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Abstract. In this work, a Ritz method is developed for progressive damage analysis of multilayered variable angle
tow (VAT) composite plates under geometrically non-linear strains. The proposed model adopts a first order shear
deformation theory and considers geometric non-linearities through the von Karman assumptions. A meso-modelling
approach based on Continuum Damage Mechanics is adopted for analysing the initiation and evolution of damage.
The onset of damage is predicted using the Hashin’s criteria. Four damage indices are defined and computed for
expressing the degradation of the mechanical properties of the material, both for fibers and matrix under either
tension and compression loading. A set of numerical tests is carried out to validate the model, assess its convergence
and show its capabilities, eventually presenting novel results for progressive non-linear damage in variable angle tow
composite plates.

INTRODUCTION

Multilayered composite materials are widely employed in several field of engineering, such as aerospace,
naval and automotive, as they allow the design of low-weight structures with enhanced stiffness, strength
and fatigue properties, among others. Thanks to the availability of new manufacturing techniques, such as
automated fibre placement, automated tape laying and additive manufacturing, composite structures can be
designed and produced with variable mechanical properties, so as to realize the so called variable angle tow
(VAT) laminates, obtained by varying the fibre orientation as a function of the position considered over the
structure. The advantages offered by VAT laminates are nowadays well-known and have been extensively
studied [1, 2, 3].

Besides developing new manufacturing techniques for the production of advanced materials and structural
components, engineers need computational modelling tools able to predict the structural response of the
designed components; considering the width of the materials design space allowed by the mentioned novel
manufacturing techniques, the availability of effective computational tools provides an asset that may help
noticeably reduce experimental times and costs, thus contributing to unleash the higher potential of new
manufacturing/materials routes.

One of the most employed numerical approaches to structural problems is the Finite Element Method
(FEM), which has also reached a well definite maturity. FEM’s accuracy is strongly related to the suitable
quality of the generated mesh that, in the case of VAT laminates, due to the variation of the in-plane and
through-the-thickness properties, generally indices a high number of mesh elements, thus leading to high
computational efforts [4, 5]. To overcome such issues, and possibly speed up the analysis still retaining a
high level of accuracy, different numerical techniques have been proposed as alternative to FEM, such as
boundary elements methods [6, 7, 8] or mesh-less techniques [9]; in this context, the Ritz method, which
may be seen as a global mesh-less technique, has been often shown effective for the analysis of classical,
laminated and VAT composite structures [10, 11, 12, 13].

To fully exploit the advantages offered by VAT composites, and identify their operational domain, it is
important to assess and possibly predict the onset and evolution of damage, as done for other engineering
materials and classical straight-fiber laminates. Different approaches have been used to model the initiation
and evolution of damage in composite structures. Depending on the scale of the idealization, from microscale
through mesoscale to macroscale, damage can be modelled in different ways.



At the microscale, micromechanical approaches are generally used where the evolution of damage is
represented either in the form of matrix softening or fibers breaking, being both the matrix and the fibers
explicitly represented in the so called representative volume element (RVE) [14, 15, 16, 17]. Such approaches
are typically used for representing the mechanical response before cracks localize at ply level or at the larger
scale. At the opposite macroscale or component level, the damage is often represented as a hard discontinuity,
e.g. a crack or concentrated reduction of material stiffness. At the mesoscale, where the individual plies are
represented as homogenous, at least through the thickness, the damage process can be treated using different
theories. One of the most common is the Continuum Damage Mechanics (CDM). CDM models are based
on the works done by Matzenmiller and Ladeveze among others [18, 19], where damage is represented as a
progressive reduction of material stiffness. CDM has also been employed to model damage in nano-mechanics
[20] and multiscale applications [21].

Within the CDM framework, different FEM models have been developed for investigating the initiation
and development of damage in composites. Maimí et al. [22, 23] developed a CDM-FE model for the
prediction of the onset and evolution of intralaminar failure mechanisms with a damage activation functions
based on the LaRC04 failure criteria. Ferreira et al. [24] developed a higher-order FE model considering
progressive damage in a structural formulation based on a generalised kinematics. Lopes and coworkers [25]
employed a user-developed continuum damage model implemented in the commercial FE software ABAQUS
for the analysis of progressive damage in post-buckling up to structural failure due to accumulation of fibre
and matrix damage for VAT composite laminates.

