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Abstract. Grassmann tensors arise from classical problems of scene reconstruction in computer4
vision. Trifocal Grassmann tensors, related to three projections from a projective space of dimension5
k onto view-spaces of varying dimensions are studied in this work. A canonical form for the combined6
projection matrices is obtained. When the centers of projections satisfy a natural generality assump-7
tion, such canonical form gives a closed formula for the rank of trifocal Grassmann tensors. The8
same approach is also applied to the case of two projections, confirming a previous result obtained9
with different methods in [6]. The rank of sequences of tensors converging to tensors associated with10
degenerate configurations of projection centers is also considered, giving concrete examples of a wide11
spectrum of phenomena that can happen.12
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1. Introduction. Tensors, as multidimensional arrays representing multilinear16

applications among vector spaces, have traditionally played a pivotal role in many17

areas, from physics to computer science, to electrical engineering. As algebraic ge-18

ometry is increasingly witnessing intense activity in more applied directions, tensors19

have come to the fore of the discipline as useful tools on one hand, and as beauti-20

fully intricate objects of study on the other, with rich geometric interplay with other21

classical ideas. In particular, the calculation of any of the various established notions22

of rank of a tensor is an interesting and difficult problem. While many authors have23

recently studied these issues, a standard reference is [14] and a useful survey is [3].24

The authors have been interested for a while in a class of tensors that arise from25

classical problems of scene reconstruction in computer vision. In the classical case26

of reconstruction of a three-dimensional static scene from two, three, or four two-27

dimensional images, these tensors are known as the fundamental matrix, the trifocal28

tensor, and the quadrifocal tensor, respectively, and have been studied extensively,29

see for example [10], [1], [15], [2], [12]. In a more general setting, these tensors are30

called Grassmann tensors and were introduced by Hartley and Schaffalitzky, [11],31

as a way to encode information on corresponding subspaces in multiview geometry32

in higher dimensions. Three of the authors have studied critical loci for projective33

reconstruction from multiple views, [5], [8], and in this setting Grassmann tensors34

play a fundamental role, [7], [4].35

The authors’ long-term goal is to study properties such as rank, decomposition,36
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degenerations, and identifiability of Grassmann tensors in higher dimensions, and,37

when feasible, the varieties parameterizing such tensors.38

The first step was taken in [6], where three of the authors studied the case of39

two views in higher dimensions, introducing the concept of generalized fundamental40

matrices as 2-tensors. That first work contained an explicit geometric interpretation of41

the rational map associated to the generalized fundamental matrix, the computation42

of the rank of the generalized fundamental matrix with an explicit, closed formula,43

and the investigation of some properties of the variety of such objects.44

The next natural step in the authors’ program is the study of trifocal Grassmann45

tensors, i.e. Grassmann tensors arising from three projections from higher dimen-46

sional projective spaces onto view-spaces of varying dimensions. A natural genericity47

assumption, see Assumption 5.1, allows for suitable changes of coordinates in the view48

spaces and in the ambient space that give rise to a canonical form for the combined49

projection matrices. Utilizing such canonical form, the rank of trifocal Grassmann50

tensors is computed with a closed formula, see Theorem 5.2. When Assumption 5.151

is no longer satisfied, the situation becomes quite intricate. A general canonical form52

for the combined projection matrices can still be obtained, see Section 6. We conclude53

with a series of examples in which the rank is computed utilizing the canonical form.54

These examples illustrate the wide spectrum of possible phenomena that can happen55

with the specialization of the three centers of projection. In particular, we provide56

examples of sequences of Grassmann tensors of given rank r, converging to limit ten-57

sors whose rank can be either strictly larger than r, Example 6.2, and Example 6.3-a,58

or strictly smaller than r, Example 6.3-b. The first two of these cases are geometric59

examples of tensors with border rank strictly smaller than their rank.60

2. Background Material.61

2.1. Preliminaries on tensors. Notation and definitions of tensors and their62

ranks (rank and border-rank) used in this work are relatively standard in the litera-63

ture. They are all contained in [14] and briefly summarized below.64

Given vector spaces Vi, i = 1, . . . t, the rank of a tensor T ∈ V1 ⊗ V2 ⊗ ... ⊗ Vt,65

denoted by R(T ), is the minimum number of decomposable tensors needed to write66

T as a sum. Recall that R(T ) is invariant under changes of bases in the vector spaces67

Vi (see for example [14], Section 2.4 ).68

Furthermore, a tensor T has border rank r if it is a limit of tensors of rank r but69

is not a limit of tensors of rank s for any s < r. Let R(T ) denote the border rank of70

T . Note that R(T ) ≤ R(T ).71

As in Section 4 we will focus on tri-linear tensors, we recall here that given a72

tensor T ∈ V1 ⊗ V2 ⊗ V3, where dimVi = ai, its rank R(T ) can also be realized as the73

minimal number p of rank 1 a1 × a2-matrices S1, . . . , Sp such that each slice Ti,j,k̂,74

for a fixed k̂, is a linear combination of such S1, . . . , Sp (see for example [9], Theorem75

