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Biological invasions are a widespread problem worldwide, as invasive

non-indigenous species (NIS) may a�ect native populations through direct (e.

g., predation) or indirect (e.g., competition) trophic interactions, leading to

changes in the food web structure. The trophic relationships of the invasive

eastern mosquitofish Gambusia holbrooki and the native big-scale sand smelt

Atherina boyeri coexisting in three Mediterranean coastal ponds characterized

by di�erent trophic statuses (from oligotrophic to hypereutrophic) were

assessed in spring through isotopic niche analysis and Bayesianmixingmodels.

The two fish relied on the distinctive trophic pathways in the di�erent ponds,

with the evidence ofminimal interspecific niche overlap indicating site-specific

niche divergence mechanisms. In more detail, under hypereutrophic and

mesotrophic conditions, the two species occupied di�erent trophic positions

but relying on a single trophic pathway, whereas, under oligotrophic

conditions, both occupied a similar trophic position but belonging to distinct

trophic pathways. Furthermore, the invaders showed the widest niche breadth

while the native species showed a niche compression and displacement in

the ponds at a higher trophic status compared to the oligotrophic pond. We

argue that thismay be the result of an asymmetric competition arising between

the two species because of the higher competitive ability of G. holbrooki and

may have been further shaped by the trophic status of the ponds, through

a conjoint e�ect of prey availability and habitat complexity. While the high

trophic plasticity and adaptability of both species to di�erent environmental
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features and resource availability may have favored their coexistence through

site-specific mechanisms of niche segregation, we provide also empirical

evidence of the importance of environmental control in invaded food webs,

calling for greater attention to this aspect in future studies.

KEYWORDS

biological invasion, alien species, stable isotopes, mosquitofish, sand smelt, coastal

ponds

Introduction

The invasion of non-indigenous species (NIS) is considered

among the major threats for marine ecosystem functioning and

services worldwide. The consequences of species invasion and

establishment in recipient ecosystems are complex and depend

on the interaction between the ecological characteristics of the

invader species and the environmental and biological attributes

of the recipient ecosystem (Occhipinti-Ambrogi, 2007; Chan

and Briski, 2017). In particular, while high dispersal ability

and physiological plasticity, fast growth, high feeding rate, and

generalist feeding strategies are among the key factors of success

for invasive NIS (David et al., 2017 and reference therein),

the establishment of self-sustaining NIS populations is further

favored in disturbed habitats (Chan and Briski, 2017).

Change in trophic dynamics and structure with severe

consequences for native species is one of the most common

ecological processes that the establishment of invasive NIS

may trigger in recipient ecosystems (Jackson et al., 2012;

Britton et al., 2018; Costa-Pereira et al., 2019). Depending

on the trophic position of the invader species, direct trophic

interactions with native species can exert bottom-up or

top-down cascading controls on local food webs (Vander

Zanden et al., 1999; Gallardo et al., 2016). On the contrary,

interspecific exploitative competition mechanisms may occur

when invasive and native species are trophically analogous

and may lead to competitive exclusion or coexistence through

niche differentiation mechanisms, such as spatial segregation

or resource partitioning (David et al., 2017 and references

therein). As invasive NIS are known for their high competitive

abilities, they may induce changes in habitat or resource use

by natives, displacement and/or contraction of their trophic

niche, and alteration of trophic interactions and food web

structure (Vander Zanden et al., 1999; Carmona-Catot et al.,

2013; Tran et al., 2015). Therefore, the study of trophic niche

and food web structure in invaded ecosystems can help to

reveal the ecological changes driven by the biological invasion,

to understand how trophic relationships between invasive and

native species promoted their coexistence, and to predict the

future evolution of recently invaded ecosystems.

The eastern mosquitofish Gambusia holbrooki has been

intentionally introduced from the southern USA to European

and Australian freshwaters since the early 1900s with the

purpose to control mosquito populations and reduce the risk of

spreading mosquito-related diseases. In addition to freshwaters,

G. holbrooki thrives in a wide range of habitats, including

estuaries and near-shore marine areas, and has been identified as

one of the most widespread invasive fish worldwide (Lowe et al.,

2000). It is a voracious predator with high feeding rates (Rehage

et al., 2005), also known as an omnivore with opportunistic

feeding strategies (Blanco et al., 2004; Kalogianni et al., 2014).

A large array of terrestrial and aquatic organisms have been

identified as common prey, along with macrophyte detritus

(Blanco et al., 2004; Rehage et al., 2005; Remon et al., 2016).

Besides high physiological adaptability and trophic plasticity

and feeding rates, viviparity, high fecundity, and resistance to

pollutants provide mosquitofish with a high competitive ability

compared to native fish (Pyke, 2005).

