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Abstract. In this note, a proof of the Ghoussoub-Preiss theorem is presented by
using the ε−perturbation as introduced by Brezis-Nirenberg. Thus, besides the
deformation lemma, other advanced tools such as the Radon measures space, sub-
differential, or the theory of non-differentiable functions, are avoided. Our new
argument is a lemma of local type which is used in combination with other main
ingredients like the Ekeland variational principle and the pseudo-gradient lemma,
for which a new proof is proposed as a consequence of the Michael selection theorem.

1. Introduction

In the Calculus of Variations and in Nonlinear Analysis one of the most impor-
tant results of the second half of the twentieth century is surely the Ambrosetti-
Rabinowitz theorem [2, Theorem 2.1]. The limiting case on “zero altitude” situation,
has been subsequently wisely tackled by Pucci-Serrin [25, Theorem 1] and finally
beautifully solved by Ghoussoub-Preiss [13, Theorem (1)]. The primary proof of the
Ambrosetti-Rabinowitz theorem is based, among the others, on a deformation lemma.
Subsequently, Aubin-Ekeland [4, Theorem 5.5.5] gave a proof based on the Ekeland
variational principle where advanced tools as the Radon measures space and the no-
tion of sub-differential are applied. Then, Ghoussoub-Preiss presented a proof based
on the Ekeland variational principle using an ε−perturbation which allows to take in
addition the limiting case on “zero altitude” and to give further information on the lo-
calization of the critical point. The ε−perturbation introduced by Ghoussoub-Preiss
is a non-regular function, so it is handled by sophisticated arguments as those cited
above and previously exploited also by Aubin-Ekeland. Finally, Brezis-Nirenberg in
[8] introduced a new different type of ε−perturbation which is more regular than
the one used by Ghoussoub-Preiss, presenting so a proof of the mountain pass the-
orem, including the Ambrosetti-Rabinowitz theorem, which is based again on the
Ekeland variational principle, but where the above complex tools are avoided. How-
ever, the profound result of Brezis-Nirenberg does not include fully the one given
by Ghoussoub-Preiss where, in the limiting case, the obtained critical point is well
localized on the boundary of a suitable ball.
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The aim of this paper is to give a proof of the Ghoussoub-Preiss theorem by
using, in particular, the ε−perturbation introduced by Brezis-Nirenberg, so that
some technical tools as those recalled before can be avoided. Precisely, here, a lemma
which ensures a point of “Palais-Smale type” belonging to a small ball is established
by using just the ε−perturbation given by Brezis-Nirenberg (see Section 3). Then, a
proof of the Ghoussoub-Preiss theorem based on the Ekeland variational principle and
such a local lemma, beside of the pseudo-gradient lemma, is presented (see Section
5).

This paper is organized as follows. In Section 2, the Ambrosetti-Rabinowitz the-
orem is recalled and a proof obtained by following the ideas of Brezis-Nirenberg is
reported. In such a case the ε−perturbation is not needed. The unique main tools
are the Ekeland variational principle and the pseudo-gradient lemma which, here, is
obtained as a consequence of the Michael selection theorem. In Section 3, there is our
main result, that is a local lemma which is a fundamental tool for a new proof of the
mountain pass theorem including the limiting cases, while in Section 4, the classical
seminal results of Pucci-Serrin are recalled, presenting a proof which is a consequence
of the local lemma. Finally, in Section 5, a proof of the Ghoussoub-Preiss theorem
based again on the local lemma is established.

For a complete overview on the mountain pass theorem regarding its other formu-
lations or extensions (as linking theorem, or Cerami condition) or types of proof (as
through qualitative deformation lemma) we refer to the exhaustive books of Willem
[28] and Ekeland [11], while for further references and the historical development we
cite the book of Jabry [16]. We also refer to seminal books of Ambrosetti-Malchiodi
[1], Aubin-Ekeland [4], Ghoussoub [15], Mawhin-Willem [18], Motreanu-Motreanu-
Papageorgiou [20], Motreanu-Radulescu [21], Peral [22], Perera-Schechter [23], Rabi-
nowitz [26], for further studies and completions.

2. The Ambrosetti-Rabinowitz theorem

Let E be a real Banach space and f : E → IR a function of class C1. As usual, for
c ∈ IR, a sequence {xn} ⊆ E such that

1. f(xn)→ c,
2. f ′(xn)→ 0,

is called a Palais-Smale sequence at level c (briefly (PS)c−sequence) for f . If any
(PS)c−sequence for f admits a subsequence strongly converging in E, we say that f
satisfies the Palais-Smale condition at level c, shortly (PS)c−condition. Moreover, we
say that f satisfies the Palais-Smale condition, shortly (PS)−condition if it satisfies
the Palais-Smale condition at level c for all c ∈ IR.

In this section, we report the classical mountain pass theorem, as essentially given
by Ambrosetti-Rabinowitz (see [2] and Theorem 2.3 below), giving a proof directly
deduced by the one established by Brezis-Nirenberg in [8]. The proof is based on the
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Ekeland variational principle, by exploiting a lemma on the pseudo-gradient, that we
recall here.

Proposition 2.1. Let N be a metric space, E a real Banach space and T : N → E∗ a
continuous function. Then, for each ε > 0 there is a continuous function vε : N → E
such that for each ξ ∈ N one has

‖vε(ξ)‖ ≤ 1; ‖T (ξ)‖E∗ ≤ 〈T (ξ), vε(ξ)〉+ ε.

A direct proof of Proposition 2.1 can be found in Rabinowitz [26, Theorem A.2].
Here, we prove it as a consequence of the following version of the Michael selection
theorem (see for instance Aubin-Cellina [3, proof of Theorem 1 pag. 82]).

Theorem 2.1. (Michael Theorem). Let N be a metric space, E a real Banach space
and G : N → 2E a lower semicontinuous multifunction with nonempty and convex
values. Then, the multifunction G : N → 2E defined by G(t) = G(t) for all t ∈ N
admits a continuous selection.

Proof of Proposition 2.1. Fix ε > 0 and let Gε : N → 2E be the multifunction defined
by

Gε(t) = {v ∈ E : ‖v‖ ≤ 1; ‖T (t)‖E∗ < 〈T (t), v〉+ ε}
for all t ∈ N . Fix t0 ∈ N . From ‖T (t0)‖E∗ = sup‖v‖≤1〈T (t0), v〉 one has that
Gε(t0) is nonempty and a simple computation shows that it is a convex set. Now,
we claim that Gε is lower semicontinuous. Let A ⊆ E be an open set and fix
t̄ ∈ G−(A) = {t ∈ N : Gε(t) ∩ A 6= ∅}. From Gε(t̄) ∩ A 6= ∅ there is v ∈ A such
that ‖T (t̄)‖E∗ < 〈T (t̄), v〉 + ε. Therefore, there is a neighborhood U of t̄ such that
‖T (t)‖E∗ < 〈T (t), v〉+ ε for all t ∈ U , that is U ⊆ G−ε (A). Hence, G−ε (A) is an open
set and our claim is proved. Now, from the Michael selection theorem there exists a
continuous function vε : N → E such that

vε(t) ∈ Gε(t) ⊆ {v ∈ E : ‖v‖ ≤ 1; ‖T (t)‖E∗ ≤ 〈T (t), v〉+ ε}
for all t ∈ N and the conclusion is achieved.