2.1.2.).76

2.2. Multiview Geometry. For the convenience of the reader, in this Section77

we recall standard facts and notation for cameras, centers of projection, and multiple78

views in the context of projective reconstruction in computer vision. A scene is a79

set of N points {Xi} ∈ Pk, i = 1, . . . , N. A camera P is a projection from Pk onto80

Ph, (h < k), from a linear center CP . The target space Ph, is called view. Once81

homogeneous coordinates have been chosen in Pk and Ph, P can be identified with a82

(h + 1) × (k + 1)− matrix of maximal rank, defined up to a constant, for which we83

use the same symbol P. With this notation, CP is the right annihilator of P, hence84
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a (k − h − 1)-space. Accordingly, if X is a point in Pk, we denote its image in the85

projection equivalently as P (X) or P ·X.86

The rows of P represent linear subspaces of Pk = P(Ck+1) defining the center87

of projection CP and can be identified with points of the dual space P̌k = P(Čk+1),88

within which they span a linear space of dimension h, ΛP = P(LP ), where LP is a89

complex vector space of dimension h+ 1.90

The right action of GL(k+ 1) on P corresponds to a change of coordinates in Pk,91

while the left action of GL(h+ 1) can be thought of either as a change of coordinates92

in LP or in the view.93

In the context of multiple view geometry, one considers a set of multiple images94

of the same scene, obtained from a set of cameras Pj : Pk \ CPj → Phj .95

Two different images Pl(X) and Pm(X) of the same point X are corresponding96

points and, more generally, r linear subspaces Sj ⊂ Phj , j = 1, . . . , r are said to be97

corresponding if there exists at least one point X ∈ Pk such that Pj(X) ∈ Sj for98

j = 1, . . . , r.99

2.3. Grassmann Tensors. In the context of multiview geometry, Hartley and100

Schaffalitzky, [11], introduced Grassmann tensors, which encode the relations between101

sets of corresponding subspaces in the various views. We recall here the basic elements102

of their construction.103

Consider a set of projections Pj : Pk \ CPj → Phj , j = 1, . . . , r, hj ≥ 2 and a104

profile, i.e. a partition (α1, α2, . . . , αr) of k + 1, where 1 ≤ αj ≤ hj for all j, and105 ∑
αj = k + 1.106

Let {Sj}, j = 1, . . . , r, where Sj ⊂ Phj , be a set of general sj-spaces, with sj =107

hj − αj , and let Sj be the maximal rank (hj + 1)× (sj + 1)−matrix whose columns108

are a basis for Sj . By definition, if all the Sj are corresponding subspaces there exist109

a point X ∈ Pk such that Pj(X) ∈ Sj for j = 1, . . . , r. In other words there exist r110

vectors vj ∈ Csj+1 j = 1, . . . , r, such that:111

(2.1)


P1 S1 0 . . . 0
P2 0 S2 . . . 0
...

...
...

...
...

Pr 0 . . . 0 Sr

 ·

X
v1

v2

...
vr

 =


0
0
...
0

 .112

The existence of a non trivial solution {X,v1, . . . ,vr} for system (2.1) implies113

that the system matrix has zero determinant. This determinant can be thought of114

as an r-linear form, i.e. a tensor, in the Plücker coordinates of the spaces Sj . This115

tensor is called the Grassmann tensor T , and T ∈ V1 ⊗ V2 ⊗ ...⊗ Vr where Vi is the116 (
hi+1

hi−αi+1

)
vector space such that G(si, hi) ⊂ P(Vi). More explicitly, the entries of the117

Grassmann tensor are some of the Plücker coordinates of the matrix:118

(2.2)
[
P1

T P2
T . . . Pr

T
]
,119

indeed they are, up to sign, the maximal minors of the matrix (2.2) obtained selecting120

αi columns from Pi
T , for i = 1, . . . , r.121

It is useful to observe the effect on a Grassmann tensor and its rank of the actions122

of GL(k + 1) on the ambient space and of GL(hi + 1) on the views. A change of123

coordinates in the ambient space, realized by a right action of GL(k+1) on (2.2) does124

not alter the tensor, as all entries are multiplied by the same non-zero constant. On125

the other hand, any change of coordinates in a view through left action of GL(hi + 1)126
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on the corresponding PTi does alter the entries of the tensor, but preserves its rank.127

Indeed, the change of coordinates in one of the views induces a linear invertible128

transformation on Vi, leaving the rank unchanged, as noted in Section 2.1.129

In the following Sections we deal with the cases of two and three views, in which130

the Grassmann tensor turns out to be respectively a matrix and a three dimensional131

tensor.132

3. Generalized fundamental matrix. We consider here the case of two views133

which gives rise to the notion of generalized fundamental matrix, introduced and134

studied in [6]. Let us consider two maximal rank projections A = [ai,j ] and B = [bi,j ]135

from Pk to Ph1 and to Ph2 , respectively, where h1 +h2 ≥ k+1, and where A and B are136

such that their projection centers CA and CB are in general position so that they do137

not intersect. This condition is equivalent to the fact that the linear span < LA, LB >138

is the whole Čk+1. The images of the two centers of projection EAB = A(CB) and139

