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INFN, sezione di Milano-Bicocca,

Piazza della Scienza 3, I-20126 Milano, Italy
bTheoretical Physics Department, CERN,

Geneva, Switzerland

E-mail: g.deluca8@campus.unimib.it, alessandra.gnecchi@cern.ch,

g.lomonaco1@campus.unimib.it, alessandro.tomasiello@unimib.it

Abstract: A notable class of superconformal theories (SCFTs) in six dimensions is pa-

rameterized by an integer N , an ADE group G, and two nilpotent elements µL,R in G.

Nilpotent elements have a natural partial ordering, which has been conjectured to coin-

cide with the hierarchy of renormalization-group flows among the SCFTs. In this paper

we test this conjecture for G = SU(k), where AdS7 duals exist in IIA. We work with a

seven-dimensional gauged supergravity, consisting of the gravity multiplet and two SU(k)

non-Abelian vector multiplets. We show that this theory has many supersymmetric AdS7
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1 Introduction

There is by now a lot of evidence for the existence of a class of six-dimensional SCFTs

T NG,µL,µR , characterized by an integer N , an ADE group G and two nilpotent elements

µL,R in G. For G = SU(k), these theories were proposed long ago [1–4]; their holographic

duals were found in [5–7] with growing amount of detail. For G = SO(2k) or Ek, the

theories were suggested to exist in [8] and found in [9]. In [10] it was found that a certain

generalization of T NG,µL,µR involving two (non necessarily ADE) groups in fact covers the

space of all possible SCFTs with a large enough number of tensor multiplets.

It was also proposed in [9–11] that two theories are connected by a renormalization

group (RG) flow if and only if the corresponding nilpotent elements are related by partial

ordering. Focusing on the left nilpotent element:

T NG,µL,µR
RG−→ T NG,µ′L,µR ⇔ µL < µ′L , (1.1)

where on the right hand side < represents the natural partial ordering among nilpotent

elements, to be reviewed below.

In this paper, we will test this conjecture for G = SU(k) using supergravity, by finding

BPS solutions that interpolate between two AdS7 vacua. While those were found directly in
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IIA supergravity, we will work with an effective seven-dimensional description that contains

all the expected vacua with a given k.

It was already found in [12] that for every AdS7 solution there is a consistent truncation

to the so-called minimal gauged supergravity in seven dimensions.1 The fact that this

theory is the same for all AdS7 vacua seems to indicate that it captures some kind of

universal sector common to all of them and to their CFT6 duals. While this theory is

interesting and useful, it cannot be used to describe RG flows between two different theories,

since in this description all the vacua are identified with one another. In order to tell them

apart, we would need a reduction where more modes of the internal space are kept. In

particular, as already suggested in [12], one might want to include in the reduction the

modes living on the D6s and D8s present in the AdS7 solution.

We will not work out this reduction, but it is easy to guess what the result would be.

Let us start from the theory which is at the top of the RG hierarchy. For G = SU(k),

nilpotent elements are associated to Young diagrams, as we will see in detail in section 2.

The theory at the top of the RG chain is obtained by taking µL and µR to be a vertical

stack of k boxes (for example, for k = 4, µL = µR = ). The dual of this theory has two

stacks of k D6-branes. (The internal manifold M3 has the topology of S3, and the two

stacks sit at the north and south poles respectively.) This suggests the presence of two

SU(k) vector multiplets in the seven-dimensional effective theory. Indeed the SCFT in this

case has SU(k)× SU(k) flavor symmetry.

For other AdS7 solutions, the number k can still be identified as a certain flux quantum

of the RR field F2, but the gauge groups of the effective seven-dimensional supergravity

(or the flavor symmetry of the dual CFT) is a subgroup of SU(k)× SU(k). We will argue

that these solutions are represented in the theory with SU(k) × SU(k) vector multiplets

by vacua where the gauge symmetry has been partially Higgsed. Indeed we will see that

seven-dimensional minimal gauged supergravity coupled to two SU(k) vector multiplets has

many AdS7 vacua, each associated to a choice of two Young diagrams with k boxes.2 They

are non-abelian vacua, in the sense that the scalars form a reducible SU(2) representation.

It is very natural to surmise that these are exactly the AdS7 solutions of [5–7], for a fixed k.

The SU(2) representation is interpreted as a “puffing up” process whereby the D6-branes

become D8s, in a Myers-like [16] process.

Having found seven-dimensional avatars of all the AdS7 vacua for a given k, we then

proceed to look for BPS domain-wall solutions that connect them. According to the rules of

holography, these should be dual to the RG flows (1.1). We generalize the vacuum Ansatz

to let the scalars and geometry change with the radial coordinate of AdS7.