Overall, a strong competitive impact of G. holbrooki on

native species has been well documented in a variety of

ecosystems (Alcaraz et al., 2008; MacDonald et al., 2012; Ruiz-

Navarro et al., 2013). In particular, laboratory and field studies

demonstrated the influence of abiotic factors in shaping the

performance of mosquitofish, including the competitive effects

on native species (Rincón et al., 2002; Blanco et al., 2004;

Carmona-Catot et al., 2013; Ruiz-Navarro et al., 2013). High

frequency of aggressive behaviors and higher feeding rate than

native species have been observed at higher water temperature

(Rincón et al., 2002; Carmona-Catot et al., 2013) and lower

salinity (Alcaraz et al., 2008; Ruiz-Navarro et al., 2013). On

the contrary, a limited influence of habitat features (e.g., size

and complexity) and water quality (e.g., nutrient concentration

and turbidity) on mosquitofish life-history traits and predation

has been reported (Blanco et al., 2004; Cano-Rocabayera et al.,

2019). Even with the large body of literature existing on the

ecological effects of invasive fish, including mosquitofish, in

aquatic systems, the trophic aspects have been scantly addressed

especially in combination with environmental stressors.

Carbon and nitrogen stable isotope analysis (SIA, δ
13C,

and δ
15N) is a powerful tool to investigate trophic interactions

(e.g., Michener and Kaufman, 2008; Mancinelli and Vizzini,

2015; Nielsen et al., 2018) and has been widely used to

describe trophic niche features within an isotopic framework

(e.g., isotopic niche breadth and overlap) (Chen et al., 2011;
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Abrantes et al., 2014), ontogenetic diet shifts (Layman et al.,

2011; Andolina et al., 2020), and organic matter pathways

(Vizzini et al., 2005; Signa et al., 2013b). Furthermore, SIA has

the potential to infer the effects of invasive species on aquatic

food webs, including resource shift deriving from intraspecific

and interspecific competitions (Jackson et al., 2012; Mancinelli

et al., 2017; Britton et al., 2018).

Here, we studied the isotopic niche as a proxy for the

trophic niche (sensu Bearhop et al., 2004) of the invasive

eastern mosquitofish G. holbrooki (Girard, 1859) and the native

big-scale sand smelt Atherina boyeri (Risso, 1810), coexisting

in a Mediterranean coastal system (Marinello ponds, Italy)

featured by several small, shallow, and brackish ponds with

different marine influences, geomorphological features, and

trophic conditions (from oligotrophic to hypereutrophic) due

to the external subsidies of gull guano (Signa et al., 2012). The

big-scale sand smelt is a small euryhaline fish that inhabits the

littoral zones of the Eastern Atlantic and the Mediterranean Sea,

where it is frequently found in large schools both along the

coasts and in lagoons and coastal lakes (Kara and Quignard,

2019). Alongside physiological adaptability, the big-scale sand

smelt shows also high trophic plasticity and a generalist trophic

behavior (Vizzini and Mazzola, 2002, 2005).

We hypothesize that generalist feeding behavior and trophic

plasticity of both G. holbrooki and A. boyeri represent strategies

which promote the coexistence of the two species through

resource partitioning, therefore resulting in the separation of the

trophic niche and different isotopic niche features (e.g., breadth,

overlap). We also hypothesize that the contrasting trophic

conditions may modulate this process by shaping the trophic

niches according to prey availability and habitat complexity.

Materials and methods

Study area

The study was carried out in the coastal system of

Marinello located along the north-eastern coast of Sicily (Italy,

Mediterranean Sea) (Figure 1), consisting of five small (1–4 ha),

shallow (max depth: 2–4m), and brackish (mean salinity: 26–

34 PSU) ponds (Verde, Fondo Porto, Porto Vecchio, Mergolo,

and Marinello), separated from the adjacent sea by littoral

bars and lacking direct freshwater input (Mazzola et al., 2010).

The present research focused on three of the five ponds (i.e.,

VE, Verde; ME, Mergolo; and FP, Fondo Porto), on which

several studies were conducted and found high inter-pond

variability in terms of trophic status and primary production

(Signa et al., 2012), contamination level (Signa et al., 2013a,b),

macrobenthic communities (Signa et al., 2015), and trophic

structure (Vizzini et al., 2016). These differences were attributed

to the guano-derived fertilization induced by the colony of the

FIGURE 1

Map of the Marinello coastal system. The ponds studied were

Verde (VE), Mergolo (ME), and Fondo Porto (FP) at increasing

distance from the gull colony indicated by the striped oval. The

dotted line indicates the edge of the Tindari promontory.

yellow-legged gull Larus michahellis (Naumann, 1840) resident

in the cliff next to the pond VE alongside the variability in

geomorphological features of the ponds. The deeper landward

ponds, VE, and ME (max depth, respectively, 3 and 3.5m,

Mazzola et al., 2010), are characterized by seabird-induced

hypereutrophication (i.e., guanotrophication) and mesotrophic

conditions, respectively (mean Chl-a: 44.7 and 8.8mg m−3;

mean TSICHL (Trophic State Index, sensuAcquavita et al., 2015):

65 and 41mg m−3), resulting in high (although seasonally

fluctuating) phytoplanktonic production and high internal

variability (littoral vs. deeper area) (Signa et al., 2012, 2015).

