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Abstract: The classical Vitali theorem states that, under suitable assumptions, the limit of a sequence
of integrals is equal to the integral of the limit functions. Here, we consider a Vitali-type theorem of
the following form

∫
fn dmn →

∫
f dm for a sequence of pair ( fn, mn)n and we study its asymptotic

properties. The results are presented for scalar, vector and multivalued sequences of mn-integrable
functions fn. The convergences obtained, in the vector and multivalued settings, are in the weak or
in the strong sense for Pettis and McShane integrability. A list of known results on this topic is cited
and new results are obtained when the ambient space Ω is not compact.

Keywords: setwise convergence; Weak and Vague convergence of measures; Vitali theorem; uniform
integrability; equi-integrability; Pettis integral; McShane integral
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1. Introduction

The Vitali convergence theorem [1], which owes his name to the Italian mathematician
Vitali, is a generalization of the Dominated convergence theorem developed by Lebesgue.
It is a characterization of the convergence of a sequence ( fn)n in Lp(m) in terms of uniform
integrability and convergence in the m-measure of ( fn)n. Our goal is to show an analog of
Vitali’s classic theorem for varying measures, namely when ( fn)n and (mn)n are simultane-
ously convergent in some sense. In particular, we want to identify sufficient conditions for
the following chart to hold, for the different types of convergence for varying measures.
Obviously, we will have different versions depending on the assumptions we use on the
sequence of measurable functions ( fn)n and on the varying measures (mn)n.

mn & fn

∫
E

fn dmn = νn(E)

m & f
∫

E
f dm = ν(E)

for every E ∈ A. (1)

Additionally, the convergence of νn(E) to ν(E) may be considered in a strong or
weak sense, when the functions involved are vector-(multi)valued. Fundamental tools for
obtaining results of this type are the “absolute” or “uniform” continuity of integrals. There
is a wide literature on the convergence of measures, since it has applications, for example,
in probability and statistics, stochastic processes, control and game theories, symmetric
diffusion processes, transportation problems, signal and image processing, neural networks,
symmetric operators, continuous dependence for measuring differential inclusions and
measuring differential equations [2–14].
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In Section 2, some results, related to (1) for the convergence theorems of the type of
Fatou, Monotone, Lebesgue or Vitali are highlighted, emphasizing both the hypotheses
on the space Ω, on the sequence of functions ( fn)n and on the sequence of measures
(mn)n. There is a large literature on this subject, the first paper on which was published
by Serfozo [15]. This problem was recently addressed by various authors in [16–20]. Some
of these results are given in Section 2 and are obtained for sequences of scalar or vector
functions when the varying measures are finite and countably additive or probabilities.
In [21,22], some of these results have been extended to the multivalued case with weakened
assumptions, while in [23] the varying measures considered are only subadditive. Above
all, we will highlight the results of these last three quoted papers because they will be the
starting point for the new part that is contained in Section 3. Here, (1) is considered to
have a stronger definition of integrability and results are given, either existing (the compact
case) or new (the noncompact case), when the approximating sequence ( fn)n is integrable
in the sense of McShane.

2. The State of the Art

Let (Ω,A) be a measurable space with A be a σ-algebra, F (Ω) be the space of measur-
able functions and let M(Ω) be the vector space of finite real-valued measures on (Ω,A).
Let M+(Ω) be the cone of non-negative elements of M(Ω). Let |m| be the total variation
of a measure m and m± be its positive and negative parts, respectively. The symbol m ≪ ν
denotes the absolute continuity of m with respect to ν.

Let X be a Banach space with dual X∗ and BX∗ be the unit ball of X∗. We denote
with cwk(X) the family of all nonempty, convex, weakly compact subsets of X. For every
C, D ∈ cwk(X), let s(x∗, C) = sup{⟨x∗, x⟩ : x ∈ C}, for each x∗ ∈ X∗ be the support
function of C and dH(C, D) := sup||x∗ ||≤1 |s(x∗, C)− s(x∗, D)| is the Hausdorff metric on
the hyperspace cwk(X) in which we consider the Minkowski addition (C + D := {c + d :
c ∈ C, d ∈ D}) and the standard multiplication by non-negative scalars, see [24] for other
properties.

When working with varying measures (mn)n ⊂ M(Ω) different types of convergence
can be considered. Concerning the setwise and the convergence in total variation, no more
conditions are imposed on the measurable space (Ω,A), while for the weaker convergences
a topology is necessary, Ω is supposed to be a locally compact Hausdorff space and A is its
Borel σ-algebra (in this case we use the symbol B). In these latter cases, let C(Ω), C0(Ω),
Cc(Ω) and Cb(Ω) be the families of all continuous functions, and their subfamilies that
vanish at infinity have compact support and are bounded.

Definition 1. Let m and mn be in M(Ω), we say that a sequence (mn)n

(1a) Converges vaguely to m (mn
v−→ m) if

∫
Ω hdmn →

∫
Ω hdm, for all h ∈ C0(Ω);

(1b) Converges weakly to m (mn
w−→ m) if

∫
Ω hdmn →

∫
Ω hdm, for all h ∈ Cb(Ω);

(1c) Converges setwisely to m (mn
s−→ m) if limn mn(A) = m(A) for all A ∈ A or, equivalently,

if
∫

Ω hdmn →
∫

Ω hdm, for all bounded h ∈ F (Ω), since simple functions are dense in the
space of bounded measurable functions;

(1d) Converges in total variation to m (mn
tv→ m) if |m − mn|(Ω) → 0. Then (mn)n is convergent

to m uniformly on A, ([25], Section 2);
(1e) Is bounded if supn |mn|(Ω) < +∞;
(1f) Is uniformly absolutely continuous with respect to m (mn ≪ac m), if for every ε > 0 there

exists ρ > 0 such that supn mn(E) < ε when E ∈ A and m(E) < ρ.

