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Abstract. We consider a nonlinear control system involving a maximal monotone
map and with a priori feedback. We assume that the control constraint multifunc-
tion U(t, x) is nonconvex valued and only lsc in the x ∈ RN variable. Using the
Q-regularization (in the sense of Cesari) of U(t, ·), we introduce a relaxed system. We
show that this relaxation process is admissible.

1. Introduction

We consider the following nonlinear control system

(1)

{
−x′(t) ∈ A(x(t)) + f(t, x(t))u(t) for a.a. t ∈ T = [0, b],

x(0) = x0, u(t) ∈ U(t, x(t)) for a.a. t ∈ T.

In this system A : RN → 2RN
is a maximal monotone map. We do not assume that

D(A) = RN (recall that D(A) = {x ∈ RN : A(x) 6= ∅}, the domain of A(·)). This
way we incorporate in our framework systems with unilateral constraints (differential
variational inequalities). The control constraint multifunction U : T ×RN → 2Rm \ {∅}
is state-dependent (feedback control system). Moreover, U(·, ·) has nonconvex values
and for a.a. t ∈ T , U(t, ·) is lower semicontinuous (lsc for short).

Our goal is to study the relaxation properties of this system. More precisely, we want
to introduce a bigger control system (known as the “relaxed system”) in which (1) is
embedded and the following two properties hold:

(a) Every original state is also a relaxed state.
(b) The set of original states is dense in C(T,RN) in the set of relaxed states, which

is closed.

To achieve this, we need to convexify (1). Usually this convexification is done by re-
placing U(t, x) with convU(t, x). This approach leads to an admissible relaxed system
provided that U(t, ·) is Hausdorff continuous (h-continuous for short) (see De Blasi-
Pianigiani [5] and Papageorgiou [13]). Since in our case U(t, ·) is only lsc, the afore-
mentioned classical approach to relaxation fails. Instead, motivated by the pioneering
work of Cesari [4] (see also the recent work of Liu-Liu [12]), we replace U(t, ·) by its
Q-regularization, which is defined as follows. For every δ > 0, we set

Uδ(t, x) = convU(t, x+ δB1) for all (t, x) ∈ T × RN ,
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where B1 = {y ∈ RN : |y| < 1}. Then the “Q-regularization” of the multifunction
U(t, ·) is defined by

V (t, x) =
⋂
δ>0

Uδ(t, x) for all (t, x) ∈ T × RN

(see Cesari [4], p. 292). Then the “relaxed” version of (1) is the following control system

(2)

{
−x′(t) ∈ A(x(t)) + f(t, x(t))u(t) for a.a. t ∈ T = [0, b],

x(0) = x0, u(t) ∈ V (t, x(t)) for a.a. t ∈ T.

We will show that this relaxation is admissible in the sense that it satisfies the two
fundamental requirements (a) and (b) mentioned above.

Suppose A(x) = ∂ϕ(x) with ϕ ∈ Γ0(RN) = the convex and lower semicontinuous
R = R ∪ {+∞}-valued functions which are not identically +∞ (here ∂ϕ(·) denotes the
subdifferential in the sense of convex analysis of ϕ(·)). Then problem (1) is a control
problem for a variational inequality with a priori feedback (since the control constraint
set is state-dependent). Variational inequalities arise in a variety of applied problems.
For example, if ϕ = iC = the indicator function of a nonempty, closed, convex cone,
that is

iC(x) =

{
0 if x ∈ C,
+∞ if x 6∈ C,

then ∂iC(x) = NC(x) = normal cone to C at x. Then such systems arise in mathematical
economics in resource allocation problems (see Henry [10]).

The above case of a subdifferential operator A(·) extends also “gradient systems”. In
the present formulation we do not require the potential function to be differentiable.
This leads to a gradient inclusion as (1).

In general the presence of the maximal monotone map A(·) which need not be ev-
erywhere defined, introduces constraints which the state of the system needs to satisfy.
To the best of our knowledges the relaxation properties of such systems have not been
examined before. Only the case A ≡ 0 has been considered (see, for example, Buttazzo
[3], Section 5.3).

2. Mathematical Background

Let Y , Z be Banach spaces and K : Y → Z. We say that K(·) is “compact”, if
it is continuous and maps bounded sets in Y to relatively compact sets in Z. We say
that K(·) is “completely continuous”, if yn

w−→ y in Y , implies that K(yn) → K(y) in
Z. In general these two concepts are distinct. However, if Y is reflexive, then complete
continuity implies compactness. Moreover, if in addition K(·) is linear, then the two
notions coincide (see Gasiński-Papageorgiou [8]).

We will use the following basic result from the topological fixed point theory, known
as the “Leray-Schauder Alternative Theorem” (see Granas-Dugundji [9], Theorem 5.4,
p. 124).

Theorem 1. If Y is a Banach space, K : Y → Y is compact and

S = {y ∈ Y : y = λK(y), 0 < λ < 1},
then one of the following statements is true:

(a) S is unbounded.