�

Now, we recall the Ambrosetti-Rabinowitz theorem, giving a proof which is basi-
cally due to Brezis-Nirenberg.

Theorem 2.2. Let E be a real Banach space and f ∈ C1(E). Fix x0 ∈ E and R > 0
and assume that there are x, y ∈ E, with ‖x− x0‖ < R < ‖y − x0‖ such that

inf
‖z−x0‖=R

f(z) > max{f(x), f(y)}. (G1)

Put

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),
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where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
.

Then, f admits a (PS)c−sequence.

Proof. Put a = max{f(x), f(y)}. Condition (G1) implies that

c > a. (G′1)

Indeed, for each γ ∈ Γ there is tγ ∈]0, 1[ such that ‖γ(tγ)− x0‖ = R, so that one has
f(γ(tγ)) ≥ inf‖z−x0‖=R f(z). It follows that maxt∈[0,1] f(γ(t)) ≥ inf‖z−x0‖=R f(z) for
each γ ∈ Γ. Hence, from (G1) one has c ≥ inf‖z−x0‖=R f(z) > max{f(x), f(y)} = a,
so (G′1) is proved. Moreover, in particular, one has

max
t∈[0,1]

f(γ(t)) > a (2.1)

for all γ ∈ Γ.
Let Ψ : Γ → IR be the function defined by Ψ(γ) = maxt∈[0,1] f(γ(t)) for all γ ∈ Γ.

We observe that Γ is closed in C([0, 1], E) endowed with the usual metric (that is,
d(γ1, γ2) = ‖γ1 − γ2‖∞ = maxt∈[0,1] ‖γ1(t) − γ2(t)‖) and Ψ is lower semi-continuous
being the upper envelope of continuous functions. Moreover, Ψ is bounded from
below since infΓ Ψ = c > a.

Our aim is to prove that for every ε > 0 there are pε ∈ Γ and tε ∈ [0, 1] such that

c ≤ f(pε(tε)) ≤ c+ ε (PS1)

and

‖f ′(pε(tε))‖E∗ ≤ ε. (PS2)

To this end, fix ε > 0 and γε ∈ Γ such that Ψ(γε) ≤ infΓ Ψ +
ε

2
. Therefore, from

the Ekeland Variational Principle (see, for instance, Mawhin-Willem [18, Theorem
4.1 page 75]) there is pε ∈ Γ such that

Ψ(pε) ≤ Ψ(γε) (E1)

and

Ψ(pε) ≤ Ψ(q) +
ε

2
‖pε − q‖∞, ∀q ∈ Γ. (E2)

Moreover, taking in mind that f ∈ C1(E), from Proposition 2.1 there is a continuous
function vε : [0, 1]→ E such that for each t ∈ [0, 1] one has

‖vε(t)‖ ≤ 1; ‖f ′(pε(t))‖E∗ ≤ 〈f ′(pε(t)), vε(t)〉+
ε

2
.

Now, put
M(pε) = {t ∈ [0, 1] : f(pε(t)) = max

[0,1]
f(pε)}.

Observe that M(pε) is a nonempty closed set. Moreover, from (2.1) one has Ψ(pε) > a
for which M(pε) ∩ {0, 1} = ∅.
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Put

α(t) =
infz∈K∗ |t− z|

infz∈K∗ |t− z|+ inf l∈M(pε) |t− l|
, ∀ t ∈ [0, 1],

where K∗ = {0, 1}. Clearly, α is locally Lipschitz and 0 ≤ α(t) ≤ 1 as well as
α(0) = α(1) = 0, α(t) = 1 for all t ∈ M(pε). So, setting wε(t) = α(t)vε(t) and
qh(t) = pε(t)− hwε(t) for all t ∈ [0, 1] and h > 0, one has

‖f ′(pε(t))‖E∗ ≤ 〈f ′(pε(t)), wε(t)〉+
ε

2
(2.2)

for all t ∈ M(pε), since in this case vε(t) = wε(t). Moreover, one has d(qh, pε) =
‖pε − qh‖∞ = hmaxt∈[0,1] ‖wε(t)‖ ≤ h, for which qh → pε when h→ 0+.
Given M(qh) = {t ∈ [0, 1] : f(qh(t)) = max[0,1] f(qh)}, let hn → 0+ and thn ∈M(qhn).

Therefore, there is t̃ ∈ [0, 1] (and a subsequence relabelled again thn) such that
thn → t̃. So, it follows that Ψ(pε) ≤ lim infn→+∞Ψ(qhn) = lim infn→+∞[f(qhn(thn)] =
f(pε(t̃)), namely t̃ ∈M(pε). Therefore, from (2.2) one has

‖f ′(pε(t̃))‖E∗ ≤ 〈f ′(pε(t̃)), wε(t̃)〉+
ε

2
(2.3)

Moreover, from (E2) one has

Ψ(qhn)−Ψ(pε) +
ε

2
‖qhn − pε‖∞ ≥ 0,

maxt∈[0,1] f(pε(t)− hnwε(t))−maxt∈[0,1] f(pε(t)) +
ε

2
hn‖wε‖∞ ≥ 0,

f(pε(thn)− hnwε(thn))−maxt∈[0,1] f(pε(t)) +
ε

2
hn ≥ 0,

f(pε(thn))− hn〈f ′(pε(thn), wε(thn)〉+ o(hn)−maxt∈[0,1] f(pε(t)) +
ε

2
hn ≥ 0.

Since maxt∈[0,1] f(pε(t)) ≥ f(pε(thn)), it follows

f(pε(thn))− hn〈f ′(pε(thn), wε(thn)〉+ o(hn)− f(pε(thn)) +
ε

2
hn ≥ 0,

−hn〈f ′(pε(thn), wε(thn)〉+ o(hn) +
ε

2
hn ≥ 0,

hn〈f ′(pε(thn), wε(thn)〉 ≤ ε

2
hn + o(hn),

〈f ′(pε(thn), wε(thn)〉 ≤ ε

2
+
o(hn)

hn
.

Thus, if we put tε = t̄, one has

〈f ′(pε(tε), wε(tε)〉 >≤
ε

2
. (2.4)

Hence, from (2.3) and (2.4) one has

‖f ′(pε(tε))‖E∗ ≤ ε,
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and (PS2) is verified.

