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Abstract

Are explored the spectral properties for an unbounded operator U
for which there exists an injective quasi-nilpotent unbounded operator
N such that UN = NU . Several important properties in spectral
theory are considered.

1 Introduction and preliminary results

As it is well-study in [4]-[13], one of the most interesting properties in the
local spectral theory concern the stability of certain spectra of a bounded
linear operator U under commuting quasi-nilpotent operators. In this paper
we consider a similar problem for unbounded operators. In this work we shall
consider the version of this property for an (U,D(U)) closed linear operator
in a dense subspace of a Hilbert space H. We extend some of the results
established in the bounded case to an unbounded linear operator. First we
begin with some preliminary notations and remarks.

Let (U,D(U)) be a (possibly unbounded) closed linear operator in H.
Clearly we define D(U2) := {x ∈ D(U) : Ux ∈ D(U)} and, in general, for
n ≥ 2 we put D(Un) := {x ∈ D(Un−1) : Un−1x ∈ D(U)} and Un(x) =
U(Un−1x). It is worth mentioning that nothing guarantees, in general, that
D(Uk) does not reduce to the null subspace {0}, for some k ∈ N. For
this reason powers of an unbounded operator could be of little use in many
occasions. Throughout this paper if D is linear subspace of H a function
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f : Ω → D is analytic if f : Ω → H is analytic and fn(x) ∈ D for every
x ∈ Ω, and n ∈ N.

Let (U,D(U)) be a closed linear operator in H. As usual, the spectrum
of (U,D(U)) is defined as the set

σ(U) := {µ ∈ C : µI − U is not a bijection of D(U) ontoH}.

The set ρ(U) = C\σ(U) is called the resolvent set of (U,D(U)), while the
map R(µ, U) : ρ(U) ∋ µ 7→ (µI − U)−1 is called the resolvent of (U,D(U)).

Following [3] and [14] let (U,D(U)) be a closed operator in H.

Definition 1.1

• A point µ ∈ C is said to be in the local resolvent set of x ∈ H, denoted
by ρU(x), if there exist an open neighborhood U of µ in C and an
analytic function f : U → D(T ) which satisfies

(µI − U)f(µ) = x for all µ ∈ U . (1.1)

• The local spectrum σU(x) of U at x ∈ H is the set defined by σU(x) :=
C \ ρU(x) and obviously σU(x) ⊆ σ(U), and σU(x) is a closed subset of
C.

Definition 1.2 Let (U,D(U)) , D := D(U), be a closed linear operator in H
such that Un(D) ⊆ D. The hyperrange of U is the subspace

U∞(D) :=
⋂
n∈N

Un(D).

Also in this case two classical quantities associated with an operator U
on a vector space D there corresponds:

{0} = ker U0 ⊆ ker U ⊆ ker U2 · · · .

and
D = U0(D) ⊇ U(D) ⊇ U2(D) · · · .

The ascent of U is the smallest positive integer p = p(U) such that ker Up

= ker Up+1. If such p does not exist we let p = +∞. The descent of U is
defined to be the smallest integer q = q(U) such that U q+1(D) = U q(D). If
such q does not exist we let q = +∞.
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Let D be a dense subspace of a Hilbert space H. We denote by L(D)
the set of all closable linear operators from D to D and L†(D) be the space
consisting of all its elements which leave, together with their adjoints, the
domain D invariant. Then L(D) is a algebra with respect to the usual opera-
tions and L†(D) is a subalgebra of L(D) with identity 11. (For the definitions
and in general for the details can be found [1]). Let M be an O − ∗ algebra
on D.

Let α(U) := dim ker U and β(U) := codimU(X). Also in this case the
class of all upper semi-Fredholm operators is defined by

Φ+(X) := {U ∈ L(D) : α(U) < ∞ and U(X) is closed},

while the class all lower semi-Fredholm operators is defined by

Φ−(X) := {U ∈ L(D) : β(U) < ∞}.

If U ∈ Φ+(X)∪Φ−(X) the index of U, also in this case, is defined by indT =
α(T ) − β(U). It is well known that if β(U) < ∞ then U(X) is closed. An
operator U ∈ L(D) is said to be unbounded below if is injective and has closed
range. The approximate point spectrum,also in this case, is defined by

σap(U) := {µ ∈ C : µI − U is not unbounded below},

while the surjectivity spectrum is defined as

σs(U) := {µ ∈ C : µI − U is not onto}.