Interesting comparisons among all these definitions are given in [25–27]. In general,
the setwise convergence is stronger than both the vague and the weak convergences; weak
convergence is stronger than vague convergence. Moreover if (mn)n is simultaneously
vaguely convergent and uniformly absolutely continuous with respect to m, then it con-
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verges weakly to m, while if (mn)n is vaguely convergent to m ≥ mn for every n ∈ N then
it converges setwisely, (see [22], Remark 2.2 and Proposition 2.3).

If (mn)n and m are measures in M(Ω) and if the sequences (m±
n )n are setwise conver-

gent to m±, respectively, then (mn)n is setwise convergent to m and the reverse implication
generally fails, see for example ([21], Remark 2.2).

Finally, according to ([28], Corollary 8.1.8 and Remark 8.1.11), if Ω is an arbitrary com-
pletely regular space and let m, (mn)n ⊂ M(Ω) with m Radon and limn mn(Ω) = m(Ω),
the convergence (1a) is equivalent to the following (Portmanteau result):

(1g) for any closed set F ⊂ Ω, lim supn mn(F) ≤ m(F).

Regarding ≪ac, for those who are interested we quote [29] and the references therein.

Definition 2. Let (mn)n ⊂ M+(Ω) and ( fn)n : Ω → R be a sequence of measurable functions.
We say that ( fn)n

• Has uniformly absolutely continuous (mn)-integrals on Ω (u.a.c.), if for every ε > 0 there
exists δ > 0 such that for every A ∈ A with mn(A) < δ then

∫
A | fn| dmn < ε, for every

n ∈ N.
• Is uniformly (mn)-integrable on Ω (u.i.), if limα→+∞ supn

∫
{| fn |>α} | fn| dmn = 0.

It is obvious that if a sequence ( fn)n of measurable functions is uniformly bounded,
then it is uniformly (mn)n-integrable for an arbitrary sequence (mn)n such that
supn mn(Ω) < +∞. Moreover, for a bounded sequence of measures (mn)n, the sequence
( fn)n is uniformly (mn)-integrable on Ω if and only if it has uniformly absolutely contin-
uous (mn)-integrals and supn

∫
Ω | fn| dmn < +∞ ([21], Proposition 2.6). Finally, in [15],

the uniform absolute continuity is given in a partly different form, but Serfozo’s one and
(u.a.c.) are equivalent. Many results in the literature are related to (u.i.); in this note we put
in evidence sufficient conditions that use the weakest condition (u.a.c.).

All the results of Sections 2.1 and 2.2 resulting from [21,22] are given for m, (mn)n ⊂
M+(Ω) unless otherwise specified. The quoted results from other papers are given in
general from sequences of probability measures or equibounded sequences of measures.

2.1. The Nontopological Case

In this subsection sufficient conditions are given for the problem (1) when the sequence
of varying measures converges setwisely in an arbitrary space. The setwise convergence is
a high power tool since it permits strong results to be obtained. Let (Ω,A) be a measurable
space, with A an arbitrary σ-algebra. For existing results of type (1) in the literature, we
would like to cite some results of Fatou, Monotone, Dominated or Vitali types:

• In [15], we have Theorems 2.4, 2.7 and 2.8. In the first theorem, a liminf setwise-type
convergence is considered to obtain a Dominated convergence theorem under suitable
hypotheses on a sequence (gn)n that dominates (| fn|)n, while the other two are neces-
sary and sufficient conditions to obtain a Vitali-type theorem and a Lebesgue theorem
under tightness and u.i. conditions. All the results are given for scalar functions.

• In [16], in Theorem 2.2, the authors give a Fatou- and a Lebesgue-type theorem under
an inequality of the lim infn mn on each Borelian set; in particular for the Dominated
convergence theorem the sequence (mn) is equibounded by a measure ν. In this case,
the authors weaken the setwise convergence, but need a topology on the space and
the Borel σ-algebra. Both results are given scalar functions.

• In [20], Theorem 4.2, Corollaries 5.3 and 6.2 give Fatou-, Lebesgue- and Monotone-type
results for the setwise convergence of a sequence of probability measures, respectively.
All the results are given for scalar functions.

In [21], first the authors consider the case of scalar integrands and obtain the following
result for finite, non-negative measures using the uniform absolute continuity of the
integrals and the setwise converges for the measures.
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Theorem 1 ([21], Theorem 2.11). Let f , fn ∈ F (Ω). Suppose that

(1i) fn(t) → f (t), in m-measure;
(1ii) f , ( fn)n satisfy (u.a.c.);
(1iii) mn

s−→ m.

Then f ∈ L1(m) and for all E ∈ A,

lim
n→∞

∫
E

fndmn =
∫

E
f dm.

An analogous result follows for signed measures when the convergence of ( fn)n is in
|m|-measure and (u.a.c.) is considered with respect to m±

n , ([21], Corollary 2.13).
Moreover in [20], Corollary 5.3, a similar result is obtained with different hypotheses,

which implies the equiboundedness of the sequence
( ∫

Ω | fn|dmn

)
which is not required

in Theorem 1.
A simple example of application of the previous theorem can be the following:

Example 1. Let Ω = (0, 1], B the Borel σ-algebra, λ the Lebesgue measure and mn(E) =

(1 +
1
n
)λ(E), or mn(E) =

∫
E(1 + sin(nx))dx for every n ∈ N. (mn)n ⊂ M+(Ω) and

mn
s−→ λ. For every n ∈ N let An = [2−(n+1), 2−n]. We divide each interval An into n

pairwise disjoint equi-measurable intervals, B(1)
n , B(2)

n , . . . , B(n)
n of λ-measure n−1 · 2−(n+1).