RELAXATION FOR A CLASS OF CONTROL SYSTEMS 3

(b) K(·) has a fixed point (that is, there exists ŷ ∈ Y such that ŷ = K(ŷ)).

Suppose that Y , Z are Hausdorff topological spaces and G : Y → 2Z \ {∅} a mul-
tifunction (a set valued function). We say that G(·) is “lower semicontinuous” (lsc for
short) resp. “upper semicontinuous” (usc for short), if for every U ⊆ Z open, the set

G−(U) = {y ∈ Y : G(y) ∩ U 6= ∅},
resp. G+(U) = {y ∈ Y : G(y) ⊆ U},

is open in Y . If Z is a metric space with metric dZ(·, ·), then G(·) is lsc if and only if for
every z ∈ Z, y → dZ(z,G(y)) = inf[dZ(z, v) : v ∈ G(y)] is an upper semicontinuous R+-
valued function (see Hu-Papageorgiou [11], Proposition 2.26, p. 45). If GrG = {(y, z) ∈
Y ×Z : z ∈ G(y)} (the graph of G(·)) is closed and G(·) is locally compact (that is, for

every y ∈ Y , there exists an open set U with y ∈ U and such that G(U) =
⋃
y′∈U G(y′)

is compact in Z), then G(·) is usc (see Hu-Papageorgiou [11], Proposition 2.23, p.
43). If G(·) is both lsc and usc, then we say that G(·) is “continuous” (or “Vietoris
continuous”).

Suppose that X is a metric space with metric dX(·, ·). On the family of nonempty,
bounded, closed sets in X (denoted by Pbf (X)), we can define a metric h(·, ·), known
as the “Hausdorff metric”, by

h(A,B) = max{sup[dX(a,B) : a ∈ A], sup[dX(b, A) : b ∈ B]},
for all A,B ⊆ Pbf (X). If X is a complete metric space, then so is (Pbf (X), h).

If Y is a Hausdorff topological space and G : Y → Pbf (X), we say that G(·) is
“Hausdorff continuous” (“h-continuous” for short), if it is continuous from Y into the
metric space (Pbf (X), h). In general continuity and h-continuity of multifunctions are
distinct notions. However, for multifunctions with compact values the two notions
coincide (see Hu-Papageorgiou [11], Corollary 2.69, p. 62).

Now let (Ω,Σ, µ) be a finite measure space and X a separable Banach space. We
introduce the following families of X:

Pf(c)(X) = {A ⊆ X : nonempty, closed (and convex)},
P(w)k(c)(X) = {A ⊆ X : nonempty, (w-) compact (and convex)}.

A multifunction F : Ω → 2X \ {∅} is said to be measurable, if for all U ⊆ X open,
we have F−(U) = {ω ∈ Ω : F (ω) ∩ U 6= ∅} ∈ Σ. This is equivalent to saying that for
all x ∈ X, the R+-valued function ω → d(x, F (ω)) = inf[‖x − y‖X : y ∈ F (ω)] is Σ-
measurable (see Hu-Papageorgiou [11], Proposition 1.4, p. 142). If F (·) is measurable,
then F (·) is “graph measurable”, that is,

GrF = {(ω, x) ∈ Ω×X : x ∈ F (ω)} ∈ Σ⊗B(X),

with B(X) being the Borel σ-field of X. If Σ is µ-complete and F (·) has nonempty
closed values, then measurability and graph measurability are equivalent notions (see
Hu-Papageorgiou [11], Theorem 2.4, p. 156).

Given 1 ≤ p ≤ +∞ and a multifunction F : Ω→ 2X \ {∅}, we introduce the set

SpF = {f ∈ Lp(Ω, X) : f(ω) ∈ F (ω) µ-a.e. on Ω}.
This set may be empty. If F (·) is graph measurable, then SpF 6= ∅ if and only if

ω → inf[‖v‖X : v ∈ F (ω)] belongs in Lp(Ω). The set SpF is “decomposable”, that is, if
(A, f, g) ∈ Σ× SpF × S

p
F we have χAf + χAcg ∈ SpF .
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Here for a given set E ⊆ Ω, by χE(·) we denote the characteristic function of E,
defined by

χE(ω) =

{
1 if ω ∈ E,
0 if ω ∈ Ec = Ω \ E.

Since χEc = 1 − χE, we see that the notion of decomposability formally looks like
that of convexity, only now the coefficients in the “linear” combination are functions.
Decomposability turns out to be a good substitute for convexity and several results valid
for convex sets have their counterparts for decomposable sets (see Fryszkowski [7]). One
such result is the next theorem due to Bressan-Colombo [1] and Fryszkowski [6], which
extends the celebrated Michael selection theorem (see, for example, Hu-Papageorgiou
[11], Theorem 4.6, p. 92).

Theorem 2. If Y is a separable metric space and G : Y → Pf (L
1(Ω, X)) is a lsc

multifunction with decomposable values, then there exists a continuous map g : Y →
L1(Ω, X) such that g(y) ∈ G(y) for all y ∈ Y .