Moreover, from (E1) we obtain c ≤ Ψ(pε) ≤ Ψ(γε) ≤ c +
ε

2
, that is c ≤ f(pε(tε)) ≤

c+
ε

2
and also (PS1) is verified.

At this point, by picking ε =
1

n
, n ∈ IN+, and xn = p 1

n
(t 1

n
), the sequence {xn}

ensures the conclusion.
�

Remark 2.1. As seen in the proof, the conclusion of Theorem 2.2 holds under the
more general condition (G′1). Hence, actually one has “If c > a, then f admits a
(PS)c−sequence.”

We now give a definition that we will use in the following.

Definition 2.1. A nonempty set D ⊆ E is said to separate two points x and y if
x, y 6∈ D and for each γ ∈ Γ there is tγ ∈]0, 1[ such that γ(tγ) ∈ D.

Remark 2.2. A simple computation shows that condition (G′1) is equivalent to the
existence of a set V [respectively: a closed set D] which separates x and y such that

inf
V
f > a [respectively : inf

D
f > a].

Indeed, if c > a, we can choose

V = {z ∈ E : ∃γz ∈ Γ,∃tz ∈]0, 1[ with z = γz(tz) and max
t∈[0,1]

f(γz(t)) = f(γz(tz))}

and D = V .
Hence, one also has “If there is a set V which separates x and y such that infV f > a,
then f admits a (PS)c−sequence”.

A consequence of Theorem 2.2 is the following result.

Theorem 2.3. (Ambrosetti-Rabinowitz Theorem). Let E be a real Banach space
and f ∈ C1(E). Fix x0 ∈ E and R > 0 and assume that there are x, y ∈ E, with
‖x− x0‖ < R < ‖y − x0‖ such that

inf
‖z−x0‖=R

f(z) > max{f(x), f(y)}. (G1)

Put

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
and assume also that

(i) f satisfies (PS)c−condition.
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Then, there is x̄ ∈ E, which is different from x and y, such that

f(x̄) = c

and

f ′(x̄) = 0.

Proof. From Theorem 2.2 and assumption (i), there is a (PS)c−sequence {xn} such
that xn → x̄. Hence, taking into account that f ∈ C1, one has f(x̄) = c and f ′(x̄) = 0.
Moreover, since c > a = max{f(x), f(y)}, as seen in the proof of Theorem 2.2, one
has f(x̄) = c > a = max{f(x), f(y)} and the conclusion is achieved. �

Remark 2.3. The statement of Theorem 2.3 is essentially the same as given in [2],
even if here the mountain pass geometry is expressed in a form which appears more
general and, as already in the literature, the Palais-Smale condition is considered
at level c. We recall that the original proof is based on a deformation lemma that
involves the Palais-Smale condition in the same spirit of Clark [10]. Here, the proof
is based on the preliminary construction of a (PS)c−sequence given in Theorem 2.2
where the Palais-Smale condition is not required. There are other results in the
literature where the same conclusion of Theorem 2.2 is obtained by a deformation
lemma, without assuming the Palais-Smale condition. Generally, the approach based
on deformation lemmas makes use of more sophisticated techniques. For instance,
a qualitative deformation lemma as proved by Willem represents a nice prototype
of this kind of approach and we refer just to the exhaustive book of Willem [28] for
more details on this argument.

3. A local lemma

In this section we establish our main result, that is, a lemma which will be used
for the proof of the mountain pass theorem in the limiting cases and for a more
precise conclusion in order to have a localization of the (PS)c− sequence. It takes
full advantage of the ε−perturbation as introduced by Brezis-Nirenberg. We also
say that the basic idea is deduced by that of Pucci-Serrin, that is, roughly speaking,
to keep the function above the critical value in a certain region of the space. The
perturbation of Brezis-Nirenberg is therefore fundamental for our purposes.
Precisely, we have the following result.

Lemma 3.1. Let E be a real Banach space, f ∈ C1(E) and c ∈ IR. Fix ε ∈]0, 1[ and
assume that there exists z ∈ E such that

(H1) f(z) < c+
ε2

48
;

(H2) f(w) ≥ c for every w ∈ B(z, ε).

Then, there is xε ∈ E such that
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(i) |f(xε)− c| ≤ ε2

(ii) ‖f ′(xε)‖E∗ ≤ ε
(iii) d(xε, z) ≤ ε.

Proof. Since f is continuous, from assumption (H1) there is σ > 0 such that

f(w) < c+
ε2

48
, (3.1)

for all w ∈ B(z, σ). Moreover, it is not restrictive assume that σ <
ε

4
.

Now, fix w̄ ∈ B(z, σ), with w̄ 6= z, and put

γ̄(t) = tw̄ + (1− t)z
for all t ∈ [0, 1]. We have ‖γ(t)− z‖ = t‖w̄ − z‖ < σ for all t ∈ [0, 1], namely

γ̄([0, 1]) ⊆ B(z, σ),

so that, in view of (3.1),

f(γ̄(t)) < c+
ε2

48
. (3.2)

for all t ∈ [0, 1].
Denote x̄ = z, ȳ = w̄ and put

Γ̄ = Γ̄(x̄, ȳ) =
{
γ ∈ C([0, 1], E) : γ(0) = x̄, γ(1) = ȳ

}
,

so that, it is clear that γ̄ ∈ Γ̄.
Consider the Lipschitz continuous function d : [0, 1]→ [0, 1/2] defined by

d(t) = min{t, 1− t} ∀t ∈ [0, 1]

and put

Fε(p, t) = f(p(t)) +
ε2

12
d(t) (3.3)

for all p ∈ Γ̄ and for all t ∈ [0, 1]. It is clear that the function Ψε : Γ̄→ IR defined by

Ψε(p) = max
t∈[0,1]

Fε(p, t)

is lower semi-continuous and bounded from below, being Ψε(γ) ≥ max{f(x̄), f(ȳ)}
for every γ ∈ Γ̄.

Moreover, put

ā = max{f(x̄), f(ȳ)}, c̄ = inf
γ∈Γ̄

max
t∈[0,1]

f(γ(t))

and
cε = inf

p∈Γ̄
max
t∈[0,1]

Fε(p, t).

We now point out some claims.
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Claim 1. For every p ∈ Γ̄ such that ‖p− γ̄‖∞ ≤ ε
4

one has that

p(t) ∈ B(z, ε/2).

