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Abstract: The use of non-standard calculus means have been proven to be extremely powerful for
studying old and new properties of special functions and polynomials. These methods have helped
to frame either elementary and special functions within the same logical context. Methods of Umbral
and operational calculus have been embedded in a powerful and efficient analytical tool, which
will be applied to the study of the properties of distributions such as Tsallis, Weibull and Student’s.
We state that they can be viewed as standard Gaussian distributions and we take advantage of the
relevant properties to infer those of the aforementioned distributions.

Keywords: operators theory 44A99, 47B99, 47A62; umbral methods 05A40; special functions 33C52,
33C65, 33C99, 33B10, 33B15; Hermite polynomials 33C45; calculus Tsallis 60E99; Student’s distribu-
tion 60E05; q-Bessel functions 05A30

1. Introduction

In a previous paper, the umbral formalism has been exploited to express the functions
associated with q-calculus in terms of elementary functions [1]. We have, in particular, seen
how q-Bessel type functions [2] can be formally expressed in terms of ordinary exponential
or Gaussian functions [3]. The idea put forward in these studies has been that of developing
a slight variant of the Rota–Roman Umbral Calculus (UC) [4,5], has been that of merging
algebraic, operational and UC tools to get the Indicial Umbral Calculus (IUC) [6], which
allows significant advantages in computation.

To better frame the discussion we consider the cylindrical q-Bessel functions of n-th
order in [7].

Definition 1. We introduce the cylindrical q-Bessel functions of n-th order Jn(x)q through the
series expansion:

Jn(x)q =
∞

∑
k=0

(−1)k

[k]q! [k + n]q!

( x
2

)2k+n
, ∀n ∈ N, ∀x ∈ R, ∀q ∈ R : q 6= 0, (1)

where
[n]q =

qn − 1
q− 1

, 0 < q < 1 , (2)

and

[n]q! =

{
1 n = 0

∏n
r=1[r]q n ≥ 1

. (3)

The corresponding q-Gamma function [7–10] extending the notion of q-factorial to
non-integers is given by:
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Γq(x) = (1− q)1−x
∞

∏
s=0

1− qs+1

1− qs+x , ∀q ∈ R :| q |< 1 , (4)

and for non-negative integers n it is verified that:

Γq(n) = [n− 1]q! (5)

as for the ordinary factorial.

In the following proposition we will use the Umbral Claculus, for an extensive discus-
sion of the method, see [3].

Proposition 1. Considering the case with n = 0, we write the umbral image of the q-Bessel
function of 0-order J0(x)q as:

J0(x)q = e−ĉq( x
2 )

2
φ0, ∀x, q ∈ R :| q |< 1 , (6)

where φ0 is the so-called umbral vacuum [3] and ĉq is an umbral operator defined in such a way that:

ĉ k
q φ0 =

Γ(k + 1)(
Γq(k + 1)

)2 , ∀k, q ∈ R :| q |< 1. (7)

Proof. ∀x, k, q ∈ R :| q |< 1, by using Equations (1), (5) and (7), we get:

J0(x)q =
∞

∑
k=0

(−1)k

[k]q!2
( x

2

)2k
=

∞

∑
k=0

(−1)kΓ(k + 1)

k!
(
Γq(k + 1)

)2

( x
2

)2k
=

∞

∑
k=0

(−1)k

k!
ĉk

q

( x
2

)2k
φ0 = e−ĉq( x

2 )
2

φ0 .

Example 1. A paradigmatic example is the derivation of q-Bessel integrals so we find, for example
(we checked Equation (8) numerically and we found that it is verified for 0.8 < q < 1. For lower
values of q, numerical instabilities in the integration procedure prevent a safe conclusion), the
result below.

∫ ∞

−∞
J0(x)q dx =

∫ ∞

−∞
e−ĉq( x

2 )
2
dx φ0 = 2

√
πĉ−

1
2

q φ0 = 2
√

π
Γ
(

1
2

)
(

Γq

(
1
2

))2 =
2π(

Γq

(
1
2

))2 . (8)

These few remarks summarize the essential features of the formalism, which will be
exploited in the forthcoming parts of the paper.

2. q-Distributions

The q-Gaussian Tsallis and the q-Weibull distributions [11,12] can be profitably ex-
pressed in terms of umbral forms. Within this framework, they are recognized as the
images of Gaussian and exponentials, respectively, by the use of the methods put forward
in the introductory section. Leaving aside, for the moment, their statistical environment,
we use this section to establish the relevant mathematical properties within this “uncon-
ventional” context. We will see how other type of distributions, involving, for example,
the Weibull distributions [13] or generalized forms of Dirac or Bose–Einstein distribution,
can be mathematically treated by the use of techniques borrowed from the operational
calculus [6].