1[13] recently showed how to reproduce (or explain) that consistent truncation from the point of view of

exceptional field theory.
2One particular case, for k = 2, had already been found in [14], along with an RG flow connecting it to

the trivial vacuum; this was in fact one of the inspirations of this paper. The vacua of minimal supergravity

coupled to extra vectors was also considered in a related context by [15], where it was concluded that

non-supersymmetric vacua have tachyons.
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With this relaxed Ansatz, the BPS equations of our seven-dimensional gauged super-

gravity reduce to a variant of Nahm’s equations [17]. They were indeed expected to play

a role in the study of the T NG,µL,µR theories, for reasons similar to their appearance in the

study of 3d theories [18]. Using results in [19], we conclude that a BPS domain wall exists

exactly when predicted by the field theory conjecture (1.1), thus strongly validating it.

While domain walls connecting two different AdS vacua are by now routinely found in

several dimensions, our result is notable in that we have a large number of vacua and an even

larger of domain walls — both in fact growing arbitrarily large with k. Most of the times

in the literature the BPS equations have to be solved numerically. In our case, we are able

to make contact with the well-studied Nahm equations, and that allows us to both avoid

a numerical study and prove the existence of a large number of domain-wall solutions.3

Our seven-dimensional supergravity approach was enough to capture most of the rel-

evant field theory physics; we should stress, however, that we have not found a consistent

truncation relating it to IIA supergravity in ten dimensions. That would allow us to uplift

the domain walls to ten dimensions. One obstacle to find such a consistent truncation

has to do with higher-derivative terms. In ten dimensions, the IIA supergravity action

where the AdS7 solutions [5–7] were found only contains two derivatives; however, the

brane (open-string) action to which it couples contains a Dirac-Born-Infeld (DBI) and a

Chern-Simons term. This is where the SU(k) vector field lives, and it appears with higher

derivatives. In fact the non-abelian DBI that we would need has not even been worked

out in full. On the other hand, in our seven-dimensional theory the non-abelian SU(k)

vectors appear with two derivatives only, as is customary in a gauged supergravity. To find

a consistent truncation to IIA, one should extend the action for the vectors to a DBI-like

supersymmetric action, perhaps along the lines of [21].

The paper is organized as follows. In section 2 we give a lightning review of the six-

dimensional SCFTs we are interested in, and of some features of nilpotent elements in ADE

groups. In section 3 we describe the seven-dimensional supergravity action we will use. In

section 4 we will find BPS AdS7 vacua for this theory. For simplicity and clarity at this

stage we will find vacua where only one of the two SU(k) is spontaneously broken, while

the other is untouched; this corresponds to keeping one of the two Young diagrams (say

µR) trivial, while varying the other. Thus our vacua in this section are determined by the

choice of only one Young diagram µL. We will then look for domain walls among these

vacua in section 5, still keeping one of the two SU(k) untouched. Finally in section 6 we

will generalize the results of the previous two sections to the most general case where both

SU(k) gauge groups are broken; here both µL and µR will be nontrivial.

2 The field theories

We will begin with a quick review of the six-dimensional SCFTs that we are going to

investigate holographically. A longer discussion of the field theories and their AdS7 duals

can be found in [7, section 2].

3Analytic holographic flows for AdS7 solutions were found in [20]; they represent tensor branch flows

rather than Higgs branch flows.
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The SCFTs

T NG,µL,µR (2.1)

are associated to a positive integer N , an ADE Lie group G, and two nilpotent elements

µL, µR ∈ G. The case of interest to this paper will be G = SU(k).

When the nilpotent elements are zero, we have the theory T NG,0,0. This has N = (1, 0)

supersymmetry, and a flavor symmetry GL ×GR consisting of two copies of G and of one

U(1). (The U(1) will play no role in what follows, and we will ignore it.) This SCFT

is engineered in M-theory by N + 1 M5-branes on a C2/ΓG singularity, where ΓG is the

discrete subgroup of SU(2) associated to G by the McKay correspondence. For example,

for G = SU(k) of interest in this paper, ΓG = Zk. Another possible realization is in IIA,

by considering N + 1 NS5-branes on k D6-branes [3, 22], or in IIB with k D5-branes and

a C2/ZN+1 singularity [1].

