTs (accessed on 1 September 2021)).

Physiological noise regressors were extracted applying CompCor [47]. Principal
components were estimated for the two CompCor variants: temporal (tCompCor) and
anatomical (aCompCor). A mask to exclude signal with cortical origin was obtained by
eroding the brain mask, ensuring it only contained subcortical structures. Six tCompCor
components were then calculated including only the top 5% variable voxels within that
subcortical mask. For aCompCor, six components were calculated within the intersection
of the subcortical mask and the union of CSF and WM masks calculated in T1w space, after
their projection to the native space of each functional run. ICA-based Automatic Removal
of Motion Artifacts (AROMA) [48] was used to generate aggressive noise regressors as well
as to create a variant of data that is non-aggressively denoised.

This method provides the surgeon information about the exact localization of resting-
state networks owing to the decision of the best surgical approach for the extent of resection
(EOR). Indeed, functional network preservation should be considered when evaluating
the EOR planning. In this setting, rest-fMRI can predict the impairment in the executive
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functions or other cognitive processes after surgical resection of a brain tumor, and can be
valuable in identifying behavioral changes.
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Rest-fMRI can thus contribute to tailoring a personalized surgery for brain tumor
resection improving the surgeon’s ability to increase the EOR, and simultaneously min-
imize the risk of impairment of critical functional networks responsible for specialized
function [5].

Rest-fMRI can also play a role in the postoperative evaluation of patients after tumor
resection by estimate the potential alterations in functional connectivity and the onset of
new neurologic deficits due to surgical resection. Moreover, in longitudinal studies, rest-
fMRI allows assessing functional reorganization after surgical resection of brain tumors.
Therefore, this advanced neuroimaging tool may be implemented in the routine clinical
management of brain tumor patients.

Despite further validation is currently necessary in a large population of patients to
define the clinical value of task-driven fMRI and rest-fMRI for neurosurgical planning
of brain tumors [48–55], in our experience, the decision making process for brain tumor
surgical planning was improved with the use of rest-fMRI as it was valuable in the assess-
ment of feasibility of resection, surgical planning, and selection of patients for invasive
functional mapping procedures, as reported in other studies [56]. Rest-fMRI was helpful in
87% of patients with sensorimotor eloquent lesions, and in 85% of patients with language
eloquent lesions. Moreover, preoperative rest-fMRI has influenced the decision-making in
brain tumor resection by adjustment of the treatment plans, resulting in reduced surgical
time, increased extent of resection, and decreased craniotomy size, as reported in previous
studies using task-driven fMRI [57].
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5. Limitations

There are still various problems affecting the performance and analysis of rest-fMRI
in the clinical setting of brain tumors. The susceptibility artifacts and neurovascular
uncoupling (NVU) issues, as well as head motion artifacts, which result in rest-fMRI
image quality degradation. Susceptibility effects are more evident at 3T and higher field
strength. They reflect the extent of magnetization of a substance in the presence of an
external magnetic field. Field distortions and MR artifacts are commonly present around
metal objects and implants, as they contain ferromagnetic materials which is perturbative
to the external magnetic field. Susceptibility-induced signal loss from T2*-dephasing
results in “geometric distortion” affecting rest-fMRI acquisition which is worse at high
field strength [5,6].

Head motion and physiologic disturbance due to respiratory and cardiac cycles are
sources of artifacts that heavily affect rest-fMRI. Head restraints used to reduce the effects
of head motion and compensation of respiratory fluctuations and cardiac pulsations can
achieve an improvement of these sources of artifacts. False-positive BOLD activation due to
eye motion, random noise, partial volume effects, and physiological pulsations, along with
post-processing statistical issues, may reduce the reliability of rest-fMRI studies [5,6,58].

To address these issues, retrospective motion and physiological noise correction meth-
ods can be used. Correction for the non-neural noise from white matter and cerebrospinal
fluid (known as “nuisance regression”) can be utilized to improve the image quality of
the rest-fMRI dataset. [5,6,58]. Impaired blood oxygenation level-dependent (BOLD) fMRI
activation in the eloquent cortex in the vicinity of brain tumors can be a source of inaccurate
pre-surgical planning evaluation that can lead to inadvertent eloquent cortical resection.
These abnormal BOLD activations close to focal brain tumors often occur due to the dis-
ruption of coupling between neuronal activity and adjacent microvasculature, known as
“neurovascular uncoupling” (NVU) [58].

Another limitation to this approach is the heterogeneity of lesion localization and
spatial extent is altered anatomy due to a lesion mass effect that impacts cortical par-
cellation and seed selection [51]. Automation of spatial normalization using improved
co-registration, spatial normalization, and tissue segmentation is widely available in open-
source software packages, such as SPM, FreeSurfer, and is expected to improve workflow.

Artificial intelligence-based classification of resting-state connectivity is expected to
provide more precise analysis results. This may ultimately allow integration of real-time
connectivity maps into neurosurgical guidance.

6. Conclusions

Rest-fMRI is an advanced neuroimaging technique able to provide useful information
concerning different neuronal networks and their alterations related to the tumor and
surgery. It provides an assessment for diagnosis, prognosis, and personalized treatment,
which can be improved with the complementary information obtained by diffusion tractog-
raphy [59] and standard morphologic magnetic resonance imaging. Moreover, rest-fMRI
can be the unique method of assessing functional connectivity for surgical planning of
brain tumors when a patient cannot perform task-driven-fMRI.

This approach has the potential for real-time pre-surgical mapping of eloquent cortex
in patients with brain tumors. Future developments include parcellation of eloquent
cortex based on combining rest-fMRI with diffusion tensor imaging (DTI) [60] by means of
machine learning artificial intelligence to assess the integrity of fiber tracts in the vicinity of
a tumor, and MRI spectroscopy to delineate tumor margins and identify infiltration.

Standardization and validation of advanced imaging techniques and post-processing
of fMRI will improve the risk–benefit assessment for each patient allowing neurosurgeons
to better understand the clinical outcome of resection.
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