EBA = B(CA) are subspaces of dimension k− hi− 1, i = 1, 2, respectively, of the view140

spaces, usually called epipoles.141

Following [11], we choose a profile (α1, α2), with α1 + α2 = k + 1, in order to142

obtain the constraints necessary to determine the corresponding tensor, which, in this143

case, is a matrix called generalized fundamental matrix. In the following we make144

explicit how to place the minors of (2.2) as entries of the generalized fundamental145

matrix.146

In this case, (2.2) becomes147

(3.1)
[
AT BT

]
148

and the generalized fundamental matrix F is the
(

h1+1
h1−α1+1

)
×
(

h2+1
h2−α2+1

)
matrix, whose149

entries are some of the Plücker coordinates of the k−space ΛAB ⊂ Ph1+h2+1, spanned150

by the columns of the above matrix.151

Let I = (i1, . . . , is1+1), J = (j1, . . . , js2+1), Ĵ = (h1 + 1 + j1, . . . , h1 + 1 + js2+1)152

with 1 ≤ i1 < · · · < is1+1 ≤ h1 + 1 and 1 ≤ j1 < · · · < js2+1 ≤ h2 + 1. Denote by153

I ′, Ĵ ′ the (ordered) sets of complementary indices I ′ = {r ∈ {1, . . . , h1 + 1} such that154

r /∈ I} and Ĵ ′ = {s ∈ {h1 + 2, . . . , h1 + h2 + 2} such that s /∈ Ĵ}. Moreover denote by155

AI and BJ the matrices obtained from AT and BT by deleting columns i1, . . . , is1+1156

and j1, . . . , js2+1, respectively.157

Then the entries of F are: FI,J = ε(I, J) det
[
AI BJ

]
where ε(I, J) is +1 or −1158

according to the parity of the permutation (I, Ĵ , I ′, Ĵ ′), with lexicographical order of159

the multi-indices {I} for the rows and {Ĵ} for the columns.160

In other words, one has FI,J = qI,Ĵ(ΛAB), where qK(Λ) denotes the dual-Plücker161

coordinates (see, for example, [13], Vol.I, book II, pg. 292) of the space Λ, with respect162

to the multi-index K.163

In [6] the authors proved the following result:164

Theorem 3.1. The generalized fundamental matrix F for two projections of max-
imal rank and whose centers do not intersect each other, with profile (α1, α2), has
rank:

rk (F) =

(
(h1 − α1 + 1) + (h2 − α2 + 1)

h1 − α1 + 1

)
.

The proof given in [6] is obtained associating to the matrix F a rational map165

Φ : G(s1, h1) 99K G(k − α1, h2) whose image is the Schubert variety Ω(EBA ) of the166

k−α1 spaces containing EBA , and showing that rk (F) = dim(< Ω(EBA ) >) + 1, where167

< Ω(EBA ) > is the projective space spanned by Ω(EBA ).168
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In view of desired generalizations, here we give a straightforward proof of Theorem169

3.1 based on a suitable choice of coordinates in the projective spaces involved.170

Let LA and LB be the two vector spaces of dimension h1+1 and h2+1,respectively,171

spanned by the columns of AT and BT and let ΛA = P(LA) and ΛB = P(LB). We172

denote with i the dimension of IA,B := LA ∩ LB which, from Grassmann’s formula,173

turns out to be i = h1 + h2 − k + 1. Notice that our assumptions on the profile174

(k + 1 = α1 + α2) imply that i > 0.175

One can then choose bases176

{v1, . . . , vi, wi+1, . . . , wh1+1} for LA,177

{v1, . . . , vi, w
′
i+1, . . . , w

′
h2+1} for LB ,178179

such that {v1, . . . , vi} is a basis for IA,B .180

Through the left action of GL(h1 + 1) and GL(h2 + 1) on A and B respectively,
one can then assume that the columns of AT and BT are , respectively,

[v1, . . . , vi, wi+1, . . . , wh1+1]

and
[v1, . . . , vi, w

′
i+1, . . . , w

′
h2+1].