Before entering the specific topics of this paper we should remember that functions
like those belonging to the Bessel family can be “downgraded” to Gaussian like forms,
while Lorentz distributions can be viewed as Gaussians or vice-versa. This is a by-product
of the Indicial Umbral Calculus (IUC), originally developed in [3,6,8–10,13].
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IUC is a different flavor of the calculus by Roman and Rota [4,5], embedding op-
erational and algebraic methods which push its computational capabilities a little bit
further. We summarize here the mathematical tools we are going to use in the following;
in particular we start from the following example, involving an umbral restyling of the
Lorentz function.

Example 2 (q-exponential). Let eq(x) be the q-exponential

eq(x) = [1 + (1− q)x]
1

1−q , −∞ < q < 1. (9)

In the following, we introduce non conventional distributions which can be written in terms of
the q-exponential through the function eQ(−x2) with Q = 1− q.

The use of the Newton binomial formula yields the following series expansion for the function
defined in Equation (9).

eQ(−x2) = Γ
(

1 + Q−1
) ∞

∑
s=0

(−1)sx2s

s!
Qs

Γ(1 + Q−1 − s)
, ∀x ∈ R :| x |< 1

1− q
. (10)

It should be noted that the above series converges for |
√

Q | ≤ 1, which coincides with the
interval of definition of the function in Equation (9). In Ref. [3], it has been suggested the following
q-exponential umbral images

eQ(−x2) = e−d̂x2
ψ0 , (11)

where the umbral operator d̂ and the associated vacuum ψ0 [4,5], are defined in such a way that

d̂αψ0 = Qα Γ
(
1 + Q−1)

Γ(1 + Q−1 − α)
, ∀α ∈ R. (12)

indeed, by expanding the exponential in Equation (11), we find:

e−d̂x2
ψ0 =

∞

∑
s=0

(−1)sx2s

s!
d̂sψ0 =

∞

∑
s=0

(−1)sx2sQs

s!
Γ
(
1 + Q−1)

Γ(1 + Q−1 − s)
= eQ(−x2). (13)

The same result can be obtained by using the Newton Binomial expansion of the q-exponential
defined in Equation (9).

Example 3. According to the rules of the umbral calculus (12), namely treating d̂ as an ordinary
algebraic quantity, we can work out the associated integral as (the change in the bounds of the
integral is due to the fact that the umbral image of eQ

(
−x2) is a Gaussian and d̂ is treated as an

ordinary constant. Within this representation, x is not limited within the bounds specified by the
extreme of the integral. The previous assumptions are better expressed by the scheme reported below
eQ(−x2)→ e0(d̂x2) and with lim

q→1
Q−

1
2 ) = ∞.)

∫ 1√
1−q

− 1√
1−q

eQ(−x2) dx =
∫ ∞

−∞
e−d̂x2

dx ψ0 =
√

π d̂−
1
2 ψ0 =

√
π

Q
Γ
(
1 + Q−1)

Γ
( 3

2 + Q−1
) . (14)

We accordingly introduce the so-called Tsallis distribution:

TQ(x, σ) =
1√

2 πQ σ
eQ

(
− x2

2σ2

)
, πQ =

π

Q

(
Γ
(
1 + Q−1)

Γ
( 3

2 + Q−1
))2

. (15)

By Tsalis distribution we indicate a q-exponential distribution of the type introduced in [11,12]
to study generalizations of the Boltzmann–Gibbs entropy.
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The umbral formalism offers a noticeable flexibility and simplicity in its mathematical
handling. The associated moments are therefore easily obtained but, before getting their
explicit form, we consider the determination of the successive derivatives of eQ(−x2),
which are computed as follows.

Proposition 2. Let

Hm(x, y) = m!
bm

2 c

∑
r=0

xm−2rrr

(m− 2r)!r!
, ∀x, y ∈ R, ∀m ∈ N , (16)

be the two variable Hermite polynomials [14,15] with the property [3,6]

∂n
xe−ax2

= Hn(−2ax,−a)e−ax2
. (17)

The successive derivatives of eQ(−x2) can be expressed in terms of two variables Hermite
polynomials

∂m
x eQ(−x2) = Hm(−2d̂x,−d̂)e−d̂x2

ψ0 , (18)

and eventually

∂m
x eQ(−x2) = (−1)mm!

bm
2 c

∑
r=0

(2x)m−2r(−1)rQm−r

(m− 2r)!r! m−reQ(−x2). (19)

Proof. By using Equations (11) and (17) ,we can recast the successive derivatives of eQ(−x2)
as follows:

∂m
x eQ(−x2) = ∂m

x e−d̂x2
ψ0 = Hm(−2d̂x,−d̂)e−d̂x2

ψ0, ∀x ∈ R.