In contrast, the smaller (1.3 ha) and shallower (1.2m deep,

Mazzola et al., 2010) seaward pond FP is oligotrophic (mean

Chl-a: 3.3mg m−3; mean TSICHL: 35mg m−3) and features

higher water transparency and a macrophyte-covered seabed

(Signa et al., 2012, 2015). Accordingly, biotic communities

and trophic pathways vary among ponds (Vizzini et al.,

2016), with benthic assemblages partially mirroring the strong

environmental gradients, namely showing not only decreasing

abundances from FP to VE but also the highest structural and

functional diversity in ME (Signa et al., 2015). As regards fish,

comparable assemblages characterize the three Marinello ponds,

with the nativeA. boyeri and the invasiveG. holbrooki among the

most abundant species in the three ponds, where they coexist

throughout the year, with the highest abundance in spring

(Vizzini et al., 2016).

Sample collection

Atherina boyeri and Gambusia holbrooki specimens were

collected using a small beach seine (4m length, 3mm mesh)

in the three ponds Verde (VE), Mergolo (ME), and Fondo
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TABLE 1 Sample size (N), biometric measures (Mean ± SD), and

trophic position (TP) of small and large specimens of A. boyeri (ATE)

and G. holbrooki (GAM) from the three ponds of the Marinello coastal

system.

Pond Species Size-

class

N Standard

length

(mm)

Wet weight

(mg)

TP

Verde ATE Small 10 23.8± 1.6 121.8 ± 19.6 3.8± 0.2

Large 10 32.9± 1.6 336.4 ± 51.9 3.8± 0.2

GAM Small 8 22.3± 1.3 141.4 ± 35.9 3.3± 0.4

Large 10 38.3± 1.4 1,098.7± 251.6 3.1± 0.2

Mergolo ATE Small 10 24.9± 1.2 120.9 ± 15.5 3.1± 0.2

Large 9 35.1± 6.5 423.7 ± 282.1 3.1± 0.1

GAM Small 9 21.8± 1.1 139.9 ± 36.7 3.7± 0.4

Large 8 35.2± 4.6 517.2 ± 314.6 3.3± 0.2

Fondo ATE Large 9 35.7± 1.7 343.6 ± 65.0 2.8± 0.4

Porto GAM Small 10 21.5± 0.8 119.2 ± 36.1 3.2± 0.3

Large 5 31.7± 0.3 352.3 ± 84.3 3.2± 0.2

Porto (FP) in spring 2012 when the ponds host the highest

diversity and abundances of fish, invertebrates, and organic

matter sources (Signa et al., 2015). The hauls were performed at

each pond in triplicate by dragging the seine on a perpendicular

line (10m) from a depth of about 1.5m up to the shoreline. In

addition, the percent coverage of macrophytes (macroalgae and

seagrasses) was estimated by visual census along the shores and

the central area of each pond and ranked according to themarine

version of the Braun-Blanquet score developed by Kenworthy

et al. (1993) as a proxy for habitat complexity.

After collection, fish were kept cool and in the dark upon

arrival at the laboratory, where they were identified, subjected

to biometric measurements (standard length SL, wet weight

WW), and grouped per size class: small (SL < 30mm) and

large (SL > 30mm), according to previous studies carried out

in Mediterranean lagoons (Vizzini and Mazzola, 2002; Blanco

et al., 2004). Both size classes of the two species were found

in all the ponds, except for small A. boyeri, which was not

found in FP. Total fish abundance was calculated for both

species and size class by pooling data obtained from the three

hauls and expressed as individuals per 100 m2. Moreover,

a minimum of five and a maximum of ten specimens per

size class were randomly taken for each species from each

pond (Table 1) and processed for isotopic analyses, with this

sample size being sufficient to ensure reliable isotopic niche

determination through the specific statistical package SIBER

(Jackson et al., 2011; see Section Data analysis for details). Dorsal

muscle was dissected, dried at 60◦C to constant weight, and

ground to a fine homogeneous powder using a mortar and

pestle. Stable isotope analysis was performed through an isotope

ratio mass spectrometer (Thermo Delta Plus XP) connected to

an elemental analyzer (Thermo Flash EA 1112). Stable isotopes

were expressed in standard delta (δ) notation as parts per

thousand (‰):

δ13C or δ15N =

[(

Rsample − Rstandard

)

/Rstandard

]

x 1000,

where R is the ratio 13C:12C or 15N:14N. The results were

reported relative to Vienna Pee Dee Belemnite (VPDB) for

δ
13C and atmospheric air for δ

15N. Analytical precision based

on the standard deviation of replicates of internal standards

(International Atomic Energy Agency IAEA-CH-6 for δ
13C and

IAEA-NO-3 for δ
15N) was 0.1‰ for δ

13C and 0.2‰ for δ
15N.