For every j ∈ {1, 2, . . . , n} let g(j)
n (x) = x−1 · 1

B(j)
n
(x). Let ( fn)n∈N the sequence of functions

defined as follows:(
g(1)1 , g(1)2 , g(2)2 , g(1)3 , g(2)3 , g(3)3 , g(1)4 , g(2)4 , g(3)4 , g(4)4 , . . . , g(1)n , g(2)n , . . . , g(n)n , g(1)n+1, . . .

)
obtained by the construction fn → 0 pointwise and then in λ-measure. Moreover, the
sequence ( fn)n is (u.i.) with respect to λ and so it is (u.i.) with respect to (mn)n. By [21],
Proposition 2.6, the sequence ( fn)n is (u.a.c.). Then, the pair (mn, fn) satisfies Theorem 1,
but the sequence ( fn) is not dominated by an integrable function since, if such a function
exists, then it will dominate x−1 ̸∈ L1((0, 1]).

For the multivalued case we recall that any map Γ : Ω → cwk(X) is said to be scalarly
measurable if for each x∗ ∈ X∗ is measurable the scalar function t → s(x∗, Γ(t)); given a
measure m, Γ is said to be scalarly integrable with respect to m if for each x∗ ∈ X∗ is integrable
the scalar function t → s(x∗, Γ(t)) and Γ is said to be Pettis integrable in cwk(X) with respect
to m if Γ is scalarly m-integrable and for every E ∈ A, MΓ(E) ∈ cwk(X) exists so that

s(x∗, MΓ(E)) =
∫

E
s(x∗, Γ) dm for each x∗ ∈ X∗

and in such a case
∫

E Γ dm := MΓ(E). We denote by P(m, cwk(X)) the class of all
scalarly m-integrable and cwk(X)-valued multifunctions which are Pettis m-integrable.
Similarly, we write P(m, X) for vector-valued functions. For results concerning the Pettis
integrability of vector-(multi)valued functions, see for example [24,30–37].

The (u.a.c.) takes the following form for sequences of multifunctions: (Γn)n has
uniformly absolute continuous scalar (mn)-integrals on Ω (u.a.c.s.), if,

• For every ε > 0, a positive δ exists so that for every n ∈ N and E ∈ A it is:

sup
∥x∗∥≤1

∫
E
|s(x∗, Γn)| dmn < ε when mn(E) < δ. (2)

A first result of the multivalued case is the following:
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Theorem 2 ([21], Theorem 3.2). Let Γ : Ω → cwk(X) be scalarly m-integrable, and for every
n ∈ N, let Γn : Ω → cwk(X) be in P(mn, cwk(X)). Then Γ ∈ P(m, cwk(X)) if

(2i) (Γn)n satisfies (u.a.c.s.);
(2ii) mn

s−→ m;
(2iii) limn→∞

∫
E s(x∗, Γn) dmn =

∫
E s(x∗, Γ) dm, for all E ∈ A and for all x∗ ∈ X∗.

To prove the Pettis m-integrability of Γ, it is sufficient to show that it is determined
by a weakly countably generated subspace of X ([35], Theorem 2.5). As a consequence of
Theorem 2, we have

Theorem 3 ([21], Theorem 3.3). Let Γ : Ω → cwk(X) be scalarly measurable and for every
n ∈ N let Γn : Ω → cwk(X) be in P(mn, cwk(X)). If

(3i) For each x∗ ∈ X∗, s(x∗, Γn) converges in m-measure to s(x∗, Γ);
(3ii) Γ and (Γn)n satisfy (u.a.c.s.);
(3iii) mn

s−→ m,

then Γ ∈ P(m, cwk(X)) and for all x∗ ∈ X∗ and for all E ∈ A

lim
n→∞

s
(

x∗,
∫

E
Γn dmn

)
= s

(
x∗,

∫
E

Γ dm
)

.

Moreover, if the convergence in m-measure is strengthened with a scalar equicon-
vergence in measure with respect to the sequence (mn)n and the setwise convergence is
substituted with the convergence in variation, a stronger result is obtained.

Theorem 4 ([21], Theorem 3.5). Let Γ : Ω → cwk(X) be scalarly measurable and for every
n ∈ N let Γn : Ω → cwk(X) be in P(mn, cwk(X)). If

(4i) For all ρ > 0, limn→∞ sup∥x∗∥≤1 mn{ω ∈ Ω : |s(x∗, Γn(ω))− s(x∗, Γ(ω))| > ρ} = 0;
(4ii) Γ and (Γn)n satisfy (u.a.c.s.);
(4iii) Γ has uniformly absolutely continuous scalar m integral;

(4iv) mn
tv→ m,

then Γ ∈ P(m, cwk(X)) and uniformly in E ∈ A

lim
n→∞

dH

( ∫
E

Γn dmn,
∫

E
Γ dm

)
= 0.

These results can be applied directly to the vector-valued case. Indeed, in the vector
case Γ(ω) = { f (ω)} for every ω ∈ Ω. The corresponding results are [21], Theorem 3.7
and [21], Theorem 3.9. Therefore we can deduce the vector case directly from multivalued
case. Here, we report, as an example, the vector-valued formulation of Theorem 3 for
which in [21], Theorem 3.7, a direct proof is also given that makes use of a Grothendieck
characterization of weakly compact sets.

Corollary 1 ([21], Theorem 3.7). Let fn : Ω → X be in P(mn, X). If

(1j) x∗ fn(t) → x∗ f (t), in m-measure for each x∗ ∈ X∗;
(1jj) f , ( fn)n satisfy (u.a.c.);
(1jjj) mn

s−→ m,

then f ∈ P(m, X) and, weakly in X, we have

lim
n→∞

∫
Ω

fn dmn =
∫

Ω
f dm.
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2.2. The Topological Case

Sometimes in applications it is difficult, at least technically, to prove that the sequence
of measures converges for every measurable set. Therefore, other types of convergence
could be considered, based on the structure of the topological space Ω. Following [28],
we assume that Ω is only an arbitrary locally compact Hausdorff space and B is its Borel
σ-algebra. All the measures we will consider on (Ω,B) are finite. Moreover a measure m
is Radon if it is inner regular in the sense of approximation by compact sets. For existing
results of type (1) in the literature, in this setting, we quote, for example,

• The paper [15] (Theorems 3.3 and 3.5) in locally compact second countable and Haus-
dorff spaces, when the sequence of scalar functions ( fn)n converges continuously to
f , for vague and weak convergences, respectively. Under a domination condition
with a suitable sequence (gn)n in the first result while, in the other, the uniform (mn)-
integrability of the sequence ( fn)n, with fn ≥ 0 for every n ∈ N, together with a
condition for mn({ fn > t}), a Lebesgue’s result is given. In [15], Lemma 3.2, a Fatou’s
result is obtained.