Claim 2. For every p ∈ Γ̄ such that ‖p− γ̄‖∞ ≤ ε
4

one has that

f(p(t)) ≥ c

for all t ∈ [0, 1].
Claim 3. The following condition holds

c ≤ ā ≤ c̄ < c+
ε2

48
. (3.4)

Claim 4. The following condition holds

c̄ ≤ cε ≤ c̄+
ε2

24
. (3.5)

Claim 5. The following condition holds

c ≤ cε < c+
ε2

16
. (3.6)

Claim 6. For every p ∈ Γ̄ such that f(p(1/2)) ≥ c one has that

Ψε(p) > ā. (3.7)

Let us verify Claim 1. Fix p ∈ Γ̄ such that ‖p− γ̄‖∞ ≤
ε

4
and observe that, for all

t ∈ [0, 1]

‖p(t)− z‖ ≤ ‖p(t)− γ̄(t)‖+ ‖γ̄(t)− z‖ ≤ ‖p− γ̄‖∞ + ‖γ̄(t)− z‖ < ε

4
+ σ <

ε

2
,

and the conclusion is achieved.
Let us verify Claim 2. It follows directly from Claim 1 and assumption (H2).
Let us verify Claim 3. Owing to assumption (H2), in particular, f(z) ≥ c and for

every γ ∈ Γ̄ one has

c ≤ f(z) = f(x̄) ≤ ā ≤ max
t∈[0,1]

f(γ(t)),

namely c ≤ ā ≤ c̄. On the other hand, taking in mind (3.2), it is clear that

c̄ ≤ max
t∈[0,1]

f(γ̄(t)) < c+
ε2

48

and the claim is proved.
Let us verify Claim 4. For every p ∈ Γ̄ observe that

c̄ ≤ max
t∈[0,1]

f(p(t)) ≤ max
t∈[0,1]

Fε(p, t) ≤ max
t∈[0,1]

f(p(t)) +
ε2

12
max
t∈[0,1]

d(t) = max
t∈[0,1]

f(p(t)) +
ε2

24
,

namely (3.5) holds.
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Let us verify Claim 5. It follows straightforwardly from Claim 3 and Claim 4.
Indeed, from (3.4) and (3.5) one has

c ≤ c̄ ≤ cε ≤ c̄+
ε2

24
<
(
c+

ε2

48

)
+
ε2

24
= c+ 3

ε2

48
,

namely (3.6).
Let us verify Claim 6. Fix p ∈ Γ̄ such that f(p(1/2)) ≥ c. Then, it is clear that

Ψε(p) ≥ Fε(p, 1/2) = f(p(1/2)) +
ε2

24
≥ c+

ε2

24
.

On the other hand, exploiting Claim 3 and recalling that f(z) ≥ c, one has

Ψε(p) ≥ c+
ε2

24
>
(
ā− ε2

48

)
+
ε2

24
= ā+

ε2

48
> ā.

Incidentally, we explicitly wish to point out that, in verifying all the previous
claims, the only moment where assumption (H2) is fully used is in the proof of Claim
2. On the contrary, for all the other claims, the only condition that we used is that
f(z) ≥ c (see also next Remark 3.1).

Now, we can apply the Ekeland variational principle in correspondence of ε and γ̄
previously introduced. Indeed, from (3.2) and Claim 3, one has

max
t∈[0,1]

Fε(γ̄, t) ≤ max
t∈[0,1]

f(γ̄(t)) +
ε2

24
< c+

ε2

48
+
ε2

24
≤ ā+

ε2

16
≤ cε +

ε2

16
,

that is,

Ψε(γ̄) < inf
Γ̄

Ψε +
ε2

16
. (3.8)

Therefore (see, for instance, [18, Theorem 4.1 and Remark 4.1]), there is pε ∈ Γ̄ such
that

‖pε − γ̄‖∞ ≤
ε

4
; (E0)

Ψε(pε) ≤ Ψε(γ̄) (E1’)

and

Ψε(pε) ≤ Ψε(q) +
ε

4
‖pε − q‖∞, ∀q ∈ Γ̄. (E2’)

Now, in view of (E0) we can recall Claim 2 and then Claim 6 in order to conclude
that

Ψε(pε) > ā. (3.9)

At this point, we can argue in a similar way of the proof of Theorem 2.2. We give a
sketch below to facilitate the reader.
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Indeed, taking in mind that f ∈ C1(E) from Proposition 2.1 there is a continuous
function vε : [0, 1]→ E such that for each t ∈ [0, 1] one has

‖vε(t)‖ ≤ 1; ‖f ′(pε(t))‖E∗ ≤ 〈f ′(pε(t)), vε(t)〉+
ε

2
.

Put
M(pε) = {t ∈ [0, 1] : Fε(pε, t) = max

s∈[0,1]
Fε(pε, s)}.

Observe that M(pε) is a nonempty closed set. Moreover, from (3.9) one has M(pε)∩
{0, 1} = ∅.
Put

α(t) =
infz∈K∗ |t− z|

infz∈K∗ |t− z|+ inf l∈M(pε) |t− l|
,

where K∗ = {0, 1}. Clearly, α is locally Lipschitz and 0 ≤ α(t) ≤ 1 as well as
α(0) = α(1) = 0, α(t) = 1 for all t ∈ M(pε). So, setting wε(t) = α(t)vε(t) and
qh(t) = pε(t)− hwε(t) for all t ∈ [0, 1] and h > 0, one has

‖f ′(pε(t))‖E∗ ≤ 〈f ′(pε(t)), wε(t)〉+
ε

2
(3.10)

for all t ∈ M(pε), since in this case vε(t) = wε(t). Moreover, one has d(qh, pε) =
‖pε − qh‖∞ = hmaxt∈[0,1] ‖wε(t)‖ ≤ h, for which qh → pε when h→ 0+.
Given M(qh) = {t ∈ [0, 1] : Fε(qh, t) = maxs∈[0,1] Fε(qh, s), let hn → 0+ be and thn ∈
M(qhn). Therefore, there is t̃ ∈ [0, 1] (and a subsequence relabelled again thn) such
that thn → t̃. So, it follows Ψε(pε) ≤ lim infn→+∞Ψε(qhn) = lim infn→+∞ Fε(qhn , thn) =
Fε(pε, t̃), namely t̃ ∈M(pε). Therefore, from (3.10) one has

‖f ′(pε(t̃))‖E∗ ≤ 〈f ′(pε(t̃)), wε(t̃)〉+
ε

2
. (3.11)

Moreover, from (E2’) one has

Ψε(qhn)−Ψε(pε) +
ε

4
‖qhn − pε‖∞ ≥ 0,

maxt∈[0,1]

[
f(pε(t)− hnwε(t)) +

ε2

12
d(t)

]
−Ψε(pε) +

ε

4
hn‖wε‖∞ ≥ 0,

f(pε(thn)− hnwε(thn)) +
ε2

12
d(thn)−Ψε(pε) +

ε

4
hn ≥ 0,

f(pε(thn))− hn〈f ′(pε(thn), wε(thn)〉+ o(hn) +
ε2

12
d(thn)−Ψε(pε) +

ε

4
hn ≥ 0.