If X is a Banach space and C ⊆ X is nonempty, then we define

|C| = sup[‖c‖X : c ∈ C].

Let X∗ denote the topological dual of the Banach space X and let 〈·, ·〉 denote the
duality brackets for the pair (X∗, X). Consider a map A : X → 2X

∗
with D(A) = {x ∈

X : A(x) 6= ∅} (the domain of A) nonempty. We say that A(·) is “monotone” if

〈x∗ − y∗, x− y〉 ≥ 0 for all (x, x∗), (y, y∗) ∈ GrA.

We say that A(·) is “strictly monotone”, if the above inequality is strict when x 6= y.
Finally we say that A(·) is “maximal monotone”, if it is monotone and

〈x∗ − y∗, x− y〉 ≥ 0 for all (x, x∗) ∈ GrA⇒ (y, y∗) ∈ GrA.

This is equivalent to saying that GrA is maximal with respect to inclusion among
the graphs of all monotone maps from X to 2X

∗
. Zorn’s lemma implies that every

monotone map admits a maximal monotone extension. It is easy to see that for a
maximal monotone map A(·), GrA is sequentially closed in X ×X∗w∗ and in Xw ×X∗.
Here by X∗w∗ (resp. Xw) we denote the space X∗ equipped with the w∗-topology (resp.
X equipped with the w-topology).

3. Hypotheses

In this section we introduce the hypotheses on the data of the problem. These hy-
potheses will be valid throughout the rest of the paper.

H(A): A : RN → 2RN
is a maximal monotone map such that 0 ∈ A(0).

Remark 1. Since we do not assume that D(A) = RN , we incorporate in our framework
systems with unilateral constraints (differential variational inequalities).

H(f): f : T × RN → L(Rm,RN) is a function such that:
(i) for all x ∈ RN , t→ f(t, x) is measurable;
(ii) for every c > 0, there exists a function kc ∈ L1(T ) such that

‖f(t, x)− f(t, y)‖L ≤ kc(t)|x− y| for a.a. t ∈ T , all |x|, |y| ≤ c;

(iii) ‖f(t, x)‖L ≤ a(t)[1 + |x|] for a.a. t ∈ T , all x ∈ RN , with a ∈ L1(T ).
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Remark 2. Hypotheses H(f)(i), (ii) imply that (t, x)→ f(t, x) is LT⊗B(RN)-measurable
with LT being the Lebesgue σ-field of T and B(RN) is the Borel σ-field of RN (see Hu-
Papageorgiou [11], Proposition 1.6, p. 142).

H(U): U : T × RN → Pk(Rm) is a multifunction such that:
(i) (t, x)→ U(t, x) is an LT ⊗B(RN)-measurable multifunction;
(ii) for a.a. t ∈ T , x→ U(t, x) is lsc;

(iii) |U(t, x)| ≤M for a.a. t ∈ T , all x ∈ RN , some M > 0.

Remark 3. We know that if for x ∈ RN , t → U(t, x) is measurable and for a.a. t ∈ T ,
x→ U(t, x) is lsc, then (t, x)→ U(t, x) need not be LT ⊗ B(RN)-measurable (see Hu-
Papageorgiou [11], Example 7.2, p. 227). Hypothesis H(U)(i) implies that if x : T → RN

is measurable, then t → U(t, x(t)) is an LT -measurable multifunction (superpositional
measurability). For example, if θi : T × RN → R, ηi : T × RN → R, i = 1, . . . ,m, are
measurable functions such that for all t ∈ T

θi(t, ·) is lower semicontinuous,

ηi(t, ·) is upper semicontinuous,

with θi bounded below, ηi bounded above for all i = 1, . . . ,m, then the multifunc-
tion U(t, x) = {u = (ui)

m
i=1 ∈ Rm : θi(t, x) ≤ ui ≤ ηi(t, x) for all i = 1, . . . ,m} satisfies

hypotheses H(U).

H0: x0 ∈ D(A).

We introduce the following two subsets of C(T,RN)× L1(T,Rm):

Pc = the set of admissible state-control pairs for system (2)

= {(x, u) ∈ C(T,RN)× L1(T,Rm) : (x, u) solves (2)},
P = the set of admissible state-control pairs for system (1)

= {(x, u) ∈ C(T,RN)× L1(T,Rm) : (x, u) solves (1)}.

Also we define

S = projC(T,RN )P and Sc = projC(T,RN )Pc.

These are the sets of admissible states and of admissible relaxed states respectively.

4. Relaxation

First we show that the original system (1) has a nonempty set of admissible state-
control pairs.

Proposition 1. If hypotheses H(A), H(f), H(U), H0 hold, then P 6= ∅.

Proof. We set

F (t, x) = f(t, x)U(t, x) =
⋃

u∈U(t,x)

f(t, x)u.