We expand the last term of previous equation and apply the umbral calculus:

Hm(−2d̂x,−d̂)e−d̂x2
ψ0 = (−1)mm!

bm
2 c

∑
r=0

(−1)r(2x)m−2r

(m− 2r)!r!
d̂m−rψ0 e−d̂x2

= (−1)mm!
bm

2 c

∑
r=0

(−1)r(2x)m−2r

(m− 2r)!r!

∞

∑
s=0

(−1)sx2s

s!
d̂s+m−rψ0.

We define the q-exponential of order k as:

keQ(−x2) :=
∞

∑
s=0

(−1)sx2s

s!
d̂s+kψ0, (20)

which, by using Equation (12), becomes

∂m
x eQ(−x2) = Hm(−2d̂x,−d̂)e−d̂x2

ψ0 = (−1)mm!
bm

2 c

∑
r=0

(−1)r(2x)m−2r

(m− 2r)!r!

∞

∑
s=0

(−1)sx2s

s!
d̂s+m−rψ0 =

= (−1)mm!
bm

2 c

∑
r=0

(−1)r(2x)m−2r

(m− 2r)!r!

∞

∑
s=0

(−1)sx2s

s!
Qs+m−r Γ(1 + Q−1)

Γ(1 + Q−1 − s−m + r)
=

= (−1)mm!
bm

2 c

∑
r=0

(−1)r(2x)m−2r

(m− 2r)!r! m−reQ(−x2)

(21)

(we note that the function keQ(−x2) can be expressed through other series too): keQ(−x2) =

Γ
(
1 + Q−1)∑∞

s=0
(−1)sx2s

s!
Qs

Γ(1+Q−1−(s+k))
.
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Let us now look at the problem of evaluating the “momenta” of the q-Tsallis distribu-
tion. For this aim, we propose the following example.

Example 4. We define the quantities

In(δ) =
∫ ∞

−∞
(x + δ)ne−d̂x2

dx ψ0, ∀n ∈ {N \ 0} (22)

where δ is a constant, introduced for future convenience. The integrals In(δ) are easily obtained by
using, for example, the method of the generating function, thus finding:

∑∞
n=0

tn

n!
In(δ) = ∑∞

n=0
tn

n!
∫ ∞
−∞(x + δ)ne−d̂x2

dx ψ0 =
∫ ∞
−∞ e(x+δ)te−d̂x2

dx ψ0 = eδt
√

π

d̂
e

t2
4d̂ ψ0. (23)

According to the Hermite generating function [6,15]:

∞

∑
k=0

tk

k!
Hk(x, y) = ext+yt2

, (24)

we obtain
∞

∑
n=0

tn

n!
In(δ) =

√
π d̂−

1
2

∞

∑
n=0

tn

n!
Hn

(
δ,

d̂−1

4

)
ψ0. (25)

By equating the t-like power terms, we find

In(δ) =
√

π n!
b n

2 c

∑
r=0

δn−2r

(4)r(n− 2r)!r!
d̂−(r+ 1

2 )ψ0

=

√
π

Q
n!Γ
(

1 + Q−1
) b n

2 c

∑
r=0

δn−2r

(4Q)r(n− 2r)!r!Γ
( 3

2 + Q−1 + r
) .

(26)

We have so far provided an idea of how q and IUC can be embedded to obtain results
of practical interest. In the forthcoming section, we will further extend the discussion by
including more general examples.

3. Final Comments

The q-Weibull distribution writes in terms of the q- exponential as:

f (x; q, λ, κ) =

 (2− q)
κ

λ

( x
λ

)κ−1
eq

(
−
( x

λ

)κ)
x ≥ 0,

0 x < 0,
(27)

where q < 1, κ > 0 is shape and λ > 0 is the scale parameter, respectively. The use of the
umbral formalism allows to cast (27) in the form:

f (x; q, λ, κ) = (1 + Q)
κ

λ

( x
λ

)κ−1
e−
(

1
Q−1

)
d̂( x

λ )
κ

ψ0. (28)

The average values and other specific quantities are easily obtained using the Umbral
formalism. We note indeed that:
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〈xm〉 = (1 + Q)
κ