The more general SCFTs (2.1) with µL,R 6= 0 has still N = (1, 0) supersymmetry, but

its flavor symmetry is now broken to the commutant of µL in GL, times the commutant of

µR inside GR. Two nilpotent elements which can be brought to one another by the adjoint

action of G produce the same theory: T NG,µL,µR ≡ T
N
G,µ′L,µR

⇔ ∃g ∈ G|gµLg
−1 = µ′L. Two

such nilpotent elements are said to belong to the same nilpotent orbit O of G. So what

really matters in (2.1) is not the µL,R themselves, but the nilpotent orbits OL,R to which

they belong, or of which they are a representative.

These more general SCFTs can also be engineered in string theory. For G =

SU(k), (2.1) can be engineered in IIA by adding D8-branes on which the D6s end. Some

choices of µL,R for G = SO(2k) can also be realized by adding O6-planes [22]. For the

remaining choices of µL,R, and for all the G = E6, E7, E8 cases, there is an engineering in

F-theory, as predicted in [8] and realized in [9, 23].

The string realization suggests that the theories with a given N and G are related by

Higgs RG flows [9, 11]. According to this conjecture, each theory (2.1) can be viewed as

the result of having partially Higgsed the flavor symmetry GL × GR of T NG,0,0. The Higgs

moduli space of T NG,0,0 has quaternionic dimension [24]

N + 1 + dim(G) . (2.2)

The structure of this moduli space is not completely known, but the dim(G) directions

are supposed to be related to the space N of nilpotent elements in G (also known as the

nilpotent cone). This space has many singularities; if one switches on a vacuum expectation

value (vev) corresponding to the points in moduli space on such a singularity, and one

follows the RG flow, one expects to obtain a new SCFT in the infrared. (Choosing a

smooth point is expected to lead to a free theory in the infrared.)

Given a point µ ∈ N , the type of singularity depends on its orbit O. Choosing an

orbit OL,R for both factors of G of the flavor symmetry group GL × GR of T NG,0,0 results

then in the general theory (2.1). The Higgs moduli space dimension is now reduced to

N + 1 + dim(G)− dim(OL)− dim(OR) . (2.3)

Even the reduced moduli space of dimension (2.3) will have singularities, inherited from

the original nilpotent cone N . So it will be possible to choose again a vev corresponding
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O1

µ = 0

O2

O3

Figure 1. A sketch of the structure of the nilpotent cone. O1 is not meant to be included in O2

and O3, but rather in their closure.

to a singularity; flowing to the infrared will produce a new theory. This gives rise to a

“hierarchy” or RG flows.

To understand this hierarchy better, notice that there is a natural partial ordering

among nilpotent orbits. An orbit O is larger than (or dominates) an orbit O′ if O′ belongs

to the closure of O; see figure 1 for a sketch. The hierarchy of SCFTs can be now thought

of as follows. One starts from the theory T NG,0,0, where both µL,R are the trivial nilpotent

orbit µ = 0 (the origin of the cone in figure 1). One can Higgs the theory by choosing a

vev µL,1 ∈ O1 in the moduli space N ; in the moduli space of the resulting theory T NG,µL,1,0,

the cone N is now reduced to a slice which meets O1 in µ1. Referring again to figure 1,

one can now Higgs the theory further by choosing µ2 ∈ O2 or by µ3 ∈ O3, and so on.

This is the reason the arrows in (1.1) go backwards: intuitively, one loses more degrees

of freedom in the infrared by choosing a vev in a more generic point in the Higgs moduli

space, corresponding to a larger orbit.

Let us now be more concrete and describe the nilpotent orbits for G = SU(k), the case

of interest in this paper. (Nilpotent orbits in the D and E case have a more complicated

classification [25].) Every nilpotent element is conjugated to one of the following form:

µ =


Jd1

Jd2
. . .

 , Jd ≡


0 1

0 1
. . .

. . .


 d . (2.4)

Two µ whose da are related by permutations are in fact also conjugated; so to avoid

repetitions we assume that the da are listed in increasing order, da ≤ da+1. So each

nilpotent orbit is identified by a partition of k, namely a choice [d1, d2, . . .] such that∑
a da = k. For example, the partition [1, 1, . . . , 1] ≡ [1k] is associated to µ = 0 (which is

indeed nilpotent), while the partition [k] is associated to the single Jordan block Jk.