With this assumption, {v1, . . . , vi, wi+1, . . . , wh1+1, w
′
i+1, . . . , w

′
h2+1} is a basis of

Čk+1, and, with the right action of GL(k + 1), we can reduce it to the canonical one
{e1, . . . , ek+1}. With this choice, the matrix (3.1) becomes the block matrix

Φkh1,h2
:=

 Ii 0 Ii 0
0 Ih1+1−i 0 0
0 0 0 Ih2+1−i


where Is denotes the s× s identity matrix and 0 are zero matrices.181

The columns of Φkh1,h2
are denoted by:[

a1 . . . ai bi+1 . . . bh1+1 ch1+2 . . . ch1+1+i dh1+2+i . . . dh1+h2+2

]
With this choice of basis, the entries of the fundamental matrix are the maximal

minors of Φkh1,h2
obtained with α1 columns chosen among the aj and bj and α2 columns

chosen among the cj and dj . The only non vanishing entries of the fundamental matrix
are hence obtained taking all the columns bj and dj and choosing α1 − (h1 + 1 − i)
columns among the aj and the complementary α2−(h2+1−i) among the cj . It follows
that the non vanishing entries are as many as the possible choices of α1− (h1 + 1− i)
columns among the first i columns of Φkh1,h2

. In other words the non zero entries of
the fundamental matrix are:(

i

h2 − α2 + 1

)
=

(
(h1 − α1 + 1) + (h2 − α2 + 1)

h1 − α1 + 1

)
.

This number is precisely the rank of the fundamental matrix since non vanishing182

entries appear in different rows and columns of the fundamental matrix.183

To clarify the above procedure we consider the following example.184

Example 3.2. Consider two projections from P4 to P3 with profile (3, 2). In this

case the matrix (3.1) has dimension 5× 8. The subspace ΛAB is in G(4, 7) ⊂ P(8
5)−1,

5
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and the fundamental matrix F turns out to be:

F =


q1,5,6 q1,5,7 q1,5,8 q1,6,7 q1,6,8 q1,7,8

q2,5,6 q2,5,7 q2,5,8 q2,6,7 q2,6,8 q2,7,8

q3,5,6 q3,5,7 q3,5,8 q3,6,7 q3,6,8 q3,7,8

q4,5,6 q4,5,7 q4,5,8 q4,6,7 q4,6,8 q4,7,8



and the matrix Φ4
3,3 is:

Φ4
3,3 =


1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


so that the generalized fundamental matrix, in canonical form, is the following, from185

which it is evident that rk (F) = 3:186

FC =


0 0 0 ±1 0 0
0 ±1 0 0 0 0
±1 0 0 0 0 0
0 0 0 0 0 0

 .

4. Trifocal Grassmann tensors. Let us now consider three projections P1, P2,187

and P3, from Pk to Ph1 , Ph2 and to Ph3 , respectively, where h1 +h2 +h3 ≥ k+ 1, and188

where P1, P2, and P3, are maximal rank matrices.189

Grassmann’s formula shows that for generic choices of P1, P2, and P3, their pro-190

jection centers C1, C2, and C3 are mutually disjoint under the assumptions: k− hi +191

hj − 1 ≤ 0, for 1 ≤ i, j ≤ 3, i 6= j.192

As in the case of the generalized fundamental matrix, let (α1, α2, α3), be a profile193

with α1 + α2 + α3 = k + 1, in order to obtain the necessary constraints to determine194

the corresponding tensor. The tensor thus obtained is called the trifocal Grassman195

tensor and it is a generalization of the classical trifocal tensor for three views in P3.196

Its entries can be explicitly computed from (2.1), as shown below.197

In this case, (2.2) becomes198

(4.1)
[
P1

T P2
T P3

T
]

199

and the entries of the trifocal tensor T are, up to sign, some of the maximal minors of200

the matrix (4.1) obtained by choosing α1 columns in P1
T , α2 in P2

T and α3 in P3
T .201

More explicitly, let I = (i1, . . . , is1+1), J = (j1, . . . , js2+1), K = (k1, . . . , ks3+1),202

Ĵ = (h1 +1+j1, . . . , h1 +1+js2+1) and K̂ = (h1 +h2 +2+k1, . . . , h1 +h2 +2+ks3+1)203

with 1 ≤ i1 < · · · < is1+1 ≤ h1 + 1, 1 ≤ j1 < · · · < js2+1 ≤ h2 + 1 and 1 ≤ k1 < · · · <204

ks3+1 ≤ h3 + 1.205

Denote by I ′, Ĵ ′, K̂ ′ the (ordered) sets of complementary indices I ′ = {r ∈206

{1, . . . , h1+1} such that r /∈ I} and Ĵ ′ = {s ∈ {h1+2, . . . , h1+h2+2} such that s /∈ Ĵ}207

and K̂ ′ = {t ∈ {h1 + h2 + 3, . . . , h1 + h2 + h3 + 3} such that t /∈ K̂}. Moreover de-208

note by P1I , P2J and P3K respectively, the matrices obtained from P1
T , P2

T and209

P3
T deleting columns i1, . . . , is1+1, j1, . . . , js2+1 and k1, . . . , ks3+1, respectively. Let210