Evidently F (t, x) ∈ Pk(RN) for all (t, x) ∈ T × RN and

(3) |F (t, x)| ≤ â(t)[1 + |x|] for a.a. t ∈ T , all x ∈ RN , with â ∈ L1(T )

(see hypotheses H(f)(iii), H(U)(iii)).
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Hypothesis H(U)(i) and Theorem 7.24, p. 236 of Hu-Papageorgiou [11] imply that
we can find a sequence un : T ×RN → Rm, n ∈ N, of LT ⊗B(RN)-measurable functions
such that

U(t, x) = {un(t, x)}n≥1 for all (t, x) ∈ T × RN .

Since f(t, x) ∈ L(Rm,RN) we have

F (t, x) = {f(t, x)un(t, x)}n≥1 for all (t, x) ∈ T × RN ,

⇒ (t, x)→ F (t, x) is measurable (see Hu-Papageorgiou [11], Theorem 2.4, p. 156).

Also, suppose that xn → x in RN and let v ∈ F (t, x). Then

v = f(t, x)u with u ∈ U(t, x).

Since U(t, ·) is lsc (see hypothesis H(U)(ii)), we can find un ∈ U(t, xn), n ∈ N, such
that un → u in Rm (see Hu-Papageorgiou [11], Proposition 2.6, p. 37). Then

vn = f(t, xn)un → f(t, x)u = v in RN

(see hypothesis H(f)(ii)). Since vn ∈ F (t, xn) for all n ∈ N, as above we conclude that
for a.a. t ∈ T , F (t, ·) is lsc.

We consider the following multivalued Cauchy problem

(4) −x′(t) ∈ A(x(t)) + F (t, x(t)) for a.a. t ∈ T , x(0) = x0.

Consider the multifunction NF : C(T,RN) → 2L
1(T,RN ) defined by NF (x) = S1

F (·,x(·))
for all x ∈ C(T,RN). The measurability of F (·, ·) implies that t → F (t, x(t)) is LT -
measurable and so by hypotheses H(f)(iii), H(U)(iii), NF (u) ∈ Pwk(L1(T,RN)).
Claim 1: NF (·) is lsc.

It suffices to show that for all y ∈ L1(T,RN), the R+-valued function x→ d(y,NF (x))
is upper semicontinuous on C(T,RN) (see Section 2). To this end, let {xn}n≥1 ⊆
C(T,RN) be a sequence such that

(5) xn → x in C(T,RN) and d(y,NF (xn)) ≥ λ for some λ > 0, all n ∈ N.

We have

d(y,NF (xn)) = inf[‖y − h‖1 : h ∈ NF (xn)]

= inf

[∫ b

0

|y(t)− h(t)|dt : h ∈ NF (xn)

]
=

∫ b

0

inf[|y(t)− v| : v ∈ F (t, xn(t))]dt

(see Hu-Papageorgiou [11], Theorem 3.24, p. 183)

=

∫ b

0

d(y(t), F (t, xn(t)))dt,

⇒ lim sup
n→+∞

d(y,NF (xn)) ≤
∫ b

0

lim sup
n→+∞

d(y(t), F (t, xn(t)))dt

(by Fatou’s lemma, see (5) and (3))

≤
∫ b

0

d(y(t), F (t, x(t)))dt

(see (5) and recall that for a.a. t ∈ T , F (t, ·) is lsc)
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= d(y,NF (x)),

⇒ λ ≤ d(y,NF (x)),

⇒ NF (·) is lsc.

This proves Claim 1.
Clearly NF (·) has decomposable values. So, we can apply Theorem 2 (the Bressan-

Colombo-Fryszkowski selection theorem) and produce a continuous map ξ : C(T,RN)→
L1(T,RN) such that

ξ(x) ∈ NF (x) for all x ∈ C(T,RN).

Given h ∈ L1(T,RN), we consider the following Cauchy problem

(6) −x′(t) ∈ A(x(t)) + h(t) for a.a. t ∈ T , x(0) = x0.

According to Proposition 3.8, p. 82 of Brezis [2], problem (6) has a unique so-
lution xh ∈ W 1,1((0, b),RN) = AC1(T,RN). So, we can define the solution map
K : L1(T,RN)→ C(T,RN) by K(h) = xh.
Claim 2: K(·) is completely continuous.

Suppose that hn
w−→ h in L1(T,RN) and let xn = K(hn), x = K(h). By the Dunford-

Pettis theorem (see Papageorgiou-Winkert [14], Theorem 4.1.18, p.289), we know that
{hn}n≥1 ⊆ L1(T,RN) is uniformly integrable. So, invoking Theorem 2.3.2, p. 64, of
Vrabie [15], we have that

{xn}n≥1 ⊆ C(T,RN) is relatively compact.

By passing to a suitable subsequence if necessary, we may assume that

(7) xn → x̂ in C(T,RN).

Hypothesis H(A) implies that

(x′n(t)− x′(t), xn(t)− x(t))RN ≤ (h(t)− hn(t), xn(t)− x(t))RN for a.a. t ∈ T,

⇒ 1

2

d

dt
|xn(t)− x(t)|2 ≤ (h(t)− hn(t), xn(t)− x(t))RN for a.a. t ∈ T,

⇒|xn(t)− x(t)|2 ≤ 2

∫ t

0

(h(s)− hn(s), xn(s)− x(s))RNds,

⇒xn(t)→ x(t) for all t ∈ T,
⇒ x̂ = x (see (7)) and so xn → x in C(T,RN).