• The paper [16] (Section 3), where a Monotone convergence result is obtained for
locally compact separable metric spaces requiring weak convergence of the sequence
of measures and that the space X is a Banach lattice.

• The papers [19,20], where Fatou’s, Monotone and Dominated convergence results
are obtained in metric spaces, for sequences of scalar lower semi (equi)continuous
functions ( f−n )n, f+ satisfying an asymptotic uniform (mn)-integrability, when the
sequence of measures converges weakly.

In [22], a Vitali result in the scalar case is obtained:

Theorem 5. ([22], Theorem 3.4) Let m be a Radon measure and let f , fn ∈ F (Ω). Suppose that

(5i) fn(t) → f (t), m-a.e. with f ∈ C(Ω);
(5ii) ( fn)n and f satisfy (u.a.c.);
(5iii) mn

v−→ m and mn ≪ac m.

Then, f ∈ L1(m) and for every E ∈ B

lim
n→∞

∫
E

fn dmn =
∫

E
f dm. (3)

The result of this theorem is still valid if we replace convergence m almost everywhere
with convergence in the m measure. The formula (3) relies on the Urisohn’s and a Portman-
teau Lemma and it was first proven for arbitrary compact sets and finally for Borelian sets,
since m is a Radon measure. This allows us to deduce the setwise convergence of (mn)n,
considering fn = f = 1 for every n ∈ N ([22], Corollary 3.5).

Using the scalar case and the support functions, an analogous result is obtained for
the multivalued case.

Theorem 6 ([22], Theorem 4.2). Let m be a Radon measure and Γ be a scalarly continuous
multifunction and Γn ∈ P(mn, cwk(X)) for every n ∈ N. If

(6i) (Γn)n and Γ satisfy (u.a.c.s.);
(6ii) s(x∗, Γn) → s(x∗, Γ) m-a.e. for each x∗ ∈ X∗;
(6iii) mn

v−→ m and mn ≪ac m,

then Γ ∈ P(m, cwk(X)) and, for every x∗ ∈ X∗ and E ∈ B, it is

lim
n→∞

s
(

x∗,
∫

E
Γn dmn

)
= s

(
x∗,

∫
E

Γ dm
)

.

We observe in the previous theorem that the null set in (6ii) may depend on x∗ ∈ X∗.
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If we assume by hypothesis

lim
n→∞

∫
A

s(x∗, Γn) dmn =
∫

A
s(x∗, Γ) dm.

We can remove the assumption on Ω and the convergence of the sequence (mn)n and
we can obtain the next result in a general measure space without any topology.

Theorem 7 ([22], Proposition 4.4). Let Γ be a scalarly m-integrable multifunction and Γn ∈
P(cwk(X), mn) for every n ∈ N. Suppose that

(7i) (Γn)n satisfies (u.a.c.s.);
(7ii) mn ≪ac m;
(7iii) for every E ∈ A and x∗ ∈ X∗ it is

lim
n→∞

∫
E

s(x∗, Γn) dmn =
∫

E
s(x∗, Γ) dm.

Then Γ ∈ P(m, cwk(X)).

Recently, another paper was published on this subject [38], for the weak convergence
of integrals, referred to the vector values case, when Ω is a metric space, X is a complete
paranormed vector spaces and the sequence of probability measures converges weakly.
Therefore, in this case, the target space X is more general, but the sequence of measures
is equibounded.

2.3. The Nonadditive Case

Additionally the study of nonadditive measures has played an important role because
of its applications in probability, statistics and in all applied sciences where uncertainty
must be considered. Therefore, in this case, we quote a Monotone convergence result of
type (1). Let Ω be a locally compact Hausdorff space, P(Ω) the family of all subsets of
Ω and A be a σ-algebra of subsets of Ω. We denote with the symbol B(Ω) the family of
bounded, real valued functions. We begin by recalling the scalar nonadditive measures:
let m : A → R+

0 be a a submeasure (in the sense of Drewnowski [39]), namely with
m(∅) = 0, monotone (if m(A) ≤ m(B), for every A, B ∈ A, with A ⊆ B) and subadditive (if
m(A ∪ B) ≤ m(A) + m(B), for every disjoint sets A, B ∈ A) . Let m : P(Ω) → [0,+∞] be

the variation of m defined by m(E) = sup{
n
∑

i=1
|m(Ci)|, {Ci}n

i=1 ⊂ A, Ci ⊆ E, Ci ∩Cj = ∅},

for every E ∈ P(Ω), m is said to be of finite variation (on A) if m(Ω) < +∞. For the
properties of m, we refer for example to [40–42].

Definition 3. A sequence of submeasures (mn)n setwise converges to a submeasure m if, for every
E ∈ A, limn→∞ mn − m(E) = 0.

Since |mn(E) − m(E)| ≤ mn − m(E) for every E ∈ A, the convergence given in
Definition 3 is the (1c); the converse does not hold in general. Nevertheless, from [43],
Remark 1, in the countable additive case the two definitions coincide, so we use the
same notation.