Since Ψε(pε) ≥ f(pε(thn)) +
ε2

12
d(thn), it follows

−hn〈f ′(pε(thn), wε(thn)〉+ o(hn) +
ε

4
hn ≥ 0,

hn〈f ′(pε(thn), wε(thn)〉 ≤ ε

4
hn + o(hn),
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〈f ′(pε(thn), wε(thn)〉 ≤ ε

4
+
o(hn)

hn

Therefore, if we put tε = t̃, one has

〈f ′(pε(tε), wε(tε)〉 ≤
ε

4
. (3.12)

Hence, from (3.11) and (3.12) one has

‖f ′(pε(tε))‖E∗ ≤
(

1

2
+

1

4

)
ε. (3.13)

Moreover, from (E1’) and (3.8) we obtain cε ≤ Ψε(pε) ≤ Ψε(γ̄) ≤ cε+
ε2

16
and recalling

(3.6) of Claim 5 one has c ≤ Ψε(pε) ≤
(
c+

ε2

16

)
+
ε2

16
≤ c+

ε2

8
, that is,

c ≤ Ψε(pε) ≤ c+
ε2

8
.

Hence,

c ≤ Ψε(pε) = Fε(pε, tε) ≤ f(pε(tε)) +
ε2

24
,

that leads to

c− ε2

24
≤ f(pε(tε)) ≤ c+

ε2

8
. (3.14)

From (E0) and Claim 1 one has

d(pε(tε), z) ≤
ε

2
. (3.15)

At this point, by picking xε = pε(tε), from (3.13), (3.14), (3.15) one has

‖f ′(xε)‖E∗ ≤ 3

4
ε, c− ε2

8
≤ f(xε) ≤ c+

ε2

8
, d(xε, z) ≤

ε

2

and the proof is complete. �

Remark 3.1. A careful analysis of the above proof points out that the crucial condi-
tion (3.9) is obtained exploiting Claim 6. Hence, as already observe inside its proof,
Lemma 3.1 is true also without assuming (H2), provided that one has

f(z) ≥ c

and

f(pε(1/2)) ≥ c

where pε is the path obtained by the Ekeland Variational Principle (see (E0)–(E2’)).
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Remark 3.2. We wish to stress that, in Lemma 3.1, c is a completely arbitrary
number. Hence, when it is the case, we can choose c = infγ∈Γ maxt∈[0,1] f(γ(t)), with,
as usual, Γ = {γ ∈ C0([0, 1], E) : γ(0) = x, γ(1) = y}, and use Lemma 3.1 as
a new tool for obtaining a (PS)c−sequence in the classical mountain pass theorem
framework. Indeed, the arbitrariness of c allows to apply Lemma 3.1 to further more
general situations, covering also settings of linking-type, as we will see in the next
two sections (see Theorem 4.1 and Remark 5.7).

4. The Pucci-Serrin theorem

In this section, we recall the Pucci-Serrin theorem and its seminal corollary. We
give a novel proof which is a consequence of the Lemma 3.1 presented in the previous
section. Precisely we have the following result.

Theorem 4.1. Let E be a real Banach space and f ∈ C1(E). Fix x0 ∈ E and
R1, R2 > 0 and assume that there are x, y ∈ E, with ‖x− x0‖ < R1 < R2 < ‖y− x0‖
such that

inf
R1<‖z−x0‖<R2

f(z) ≥ max{f(x), f(y)}. (G2)

Put

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
.

Then, f admits a (PS)c−sequence. In particular, if c = a := max{f(x), f(y)},
then f admits a bounded (PS)c−sequence {xn} such that d(xn, ∂B) ≤ 1

n
for all

n ∈ IN, where ∂B = {z ∈ E : ‖z − x0‖ = (R1 +R2)/2}.

Proof. Put R = (R1 +R2)/2. Clearly, from (G2) one has

inf
‖z−x0‖=R

f(z) ≥ inf
R1<‖z−x0‖<R2

f(z) ≥ max{f(x), f(y)}.

If one has the strict inequality (or c > inf‖z−x0‖=R f(z) if inf‖z−x0‖=R f(z) = a =
max{f(x), f(y)}) then (G′1) holds (with R = (R1 + R2)/2) and Theorem 2.2 (see
also Remark 2.1) ensures the conclusion. So, we can assume

c = inf
‖z−x0‖=R

f(z) = max{f(x), f(y)}.

Therefore, from inf‖z−x0‖=R f(z) = c, for all n ∈ IN such that
1

n
< (R2 −R1)/2 there

is zn ∈ ∂B such that f(zn) < c+
(1/n)2

48
and, taking (G2) into account, f(w) ≥ a = c
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for all w ∈ B(zn,
1

n
). Hence, Lemma 3.1, see also Remark 3.2, ensures that there is

a sequence {xn} such that

c−(1/n)2 ≤ f(xn) ≤ c+(1/n)2, ‖f ′(xn)‖E∗ ≤ (1/n), d(xn, ∂B) ≤ d(xn, zn) ≤ (1/n)

for all n > 2/(R2 −R1) and the conclusion is achieved.
�

As consequences of Theorem 4.1 we obtain the following two famous classical results
of Pucci-Serrin.

Theorem 4.2. (Pucci-Serrin Theorem). Let E be a real Banach space and f ∈
C1(E). Fix x0 ∈ E and R1, R2 > 0 and assume that there are x, y ∈ E, with
‖x− x0‖ < R1 < R2 < ‖y − x0‖ such that

inf
R1<‖z−x0‖<R2

f(z) ≥ max{f(x), f(y)}. (G2)

Put

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
and assume also that

(i) f satisfies (PS)c−condition.

Then, there is x̄ ∈ E, which is different from x and y, such that

f(x̄) = c

and

f ′(x̄) = 0.

In particular, if c = a then ‖x̄− x0‖ = (R1 +R2)/2.

Definition 4.1. A point x ∈ E is said to be a local minimum point of f : E → IR if
there exists a neighbourhood V of x such that f(z) ≥ f(x) for every z ∈ V .

Corollary 4.1. (Pucci-Serrin Corollary). Let E be a real Banach space and f ∈
C1(E). Assume that f admits two different local minimum points x, y ∈ E. Put

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
and assume also that

(i) f satisfies (PS)c−condition.

Then, f admits a third distinct critical point.



A PROOF OF THE GHOUSSOUB-PREISS THEOREM 15

Remark 4.1. We explicitly observe that when, instead of (G1), the so called zero
altitude occurs, namely

inf
‖z−x0‖=R

f(z) = max{f(x), f(y)},

from the Pucci-Serrin theorem the existence of a critical point can be again obtained.
However, for this end, the (PS)–condition must be assumed. Moreover, in such a
case, the level of the obtained critical point may be higher or such a critical point
may coincide with one of the end points x or y (see, for instance, de Figueiredo-
Solimini [12]). In particular, such a result can be obtained by a characterization
of the mountain pass geometry (see [5, Theorem 2.1] or [6, Theorem 2.1]), that we
report below in a suitable form.