Data analysis

To assess isotopic niche breadth and overlap of the

populations of the two species (Atherina boyeri and Gambusia

holbrooki) across size classes in the three ponds, δ13C and δ
15N

data were first corrected to avoid any potential bias given by

differences in basal resources of the three ponds (Olsson et al.,

2009).

The surface-grazing snail Hydrobia ventrosa was used as

baseline, according to Vizzini et al. (2016), to correct both δ
13C

and δ
15N. In more detail, the corrected δ

13C was calculated

following the equation by Olsson et al. (2009):

δ13Ccorr = δ13Cf − δ13Cbmean/CRb,

where δ
13Cf is the carbon isotopic value of the fish,

δ
13Cbmean is the mean carbon isotopic value of the baseline

(δ13C mean value ± standard deviation: −17.4 ± 0.7‰ in VE,

−16.4± 0.5‰ inME, and−17.4± 0.2‰ in FP), and CRb is the

carbon range (δ13Cmax-δ
13Cmin) of the baseline (1.3‰ in VE,

1.0‰ in ME, and 0.3‰ in FP) (data from Vizzini et al., 2016).

The same baseline was used to correct δ
15N, i.e., estimating

the fish trophic position (TP) following the equation by Post

(2002):

TP =

[(

δ15Nf − δ15Nb

)

/1n

]

+ λ,

with δ
15Nf being the nitrogen isotopic value of the fish,

δ
15Nb being the mean nitrogen isotopic value of the baseline

(δ15Nmean value± standard deviation: 13.4± 0.4‰ in VE, 6.9

± 0.7‰ in ME, and 10.9 ± 0.1‰ in FP), 1n being the expected

enrichment in δ
15N per trophic level (3.4‰ according to Post,

2002), and λ being the trophic level of the species used as a

baseline that was set as 2.

Corrected δ
13C and δ

15N data were then used to estimate

the standard ellipse area corrected for small sample size (SEAc),

the SEAc overlap, and the Bayesian standard ellipse area (SEAb)

(Jackson et al., 2011) using the SIBER package v 2.1.5 (Stable

Isotope Bayesian Ellipses in R) (Jackson et al., 2011) in R v.
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TABLE 2 Macroalgae and seagrass percentage cover of the three ponds of the Marinello coastal system (shores and central area) ranked according

to the marine version of the Braun-Blanquet score (Kenworthy et al., 1993).

Pond Site Seagrass cover % Macroalgae cover % BB score range

Min Max Min Max

Verde Shore 0 25–100 0 75–50 0–5

Center 0 0 0 0 0

Mergolo Shore 0 25–50 0 50–75 0–4

Center 25–50 100 0 25–50 0–5

Fondo Porto Shore 5–25 50–75 5–25 50–75 2–4

Center 25–50 25–50 25–50 75–100 3–5

4.0.2 (R Core Team, 2020). The SEAc encompassed 40% of the

data and was expressed as single values; the SEAb was derived

from 100,000 posterior iterations and was expressed as a range

of probable values reported in posterior density plots reflecting

estimation uncertainty (Jackson et al., 2011). Differences in TP

and SEAb among ponds, fish species, and size classes were

tested, respectively, with non-parametric permutational analysis

of variance (PERMANOVA, PRIMER-E Ltd., Plymouth, UK;

Anderson, 2017) and ANOVA (R v. 4.0.2; R Core Team, 2020)

followed by pairwise comparisons.

In addition, to estimate the main trophic pathways

sustaining the two species’ population in the ponds, Bayesian

mixing models were run using MixSIAR v 3.1.11 (Stock et al.,

2018) in R (R Core Team, 2020). Carbon and nitrogen stable

isotope data (not corrected) of all possible basal sources

of organic matter in each pond were taken from Vizzini

et al. (2016). Sources included in the models were seagrasses,

macroalgae, suspended particulate organic matter (SPOM), and

sedimentary organic matter (SOM) (see Supplementary Table S1

for species list and isotopic values). Trophic enrichment factors

(TEFs) used in the model were, respectively, 0.4 ± 1.3‰ for

δ
13C and 3.4 ± 1.0‰ for δ

15N, according to Post (2002), which

were doubled as these fish are secondary consumers/omnivores.

Whenever more than one species belonged to the seagrass or

macroalgae source categories, the mixing model output was

reported as the a posteriori sum of the contribution of each

species (see Supplementary Table S1).