We denote by the symbol ck(R+
0 ) the family of all nonempty convex compact subsets

of R+
0 . We consider on ck(R+

0 ) the weak interval order: [a, b] ⪯ [c, d] if and only if a ≤ c
and b ≤ d and a multiplication [a, b] · [c, d] = [ac, bd]. For what concerns the (lattice) weak
order ⪯ and for its meaning and uses, we refer to [44].

Definition 4. Let M : A → ck(R+
0 ). M is an interval valued multisubmeasure if

(4a) M(∅) = {0};
(4b) M(A) ⪯ M(B) for every A, B ∈ A with A ⊆ B (monotonicity);
(4c) M(A ∪ B) ⪯ M(A) + M(B) for every disjoint sets A, B ∈ A (subadditivity).
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In literature the monotone multimeasures that satisfy M(∅) = {0} are also called set
valued fuzzy measures. For the results on this subject, see for example [40,42,45].

Remark 1. Given two submeasures µ1, µ2 : A → R+
0 with µ1(E) ≤ µ2(E) for every E ∈ A let

M : A → ck(R+
0 ) be defined by M(E) = [µ1(E), µ2(E)]. According to [42], Remark 3.6, M is a

multisubmeasure with respect to the weak interval order ⪯ if and only if µ1, µ2 are submeasures.
Moreover M is monotone or finitely additive if and only if the set functions µ1 and µ2 are the same
(see [41], Proposition 2.5, Remark 3.3). Moreover, following [23], Definition 2.2, Mn = [µn,1, µn,2]
setwise converges to M = [µ1, µ2] if and only if µn,i setwise converges to µi for i = 1, 2.

In this framework we consider the Riemann–Lebesgue integrability studied in [43,46].
If P and P′ are two partitions of Ω, then P′ is finer than P (P′ ≥ P), if every set of P′ is
included in some set of P. All the partitions we consider in this subsection are countable.

Definition 5. Let f : Ω → R+
0 be a function and µ : A → R+

0 be a set function. f is
Riemann–Lebesgue (RL) µ-integrable (on Ω) if b ∈ R+

0 exists such that for every ε > 0 a partition
Pε of Ω exists so that for every partition P = {An}n∈N of Ω with P ≥ Pε, f is bounded on
every An, with µ(An) > 0 and for all tn ∈ An, n ∈ N, ∑+∞

n=0 f (tn)µ(An) is convergent and
|∑+∞

n=0 f (tn)µ(An)− b| < ε. b is called the Riemann-Lebesgue µ-integral of f on Ω and is denoted
by (RL)

∫
Ω f dm.

Analogously we can define the Riemann–Lebesgue integrability for the interval multi-
functions G : Ω → ck(R+

0 ), see for example ([12], Definition 6).

Remark 2. Given an interval multifunction G = [g1, g2], with g1, g2 : Ω → R+
0 and g1(t) ≤

g2(t) for all t ∈ Ω, for every tagged partition P = {(An, tn), n ∈ N} of Ω, we have that

{
∞

∑
n=1

xn, xn ∈ [g1(tn)µ1(An), g2(tn)µ2(An)], n ∈ N } =

=
∞

∑
n=1

[g1(tn)µ1(An), g2(tn)µ2(An)] =
∞

∑
n=1

G(tn) · M(An) ∈ ck(R+
0 )

Moreover, according to [12], Proposition 2, G it is RL integrable with respect to M on
Ω if and only if gi are RL integrable with respect to µi, i = 1, 2 and

(RL)

∫
Ω

GdM =

[
(RL)

∫
Ω

g1dµ1, (RL)

∫
Ω

g2dµ2

]
.

Therefore, for every submeasure µ which is a selection of M and every g ∈ B(Ω) with
g1(t) ≤ g(t) ≤ g2(t) then

∫
Ω gdµ ∈ (RL)

∫
Ω GdM.

Theorem 8 ([23], Theorem 4.2). Let Gn = [gn,1, gn,2] be a sequence of bounded interval valued
multifunctions and Mn = [µn,1, µn,2] be multisubmeasures. Suppose that there exist an interval
valued multisubmeasure M := [µ1, µ2] with µ2 of bounded variation and a bounded multifunction
G = [g1, g2] such that

(8i) Gn ⪯ Gn+1 for every n ∈ N and dH(Gn, G) → 0 uniformly on Ω;
(8ii) Mn ⪯ Mn+1 ⪯ M for every n ∈ N and (Mn)n setwise converges to M,

then

lim
n→∞

dH

(
(RL)

∫
Ω

Gn dMn, (RL)

∫
Ω

G dM
)
= 0.

3. McShane Integrability

In Sections 2.1 and 2.2, the vector valued case was derived from the multivalued one
when we consider Pettis integrability. In the case of the McShane integral it is possible to
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proceed in the same way. However, thanks to the Rådström embedding, for the McShane
integral it is possible to deduce at once the multivalued case from the vector valued case.
We recall that the Rådström embedding is a map i : cwk(X) → ℓ∞(BX∗) that is additive,
isometric and positively homogeneous, see for example [24,47]. Therefore, if Γ′

ns are
McShane integrable multifuctions, then the vector-valued functions i ◦ Γn are and viceversa.
So the assumptions for multifunctions can be shifted to the corresponding i ◦ Γ′

ns allowing
the convergence to be obtained from the vector case. In general, the Rådström embedding
of a Pettis integrable multifunction could not be Pettis integrable. If we ask for a stronger
notion of integrability, also under setwise convergence, some topological conditions are
needed (see for example [48–51]).

3.1. The Compact Case

Let (Ω,B) be a compact measure space with a topology τ ⊂ B. A McShane partition of
Ω is a family {(Ei, ti)}i≤p such that E1, ..., Ep is a finite disjoint cover of Ω by elements of B
and ti ∈ Ω, i = 1, . . . , p. A gauge ∆ on Ω is a function ∆ : Ω → τ such that for every t ∈ Ω
it is t ∈ ∆(t). A McShane partition {(Ei, ti)}i≤p is subordinated to a gauge ∆ if Ei ⊂ ∆(ti) for
i = 1, ..., p.