6
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ε(i1, . . . , in) be +1 or −1 according to the parity of the permutation (i1, . . . , in). The211

entries of T are given by:212

(4.2) TI,J,K = ε(I, Ĵ , K̂, I ′, Ĵ ′, K̂ ′) det

P1I

P2J

P3K

213

.214

Denote by Vi the vector space such that G(si, hi) ⊆ P(hi+1
si+1)−1

= P(Vi). The tri-215

focal Grassmann tensor for three projections P1, P2, P3 from Pk to Ph1 , Ph2 and Ph3 ,216

with profile (α1, α2, α3), is, up to a multiplicative non zero constant, the
(

h1+1
h1−α1+1

)
×217 (

h2+1
h2−α2+1

)
×
(

h3+1
h3−α3+1

)
tensor T ∈ V1 ⊗ V2 ⊗ V3, whose entries are TI,J,K with lexico-218

graphical order of the families {I}, {J}, and {K} of multi-indices.219

5. The Rank of trifocal Grassmann tensors. In the classical case of pro-220

jections from P3 to P2, the rank of the trifocal tensor is known to be 4, (e.g. see [1],221

[12]), while the rank of the quadrifocal tensor turns out to be 9, [12]. Nothing further222

is known in general about the ranks of Grassmann tensors. In this Section first we223

provide a canonical form for the matrix (4.1), in analogy to what was done for the224

two views case. Then, using this canonical form, we compute R(T ) in the general225

case, i.e. when the center of projections are in general position (see Assumption 5.1).226

The non general cases are discussed in Section 6.227

5.1. Canonical form. Let L1, L2 and L3 be the vector spaces of dimension228

h1 + 1, h2 + 1 and h3 + 1 respectively, spanned by the columns of P1
T , P2

T and P3
T

229

and let Λ1 = P(L1), Λ2 = P(L2) and Λ3 = P(L3).230

We consider, for each triplet of distinct integers r, s, t = 1, 2, 3, the following231

integers:232

ir,s = hr + hs + 1− k;(5.1)233

i = h1 + h2 + h3 + 1− 2k;(5.2)234

jr,s = ir,s − i = k − ht.(5.3)235236

Our generality assumption is the following:237

Assumption 5.1. For any choice of r, s, t with {r, s, t} = {1, 2, 3}, the intersec-238

tion Λrs = Lr∩Ls with Lt span Ck+1, or, equivalently, the span of each pair of centers239

do not intersect the third one.240

This assumption implies, in particular, that for any choice of a pair r, s, the span of241

Lr and Ls is the whole Ck+1, or, in other words, that the two centers Cr and Cs do242

not intersect.243

Under Assumption 5.1, applying Grassmann formula one sees that the three num-244

bers above have the following meaning: ir,s = dim(Lr ∩ Ls) ≥ 0, for any choice of245

r, s , i = dim(L1 ∩ L2 ∩ L3) ≥ 0 and jr,s is the affine dimension of the center Ct i.e.246

k − ht = jrs for r, s, t = 1, 2, 3.247

Hence we can choose bases as follows:248

L1 ∩ L2 ∩ L3 =< v1, . . . , vi >

L1 ∩ L2 =< v1, . . . , vi, w1, . . . , wj1,2 >

7
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L1 ∩ L3 =< v1, . . . , vi, u1, . . . , uj1,3 >

L2 ∩ L3 =< v1, . . . , vi, s1, . . . , sj2,3 >

249

so that:250

L1 =< v1, . . . , vi, w1, . . . , wj1,2 , u1, . . . , uj1,3 >,

L2 =< v1, . . . , vi, w1, . . . , wj1,2 , s1, . . . , sj2,3 >,

L3 =< v1, . . . , vi, u1, . . . , uj1,3 , s1, . . . , sj2,3 > .

251

Through the left action of GL(hi + 1) on Pi, i = 1, 2, 3, one can assume that the
columns of P1

T , P2
T , and P3

T are, respectively:

[v1, . . . , vi, w1, . . . , wj1,2 , u1, . . . , uj1,3 ],

[v1, . . . , vi, w1, . . . , wj1,2 , s1, . . . , sj2,3 ],

[v1, . . . , vi, u1, . . . , uj1,3 , s1, . . . , sj2,3 ].

With this assumption,252

(5.4) {v1, . . . , vi, w1, . . . , wj1,2 , u1, . . . , uj1,3 , s1, . . . , sj2,3}253

is a basis of Čk+1.254

255

With the right action of GL(k + 1) we can reduce (5.4) to the canonical basis.256

With this choice, the matrix (4.1) becomes the block matrix:257

(5.5) Φkh1,h2,h3
:=


Ii 0 0 Ii 0 0 Ii 0 0
0 Ij1,2 0 0 Ij1,2 0 0 0 0
0 0 Ij1,3 0 0 0 0 Ij1,3 0
0 0 0 0 0 Ij2,3 0 0 Ij2,3

 .258

5.2. The rank. The canonical form Φkh1,h2,h3
of matrix (4.1) allows one to suc-259

cessfully compute the rank of trifocal Grassmann tensors.260

Theorem 5.2. Let Pl : Pk → Phl , l = 1, 2, 3, be maximal rank projections whose261

centers satisfy Assumption 5.1. The trifocal Grassmann tensor T for projections {Pl},262

with profile (α1, α2, α3), has rank:263

(5.6)

j12∑
a2=0

j13∑
a3=0

j23∑
b3=0

(
j12

a2

)(
j13

a3

)(
j23

b3

)(
i

α1 − a2 − a3

)(
i− α1 + a2 + a3

α2 − j12 + a2 − b3

)
,264

where i = h1 + h2 + h3 + 1− 2k and jrs = k − ht for {r, s, t} = {1, 2, 3}.265

Proof. Let Φkh1,h2,h3
be the canonical form of matrix (4.1) associated to the given266

projections Pl : Pk → Phl , l = 1, 2, 3, and let [Φkh1,h2,h3
]sr denote the submatrix of267