Results

The three ponds were characterized by different habitat

complexity in terms of macrophyte cover and marine Braun-

Blanquet score. High internal variability characterized both

ponds at a higher trophic status, Verde (VE) andMergolo (ME),

in contrast to what was observed in the oligotrophic pond Fondo

Porto (FP). In particular, the shores of both VE and ME were

covered with patches of seagrasses and macroalgae interspersed

with bare bottom ranging from 0 to 50% for seagrasses in

FIGURE 2

Total abundance (ind. 100 m−2) of small and large specimens of

A. boyeri and G. holbrooki from the three ponds of the Marinello

coastal system: VE, Verde; ME, Mergolo; FP, Fondo Porto.

both ponds and from 0 to 100% and to 75% for macroalgae in

VE and ME, respectively (Table 2). In contrast, the shores of

FP were entirely covered by macrophytes with the percentage

ranging between 5 and 75% for both seagrasses and macroalgae

(Table 2). The greatest variability among the ponds was found in

the central areas, with no macrophytes recorded in VE, patchy

macrophyte cover in ME (25–100 and 0–50% for seagrasses and

macroalgae, respectively), and higher and more homogeneous

coverage of both seagrasses (25–50%) and macroalgae (25–

100%) in FP. Accordingly, the marine Braun-Blanquet score

varied from 0 to 5 in both VE and ME and only from 2 to 5

in FP (Table 2).

Overall, the native big-scale sand smelt A. boyeri

outnumbered the invasive eastern mosquitofish G. holbrooki

(Figure 2). Small specimens predominated over large specimens

in each pond, except for A. boyeri in FP where no small fish were

found and were more abundant in ME than in the other ponds.

δ
13C and δ

15N of fish varied among the three ponds

according to their trophic status: values were overall more

depleted in both carbon and nitrogen in the mesotrophic ME,

intermediate in carbon and most enriched in nitrogen in the

guanotrophic VE, andmost enriched in carbon and intermediate
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in nitrogen in the oligotrophic FP (Figure 3A). Similarly, the

standard ellipse area (SEAc), representing the “core” isotopic

niche of the two fish species, showed a clear grouping by

pond within the corrected isotopic space (δ13Ccorr–TP bi-plot)

(Figure 3B). The niche of both species collected in ME showed

a more carbon-depleted position, followed by the niches in

VE and FP, which showed the most carbon-enriched position.

Within each pond, the niches of the two fish across size classes

were positioned in different ways: both in VE and ME, the

niches of the two species showed a similar positioning along

the δ
13Ccorr axis, while they clustered apart along the TP

axis, with A. boyeri at higher TP values than G. holbrooki in

VE and conversely in ME (Figure 3B). In contrast, in FP, the

niches of the two species differed mainly in δ
13Ccorr values,

with more 13Ccorr-enriched values for G. holbrooki than A.

boyeri (Figure 3B). In line with these patterns, the niche overlap

between the two species at all size classes was negligible in all the

ponds (range: 0–12%, Table 3). High intraspecific SEAc overlap

was observed for A. boyeri: 87 and 98% of the niche of large

specimens overlapped with that of small specimens in VE and

ME, respectively (Figure 3B, Table 3). In contrast, only a partial

overlap was observed between the two size classes ofG. holbrooki

in all the ponds (38, 33, and 24%, respectively, in VE, ME, and

FP; Figure 3B, Table 3).

The isotopic niche breadth of the two species, expressed

as SEAb, showed overall wider niches for small mosquitofish

than all the other fish and wider niche in FP than in

the other ponds (Figure 4). Moreover, in the three ponds,

the niche breadth of both mosquitofish and sand smelt

was significantly wider in small than large specimens (p <

0.001), but only in VE and ME, the niche breadth of sand

smelt was smaller than that of both mosquitofish size classes

(Figure 4). At the same time, comparing ponds, both small

and large G. holbrooki showed significant decreasing niche

breadth from FP to ME and VE, while large A. boyeri showed

larger niche in FP than both ME and VE (p < 0.001).

Similar to the large specimens, the niche of small A. boyeri

was rather narrow and comparable between VE and ME

(Figure 4).

The trophic position (TP) estimated showed that the two

species broadly occupy a trophic level comprised between 3 and

4 while varying among ponds, species, and size classes (Table 1,

Supplementary Table S2). Moreover, in the eutrophic pond VE,

A. boyeri showed a significantly higher TP than G. holbrooki,

while the opposite trend emerged in the other two ponds, where

G. holbrooki showed higher TP than A. boyeri. Moreover, A.

boyeri showed significantly increasing TP values from FP to ME

and VE and G. holbrooki showed higher TP only in ME than

in the other ponds. As regards size classes, only mosquitofish

showed significant differences with higher values in small than

large specimens (Table 1, Supplementary Table S2).

Mixing models revealed that the basal organic matter

sources provided a different proportional contribution to the

trophic pathways sustaining the two fish species in the different

ponds (Figure 5, Supplementary Table S1 for details). In VE,

sedimentary organic matter (SOM) was the dominant basal

source underlying the diet of all fish, with the exception of

large mosquitofish, for which the proportional contribution

of SOM decreased in favor of macroalgae. A clear different

pattern was found in ME, where the suspended particulate

organic matter (SPOM) was the prevailing basal resource in

the trophic pathways supporting the diet of all fish (Figure 5,

Supplementary Table S1). Lastly, in FP, all the basal resources

contributed in similar proportions to the pathways underlying

the diet of large sand smelts, while macroalgae and seagrasses

prevailed for mosquitofish (Figure 5, Supplementary Table S1).