Definition 6. f : Ω → X is said to be mMS-integrable on Ω with mMS- integral w ∈ X if for
every ε > 0 a gauge ∆ exists such that for each partition {(Ei, ti)}i≤p subordinated to ∆, we have∥∥∥∑

p
i=1 f (ti)m(Ei)− w

∥∥∥ < ε. In this case, we set w := (MS)
∫

Ω f dm.

For this kind of integration see for example [48,52–54].

Definition 7. A sequence fn : Ω → X of mMS
n -integrable functions is (mn)-equi-integrable on Ω,

if for every ε > 0 there exists a gauge ∆ such that∥∥∥∥∥ p

∑
i=1

fn(ti)mn(Ei)− (MS)

∫
Ω

fndmn

∥∥∥∥∥ < ε (4)

for each partition {(Ei, ti)}i≤p subordinated to ∆ and every n ∈ N.

We can observe that, thanks to [48], Theorem 1N, the inequality (4) holds for every
E ∈ B, as highlighted in [21], Theorem 3.11. Therefore, we have

Theorem 9 ([21], Theorem 3.11). Let m, mn ⊂ M+(Ω), n ∈ N, and let f , fn : Ω → X . If

(9i) ( fn)n is (mn)-equi-integrable on Ω;
(9ii) fn(t) → f (t), for all t ∈ Ω;
(9iii) mn

s→ m,

then f is mMS-integrable and, for all E ∈ B,

lim
n→∞

(MS)

∫
E

fn dmn = (MS)

∫
E

f dm. (5)

Moreover if condition (9iii) is replaced with the convergence in total variation (mn
tv→ m),

then (5) holds uniformly in E ∈ B.

The multivalued case [21], Theorem 3.13, follows using the Rådström embedding.

3.2. The Noncompact Case

We now want to extend the previous results for the compact case to a more general
case, we limit ourselves to the vector case because the multivalued case follows similarly.

Let now (Ω, τ,B) be a nonempty, locally compact Hausdorff space and let m be a
quasi-Radon and outer regular measure. Let MF(Ω) be the subset of M+(Ω) consisting
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of the outer regular and quasi-Radon measures. A series ∑i∈N xn exists unconditionally
for the norm topology of the Banach space X if and only if for every ε > 0 a finite set
J = J(ε) ⊂ N exists such that for every finite set I with J ⊂ I ⊂ N we have∥∥∥ ∑

i∈N
xi − ∑

i∈I
xi

∥∥∥ < ε. (6)

We say that a sequence of series
(

∑i∈N xn
i

)
n

is uniformly unconditionally convergent if

for every η > 0 a finite set J = J(η) ⊂ N exists so that for every n ∈ N, we have∥∥∥ ∑
i∈N

xn
i − ∑

i∈I
xn

i

∥∥∥ < η for every I ⊃ J, I ⊂ N, #I < +∞. (7)

A generalized McShane partition of Ω is a family {(Ai, ti)}i∈N such that (An)n is a
sequence of disjoint measurable sets of finite measure such that of m(Ω \ ∪n An) = 0 and
ti ∈ Ω for each n ∈ N. A gauge ∆ on Ω is a function ∆ : Ω → τ such that t ∈ ∆(t) for every
t ∈ Ω. We say that a generalized McShane partition {(Ai, ti)}i∈N is subordinated to a gauge
∆ if Ai ⊂ ∆(ti) for all i ∈ N.

Definition 8 ([48], Definition 1A). A function f : Ω → X is said to be m-generalized McShane
(mgMS)-integrable on Ω with mgMS-integral w ∈ X if for every ε > 0 a gauge ∆ exists such that
for each generalized McShane partition {(Ei, ti)}i∈N subordinated to ∆, we have

lim sup
n→∞

∥∥∥ n

∑
i=1

f (ti)m(Ei)− w
∥∥∥ < ε. (8)

We set w := (gMS)
∫

Ω f dm.

Remark 3. By [48], Theorem 1N, we know that a function f is m(gMS)-integrable if and only if
f χE is m(gMS)-integrable for every subset E ∈ B and (gMS)

∫
E f dm = (gMS)

∫
Ω f χEdm. In this

case we can set ∆E(t) = E ∩ ∆(t) for every t ∈ Ω. Moreover, by [48], Remark of Theorem 1N, if E
is such that m(Ω \ E) = 0 then (gMS)

∫
E f dm = (gMS)

∫
Ω f dm.

Finally, according to [48], Corollary 2D, f is m(gMS)- integrable if and only if for every
ε > 0 there exists a gauge ∆ such that: for each generalized McShane partition {(Ai, ti)}i∈N
subordinated to ∆, ∑i∈N f (ti)m(Ai) exists unconditionally for the norm topology of X and
it is ∥∥∥ ∑

i∈N
f (ti)m(Ai)− w

∥∥∥ < ε. (9)

We begin with a convergence results involving the mgMS-integrability of the limit
function f . To obtain this we need the definition of equi-integrability for series, so we
extend (4) in the following form:

Definition 9. Let mn, n = 1, 2, ... be measures in MF(Ω). We say that a sequence of m(gMS)
n -

integrable functions fn : Ω → X is (mn)-g-equi-integrable on Ω, if for every ε > 0 a gauge ∆
exists so that for each generalized McShane partition {(Ai, ti)}i∈N of Ω subordinated to ∆ and
for every E ∈ B the sequence of series (∑i∈N fn(ti)mn(Ai ∩ E))n is uniformly unconditionally
convergent and∥∥∥ ∑

i∈N
fn(ti)mn(Ai ∩ E)− (gMS)

∫
E

fn dmn

∥∥∥ < ε for every n ∈ N. (10)

Remark 4. An immediate consequence of Definition 9 and of [48], Theorem 1N, is the (mn)-
g-equi-integrability of the sequence ( fn)n with respect to every E ∈ B. In fact it is enough to
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take ∆E(t) = ∆(t) ∩ E for every t ∈ Ω. In particular if Ω is a compact Radon measure space
this is exactly [21], Definition 3.10, since the McShane integrability is given in terms of finite
partitions as in Definition 7, so the concept of (mn)-equi-integrability on compact sets coincides
with that of (mn)-g-equi-integrability. If mn = m for every n ∈ N, this is the classical condition of
equi-integrability.