If U∗ denotes the dual of U it is well known that σap(U) = σs(U
∗) and

σs(U) = σap(U
∗). Let Φ(X) := Φ+(X) ∩ Φ−(X) the class of all Fredholm

operators . An operator U ∈ L(D) is said to be a Weyl operator if U ∈ Φ(X)
and indU = 0, U ∈ L(D) is said to be upper semi-Weyl if U ∈ Φ+(X)
and indU ≤ 0, U ∈ L(D) is said to be lower semi-Weyl if U ∈ Φ−(X) and
indU ≥ 0. Denote by σw(U), σuw(U) and σlw(U) the Weyl spectrum, the
upper semi-Weyl spectrum and the lower semi-Weyl spectrum , respectively.
Clearly,

σuw(U) ⊆ σap(U) and σlw(U) ⊆ σs(U)

holds for every U ∈ L(D). There is a duality:

σuw(U) = σlw(U
∗) and σlw(U) = σuw(U

∗),
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2 Injective quasi-nilpotent operators

An operator N ∈ L(D) is said to be quasi-nilpotent if σ(N) = {0}. A quasi-
nilpotent operator on an infinite-dimensional Banach space cannot be onto,
since σs(N) ̸= ∅.

We put

Ni(X) := {T ∈ L†(D) : there exists an injective quasi-nilpotent operator

N ∈ L†(D) such that UN = NU}.

Note that a nilpotent operator N ̸= 0 cannot be injective, since if ker N =
{0} and N ν = 0, then X = ker N ν = {0}. We start with the following result
that has a central role in this paper.

We consider now some easy examples of unbounded operator (U,D(U))
(see [4])

In this example we give a a family of linear operators Uvk : ℓ2(N) → ℓ2(N)
with commutes with an injective quasi-nilpotent operator. Let N2 be the
matrix

N2 =



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1

2
0 0 0 0 . . .

0 0 1
3

0 0 0 . . .
0 0 0 1

4
0 0 . . .

0 0 0 0 1
5

0 . . .
...

...
...

...
...

. . .


,

where, for i, j = 1, 2, . . . ,

qij =


0 if i < j + 1
1
j

if i = j + 1

0 if i > j + 1

Clearly,

N2(x1, x2, x3, . . . ) = (0, x1,
x2

2
,
x3

3
, . . . ) for all (x1, x2, x3, . . . ) ∈ ℓ2(N),

then N2 is injective and quasi-nilpotent. If N2 is a weighted shift with non
zero weights which tend to zero, then N2 is a one-to-one quasi-nilpotent
operator
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Put ek := (0, . . . , 1, 0, . . . ), with eki = δik, let Uek be the following opere-
tor:

Uek =



0 0 0 0 0 . . .
...

...
...

...
...

1 0 0 0 0 . . .
0 1

k
0 0 0 . . .

0 0 1

(k+1
2 )

0 0 . . .

0 0 0 1

(k+2
3 )

0 . . .

...
...

...
...

. . .


,

where the generic element bij is given by:

bij =


0 if i < j + k − 1

1

(i−1
i−k)

if i = j + k − 1

0 if i > j + k − 1

Then, by arbitrarily choosing k ≥ 2 and µk ∈ R, we obtain a family of
matrices Uvk

:= µkUek that commute with N2: N2 Uvk
= Uvk

N2. Moreover
it is easy to verify that ∀k ≥ 2, µk ∈ R, Uvk

is a bounded linear operator;
clearly N2 = Ue2 .

More generally, if we define Nn := Uen , then, ∀n ≥ 2, Nn is quasi-
nilpotent, injective, with the property that Nn commute with Uvk

, ∀k ≥
2, µk ∈ R : Nn Uvk

= Uvk
Nn.

We finally observe that the linear span D := ⟨Ue1 , . . . , Uek , . . . ⟩ is an
integral domain. If B ∈ D, then B is a matrix of the following type:

B =



µ1 0 0 0 0 0 0 . . .
µ2 µ1 0 0 0 0 0 . . .
µ3

µ2

2
µ1 0 0 0 0 . . .

µ4
µ3

3
µ2

3
µ1 0 0 0 . . .

µ5
µ4

4
µ3

6
µ2

4
µ1 0 0 . . .

µ6
µ5

5
µ4

10
µ3

10
µ2

5
µ1 0 . . .

...
...

...
...

...
...

. . .


,
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where µi ∈ R, i = 1, 2, . . . , and the generic element bij is

bij =

{
0 if i < j
µi−j+1

(i−1
j−1)

if i ≥ j

Let M := {B ∈ D : supi,j |bij| < ∞}. Then for every B ∈ M there exists
cB ∈ R, such that |bij| ≤ cB, ∀i, j. Let l∞ be the Banach space of bounded
sequences, x ∈ l∞ and let cx := supi |xi|. Let us consider now y = Bx. Then

yk =
k∑

j=1

µjxk+1−j(
k−1
j−1

) ,

so

∀k ≥ 1, |yk| ≤ |cAcx|
k∑

j=1

1(
k−1
j−1

) .
Since

lim
k→∞

k∑
j=1

1(
k−1
j−1

) =: S < +∞,

then y = Bx ∈ l∞, hence A : l∞ → l∞, and so A is bounded.
But in general in this example : l2 → l2 is a unbounded operator with

commutes with an injective quasi-nilpotent operator N2.