Therefore for the original sequence we have xn → x in C(T,RN), and so K(·) is
completely continuous. This proves Claim 2.

We consider the map ϕ : C(T,RN)→ C(T,RN) defined by

ϕ = K ◦ ξ.
Evidently ϕ(·) is continuous (see Claim 2 and recall that ξ(·) is continuous). If

B ⊆ C(T,RN) is bounded, then on account of (3) we have that

ξ(B) ⊆ L1(T,RN) is uniformly integrable.

So, by the Dunford-Pettis theorem and Claim 2, we have that

(K ◦ ξ)(B) ⊆ C(T,RN) is relatively compact.

Therefore we have that

(8) x→ ϕ(x) = (K ◦ ξ)(x) is compact.
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Consider the set

S = {x ∈ C(T,RN) : x = λϕ(x), 0 < λ < 1}.
Claim 3: S ⊆ C(T,RN) is bounded.

Let x ∈ S. Then
1

λ
x = K(ξ(x)). So, we have

−1

λ
x′(t) ∈ A

(
1

λ
x(t)

)
+ ξ(x)(t) for a.a. t ∈ T , x(0) = x0.

We take inner product with x(t) and use hypothesis H(A). We obtain

1

λ
(x′(t), x(t))RN ≤ |ξ(x)(t)||x(t)| for a.a. t ∈ T,

⇒ 1

2

d

dt
|x(t)|2 ≤ |ξ(x)(t)||x(t)| for a.a. t ∈ T (since 0 < λ < 1),

⇒ 1

2
|x(t)|2 ≤ 1

2
|x0|2 +

∫ t

0

|ξ(x)(s)||x(s)|ds for all t ∈ T ,

⇒ |x(t)| ≤ |x0|+
∫ t

0

|ξ(x)(s)|ds for all t ∈ T ,

(see Brezis, [2], p. 157, Lemma A.5)

⇒ |x(t)| ≤ |x0|+
∫ t

0

â(s)[1 + |x(s)|]ds for all t ∈ T (see (3))

⇒ |x(t)| ≤ c1 for some c1 > 0, all t ∈ T , all x ∈ S (by the Grönwall’s inequality).

Therefore S ⊆ C(T,RN) is bounded and this proves Claim 3.
On account of (8) and Claim 3, we see that we can apply Theorem 1 (the Leray-

Schauder Alternative Theorem) and find x̂ ∈ C(T,RN) such that

x̂ = ϕ(x̂) = K(ξ(x̂)).

We have

(9) −x̂′(t) ∈ A(x̂(t)) + ξ(x̂)(t) for a.a. t ∈ T , x̂(0) = x0.

Note that ξ(x̂)(t) ∈ F (t, x̂(t)) for a.a. t ∈ T . We consider

D(t) = {u ∈ U(t, x̂(t)) : ξ(x̂)(t) = f(t, x̂(t))u}.
By setting D(·) to be equal to {0} on a Lebesgue-null set, we see that D(t) 6= ∅ for all

t ∈ T . Also it is graph measurable. So, by the Yankov-von Neumann-Aumann selection
theorem (see Hu-Papageorgiou [11], Theorem 2.14, p. 158), we can find a measurable
map û : T → Rm such that

û(t) ∈ D(t) for a.a. t ∈ T ,

⇒ ξ(x̂)(t) = f(t, x̂(t))û(t) for a.a. t ∈ T ,

⇒ (x̂, û) ∈ P and so P 6= ∅.
�

Next we examine the control constraint set V (t, x) for the relaxed system (2).

Proposition 2. If hypotheses H(U) hold, then

(a) (t, x)→ V (t, x) is measurable;
(b) for a.a. t ∈ T , V (t, ·) is usc.
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Proof. (a) Recall that B1 = {x ∈ RN : |x| < 1} and let {zk}k≥1 ⊆ B1 be dense. We set

Uk
1
n
(t, x) = U

(
t, x+

1

n
zk

)
for all k, n ∈ N.

We have that for a.a. t ∈ T

(10) U 1
n
(t, x) = conv

⋃
k≥1

Uk
1
n

(t, x)

(see Cesari [4], p. 292 and Liu-Liu [12], Lemma 5).
For every k, n ∈ N, the multifunction (t, x)→ Uk

1
n

(t, x) is measurable (see hypothesis

H(U)(i)). It follows that (t, x) →
⋃
k≥1 U

k
1
n

(t, x) is measurable (see Hu-Papageorgiou

[11], Proposition 1.40, p. 151 and Proposition 1.8, p. 143). From this we infer that

(t, x)→ U 1
n
(t, x) = conv

⋃
k≥1 U

k
1
n

(t, x) is measurable (see Hu-Papageorgiou [11], Propo-

sition 2.26, p. 163). Recall that

V (t, x) =
⋂
n≥1

U 1
n
(t, x).