On noncompact sets, the two definitions differ, being the definition of (mn)-g-equi-
integrability stronger than that of (mn)-equi-integrability. In particular, if Ω = ∪kΩk, Ωk
compact for every k ∈ N, and ( fn)n is (mn)-g-equi-integrable on Ω, then ( fn)n is (mn)-equi-
integrable on Ωk for each k ∈ N. For the converse implication, we can observe that it is
false in general. Let Ω = (0, 1] and Ωk = [ 1

k , 1]. Take fn(x) = x−1χ[ 1
n ,1] and let mn = m be

the Lebesgue measure. Then the collection { fn : n ∈ N} restricted to a separate Ωk consists
of a finite family, since fm = fk on Ωk for every m ≥ k. Consequently it is equi-integrable
on each Ωk. However, it is not g-equi-integrable on (0, 1] because, otherwise, by [55],
Theorem 4, f (x) = x−1 will be integrable.

Theorem 10. Let m and (mn)n be measures in MF(Ω), let fn : Ω → X be m(gMS)
n -integrable

functions, n ∈ N. Suppose that

(10i) ( fn)n is (mn)-g-equi-integrable on Ω;
(10ii) ( fn)n converges pointwise to a mgMS-integrable function f ;
(10iii) mn

s→ m.

Then, for all E ∈ B,

lim
n→∞

(gMS)

∫
E

fn dmn = (gMS)

∫
E

f dm. (11)

Moreover, if we substitute condition (10iii) with the convergence in total variation (mn
tv→ m),

then (11) holds uniformly in E ∈ B.

Proof. Let ε > 0 be fixed. Let ∆ = ∆(ε) be a gauge on Ω satisfying (10i), then for every
generalized McShane partition {(Ai, ti)}i∈N subordinated to ∆ and for every E ∈ B the
sequence of series (∑i∈N fn(ti)mn(Ai ∩ E))n is uniformly unconditionally convergent and∥∥∥ ∑

i∈N
fn(ti)mn(Ai ∩ E)− (gMS)

∫
E

fn dmn

∥∥∥ < ε. (12)

Without loss of generality, we may assume that corresponding to ε the same gauge ∆
works for the function f that is mgms-integrable. Now, let {(Ai, ti)}i∈N be a fixed generalized
McShane partition subordinated to ∆. We will now show that the sequence(

∑
i∈N

fn(ti)mn(Ai ∩ E)
)

n
(13)

is Cauchy. We fix σ > 0. Since the sequence of the series (∑i∈N fn(ti)mn(Ai ∩ E))n is
uniformly unconditionally convergent, let J(σ) be a finite subset of N such that, for every
finite set I with J(σ) ⊂ I ⊂ N and for each n ∈ N,∥∥∥ ∑

i∈N
fn(ti)mn(Ai ∩ E)− ∑

i∈I
fn(ti)mn(Ai ∩ E)

∥∥∥ < σ. (14)

We fix J ⊂ I ⊂ N with I finite. The pointwise convergence of fn to f and the setwise
convergence of mn to m implies that

lim
n→∞ ∑

i∈I
fn(ti)mn(Ai ∩ E) = ∑

i∈I
f (ti)m(Ai ∩ E). (15)

Corresponding to σ > 0 choose n0 ∈ N so that if n, s > n0
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∥∥∥∑
i∈I

fn(ti)mn(Ai ∩ E)− ∑
i∈I

fs(ti)ms(Ai ∩ A)
∥∥∥ < σ. (16)

Then, if n, s > n0, by (14) and (16)∥∥∥ ∑
i∈N

fn(ti)mn(Ai ∩ E)− ∑
i∈N

fs(ti)ms(Ai ∩ E)
∥∥∥ ≤∥∥∥ ∑

i∈N
fn(ti)mn(Ai ∩ E)− ∑

i∈I
fn(ti)mn(Ai ∩ E)

∥∥∥+∥∥∥∑
i∈I

fn(ti)mn(Ai ∩ E)− ∑
i∈I

fs(ti)ms(Ai ∩ E)
∥∥∥+∥∥∥ ∑

i∈N
fs(ti)ms(Ai ∩ E)− ∑

i∈I
fs(ti)ms(Ai ∩ E)

∥∥∥ < 3σ.

Then the sequence in (13) is Cauchy.

Additionally, the sequence
(
(gMS)

∫
E fndmn

)
n

is Cauchy. Therefore, corresponding to

ε > 0, let {(Ai, ti)}i∈N be a generalized McShane partition subordinated to ∆ related to the
condition (10.i). Therefore, by (12) and taking into account that (13) is Cauchy, for n, s being
suitably large we have∥∥∥(gMS)

∫
E

fn dmn − (gMS)

∫
E

fs dms

∥∥∥ ≤
∥∥∥(gMS)

∫
E

fn dmn − ∑
i∈N

fn(ti)mn(Ai ∩ E)
∥∥∥+

+
∥∥∥ ∑

i∈N
fn(ti)mn(Ai ∩ E)− ∑

i∈N
fs(ti)ms(Ai ∩ E)

∥∥∥+
+

∥∥∥ ∑
i∈N

fs(ti)ms(Ai ∩ E)− (gMS)

∫
E

fsdms

∥∥∥ < 3ε

which also shows that the sequence
(
(gMS)

∫
E fn dmn

)
n is Cauchy, therefore it converges to

xE ∈ X. Let n1 be an integer such that, for every n ≥ n1∥∥∥(gMS)

∫
E

fn dmn − xE

∥∥∥ < ε.