λ

1
λκ−1

∫ ∞

0
xκ+m−1e−

(
1
Q−1

)
d̂( x

λ )
κ

dx ψ0 =

= (1 + Q)κλm
∫ ∞

0
σκ+m−1e−

(
1
Q−1

)
d̂σκ

dσ ψ0 =

= (1 + Q)κλm

((
1
Q − 1

)
d̂
)−(1+ m

κ )(Γ
(

1 +
m
κ

))
κ

ψ0 =

= (1 + Q)λm(1−Q)−(1+ m
κ )Γ

(
1 +

m
κ

) Γ
(
1 + Q−1)

Γ
(
2 + Q−1 + m

κ

) =

= (2− q)λmq−(1+ m
κ )
(

Γ
(

1 +
m
κ

)) Γ
(
1 + (1− q)−1)

Γ
(
2 + (1− q)−1 + m

κ

) =

= (2− q)λmq−(1+ m
κ )B

(
1 +

m
κ

, 1 + (1− q)−1
)

.

(29)

We have mentioned the q-exponential in Equation (9), with the q parameter bounded
in −∞ < q < 1. This interval is not unique and indeed it is also defined within the limits
1 < q < 3. In this case, a non umbral treatment can be efficient as well.

By making use of the Laplace transform identity,

x−µ =
1

Γ(µ)

∫ ∞

0
e−sxsµ−1ds, (30)

we can write the q-Gaussian as:

eq(−x2) = (1+ | −A | x2)−
1
A =

1
Γ(A−1)

∫ ∞
0 e−s(1+Ax2)sA−1−1ds, A = q− 1. (31)

The relevant calculation can be done again by exploiting the properties of the Gaussian
integrals, thus finding, for example:

∫ ∞

−∞
eq(−x2)dx =

1
Γ(A−1)

∫ ∞

0
e−ssA−1−1

(∫ ∞

−∞
e−sAx2

dx
)

ds =
√

π√
A Γ(A−1)

∫ ∞

0
e−ssA−1− 3

2 =

=

√
π√

A Γ(A−1)
Γ
(

A−1 − 1
2

)
, 1 < q < 3.

(32)

Without entering further comments on the Laplace transform treatment of q-exponentials,
we like to mention the t-Students distribution, which, albeit amenable for an umbral calcu-
lus restyling, can be profitably studying the last outlined technique.

Example 5. The Student’s t-distribution is used in statistics to obtain the mean value of a normal
distribution when the available sample is small and the standard deviation is not available. The
associated probability density function writes [16]

S(t; ν) =
1

√
ν B
(

1
2 , ν

2

)(1 +
t2

ν

)− ν+1
2

, (33)

where B(a, b) is the Euler B-function [14]. The use of the Laplace transform method [6] allows us
to cast Equation (33) in the form:

S(t; ν) =
1

√
ν B
(

1
2 , ν

2

)
Γ
(

ν+1
2

) ∫ ∞

0
e−s

(
1+ t2

ν

)
s

ν−1
2 ds, (34)

which can be exploited to derive the relevant properties in straightforward terms.
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We can prove that the Student’s distribution in the form given in Equation (34) is correctly
normalized by keeping the relevant infinite integral which yields:∫ ∞

−∞
S(t; ν)dt =

1
√

ν B
(

1
2 , ν

2

)
Γ
(

ν+1
2

) ∫ ∞

0

(∫ ∞

−∞
e−s t2

ν dt
)

e−ss
ν−1

2 ds =

=

√
π

B
(

1
2 , ν

2

)
Γ
(

ν+1
2

) ∫ ∞

0
e−ss

ν
2−1ds =

√
π

B
(

1
2 , ν

2

)
Γ
(

ν+1
2

)Γ
(ν

2

)
= 1.

(35)

This is just an illustration of how the technique works.
The calculus of higher order distribution moments proceeds along the same lines and we find,

for example,

m2 =
∫ ∞

−∞
t2S(t; ν)dt =

1
2

ν Γ
(

ν
2 − 1

)
Γ
(

ν
2
) =

ν

ν− 2
, ∀ν ∈ R : ν 6= 2. (36)

In this paper, we have gone through the use of umbral and operational methods ap-
plied to q-functions. We have indicated a general procedure to obtain detailed information
from the distributions, in terms of momenta (including those of higher order). We have
also worked out a general method for dealing with the properties of q-Bessel functions
by indicating a fairly straightforward procedure to calculate the relevant integrals. In a
forthcoming paper, we will extend this method of analysis to a wider class of q-functions.
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