It is also common to denote these partitions by Young diagrams. One can associate the

da of the partition to either the rows or the columns of a Young diagram; both possibilities

are used in the literature in different contexts (for reasons that will soon become clear).
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Here we are going to follow the convention that the da are the number of boxes in each

row of the Young diagram. So for example, say for k = 6:

[16] 7→ , [6] 7→ . (2.5)

The Young diagram representation of a partition is useful for various reasons; one

is that it allows to introduce the transpose partition µt, which is simply obtained by

reflecting it along a diagonal axis. For example with the help of (2.5) we see immediately

that [16]t = [6], and [6]t = [16]. Another way of defining µt is by counting the number of

boxes in each column of the Young diagrams associated to µ. The quaternonic dimension

of the orbit Oµ is

dim(Oµ) =
1

2

(
k2 −

∑
a

(µta)
2

)
. (2.6)

For example dim(O[1k]) = 1
2(k2 − k2) = 0, and indeed [1k] is associated to the nilpotent

element µ = 0; while dim(O[k]) = 1
2k

2 − k.

The flavor symmetry of (2.1) now can be described combinatorially. Define

fL,R
a ≡ (µL,R)ta − (µL,R)ta+1 . (2.7)

Notice that

fL,R
a = #{blocks Ja with dimension a} . (2.8)

So for example

(2.9)

has d1 = 1, d2 = 2, d3 = 2, d4 = 5, and f1 = 1, f2 = 2, f5 = 1. Since the total dimension

of µ is k, from (2.8) we have ∑
a

afL
a =

∑
a

afR
a = k . (2.10)

In terms of (2.7), the flavor symmetry of (2.1) is4

S
(
ΠaU(fL

a )
)
× S

(
ΠaU(fR

a )
)
. (2.11)

So for example the µta for [16] ∼= are [6]; in this case the only non-zero fa is f1 = 6.

Indeed µ = 0 corresponds to the partition [16], and the flavor symmetry for T NSU(6),0,0 is

4The effective theory on the tensor branch might suggest a larger number of abelian factors, but many of

them are anomalous; compactifications to lower dimensions also suggest a reduced number at the conformal

point. Eq. (2.11) is suggested naturally by the gravity duals.
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Figure 2. The hierarchy of Young diagrams with six boxes. The arrows here represent possible

RG flows.

SU(6) × SU(6). On the other hand, the µta for [6] ∼= are [1, 1, 1, 1, 1, 1] ≡ [16]; in

this case the only non-zero fa is f6 = 1. So if we take this as µL, we have that the flavor

symmetry of TN
SU(6),[6],0 is just one SU(6).

The ordering of these orbits is also easy to describe. A diagram µ dominates µ′ (which

we often denote by µ > µ′) if µ′ can be obtained from µ by removing a box from a higher row

and adding it to a lower row. This is more easily described by an example: in figure 2 we

have depicted the partial ordering among Young diagrams with N = 6 boxes. The arrows

depict possible RG flows, and thus point from smaller to larger Young diagrams. Indeed we

see that on the left we have the vertical Young diagram , corresponding to the partition

[16] and thus to µ = 0, which belongs to the smallest possible orbit; this is depicted in the

sketch of figure 1 as the tip of the cone. At the right extremum of figure 2 we instead have

the horizontal Young diagram , corresponding to the largest possible orbit µ = J6.

While it is customary to label the theories (2.1) by nilpotent elements, there is an-

other point of view, that will be even more important for us. By the Jacobson-Morozov

theorem [25, Chap. 3], to a nilpotent element µ ∈ G one can add two more elements in G

which together with µ satisfy the sl(2,C) commutation relations. (One can think of µ as

the “creator operator” in such a triple.) One can then find a change of basis that takes

this triple to three Hermitian matrices σi such that

[σi, σj ] = εijkσk . (2.12)

In other words, one can associate to µ an embedding

σ : su(2) ⊂ g , (2.13)

where g is the Lie algebra of G.

Another way of thinking about the σi is that they provide a reducible su(2) represen-

tation:

σi =


σi1

σi2
. . .

 (2.14)
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where σia has dimension da; in other words, a direct sum of irreducible representations of

spins `1, `2, . . . such that 2`a + 1 = da in (2.4). The blocks obey

Tr(σiaσ
j
a) = −κ2

aδ
ij , κ2

a ≡
`a(`a + 1)(2`a + 1)

3
=
da(d

2
a − 1)

12
. (2.15)

There are several other important aspects of the theories (2.1). Let us mention here for

example that, while none of them has a Lagrangian description so far, many of them have

an effective description in terms of gauge theories. Besides the Higgs moduli space we dealt

with so far, there is a “tensor moduli space” (similar to the Coulomb branch for N = 2 in

four dimensions); as the name suggests, giving a vev along this space results in a theory with

several abelian two-index antisymmetric tensors. These tensors are coupled to several non-

abelian gauge fields and hypermultiplets. The resulting theory is not renormalizable; its ul-

traviolet completion is the original SCFT. For G = SU(k), there is an easy algorithm to read

off the tensor-branch effective theory we just sketched from the two Young diagrams µL,R; it

is illustrated for example in [7, figure 2]. Again we refer to that reference for further details.