FIGURE 3

Bi-plots showing (A) raw and (B) baseline corrected δ
13C (δ13Ccorr) and δ

15N (TP) of small and large specimens of A. boyeri (ATE) and G.

holbrooki (GAM) from the three ponds of the Marinello coastal system: VE, Verde; ME, Mergolo; FP, Fondo Porto. In (B) is reported standard

ellipse area corrected for small sample size (SEAc ‰2) representing the isotopic niches.
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TABLE 3 Pairwise comparisons of SEAc (based on corrected stable isotope data) and overlap values (‰2) estimated between small (S) and large (L)

specimens of A. boyeri (ATE) and G. holbrooki (GAM) from the three ponds of the Marinello coastal system.

Pond Group 1 vs. group 2 SEAc group

1 (‰2)

SEAc group

2 (‰2)

Overlap

(‰2)

% of SEAc 1

overlapped by

SEAc 2

% of SEAc 2

overlapped by

SEAc 1

Verde ATE-S–ATE-L 0.3 0.2 0.1 46 87

ATE-S–GAM-S 0.3 1.0 0.03 12 4

ATE-S–GAM-L 0.3 0.3 – – –

ATE-L–GAM-S 0.2 1.0 0.003 2 0.3

ATE-L–GAM-L 0.2 0.3 – – –

GAM-S–GAM-L 1.0 0.3 0.1 12 38

Mergolo ATE-S–ATE-L 0.3 0.1 0.1 36 98

ATE-S–GAM-S 0.3 2.1 – – –

ATE-S–GAM-L 0.3 0.5 0.02 10 5

ATE-L–GAM-S 0.1 2.1 – – –

ATE-L–GAM-L 0.1 0.5 – – –

GAM-S–GAM-L 2.1 0.5 0.2 8 33

Fondo Porto ATE-L–GAM-S 2.1 2.5 0.05 2 2

ATE-L–GAM-L 2.1 1.4 – – –

GAM-S–GAM-L 2.5 1.4 0.3 13 24

FIGURE 4

Box plots representing the niche breadth expressed as standard ellipse area (SEAb‰2, based on baseline corrected stable isotope data to trophic

position and corrected carbon) of small (S) and large (L) specimens of A. boyeri (ATE) and G. holbrooki (GAM) from the three ponds of the

Marinello coastal system: (A) Verde (VE), (B) Mergolo (ME), and (C) Fondo Porto (FP). Boxes present relative credible intervals of 95% (light color),

75% (intermediate color), and 50% (dark color) and mode (black circle).
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FIGURE 5

Percentage contribution of di�erent basal resource categories to the diet of small (S) and large (L) specimens of A. boyeri (ATE) and G. holbrooki

(GAM) from the three ponds of the Marinello coastal system: (A) Verde (VE), (B) Mergolo (ME), and (C) Fondo Porto (FP). Boxes present relative

credible intervals of 95% (light color), 75% (intermediate color), and 50% (dark color) and mode (black circle). Details of the Bayesian isotopic

mixing model output are presented in Supplementary Table S1.

Discussion

This study analyses the trophic relationships between the

invasive eastern mosquitofish G. holbrooki and the native big-

scale sand smelt A. boyeri co-occurring in the brackish ponds of

the Marinello coastal system at the beginning of the productive

season (i.e., spring). The results obtained highlighted a clear

differentiation in the fish isotopic values and niche position,

consistent with the distinct trophic background of the coastal

ponds and the reliance of fish on different trophic pathways.

The nutrient subsidies arising from the gull colony (L.

michahellis) strongly influence the neighboring Verde pond

(VE), but only to a limited extent the nearby Fondo Porto

pond (FP) and the farthest Mergolo pond (ME) (Signa et al.,

2012; Vizzini et al., 2016). δ15N is acknowledged as a powerful

proxy for the ornithogenic input in terrestrial and coastal areas,

due to the high values of bird guano (Mizutani and Wada,

1988; Signa et al., 2021 and references therein). Accordingly,

the different positioning of the fish populations along the

vertical axis of the isotopic bi-plot found in this study mirrors

the gradual decrease in the incorporation of guano-derived

nutrients into local food webs (Vizzini et al., 2016), with the

highest influence in the closest pond VE and the lowest in

the farthest ME. On the contrary, we found that the different

positioning along the δ
13C axis mirrors the reliance of fish on

distinct organic matter pathways. The overlap between the δ
13C

values of guano (δ13C = −20.2 ± 2.5 ‰, Vizzini et al., 2016)

and those of both sedimentary organic matter (SOM) (−19.5

± 1.1‰, Supplementary Table S1) and macroalgae (−20.0 ±

0.8‰, Supplementary Table S1) in VE indicates, in fact, a
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clear accumulation of seabird-derived organic matter in the