Proposition 4.1. Let E be a real Banach space and f ∈ C1(E). Fix x0 ∈ E and
R > 0 and assume that f fulfills (PS) and it is bounded from below or on B(x0, R)
or on E \ B̄(x0, R). Then, the following assertions are equivalent:

(a) there are x, y ∈ E, with ‖x− x0‖ < R < ‖y − x0‖, such that

inf
‖z−x0‖=R

f(z) ≥ max{f(x), f(y)}; (G3)

(b) f admits at least one global minimum or on B(x0, R) or on E\B̄(x0, R) which
is not strictly global on the whole E.

Remark 4.2. Taking into account the above proposition, assuming (G3) and the
(PS)−condition, the existence of a critical point follows from Theorems 2.3 and
4.2, and Corollary 4.1. The Ghoussoub-Preiss theorem, that we will see in the next
section, gives a more precise result. Indeed, under only the (PS)c−condition, it
ensures that, when the equality holds, the critical point is again at level c and it
belongs to a set that separates x and y, namely it is distinct from x and y.

5. The Ghoussoub-Preiss theorem

In this section, we recall the Ghoussoub-Preiss theorem giving a novel proof based
on the ε−perturbation as introduced by Brezis-Nirenberg. Precisely, such a proof is
a combination of the ideas contained in the same Ghoussoub-Preiss work with those
of Brezis-Nirenberg, which have been previously exploited in Lemma 3.1, which here
is our main tool.

First, we examine the version of the Ghoussoub-Preiss theorem, Theorem 5.1,
where the mountain pass geometry is given by (G3) below, that is, roughly speaking,
the original assumption of Ambrosetti-Rabinowitz where also the equality is con-
sidered. Next, we give the more general version of the Ghoussoub-Preiss theorem,
Theorem 5.3, which includes the previous case and provides information in addition
on (PS)c−sequence in terms of distance.
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Theorem 5.1. (Ghoussoub-Preiss Theorem). Let E be a real Banach space and
f ∈ C1(E). Fix x0 ∈ E and R > 0 and assume that there are x, y ∈ E, with
‖x− x0‖ < R < ‖y − x0‖ such that

inf
‖z−x0‖=R

f(z) ≥ max{f(x), f(y)}. (G3)

Put
c = inf

γ∈Γ
max
t∈[0,1]

f(γ(t)),

where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
.

Then, f admits a (PS)c−sequence. In particular, if c = a := max{f(x), f(y)},
then f admits a bounded (PS)c−sequence {xn} such that d(xn, ∂B) ≤ 1

n
for all

n ∈ IN, where ∂B = {z ∈ E : ‖z − x0‖ = R}.

Proof. Condition (G3) implies that{
either c > a,
or c = a and for all γ ∈ Γ there is tγ ∈]0, 1[ such that f(γ(tγ)) ≥ a.

(G′3)

Indeed, for each γ ∈ Γ there is tγ ∈]0, 1[ such that ‖γ(tγ)− x0‖ = R, so that one has
f(γ(tγ)) ≥ inf‖z−x0‖=R f(z). It follows that maxt∈[0,1] f(γ(t)) ≥ inf‖z−x0‖=R f(z) for
each γ ∈ Γ. Hence, from (G3) one has c ≥ inf‖z−x0‖=R f(z) ≥ max{f(x), f(y)} = a.
So, our claim is proved.

We can assume

c = inf
‖z−x0‖=R

f(z) = a (5.1)

since otherwise, that is c > a, the conclusion follows from the proof of Theorem 2.2.
Fixed ε > 0, we start from an idea of Ghoussoub-Preiss in order to get close to ∂B.
Precisely, from c = inf

γ∈Γ
max
t∈[0,1]

f(γ(t)) there is γ̄ ∈ Γ such that

c ≤ max
t∈[0,1]

f(γ̄(t)) < c+
ε2

48
. (5.2)

Put
T0 = sup{t ∈ [0, 1] : γ̄(t) ∈ B(x0, R), d(γ̄(t), ∂B) ≥ ε}

and
T1 = inf{t ∈ [T0, 1] : γ̄(t) ∈ E \ B̄(x0, R), d(γ̄(t), ∂B) ≥ ε}.

Clearly, one has

d(γ̄(t), ∂B) ≤ ε ∀t ∈ [T0, T1]. (5.3)

Now, put z1 = γ̄(T0) and consider B(z1, ε) which is included in B(x0, R). We
can have either f(z1) ≥ c or f(z1) < c. In the first case, if w̄1 ∈ B(z1, σ), with
σ < ε

4
, we argue as in Lemma 3.1 and we obtain a path p1

ε, joining z1 with w̄1



A PROOF OF THE GHOUSSOUB-PREISS THEOREM 17

and such that p1
ε([0, 1]) ⊂ B(z1, ε) ⊂ B(x0, R), which satisfies (E0), (E1’), (E2’).

Setting w1 = p1
ε(1/2) we can have either f(w1) ≥ c or f(w1) < c. Moreover, put

z2 = γ̄(T1) and consider B(z2, ε) which is included in E \ B̄(x0, R). We can have
either f(z2) ≥ c or f(z2) < c. As above, in the first case, if w̄2 ∈ B(z2, σ), with
σ < ε

4
, we argue as in Lemma 3.1 and we obtain a path p2

ε, joining z2 with w̄2

and such that p2
ε([0, 1]) ⊂ B(z2, ε) ⊂ E \ B̄(x0, R) which satisfies (E0), (E1’), (E2’).

Setting w2 = p2
ε(1/2) we can have either f(w2) ≥ c or f(w2) < c.

At this point, put m1 = min{f(z1), f(w1)}, m2 = min{f(z2), f(w2)}, the two
cases occurs

(A) max{m1, m2} ≥ c;
(B) max{m1, m2} < c.

In the case (A) we apply Lemma 3.1 (see also Remark 3.1) for which (taking also
(5.3) into account) there is xε ∈ E such that

|f(xε)− c| ≤ ε2; ‖f ′(xε)‖E∗ ≤ ε; d(xε, ∂B) ≤ 2ε. (5.4)

Indeed, in particular, we have d(z1, ∂B) = ε from (5.3) and d(xε, z1) ≤ ε from Lemma
3.1.
In the case (B) observe that if f(z1) ≥ c then f(w1) < c and, analogously, if f(z2) ≥ c
then f(w2) < c. Denote by x̃ the point z1 if f(z1) < c or the point w1 otherwise.
Similarly ỹ indicates z2 or w2 accordingly if f(z2) < c or not. Put

Γ̃ = {γ ∈ C([0, 1], E) : γ(0) = x̃, γ(1) = ỹ},
let p̃iε be the restriction of piε joining zi with wi, where i = 1, 2, let γ̂ be the restriction
of γ̄ joining z1 with z2 and consider the path γ̃ as follows

γ̃ =


γ̂ if f(z1) < c, f(z2) < c
(−p̃1

ε) ∪ γ̂ if f(z1) ≥ c, f(z2) < c
γ̂ ∪ (−p̃2

ε) if f(z1) < c, f(z2) ≥ c
(−p̃1

ε) ∪ γ̂ ∪ (−p̃2
ε) if f(z1) ≥ c, f(z2) ≥ c.