Φkh1,h2,h3
consisting of consecutive columns from column r, included, to column s,268

included. To generate each entry of the tensor T one must choose:269

8
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- a1 columns from [Φkh1,h2,h3
]i1,270

271

- a2 columns from [Φkh1,h2,h3
]i+j12i+1 ,272

273

- a3 columns from [Φkh1,h2,h3
]i+j12+j13
i+j12+1 ,274

with a1 + a2 + a3 = α1.275

Similarly one has to choose:276

- b1 columns from [Φkh1,h2,h3
]2i+j12+j13
i+j12+j13+1,277

278

- b2 columns from [Φkh1,h2,h3
]2i+2j12+j13
2i+j12+j13+1,279

280

- b3 columns from [Φkh1,h2,h3
]2i+2j12+j13+j23
2i+2j12+j13+1 ,281

with b1 + b2 + b3 = α2.282

Finally one has to choose:283

- c1 columns from [Φkh1,h2,h3
]3i+2j12+j13+j23
2i+2j12+j13+j23+1,284

285

- c2 columns from [Φkh1,h2,h3
]3i+2j12+2j13+j23
3i+2j12+j13+j23+1,286

287

- c3 columns from [Φkh1,h2,h3
]3i+2j12+2j13+2j23
3i+2j12+2j13+j23+1,288

with c1 + c2 + c3 = αc.289

Moreover to get non vanishing entries of T , the following equalities must be290

satisfied:291

• a1 + b1 + c1 = i292

• a2 + b2 = j12293

• a3 + c2 = j13294

• b3 + c3 = j23.295

From the above conditions, the number of non vanishing entries of the tensor is296

given by:297

(5.7)

j12∑
a2=0

j13∑
a3=0

j23∑
b3=0

(
j12

a2

)(
j13

a3

)(
j23

b3

)(
i

α1 − a2 − a3

)(
i− α1 + a2 + a3

α2 − j12 + a2 − b3

)
.298

Clearly (5.7) gives an upper bound for R(T ). To prove that (5.7) is equal to R(T ),299

we use the slices-based characterization of the rank recalled at the end of Section 2.1.300

In our case the positions of the non zero entries of T are different for different faces,301

i.e. if TĪ,J̄,K̄ 6= 0, the TĪ,J̄,K = 0 for all K 6= K̄. The reason is that once the columns302

determined by the multi-indexes I and J are chosen there is at most one possible303

choice of the columns determined by K which gives a non vanishing minor.304

This completes the proof.305

The above result is further illustrated by the two following explicit examples.306

Example 5.3. In the case of the classical 3 × 3 × 3 trifocal tensor, i.e. of three
projections from P3 to P2 with profile (2, 1, 1), we get: i = 1 and irs = 2 for each r, s.
Hence, in this case, (5.5) is:

Φ3
2,2,2 :=


1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1

 .
9
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The only non vanishing elements of the tensor are: T131, T113, T221, T312, hence R(T ) =307

4.308

Example 5.4. In the case of three projections from P4 to P3, P3 and P2, with
profile (2, 2, 1), we get: i = 1, i12 = 3, and i13 = i23 = 2. Hence, in this case, (5.5)
becomes:

Φ4
3,3,2 :=


1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1

 .
The trifocal tensor T is a 6 × 6 × 3 tensor and its non vanishing elements are:309

T123, T161, T213, T251, T341, T431, T522, T612, hence R(T ) = 8.310

Moreover, one sees that T is a linear combination of :311

e11 ⊗ e22 ⊗ e33, e11 ⊗ e26 ⊗ e31, e12 ⊗ e21 ⊗ e33, e12 ⊗ e25 ⊗ e31,312

e13 ⊗ e24 ⊗ e31, e14 ⊗ e23 ⊗ e31, e15 ⊗ e22 ⊗ e32, e16 ⊗ e21 ⊗ e32,313314

where ers is the s-element of the canonical base of the vector space Vr = C( hr+1
hr−αr+1).315

6. The non general case. In this Section we consider cases in which Assump-316

tion 5.1 is not satisfied, and the rank depends on the degenerate geometric configura-317

tions of the projections. This is evident also in the simplest case of the classical trifocal318

tensor for which the rank is 4 for general projections (example 5.3) and becomes 5319

when the three centers are on a line (example 6.2).320

If Assumption 5.1 is not satisfied one can no longer obtain canonical form (5.5)321

for the combined projection matrices, because the integers defined in (5.1), (5.2), and322