3 Results

Following [4] but studing unbounded operators we have

Theorem 3.1 If U ∈ Ni(X), then α(U) < ∞ if and only if U is injective.
If the dual N∗ of a quasi-nilpotent operator N is injective then β(U) < ∞ if
and only if U is onto.

Proof. Reasoning in a similar way to the case of bounded operators [4] we
define if α(U) < ∞ we put Y := ker U . Cleraly, Y is invariant under N,
also in this case and the restriction (µI −N)|Y is injective for all µ ̸= 0. By
assumption Y is finite-dimensional, then (µI−Q)|Y is surjective for all µ ̸= 0.
Thus σ(N |Y ) ⊆ {0}. Moreover N |Y is injective and hence N |Y is surjective.
Consequently, σ(N |Y ) = ∅, from which we conclude, also in this case, that
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Y = {0}. Thus U is injective. The converse it is easily demonstrate.
Let U be a lower semi-Fredholm operator. Thus U∗, the dual of U ,

is an upper semi-Fredholm operator, therefore α(U∗) = dim ker U < ∞.
Moreover Q∗ is injective and quasi-nilpotent and U∗N∗ = N∗U∗ thus T ∗

is injective. Moreover the range of U∗ is closed, since U(X) is closed, so
U∗ is unbounded below. By duality then U is onto. The converse is easily
demonstrate. 2

Theorem 3.2 Let U ∈ Ni(X).Then

σuf(U) = σap(U). (3.1)

Proof. Reasoning in a similar way to the case of bounded operators [4] we
define if µ /∈ σuf(U) then µI − U ∈ Φ+(X), so α(µI − U) < ∞. Since N
commutes also with µI − U it then follows, by Theorem 3.1, that µI − U
is injective. Since (µI − U)(X) is closed then µ /∈ σap(U). Hence σap(U) ⊆
σuf(U). The opposite inclusion is always true for every operator, since every
unbounded below operator is upper semi-Fredholm. Therefore, σuf(U) =
σap(U). 2

Theorem 3.3 Let U ∈ Ni(X). Then

σub(U) = σuw(U) = σap(U) and σb(U) = σw(U) = σ(U).

Proof. The first equality is a consequence of 3.2, since

σuf(U) ⊆ σuw(U) ⊆ σub(U) ⊆ σap(U).

Moreover note first that σw(U) ⊆ σb(U) ⊆ σ(U). If µ /∈ σw(U) then α(µI −
U) = β(µI−U) < ∞. By Theorem 3.1 we have α(µI−U) = β(µI−U) = 0,
so µ /∈ σ(U) and hence σ(U) ⊆ σw(U). The converse is easily demonstrate .
2

Theorem 3.4 If U ∈ Ni(X) is such that σap(U) has no hole, then

σuw(U) = σap(U) = σw(U) = σ(U). (3.2)
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Proof. Reasoning in a similar way to the case of bounded operators [4] we
define

ρ−sf(U) := {µ ∈ C : µI − U ∈ Φ±(X) and ind (µI − U) < 0},

ρw(U) := C \ σw(U) and ρuw := C \ σuw(U). By of course ρ−sf(U), ρw(U) and
ρuw(U), also in this case, are open. It is easily seen that

ρuw(U) = ρ−sf(U) ∪ ρw(U). (3.3)

Now, suppose that σap(U) has no hole and set ρap(U) := C \ σap(U). By
Theorem 3.3 we have ρuw(T ) = ρap(U), so ρuw(U) is connected by assump-
tion. From (3.3) we know that ρuw(U) = ρ−sf(U) ∪ ρw(U) and both the two
sets ρ−sf(U) and ρw(U) are open. Therefore ρ−sf(U) = ∅, so ρuw(U) = ρw(U)
and hence σuw(U) = σw(U).This implies, taking into account Theorem 3.3,
that the equalities (3.2) hold. 2

4 Concluding Remark

In this work, only some results obtained for limited operators have been
generalized to the case of non-limited operators. Clearly in many situations
this is not possible or is under study. Naturally the reasoning is to determine
a dense and stable domain with respect to the operators involved. The proofs
and arguments valid for bounded operators are not obvious when switching
to unbounded operators. But in the applications and in different situations it
is precisely these operators that are involved as in the case of representation
theory for insance.
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[19] M. Mbekhta Sur la théorie spectrale locale et limite des nilpotents. Proc.
Amer. Math. Soc. 110 (1990), 621-31.

[20] M. A. Naimark, On the square of a closed symmetric operator (Russian)
Dokl. Akad. Nauk SSSR 26 (1940) 207–208.

[21] P. R. Chernoff, A semibounded closed symmetric operator whose square
has trivial domain, Proc. Amer. Math. Soc., 89/2 (1983) 289–290.

[22] S. Triolo, WQ*-Algebras of measurable operators, Indian J. Pure Appl.
Math. 43(6): , December 2012, 601-617.
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