Invoking Proposition 1.43, p. 152, of Hu-Papageorgiou [11], we conclude that

(t, x)→ V (t, x) is measurable.

(b) Evidently for a.a. t ∈ T , V (t, ·) is locally compact (see hypothesis H(U)(iii)). So, it
suffices to show that

GrV (t, ·) ⊆ RN × Rm is closed (see Section 2).

For this purpose, let {(xn, vn)}n≥1 ⊆ GrV (t, ·) and assume that

(11) xn → x in RN and vn → v in Rm as n→ +∞.
Given δ > 0, we can find n0 ∈ N such that

xn ∈ x+ δB1 for all n > n0,

⇒ vn ∈ Uδ(t, x) for all n > n0,

⇒ v ∈ Uδ(t, x) (see (11)).

Since δ > 0 is arbitrary, we conclude that

v ∈ V (t, x) (that is, (x.v) ∈ GrV (t, ·)),
⇒ x→ V (t, x) is usc.

�

Recall that

S = set of admissible states of (1) (S = projC(T,RN )P ),

Sc = set of admissible states of (2) (Sc = projC(T,RN )Pc),

In what follows by L1(T,Rm)w we denote the Lebesgue space L1(T,Rm) equipped
with the weak topology.

Proposition 3. If hypotheses H(A), H(f), H(U), H0 hold, then

(a) there exists c2 > 0 such that ‖x‖C(T,RN ) ≤ c2 for all x ∈ Sc;
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(b) Pc ⊆ C(T,RN)× L1(T,Rm)w is compact.

Proof. (a) Let x ∈ Sc. Then we can find v ∈ S1
V (·,x(·)) such that

−x′(t) ∈ A(x(t)) + f(t, x(t))v(t) for a.a. t ∈ T , x(0) = x0.

Taking inner product with x(t) ∈ RN and using hypothesis H(A), we obtain

1

2

d

dt
|x(t)|2 + (f(t, x(t))v(t), x(t))RN ≤ 0 for a.a. t ∈ T ,

⇒ 1

2
|x(t)|2 ≤ 1

2
|x0|2 +

∫ t

0

‖f(s, x(s))‖LM |x(s)|ds for all t ∈ T

(see hypothesis H(U)(iii)),

⇒ |x(t)| ≤ |x0|+
∫ t

0

M‖f(s, x(s))‖Lds for all t ∈ T

(see Brezis [2], Lemma A.5, p. 157),

⇒ |x(t)| ≤ |x0|+
∫ t

0

Ma(s)[1 + |x(s)|]ds for all t ∈ T (see hypothesis H(f)(iii)),

⇒ |x(t)| ≤ c2 for some c2 > 0, all t ∈ T , all x ∈ Sc (by the Gronwall’s inequality).

(b) Let {(xn, un)}n≥1 ⊆ Pc. Hypothesis H(U)(iii) implies that {un}n≥1 ⊆ L1(T,RN) is
uniformly integrable.

Then by Dunford-Pettis and Eberlein-Šmulian theorems, we may assume that

(12) un
w−→ u in L1(T,Rm).

Also let

B = {h ∈ L1(T,RN) : |h(t)| ≤ a(t)[1 + c2]M}
(see hypotheses H(f)(iii), H(U)(iii)) and (a)). Then by the Dunford-Pettis theorem
B ⊆ L1(T,RN) is w-compact. If K : L1(T,RN) → C(T,RN) is the solution map from
the proof of Proposition 1, then on account of Claim 2 in that proof, we have

K(B) ⊆ C(T,RN) is compact.

Note that

{xn}n≥1 ⊆ K(B).

So, we may assume that

(13) xn → x in C(T,RN).

Let ηn(t) = f(t, xn(t))un(t), η(t) = f(t, x(t))u(t). Evidently

{ηn, η}n≥1 ⊆ L1(T,RN).

In what follows, by ((·, ·)) we denote the duality brackets for the pair (L1(T,RN), L∞(T,RN)).
For h ∈ L∞(T,RN) we have

((ηn, h)) =

∫ b

0

(ηn(t), h(t))RNdt

=

∫ b

0

(un(t), f(t, xn(t))∗h(t))RNdt for all n ∈ N.(14)
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We have

|f(t, xn(t))∗h(t)− f(t, x(t))∗h(t)|
≤ ‖f(t, xn(t))∗ − f(t, x(t))∗‖L|h(t)|
= ‖f(t, xn(t))− f(t, x(t))‖L|h(t)|
≤ kc2(t)‖h‖∞‖xn − x‖C(T,RN ) → 0 for a.a.t ∈ T (see (13))

⇒ f(·, xn(·))∗h(·)→ f(·, x(·))∗h(·) in L1(T,Rm)(15)

(by the Lebesgue dominated convergence theorem).