We will show that xE is the mgMS-integral of f . Since ∑i∈N f (ti)m(Ai ∩ E) is uncondi-
tionally convergent let I ⊂ N be a finite set such that∥∥∥ ∑

i∈N
f (ti)m(Ai ∩ E)− ∑

i∈I
f (ti)m(Ai ∩ E)

∥∥∥ < ε.

Moreover, since ∑i∈I fn(ti)m(Ai ∩ E) are uniformly unconditionally convergent with-
out loss of generality, we may assume that for the same set I the inequality (14) holds for
σ = ε. Therefore, if n is suitably large we have∥∥∥ ∑

i∈N
f (ti)m(Ai ∩ E)− xE

∥∥∥ ≤
∥∥∥ ∑

i∈N
f (ti)m(Ai ∩ E)− ∑

i∈I
f (ti)m(Ai ∩ E)

∥∥∥+
+

∥∥∥∑
i∈I

f (ti)m(Ai ∩ E)− ∑
i∈I

fn(ti)m(Ai ∩ E)
∥∥∥+

+
∥∥∥∑

i∈I
fn(ti)m(Ai ∩ E)− ∑

i∈N
fn(ti)mn(Ai ∩ E)

∥∥∥+
+

∥∥∥ ∑
i∈N

fn(ti)mn(Ai ∩ E)− (gMS)

∫
E

fndmn

∥∥∥+
+

∥∥∥(gMS)

∫
E

fn dmn − xE

∥∥∥ < 5ε.
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Therefore it follows that

lim
n

(gMS)

∫
E

fn dmn = (gMS)

∫
E

f dm.

Finally, if mn
tv→ m, n0 does not depend on E. Then, formula (15) holds uniformly on

B and the convergence in formula (11) is uniform.

Remark 5. Theorem 10 is still valid if we replace the pointwise convergence of ( fn)n to f in
condition (10ii) with the convergence in m-measure to f . In fact, by [48], Remark of Theorem 1N,
we can pass to the convergence m-a.e., and from this, the theorem holds for every subsequence ( fnk )k
of ( fn)n. This implies that the result of this theorem is still valid for convergence in the m-measure
because there would be a contradiction if, absurdly, a subsequence existed in which it is not valid.

In this theorem, the mgMS-integrability of the limit function f plays a fundamental role.
To weaken this hypothesis and obtain the mgMS-integrability as a thesis, we must introduce
additional assumptions on Ω. Let Ω be a locally compact second countable Haudorff space
(lcsc). Namely,

• There exists an increasing sequence of relatively compact spaces Ωn such that
Ω = ∪nΩn and Ωn ⊆ Ωn+1 for every n ∈ N.

From now on we suppose that (mn)n is a sequence of measures in MF(Ω) and Ω
such that has (lcsc). Thanks to Remark 4 we can apply Theorem 9 to each compact set Ωk.
Therefore, we have

Corollary 2. Let m and (mn)n be measures in MF(Ω), with m Radon and Ω that has (lcsc). Let
fn : Ω → X be m(gMS)

n -integrable functions, n ∈ N. Suppose that

(2j) The sequence ( fn)n is (mn)-g-equi-integrable on Ω;
(2jj) The sequence ( fn)n converges pointwise to a Pettis m-integrable function f ;
(2jjj) mn

s→ m.

Then, f is mgMS-integrable on Ω and

lim
n→∞

(gMS)

∫
Ω

fn dmn = (gMS)

∫
Ω

f dm. (17)

Proof. Let ε > 0 be fixed. Let (Ωk)k ⊂ B be as in (lcsc). Since Ωk is relatively compact, we
can apply Theorem 9 ([21], Theorem 3.11) and we obtain that f is mMS-integrable on Ωk
and there exists n∗ := n(k, ε) ∈ N such that∥∥∥(MS)

∫
Ωk

fn dmn − (MS)

∫
Ωk

f dm
∥∥∥ < ε

for every n ≥ n(k, ε). Then, by [48], Corollary 4.B, f is mgMS-integrable on Ω, since it is
Pettis m-integrable in Ω and mMS-integrable in each Ωk. We now apply Theorem 10.

Remark 6. Moreover, if we substitute condition (2.iii) with the convergence in total variation
(mn

tv→ m), then (17) holds uniformly in E ∈ B. Finally, as in Remark 5, the result is still valid for
convergence in the m-measure of ( fn)n to f .

4. Discussion

This paper starts from the results obtained in [21,22] and quoted in Section 2. The
research continue with an examination of convergence theorems for a sequence of McShane
integrable functions with respect to a sequence of varying measures. To obtain new results
on noncompact spaces, we refer to [48] for the theory of McShane integrability.
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5. Conclusions

This paper describes sufficient conditions ensuring convergence in both a weak and
strong sense of a sequence (

∫
fn dmn)n for scalar and vector or multivalued Pettis integrable

functions when the sequence (mn)n converges in some sense to a measure m. When
convergence is setwise or in total variation, our ambient space is a general measure space,
while in the case of vague convergence, the ambient space is a locally compact Hausdorff
measure space. Both the case of countably additive measures and that of fuzzy measures
has been exposed, together with a comparison with results known in the literature.

When we consider the McShane integrability we can pass from the vector case to the
multivalued one. In this setting, we need a topology on the space; thus, (Ω,A, m) is a
Radon measure space with a topology τ and the Rådström embedding is the key to passing
from a sequence of McShane integrable functions to a sequence of McShane integrable
multifunctions. In this case, new results of Vitali type were also provided. For what
concerns future research directions on this subject, we are studying the case of convergence
results for fuzzy varying measures that converge weakly; this research is in progress.
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