Few works have been devoted to the development of Ritz approaches to the analysis of progressive damage
in straight-fibers composite laminates. Yang and Hayman [26, 27] developed a semi-analytical method for
estimating the ultimate strength of rectangular composite laminates subjected to uniaxial in-plane compres-
sion using both an instantaneous and a linear degradation model.

To the best of the authors’ knowledge, the progressive damage behaviour of VAT composite laminates
using the Ritz approach still remains unexplored.

FORMULATION OVERVIEW

In this section, the key items of the formulation are briefly discussed.

Kinematics and strain-displacement relationships

The model kinematics is based on the First order Shear Deformation Theory (FSDT). Referring to a Carte-
sian coordinate system x1x2x3 with the x3 axis directed along the thickness, the displacements are given
by

d = u+ x3Lϑ+ w̄, (1)

where

L =

[
1 0 0

0 1 0

]T
. (2)

In Eq.(1), the vectors u and ϑ collect the reference plane displacement components and the section rotations,
respectively, and the vector w̄ collects an initial prescribed imperfection, namely

u = {u1, u2, u3}T ϑ = {ϑ1, ϑ2}T w̄ = {0, 0, w̄}T . (3)



In the framework of large displacements, assuming geometric non-linearity in the von-Karman sense, the
strain-displacement relationships are written as [10]

ep =

e11e22e12
 = Dpu+

1

2
(Dp ⊗ u3)Dnu+ x3DpLϑ+ (Dp ⊗ w̄)Dnu =

= εp + εnl + x3κ+ ε̄ = (4)
= ε0 + x3κ

and

en =

e13e23e33
 = Dnu+Lϑ = γ (5)

where Dp and Dn are defined as

Dp =


∂
∂x 0 0

0 ∂
∂y 0

∂
∂y

∂
∂x 0

 Dn =


0 0 ∂

∂x

0 0 ∂
∂y

0 0 0

 (6)

Constitutive relations

For the k -th lamina, the following relations hold

σp = Qpep σn = Qnen. (7)

In Eq.(7), the matrices Qp and Qn depend on the local fiber orientation for each ply. Moreover, the in plane
stiffness coefficient are function of the evolution of the damage. The generic damaged in-plane stiffness matrix
in the orthotropic material reference system reads as [18]

C =
1

D

 (1− ω1)E1 (1− ω1)(1− ω2)ν21E1 0
(1− ω1)(1− ω2)ν21E2 (1− ω2)E2 0

0 0 D(1− ω6)G12

 (8)

with D = 1 − (1 − ω1)(1 − ω2)ν12ν21. In Eq.(8), ω1, ω2 and ω6 are the longitudinal (fiber–dominated)
transverse (matrix–matrix–dominated) and shear damage indices respectively.

Damage onset and evolution

In the present model, an activation criterion to identify the damage onset is used. After a failure threshold
is overcome, the corresponding damage index will follow an evolution law, thus inducing strain softening in
the constitutive material response. The adopted activation criteria are based on the Hashin’s theory [28,
29].

After the onset of damage, an increase in load will cause the evolution of the activated damage indices and
the degradation of the associated material properties. Referring to a linear softening law, shown in Fig.(1),
a damage index is compute as follows

ωi =
efi,eq

(
ei,eq − e0i,eq

)
ei,eq

(
efi,eq − e0i,eq

) i = ft, fc,mt,mc (9)



where e0i,eq is the equivalent strain at damage onset and efi,eq = αe0i,eq is the equivalent strain upon rupture.
The equivalent strains are computed for each damage mode as follows

eft,eq = 〈e11〉 efc,eq = 〈−e11〉 (10)

emt,eq =
√
〈e22〉2 + e212 emc,eq =

√
〈−e22〉2 + e212 (11)

where 〈•〉 = (•+ | • |)/2 denote the Macaulay brackets.

FIGURE 1. Stress-strain softening curve.

Governing equations

The problem governing equation are obtained enforcing the stationarity of the structural total energy.
By adopting a Ritz approximation with orthogonal polynomials based trial functions and according with
reference [10], the structural governing equation are obtained and may be written in compact notation as{

K0 + K̄0 +K1 +K2 + K̄1 +R
}
X = FD + FL (12)

where K0,K1,K2, K̄0, K̄1 are the stiffness matrices in which the subscripts 1,2 refer to the geometric non-
linear terms and the overbar refers to the prescribed initial imperfection. Moreover, R is the matrix used to
enforce the BCs thorough a penalty approach and X is the vector collecting the unknown coefficient of the
Ritz series expansion. On the right hand side, the vectors FD and FL collect the external loads. Further
details may be found in Ref. [10].