From Theorem 3.4.12, p. 220, of Papageorgiou-Winkert [14], we know that on
bounded subsets of L∞(T,Rm) the w∗-topology is metrizable. So, from hypothesis
H(U)(iii) and (12), we have

(16) un
w∗−→ u in L∞(T,Rm).

From (15) and (16) it follows that

((ηn, h))

=

∫ b

0

(f(t, xn(t))un(t), h(t))RNdt→
∫ b

0

(f(t, x(t))u(t), h(t))RNdt = ((η, h)),

⇒ ηn
w−→ η in L1(T,RN).(17)

Let x̃ ∈ W 1,1((0, b),RN) = AC1(T,RN) be the unique solution of the following Cauchy
problem

−x′(t) ∈ A(x(t)) + η(t) for a.a. t ∈ T , x(0) = x0.

As before (see the proof of Proposition 1), using hypothesis H(A) we have

1

2
|xn(t)− x̃(t)|2 ≤

∫ t

0

(η(s)− ηn(s), xn(s)− x̃(s))RNds for all n ∈ N,

⇒ xn(t)→ x̃(t) for all t ∈ T (see (17)),

⇒ x̃ = x (see (13)).

Therefore, finally we have

(xn, un)→ (x, u) in C(T,RN)× L1(T,Rm)w,

⇒ Pc ⊆ C(T,RN)× L1(T,Rm)w is compact (by the Eberlein-Šmulian theorem).

�

Proposition 4. If hypotheses H(A), H(f), H(U), H0 hold and (x̂, û) ∈ Pc, then we can

find en ∈ S1
1
n
B1

and un ∈ S1
U(·,x̂(·)+en(·)) such that un

w−→ û in L1(T,Rm).

Proof. We have

û ∈ S1
V (·,x̂(·)) ⊆ S1

convU 1
n
(·,x̂(·)).

Invoking Proposition 3.30, p. 185, of Hu-Papageorgiou [11], we can find ûn ∈
S1
U(·,x̂(·)+ 1

n
B)

, n ∈ N, such that

(18) ûn
w−→ û in L1(T,Rm).
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Consider the multifunction Hn : T → 2RN
defined by

Hn(t) =

{
e ∈ B1 : ûn(t) ∈ U

(
t, x̂(t) +

1

n
e

)}
=

{
e ∈ B1 : d

(
ûn(t), U

(
t, x̂(t) +

1

n
e

))
= ϑn(t, e) = 0

}
(recall that B1 = {x ∈ RN : |x| < 1}). Setting Hn(t) = {0} on a Lebesgue-null set,
we will have that Hn(t) 6= ∅ for all t ∈ T . Evidently ϑn(t, e) is jointly measurable (see
hypothesis H(U)(i)). Hence

GrHn ∈ LT ⊗B(B1).

Using the Yankov-von Neumann-Aumann selection theorem, we produce a measurable
function ên : T → RN such that

ên(t) ∈ Hn(t) for a.a. t ∈ T , all n ∈ N.

Set en(t) = 1
n
ên(t). Then en ∈ S1

1
n
B1

, ûn ∈ S1
U(·,x̂(·)+en(·)), n ∈ N, and ûn

w−→ û in

L1(T,Rm) (see (18)). �

Now we are ready for the relaxation theorem which asserts that any state of the
relaxed system (2) can be approximated in the C(T,RN)-norm with any degree of
accuracy, by a state of the original system. Such a result has practical implications
since it says that we can economize in the use of control functions.

Theorem 3. If hypotheses H(A), H(f), H(U), H0 hold, then Sc = SC(T,RN )
.

Proof. Let (x̂, û) ∈ Pc. According to Proposition 4, we can find sequences

{un}n≥1 ⊆ L1(T,Rm) and {en}n≥1 ⊆ L1(T,RN)

such that

(19) |en(t)| < 1

n
for a.a. t ∈ T , un ∈ S1

U(·,x̂(·)+en(·)), n ∈ N, un
w−→ û in L1(T,Rm).

Consider the function ξn : T × RN × Rm → R defined by

ξn(t, x, v) = (f(t, x̂(t) + en(t))un(t)− f(t, x)v, x̂(t) + en(t)− x)RN

for all (t, x, v) ∈ T ×RN ×Rm. Evidently ξn is a Carathéodory function (that is, for all
(x, v) ∈ RN ×Rm, t→ ξn(t, x, v) is measurable and for a.a. t ∈ T , (x, v)→ ξn(t, x, v) is
continuous). It follows that (t, x, v) → ξn(t, x, v) is LT ⊗ B(RN) ⊗ B(Rm)-measurable
(see Hu-Papageorgiou [11], Proposition 1.6, p. 142). Let

Ĝn(t, x) = U(t, x) ∩
{
v ∈ Rm : ξn(t, x, v) <

1

n

}
.

Then Ĝn(·, ·) is graph measurable, while from hypothesis H(U)(ii) and Proposition

2.47, p. 53 of Hu-Papageorgiou [11], we have that for a.a. t ∈ T , x → Ĝn(t, x) is

lsc. Therefore if Gn(t, x) = Ĝn(t, x) for (t, x) ∈ T × RN , we have that Gn(·, ·) is graph
measurable and for a.a. t ∈ T , x→ Gn(t, x) is lsc.