(5.3) lose their geometric meaning and, moreover, (5.3) may no longer hold.323

In this situation one can obtain a different canonical form, from which the rank324

of the Grassmann tensor can be computed in concrete cases.325

We introduce the following notations:326

• g := dim (L1 ∩ L2 ∩ L3);327

• grs := dim (Lr ∩ Ls);328

• lrs := grs − g;329

• αrs the non negative integer such that the span < Lr, Ls > has dimension330

k + 1− αrs;331

• βrs the non negative integer such that the span < Λrs, Lt > has dimension332

k + 1− βrs.333

By Grassmann formula, these integers are linked to the ones in (5.1), (5.2), and (5.3)334

as follows: g = i+ αrs + βrs and grs = irs + αrs for any r, s.335

Arguing as in the previous Section, where g and lrs now play the role of i and jrs336

respectively, by choosing the first g + l12 + l13 + l23 vectors of the canonical base of337

Ck+1 one gets the following canonical form for the matrix (4.1), which now depends338

also on αrs and βrs.339

Ψk
h1,h2,h3

:=


Ig 0 0 Z1

1 Ig 0 0 Z1
2 Ig 0 0 Z1

3

0 Il1,2 0 Z2
1 0 Il1,2 0 Z2

2 0 0 0 Z2
3

0 0 Il1,3 Z3
1 0 0 0 Z3

2 0 Il1,3 0 Z3
3

0 0 0 Z4
1 0 0 Il2,3 Z4

2 0 0 Il2,3 Z4
3

0 0 0 Z5
1 0 0 0 Z5

2 0 0 0 Z5
3

 .
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In the matrix Ψk
h1,h2,h3

, the submatrices Zpt , with t = 1, 2, 3 and p = 1, 2, 3, 4 have340

(ht + 1− g − lrt − lst) columns. Moreover, by an iterated use of Grassmann formula,341

one sees that k+ 1− g− l12 − l13 − l23 = 2(αrs + βrs)− (α12 +α13 +α23) so that the342

matrices Z5
t have 2(αrs + βrs)− (α12 + α13 + α23) rows.343

Suitable left actions of GL(hi + 1) on the views give the following form for Ψk
h1,h2,h3

:344

Ψk
h1,h2,h3

:=


Ig 0 0 0 Ig 0 0 0 Ig 0 0 0
0 Il1,2 0 0 0 Il1,2 0 0 0 0 0 Z2

3

0 0 Il1,3 0 0 0 0 Z3
2 0 Il1,3 0 0

0 0 0 Z4
1 0 0 Il2,3 0 0 0 Il2,3 0

0 0 0 Z5
1 0 0 0 Z5

2 0 0 0 Z5
3

 .
The following examples illustrate how, depending on ht, the form of Ψk

h1,h2,h3
can345

be further simplified by choosing additional vectors in the canonical basis of Ck+1, as346

columns of the matrices Zpt .347

Moreover it is clear that the rank of the Grassmann tensor R(T ) depends on348

the entries of the matrices Zpt , hence an explicit formula for R(T ) is not provided.349

Nevertheless, as shown in the examples below, in specific concrete cases the number350

of non vanishing elements of the tensor can be computed, and thus an upper bound351

for R(T ) can be obtained.352

Example 6.1. In the case of three projections from P5 to P2, P2 and P2, with353

profile (2, 2, 2), we get: g = grs = lrs = 0, αrs = 0 and βrs = 3, for each r, s. In354

this case Ψ5
2,2,2 reduces to [Z5

1 |Z5
2 |Z5

3 ], where each Z5
t is a (6× 3) matrix. Up to now355

we have not yet fixed any vector of the basis, so that, with a further choice of the356

reference frame, we get:357

Ψ5
2,2,2 :=


1 0 0 0 0 0 z11 z12 z13

0 1 0 0 0 0 z21 z22 z23

0 0 1 0 0 0 z31 z32 z33

0 0 0 1 0 0 z41 z42 z43

0 0 0 0 1 0 z51 z52 z53

0 0 0 0 0 1 z61 z62 z63

 .
The trifocal tensor T is a 3 × 3 × 3 tensor and for generic choices of zij , all its358

elements are non vanishing and thus no significant upper bound for the rank can be359

given.360

The following example is a degenerate configuration of the classical trifocal tensor.361

Example 6.2. In the case of three projections from P3 to P2 with profile (2, 1, 1)
and centers of projection on a line, one has: g = grs = 2, lrs = 0, αrs = 0 and βrs = 1,
for each r, s. In this case Ψ3

2,2,2 reduces to

Ψ3
2,2,2 :=


1 0 z11 1 0 z12 1 0 z13

0 1 z21 0 1 z22 0 1 z23

0 0 z31 0 0 z32 0 0 z33

0 0 z41 0 0 z42 0 0 z43

 .
Further changes of coordinates, both in the ambient space and in the views, gives:

Ψ3
2,2,2 :=


1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 a
0 0 0 0 0 1 0 0 b

 ,
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with a and b 6= 0.362

The only non vanishing elements of the tensor are:

T113, T131, T212, T221, T311,

hence R(T ) = 5, while the rank of the classical general trifocal is 4.363

6.1. Border ranks. Examples (5.3) and (6.2) seen above, provide evidence,364

already in the classical setting of projective reconstruction in P3, of the fact that the365

rank of tensors is not semicontinuous.366

Indeed, it is very easy to construct a one dimensional family of triplets of point367

(centers of projection) which do not lie on a line but converge to a triplet of points368

on a line. In other words a family of rank 4 tensors which converges to a rank 5 one.369

The general situation is still more intricate: even in the first non classical cases370

of P4 as ambient spaces, we provide some topical examples which display the breadth371

of phenomena that can occur.372

Example 6.3. In the case of three projections from P4 to P2, P2 and P2, with
profile (2, 2, 1), Assumption 5.1 doesn’t hold, and we get: g = 0, grs = lrs = 1,
αrs = 0 and βrs = 1, for each r, s. In this case Ψ4

2,2,2 reduces to

Ψ4
2,2,2 :=


1 0 0 1 0 0 0 0 z13

0 1 0 0 0 z22 1 0 0
0 0 z31 0 1 0 0 1 0
0 0 z41 0 0 z42 0 0 z43

0 0 z51 0 0 z52 0 0 z53

 .
Again, a further change of coordinates in the ambient space, gives:373

Ψ4
2,2,2 :=


1 0 0 1 0 0 0 0 a
0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 b
0 0 0 0 0 1 0 0 c

 ,
with a, b, c 6= 0.374

The trifocal tensor T is a 3 × 3 × 3 tensor and its non vanishing elements are:
T111, T122, T131, T213, T311, from which one easily deduce that R(T ) = 4, because the
tensor is a linear combination of:

(e11 + e13)⊗ e21 ⊗ e31, e11 ⊗ e22 ⊗ e32, e11 ⊗ e23 ⊗ e31, e12 ⊗ e21 ⊗ e33.

Starting from the above example, one can consider the following degenerate con-375

figurations for lines CA, CB , CC , which are centers of projection. Notice that each of376

these configurations can easily obtained as a limit of a sequence of non degenerate377

configurations of centers of projection.378

a) CA, CB , CC lie in the same hyperplane and no two of them intersect each379

other;380

b) CA, CB , CC span P4 but two of them have nonempty intersection;381

c) CA, CB , CC lie in the same hyperplane and two of them have nonempty in-382

tersection.383

With suitable choices of coordinates and similarly to the rank calculations per-384

formed above, one sees that, respectively:385
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a) g = grs, lrs = 0,
αrs = 0 and βrs = 2, for each r, s.
In this case Ψ4

2,2,2 reduces to

Ψ4
2,2,2 :=


1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 z11 z12

0 0 1 0 0 0 0 z21 z22

0 0 0 0 1 0 0 z31 z32

0 0 0 0 0 1 0 z41 z42

 .
The non vanishing elements of the tensor are:

T113, T121, T122, T131, T132, T211, T212, T311, T312

and R(T ) jumps to 5. With the same notation of example 5.4, one sees that386

T is a combination of:387

e11 ⊗ e21 ⊗ e33, e11 ⊗ e22 ⊗ (e31 + e32), e11 ⊗ e23 ⊗ e31,388

e12 ⊗ e21 ⊗ (e31 + e32), e13 ⊗ e21 ⊗ (e31 + e32).389390

b) g = 0, g12 = l12 = 2, g13 = g23 = l13 = l23 = 0,391

α12 = 2, β12 = 0, α13 = α23 = 0, β13 = β23 = 2.392

In this case Ψ4
2,2,2 reduces to393

Ψ4
2,2,2 :=


1 0 0 1 0 0 0 z11 z12

0 1 0 0 1 0 0 z21 z22

0 0 1 0 0 0 0 z31 z32

0 0 0 0 0 1 0 z41 z42

0 0 0 0 0 0 1 0 0

 .
The non vanishing elements of the tensor are:

T123, T213

and R(T ) drops to 2;394

c) g = 1, g12 = g23 = 1, l12 = l23 = 0, g13 = 2, l13 = 1, α12 = α23 = 0, β12 =
β23 = 2, α13 = 1, β13 = 1. In this case Ψ4

2,2,2 reduces to

Ψ4
2,2,2 :=


1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 a
0 0 0 0 1 0 0 0 b
0 0 0 0 0 1 0 0 c

 .
The non vanishing elements of the tensor are:

T113, T121, T131, T212, T311,

R(T ) = 4, and again T is a linear combination of395

e11 ⊗ e21 ⊗ e33, e11 ⊗ (e22 + e23)⊗ e31, e12 ⊗ e21 ⊗ e32, e13 ⊗ e21 ⊗ e31.

13

This manuscript is for review purposes only.



In case a) this shows that the border rank of the tensor is strictly less than its rank,396

i.e. R(T ) < R(T ).397
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