system and its incorporation in basal sources (Vizzini et al.,

2016). Moreover, Bayesian mixing models revealed that the

avian-subsidized SOM and the opportunistic macroalgae (e.g.,

Cladophora sp.), which are particularly abundant in the littoral

zone forming dense patches, were the main basal sources

supporting the trophic pathway leading to both fish species in

VE. In contrast, we observed a single planktonic pathway based

on suspended particulate organic matter (SPOM) dominating in

the mesotrophic ME and a mixed benthic pathway characterized

by a high contribution of macrophytes dominating in the

seaward and oligotrophic FP. This is consistent with previous

findings that showed a dominance of benthic pathways in VE

in spring (Vizzini et al., 2016) and inter-pond variability in

resource availability and habitat complexity that reflects on

benthic abundance and diversity (Signa et al., 2015), confirming,

therefore, that the observed differences in trophic pathways are

driven in part by the differing seabird subsidies. Alongside the

reliance on different organic matter pathways in the three ponds,

the patterns observed within each pond in terms of isotopic

niche positioning and trophic level suggest that the coexistence

of the two species may have been promoted by site-specific

mechanisms of niche differentiation. First, the negligible niche

overlap between the two species throughout the ponds indicates

a clear resource partitioning, consistent with previous studies

of invasive fish, including mosquitofish. In particular, both in

Australian wetlands and Mediterranean lagoons, mosquitofish

coexists with other endemic fish, including sand smelt, with

limited niche sharing (Gisbert et al., 1996; Stoffels and

Humphries, 2003; MacDonald et al., 2012). Niche divergence,

rather than convergence, is suggested, indeed, as a general

pattern within invaded fish communities, except in cases of

high invader abundance (Tran et al., 2015; Britton et al., 2018),

a condition not observed in this study. Second, the different

niche positioning in the three ponds indicated that the two

species have developed different trophic, and maybe behavioral,

strategies to coexist, depending on different trophic conditions,

presumably mediated by different resource availability (e.g.,

habitat complexity and prey diversity and abundance). It is

not new that resource availability can change significantly over

space and time due to the presence of ecological gradients,

such as seasonality and productivity, and that, in turn, this

can affect species niches and competitive interactions (Abbey-

Lee et al., 2013; Costa-Pereira et al., 2019). Here, we found

that, in the oligotrophic shallow pond (FP), characterized by

mixed macrophyte-covered bottoms and a high abundance of

deposit feeders, the two fish species belonged to distinct benthic

pathways, with SOM as the main basal carbon source for

sand smelts, and macroalgae and seagrasses for mosquitofish.

While habitat complexity would provide different niches

that are partitioned by the two species (Beisel et al., 2000;

MacDonald et al., 2012), the high abundance of food resources

throughout the pond may have facilitated the integration of

mosquitofish into the native food web by being able to exploit

unused resources and thus avoid competitive interactions

(Britton et al., 2018).

In contrast, in the ponds characterized by higher trophic

state and lower habitat complexity (VE and ME), the Bayesian

mixing models revealed that the two coexisting fish tended to

rely on the same trophic pathway, rather than exploit distinct

pathways, probably as an effect of the limited range of exploitable

pathways under mesotrophic and hypereutrophic conditions.

At the same time, the change in trophic positions and the

reduction of the niche breadth (SEAb) observed for the native

big-scale sand smelt from the oligotrophic to both mesotrophic

and hypereutrophic ponds helped to recall the classical niche

theories and found confirmation in several empirical studies.

It has been postulated, indeed, that invasive species tend to

out-compete native species through asymmetrical competitive

mechanisms, such as by contracting and/or displacing the

native’s niche to lower or higher trophic positions due to their

higher competitive ability (Vander Zanden et al., 1999; Jackson

et al., 2012; Britton et al., 2018). Under this framework, the

different patterns observed in the two ponds at higher trophic

state may find justification in the different levels of biodiversity

that characterizes them. While the harsh conditions of the

guanotrophic VE support low-diversity communities featured

by only benthic deposit feeders (i.e., chironomids, amphipods,

and small gastropods) and epifaunal carnivorous palaemonid

shrimps, the mesotrophic ME is characterized by high-diversity

communities with benthic filter feeders and deposit feeders, as

well as carnivorous polychaetes (Signa et al., 2015). Therefore,

we suggest that, in the less diverse and harsher pond VE,

the mosquitofish included plant materials in their diet to

balance the decrease in animal prey abundance (Blanco et al.,

2004; Kalogianni et al., 2014) and restricted the access of

sand smelts to only a few high-order consumers, such as the

juveniles of the palaemonid shrimps that thrive in the pond.

In contrast, the higher structural and functional biodiversity of

ME favored the invader’s niche expansion, particularly evident

in small specimens, consistent with the “resource diversity

hypothesis” (MacArthur, 1969), and constrained the native

species’ diet to a few low-order consumers, such as epifaunal

filter/deposit feeders.