Incremental form

To solve the non-linear damage problem an incremental-iterative procedure is used. Noting that all the
matrices on the left hand side of Eq.(12) except R depend on the solution vector X, the differentiation of
the governing equations leads to the incremental expression

R∆X + ∆
{[
K0 + K̄0 +K1 +K2 + K̄1

]
X
}

= ∆FD + ∆FL (13)

where

∆ {K0X} =

(
K0 +

∂K0

∂ωi

∂ωi

∂ep

∂ep
∂X

X

)
∆X = (K0 +K0D) ∆X (14)



FIGURE 2. Convergence study for the three-point bending test of the unidirectional laminate.

and

∆
[(
K1 +K2 + K̄0 + K̄1

)
X
]

=
(
K1t +K2t + K̄1t +KG +K12D

)
∆X (15)

whereK1t,K2t ,K̄1t andKG are the tangent stiffness terms related to the geometric non-linearities and the
initial imperfections, while K0D and K12D are the tangent stiffness terms related to the damage evolution.

NUMERICAL RESULTS

Convergence analysis and validation

The composite plate used in the first case study is a unidirectional laminate [0]10 with a total thickness
t = 1.8 mm, made of carbon fiber/epoxy M10. The material properties, listed in Table I, are taken from
Ref. [30]. The composite plate has size 60× 25 mm2, and undergoes a three point bending test loading.

TABLE I. Material properties of straight fiber lamina.

Elastic property Value Strenght property Value
E1 105.00GPa XT 1400.0MPa
E2 8.57GPa XC 930.0MPa
G12 4.39GPa YT 47.0MPa
G23 = G13 3.05GPa YC 60.3MPa
ν12 0.34 SL 53.0MPa

First, a convergence study is carried out. As it can be seen from Fig.(2) for this particular case a high
number of polynomials has to be used in order to achieve convergence. The obtained results have been
compared with experimental measurements and with the results obtained from FE modelling [24]. As it
can be observed in Fig.(3), even if the proposed model underestimate the maximum load, it provides good
agreement with the experimental test measurements.

VAT composite plate

After validation, the developed method has been used to study the post-buckling behavior of a VAT laminate
that undergoes a compression load. The plate stacking sequence is [0 ± 〈0|45〉]4S (the notation proposed



FIGURE 3. Comparison between the present model, experimental results and FEM results for the three-point
bending test of the unidirectional laminate.

in Ref. [11] is adopted for VAT laminae description) with a total thickness t = 6.25 mm and dimensions of
250× 250 mm2. The material properties of each lamina are listed in Tab.II. Fig.(4) reports the comparison
between the responses provided by the present model, with and without progressive damage model activation,
in terms of applied in-plane force and out of plane deflection of plate’s center point. It is observed that in the
post-buckling regime after the damage onset the load capabilities of the plate change significantly, denoting
the importance of taking into account the onset and the evolution of damage in composite structures.

TABLE II. Material properties for a VAT lamina.

Elastic property Value Strenght property Value
E1 163.00GPa XT 2034MPa
E2 6.80GPa XC 1234MPa
G12 = G23 = G13 3.40GPa YT 927MPa
ν12 0.34 YC 176MPa

SL 186MPa

FIGURE 4. Comparison of force-displacement results with and without damage for VAT laminates under com-
pression load.



The formulation is currently being extended to the study of impact-induced damage in VAT laminated
plates [31].

CONCLUSIONS

In this work, a Ritz approach for modelling the progressive failure of VAT composite plates either in linear
or post-buckling regime has been developed.

The method adopts the first order shear deformation theory with non-linear von Karman strains assump-
tions for representing geometrically non-linear deformations and a continuum damage mechanics approach
at the meso-scale for capturing the initiation and evolution of damage. Damage initiation is triggered ac-
cording to a Hashin’s failure criteria. The developed model has been implemented and successfully validated
against available data provided by either FE damage models or experimental tests. Some preliminary results
have been reported for post-buckling analysis of composite VAT laminated plates in presence of damage.
Further tests are being performed to assess the performance and robustness of the proposed method and to
extend its capability to the analysis of impact-induced damage in composite plates.
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