Clearly it is always possible to parametrize γ̃ in such a way that γ̃ ∈ C0([0, 1], X);
for example in the latest case, that is if f(z1) ≥ c and f(z2) ≥ c, γ̃ joins x̃ = w1 to
ỹ = w2, passing through z1 and z2, and we consider

γ̃(t) =


p1
ε(1/2− 2t) if t ∈ [0, 1/4[
γ̄((T1 − T0)(2t− 1/2) + T0) if t ∈ [1/4, 3/4[
p2
ε(2t− 3/2) if t ∈ [3/4, 1].

Similarly, we argue in the other previous three cases. So, in all cases one can verify
that

γ̃ ∈ Γ̃

and

f(γ̃(t)) < c+
ε2

8
∀t ∈ [0, 1]. (5.5)
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Indeed, for i = 1, 2, put

ciε = inf
p∈Γ̄i

max
s∈[0,1]

Fε(p, s),

where Γ̄i = {γ ∈ C0([0, 1], E) : γ(0) = zi, γ(1) = w̄i}, while Fε is defined in (3.3),
and observe that (5.5) follows from (5.2) and (E1’), taking also into account (3.6)
and (3.8), being

f(piε(t)) ≤ Ψε(p
i
ε) ≤ ciε +

ε2

16
< c+

ε2

16
+
ε2

16
.

Now, if Ψ : Γ̃ → IR is defined by Ψ(γ) = maxt∈[0,1] f(γ(t)) for all γ ∈ Γ̃, denoting
c̃ = infγ∈Γ̃ maxt∈[0,1] f(γ(t)) = inf Γ̃ Ψ and ã = max{f(x̃), f(ỹ)}, one has c̃ ≥ c (since

every path of Γ̃ passes through the boundary ∂B and (5.1) holds) and c > ã, because
we are in the case (B). So, we have

c̃ > ã. (5.6)

In addition, from (5.5) (taking into account again that c̃ ≥ c) one has that γ̃ ∈ Γ̃ is
such that

Ψ(γ̃) < c+
ε2

8
≤ inf

Γ̃
Ψ +

ε2

8
.

Therefore, from the Ekeland Variational Principle there is p̃ε ∈ Γ̃ such that

‖p̃ε − γ̃‖∞ ≤
ε√
8

; (E0*)

Ψ(p̃ε) ≤ Ψ(γ̃) (E1*)

and

Ψ(p̃ε) ≤ Ψ(q) +
ε√
8
‖p̃ε − q‖∞, ∀q ∈ Γ̃. (E2*)

Arguing as in the proof of Theorem 2.2, exploiting (5.6), from (E1*) and (E2*) we
get a tε ∈ [0, 1] such that f(pε(tε)) = Ψ(pε) and

‖f ′(p̃ε(tε))‖E∗ ≤ (
1√
8

+
1

2
)ε,

in addition to c̃ ≤ Ψ(p̃ε) ≤ Ψ(γ̃) ≤ c̃+
ε2

8
, that is, c̃ ≤ f(p̃ε(tε)) ≤ c̃+

ε2

8
.

Finally, from (E0*) one has d(p̃ε(tε), ∂B) ≤ d(p̃ε(tε), γ̃(tε))+d(γ̃(tε), ∂B) ≤
(

1√
8

+ 2

)
ε.

Hence, setting xε = p̃ε(tε), taking into account that c ≤ c̃ ≤ f(xε) ≤ c̃+
ε2

8
and that

from (5.5) it follows that c̃ ≤ c+
ε2

8
, one has c ≤ f(xε) ≤ c+

ε2

4
. For which, we have
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|f(xε)− c| ≤
ε2

4
; ‖f ′(xε)‖E∗ ≤ ε; d(xε, ∂B) ≤ 3ε. (5.6)

In conclusion, by putting ε =
1

3n
from (5.4) and (5.6), the sequence {xn} is a

bounded (PS)−sequence such that d(xn, ∂B) ≤ 1

n
for all n ∈ IN and the theorem is

proved.
�

A consequence of Theorem 5.1 is the following result.

Theorem 5.2. (Ghoussoub-Preiss Theorem). Let E be a real Banach space and
f ∈ C1(E). Fix x0 ∈ E and R > 0 and assume that there are x, y ∈ E, with
‖x− x0‖ < R < ‖y − x0‖ such that

inf
‖z−x0‖=R

f(z) ≥ max{f(x), f(y)}. (G3)

Put
c = inf

γ∈Γ
max
t∈[0,1]

f(γ(t)),

where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
and assume also that

(i) f satisfies (PS)c−condition.

Then, there is x̄ ∈ E, which is different from x and y, such that

f(x̄) = c

and

f ′(x̄) = 0.

In particular, if c = a := max{f(x), f(y)} then ‖x̄− x0‖ = R.

Proof. It follows from Theorem 5.1. In particular, when c = a, the critical point
x̄ ∈ ∂B, for which it is distinct from x and y.

�

Remark 5.1. Brezis-Nirenberg in [8] (see also Ghoussoub [14]) proved that the con-
clusion of Theorem 5.1 holds under the more general condition (G′3). We observe
that condition (G′3) is equivalent to the existence of a nonempty set D ⊆ E which
separates x and y such that infD f ≥ a (see also Remark 2.2). So, summarizing, the
assumption

(j) there is a nonempty set D ⊆ E which separates x and y such that

inf
D
f ≥ a
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ensures, owing to [8, Theorem 1], the existence of (PS)c−sequence for f . However,
in this case, we do not obtain a useful localization of the (PS)c−sequence and, in
particular, when (PS)c−condition holds, the critical point may coincides with one of
the end points x or y. We recall that Brezis-Nirenberg proved such a result owing to
their ε−perturbation that we have used in the proof of the Lemma 3.1 (see Brezis-
Nirenberg [8, Theorem 1] for details).

For the sake of completeness we also give the more general version of the Ghoussoub-
Preiss theorem.

Theorem 5.3. (Ghoussoub-Preiss Theorem). Let E be a real Banach space and
f ∈ C1(E). Fix x, y ∈ E, with x 6= y and put

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
.

Assume that
(k) there is a nonempty closed set T ⊆ E which separates x and y such that

inf
T
f = c.