Looking at the intraspecific level, the narrow niche breadth

(SEAb), together with the high niche overlap (>90%) of small-

and big-sized sand smelts fromME and VE, indicates a specialist

diet across size classes, contrary to what was observed in FP

where the wider niche of large specimens may indicate release

from intraspecific competition (Britton et al., 2018). This clear

spatial pattern of SEAb also indicates lower trophic diversity

and variety of both exploited resources and trophic levels for

both small and large specimens from VE and ME than FP.

A. boyeri can shift between small hyperbenthic and epifaunal

prey (e.g., isopods, amphipods, mysids, polychaetes, gastropods,

and bivalves) in shallow vegetated coastal areas, because of its
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high trophic plasticity (Vizzini andMazzola, 2002, 2005; Chrisafi

et al., 2007). Such flexible feeding habits, coupled with the high

abundance, may have represented the winning strategy that

allowed the sand smelt to accommodate a certain degree of niche

contraction rather than its suppression.

In contrast, the mosquitofish G. holbrooki exhibited a low

intraspecific niche overlap (∼20%) between size classes in

all ponds and a clear niche narrowing from small to larger

specimens, suggesting ontogenetic dietary specialization. The

high niche breadth of the small mosquitofish indicated a clear

generalist feeding behavior, as well as high trophic diversity

and omnivory degree. Omnivory plays an important stabilizing

role in spatially compressed food webs, alleviating the strong

destabilizing force of top-down pressures potentially exerted

by top predators (McCann et al., 2005). At the same time,

the large among-individual variability may also indicate that

individual mosquitofish use different foraging tactics feeding on

only a subset of the available resources (Abbey-Lee et al., 2013)

from different trophic pathways and levels, as a mechanism for

reducing intraspecific competition (Matthews and Mazumder,

2004; Abbey-Lee et al., 2013) and ensuring population growth

(Blanco et al., 2004). The eastern mosquitofish is acknowledged,

indeed, not only as an opportunistic predator with a very

wide prey spectrum, including zooplankton, insects, benthic

invertebrates, fish, and amphibian larvae and eggs (Specziár,

2004; Pyke, 2005), but also as an omnivore able to ingest large

amounts of algae and vegetal detritus in turbid and shallow

estuaries and lakes (Blanco et al., 2004; Franco et al., 2008).

Lastly, assuming that the two species occupy a similar

fundamental niche (i.e., the multidimensional environmental

conditions within which a species can live in the absence

of competitors, sensu Hutchinson, 1957), we infer that the

native sand smelt has been induced to undergo different

mechanisms of trophic displacement and/or contraction of its

realized niche to coexist with the invasive mosquitofish. While

this is consistent with the general adaptative response

of native species subject to asymmetric competition

with invaders exhibiting superior competitive abilities

(Byers, 2000; Carey and Wahl, 2010; Tran et al., 2015),

we provided evidence for the occurrence of site-specific

environmental control on invaded trophic niches as a result

of the combined effect of differing resource availability and

habitat complexity.

Conclusion

We used a combination of isotopic niche analysis and

Bayesian mixing models to reveal complex site-specific trophic

relationships between the invasive eastern mosquitofish

Gambusia holbrooki and the sympatric big-scale sand smelt

Atherina boyeri co-occurring in shallow coastal ponds with

different environmental features. The interplay of the trophic

status and geomorphological features of the ponds influenced

the availability of resources, in terms of prey diversity and

habitat complexity, leading to site-specific mechanisms of

trophic niche divergence. Moreover, under oligotrophic

conditions, the high habitat complexity and abundances of

benthic prey provided different niches that were partitioned

by the two species. In contrast, under higher trophic state and

lower habitat complexity, an asymmetric competition between

the two species might have arisen due to the competitive

superiority of mosquitofish, leading to a clear displacement

and contraction of the sand smelt niche. At the same time,

the broadening of the invader’s niche, especially marked for

small specimens, may have been driven by a high prey diversity

level, consistent with the “resource diversity hypothesis”

(MacArthur, 1969). Although a large body of literature exists

on the ecological effects of invasive fish in coastal systems,

trophic aspects have been scantly addressed especially in

combination with environmental stressors. This research

gives new insights into the mechanisms that promote the

coexistence of invasive and native species in shallow and

highly variable marine coastal systems. However, our study is

limited by the short temporal context serving as a snapshot

of the trophic relationships between invasive and native

species under the trophic gradient that occurs during the

productive spring season. Given the highly variable nature

of coastal ponds, we did not exclude seasonal changes of

the trophic relationships of the two fish species according

to resource availability, which ensures the success of their

long coexistence. Lastly, while we demonstrated the great

potential of isotopic niche analysis for detecting complex

ecosystem responses to invasion by NIS, additional studies

are advocated to further understand the interaction between

environmental stressors and fish resource partitioning on a

larger temporal scale.
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