Let C0 = SC(T,RN ) ∈ Pk(C(T,RN)) (see Proposition 3) and consider the multifunction

Ĥn : C0 → Pf (L
1(T,Rm)) defined by

Ĥn(x) = S1
Gn(·,x(·)) for all x ∈ C0.
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As in the proof of Proposition 1 (see Claim 1), we can show that Ĥn(·) is lsc and of
course has decomposable values. So, we can apply Theorem 2 and produce a continuous

map ĥn : C0 → L1(T,Rm) such that

ĥn(x) ∈ Ĥn(x) for all x ∈ C0.

Let D = {h ∈ L1(T,RN) : |h(t)| ≤Ma(t)[1 + c2] = a0(t) for a.a. t ∈ T} (here M > 0
is as in hypothesis H(U)(iii) and c2 > 0 as in Proposition 3). Recall that the solution
map K : L1(T,RN)→ C(T,RN) is completely continuous (see the proof of Proposition
1). The set D ⊆ L1(T,RN) is w-compact (by the Dunford-Pettis theorem). Therefore
K(D) ⊆ C(T,RN) is compact. We define

(20) Hn(x) =

{
{ĥn(x)} if x ∈ C0,

S1
U(·,x(·)) if x ∈ K(D) \ C0.

Clearly Hn(·) is lsc and has decomposable values. So, a new application of Theorem
2, gives a continuous map hn : K(D)→ L1(T,Rm) such that

hn(x) ∈ Hn(x) for all x ∈ K(D).

We consider the following Cauchy problem

−x′(t) ∈ A(x(t)) + f(t, x(t))hn(x)(t) for a.a. t ∈ T , x(0) = x0.

This problem has a solution x̂n ∈ AC1(T,RN) (see the proof of Proposition 1). We
have

hn(x̂n) = ĥn(x̂n) for all n ∈ N (see (20)).

We set ûn = ĥn(x̂n) ∈ S1
Gn(·,x̂n(·)) ⊆ S1

U(·,x̂n(·)), n ∈ N.
We have

− x̂′n(t) ∈ A(x̂n(t)) + f(t, x̂n(t))ûn(t) for a.a. t ∈ T , x̂n(0) = x0, n ∈ N,

− x̂′(t) ∈ A(x̂(t)) + f(t, x̂(t))û(t) for a.a. t ∈ T , x̂(0) = x0.

Recall that K(D) ⊆ C(T,RN) is compact. Therefore

{x̂n}n≥1 ⊆ C(T,RN) is relatively compact.

So, we may assume that

(21) x̂n → x̃ in C(T,RN).

For every n ∈ N and every t ∈ T , we have

1

2
|x̂(t)− x̂n(t)|2 ≤

∫ t

0

(f(s, x̂)û− f(s, x̂+ en)un, x̂n − x̂)RNds

+

∫ t

0

(f(s, x̂+ en)un − f(s, x̂n)ûn, x̂n − x̂)RNds(22)

(see hypothesis H(A)).

Note that ∫ t

0

(f(s, x̂+ en)un − f(s, x̂n)ûn, x̂n − x̂)RNds

=

∫ t

0

(f(s, x̂+ en)un − f(s, x̂n)ûn, x̂n − (x̂+ en))RN ds
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+

∫ t

0

(f(s, x̂+ en)un − f(s, x̂n)ûn, en)RNds

≤ b

n
+

∫ t

0

(f(s, x̂+ en)un − f(s, x̂n)ûn, en)RNds→ 0.(23)

(see (19) and recall the definition of Gn(t, x))

In addition we have∫ t

0

(f(s, x̂)û− f(s, x̂+ en)un, x̂n − x̂)RNds

=

∫ t

0

(f(s, x̂)û− f(s, x̂+ en)û, x̂n − x̂)RNds

+

∫ t

0

(f(s, x̂+ en)û− f(s, x̂+ en)un, x̂n − x̂)RNds

→ 0 as n→ +∞ (see hypothesis H(f) and (19)).(24)

We return to (22), pass to the limit as n→ +∞ and use (21), (23), (24). We obtain

1

2
|x̂(t)− x̃(t)|2 ≤ 0 for all t ∈ T,

⇒ x̃ = x̂.(25)

Therefore we have

x̂n → x̂ in C(T,RN) (see (21), (25)).

Since x̂n ∈ S for all n ∈ N and Sc ⊆ C(T,RN) is compact (see Proposition 3), we
conclude that

Sc = SC(T,RN )
.

�

Remark 4. We can have

Pc = P
C(T,RN )×L1(T,Rm)w

provided we strengthen the conditions on U(t, ·) namely we need to assume that U(t, ·) is
h-continuous (equivalently U(t, ·) is Vietoris continuous). The proof remains essentially
the same with minor modifications.

Acknowledgment: The authors wish to thank the two knowledgeable referees for their
corrections and important remarks.
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