Then, f admits a (PS)c−sequence {xn} such that d(xn, T ) ≤ 1

n
for all n ∈ IN.

Proof. First observe that E \T is not path-connected. Otherwise, since x, y ∈ E \T
there exits γ ∈ Γ such that γ([0, 1]) ⊆ E \T in contradiction with (k). Hence, denote
by X the path-connected component of x in E \ T , V = ∂X and Y = E \ X. We
claim that

V ⊆ T. (5.7)

Indeed, by contradiction, if v ∈ V ∩ (E \T ) we can denote by Cv the path-connected
component of v in E \ T . Clearly, since v 6∈ X, one has

Cv ∩X = ∅. (5.8)

On the other hand, Cv is an open set and, from v ∈ V , it follows that Cv ∩X 6= ∅,
against (5.8).

From (5.7) and (k) it is clear that infV f ≥ infT f = c. Moreover, simple con-
nectedness arguments show that for every γ ∈ Γ there exists tγ ∈]0, 1[ such that
γ(tγ) ∈ V , namely V separates x and y (see Remark 2.2). Hence, for every γ ∈ Γ
one has

max
t∈[0,1]

f(γ(t)) ≥ f(tγ) ≥ inf
V
f,

namely c ≥ infV f and, in conclusion

c = inf
z∈V

f(z). (5.1’)
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Now, we observe that condition (G′3) is satisfied.
At this point, repeating the same computations detailed in the proof of Theorem

5.1 by starting immediately after the formula (5.1), replacing ∂B, B(x0, R) and
E \ B̄(x0, R) by V , X and Y respectively the existence of a (PS)c−sequence {xn}
such that d(xn, T ) ≤ d(xn, V ) ≤ 1

n
for all n ∈ IN, is proved.

�

Theorem 5.4. (Ghoussoub-Preiss Theorem). Let E be a real Banach space and
f ∈ C1(E). Fix x, y ∈ E, with x 6= y and put

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where Γ =
{
γ ∈ C([0, 1], E) : γ(0) = x, γ(1) = y

}
.

Assume that
(k) there is a nonempty closed set T ⊆ E which separates x and y such that

inf
T
f = c

and assume also that

(i) f satisfies (PS)c−condition.

Then, there is x̄ ∈ T such that

f(x̄) = c

and

f ′(x̄) = 0.

In particular, since x̄ ∈ T , it is different from x and y.

Proof. It follows from Theorem 5.3.
�

Remark 5.2. The original assumption of Ghoussoub-Preiss theorem is the following:
(k′) there is a closed set F ⊆ E for which the set H = F ∩ {x ∈ E : f(x) ≥ c} is

such that x and y belong two disjoint connected components of E \H.
Indeed, assuming (k′) and setting D = H, the set D separates x and y and one has
infD ≥ c. So, for each γ ∈ Γ, fixed tD ∈ [0, 1] such that γ(tD) ∈ D, taking into
account that maxt∈[0,1] f(γ(t)) ≥ f(γ(tD)) ≥ infD f , it follows infD f = c, that is (k)
is verified.

Remark 5.3. From Theorems 5.3 and 5.4 we can replace condition (k) with
(j′) there is a nonempty closed set D ⊆ E which separates x and y such that

inf
D
f ≥ a,
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and the case c = infD f = a is exactly that examined in Theorem 5.3. So, for instance,
the statement of Theorem 5.4 becomes as follows: Assuming (j′) and (i), then there
is x̄ different by x and y such that f(x̄) = c and f ′(x̄) = 0. In particular, if c = a
then x̄ ∈ D.

Remark 5.4. As already highlighted by Ghoussoub-Preiss, if T is bounded, Theorem
5.3 ensures the existence of a bounded (PS)c−sequence. Therefore, in this case, the
existence of a critical point follows by requiring only the (WPS)c−condition (that
is, when any bounded (PS)c−sequence admits a subsequence strongly converging in
E). In this direction, we recall [7, Theorem 3.3], where a type of (WPS)c−condition
is requested in order to obtain a critical point of mountain pass type.

Remark 5.5. We observe that the proof proposed in this section, compared with the
profound original one provided by Ghoussoub-Preiss (see [13, Theorem (1)]), avoids
some advanced arguments such as Radon measures space, the sub-differential or the
theory of non-differentiable functions (see also the paper by Pucci-Radulescu [24]).
In fact, roughly speaking, the ε−deformation given by Ghossoub-Preiss involves a
non-regular function depending on the paths γ while here we use Lemma 3.1 where
the ε−deformation is as given by Brezis-Nirenberg and it depends on the function
t→ dIR(t, {0, 1}) which is constant with respect to γ.

Remark 5.6. We recall that the conclusion of the Ghoussoub-Preiss theorem, as
well as those of the others mountain pass theorems examined in this paper, can be
expressed in a bit more general form. In fact, we have that assuming (G3), then
there is a (C)c−sequence for f , that is, a sequence {xn} such that f(xn) → c and
(1+‖xn‖)f ′(xn)→ 0. So, when the Cerami–condition (that is, if any (C)c−sequence
admits a subsequence strongly converging in E) is satisfied, then the existence of a
critical point is achieved. It is enough to argue, step by step, as in the exhaustive
book of Ekeland [11]. Precisely, taken the geodesic distance δ as metric on E (see
[11, page 138]), one repeats as previously done in this paper with δ instead of d, by
following the line traced in [11, Theorem 6 page 140]. Finally, we also observe that
the existence of a bounded (C)c−sequence for f is equivalent to the existence of a
bounded (PS)c−sequence for f .

Remark 5.7. Taking Remark 3.2 into account, Theorem 4.1 (and hence the Pucci-
Serrin theorem) can be given in the more general setting involving the family A =
{γ ∈ C(J,E) : γ|J∗ = p∗|J∗}, where J is a compact metric space, J∗ ⊆ J is a
nonempty closed set and p∗ : J → E is a continuous function. Of course, in this
case c = infγ∈Amaxt∈J f(γ(t)). To do the same for the Ghoussoub-Preiss theorem,
instead, an appropriate study must be undertaken in order to get closer to the closed
set disjoint by p∗(J∗) and which intersects every compact p(J). In this direction,
we refer to the profound result of Ghoussoub [14, Theorem 1] where the notion of a
homotopy-stable family is exploited in order to get closer to the previous closed set
(see [14, page 145]). We also recall that starting from the seminal papers by Chang
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[9] and Szulkin [27], a version of the Ghoussoub theorem ([14, Theorem 1]) has been
given in [17] in the powerful framework developed by Motreanu-Panagiotopoulos (see
[19]), that is when f is given by a sum of a locally Lipschitz continuous function
and a convex proper lower semicontinuous function. We refer to the fruitful books of
Motreanu-Radulescu [21] and Motreanu-Motreanu-Papageorgiou [20] for more details
on the theory of non-differentiable functions.
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