Finally let us mention very briefly the AdS7 duals. These exist for G = SU(k) and with

some caveats for G = SO(2k). They were first found numerically in [5], then analytically

in [6]; finally in [7] they were put in a very compact form:

1

π
√

2
ds2 = 8

√
−α
α̈
ds2

AdS7
+

√
− α̈
α

(
dz2 +

α2

α̇2 − 2αα̈
ds2
S2

)
; (2.16a)

B = π

(
−z +

αα̇

α̇2 − 2αα̈

)
volS2 , F2 =

(
α̈

162π2
+

πF0αα̇

α̇2 − 2αα̈

)
volS2 ; (2.16b)

eφ = 25/4π5/234 (−α/α̈)3/4

(α̇2 − 2αα̈)1/2
. (2.16c)

α̈ = α̈(z) is a piecewise-linear function on a closed interval I with coordinate z. The

internal space is topologically an S3; the metric has an SU(2) isometry acting on the round

S2, which realizes the R-symmetry. There are D8/D6 bound states at the loci z = za
where α̈ changes slope (which are copies of S2). Additionally, there may be D6-branes at

the endpoints of I.

The correspondence between these AdS7 solutions and the SCFTs is also easy to write

down: the µta, which we defined earlier as the number of boxes in each column of the Young

diagram associated to µ, give the slope of the piecewise-linear function α̈ (see [7] for more

details, and especially figure 2 there). In this paper we will only need to know that there

are stacks of D8-branes realizing each of the factors inside the S(. . .) in (2.11), with the

exception of U(fL,R
1 ), which are realized on a D6-stack. So the theory T NSU(k),0,0 is dual to a

solution with two stacks with k D6-branes each, while for any other example some of the D6-

branes turn into D8-branes. For example for T NSU(k),[k],0, we have a single D8 corresponding

to the [k] on the left and a stack of k D6-branes corresponding to the 0 = [1k] on the right.

In [7], the a anomaly was also computed from the AdS7 solutions and from the tensor-

branch effective theory, finding agreement for any N , µL and µR. This provides a strong

check that the solutions (2.16) indeed correspond to the SCFTs (2.1).
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The G = SO(2k) can be obtained by suitably orientifolding (2.16); this adds two O6-

planes to the endpoints of I; the holographic anomaly match also works in this case [26].

(An additional possibility is to have an O8 [26, 27]; this however corresponds to theories

outside the class (2.1).)

3 The seven-dimensional supergravity theory

As mentioned in the introduction, there is already a consistent truncation [12] connect-

ing each of the AdS7 solutions (2.16) to a theory called minimal gauged supergravity in

seven dimensions, which we will describe shortly. This theory has a single supersymmetric

vacuum; this means that it captures only some “universal” features common to all the

SCFTs (2.1), and cannot be used to describe domain walls connecting them.

Thus for our purposes we should find a reduction that keeps more modes of the in-

ternal manifold, and more information about the physics of the SCFTs. An idea already

considered in [12] is that each of the D6- and D8-brane stacks should contribute in seven

dimensions a non-abelian vector multiplet, coming from the gauge fields living on them in

ten dimensions. This more ambitious consistent truncation was not found in [12] and will

not be found here.

However, we can try to guess what the seven-dimensional theory would look like. Once

we decide the gauge group, we can just couple the appropriate seven-dimensional vector

multiplets to the minimal gauged supergravity found in [12].

In the AdS/CFT correspondence, a flavor symmetry in the CFT becomes a gauge

symmetry in the bulk. Thus one might at first be tempted to say that the gauge group

might be (2.11). However, we would like to find a theory that describes several AdS7

solutions at once. Recall then that (2.11) is in fact always a subgroup of

SU(k)× SU(k) . (3.1)

This opens the possibility that we should take this as a gauge group, and that it will be

broken to (2.11) on its various vacua.

We conclude then that our seven-dimensional theory is minimal gauged supergravity

coupled to two SU(k) vector multiplets. This theory was worked out in [28] and recently

reviewed for example in [14, 29].

The fields of minimal gauged supergravity [30] are

(emµ , ψ
A
µ , A

i
µ , χ

A , Bµν , σ) . (3.2)

The index i = 1, 2, 3 labels three vectors, which realize an SU(2)R0 gauge group; for us

this will realize the R-symmetry of the SCFTs. The index A labels the two gravitini and

dilatini, transforming in the 2 of SU(2)R0 .

Each vector multiplet has the field content

(AµR , λ
A
R , φiR) ; (3.3)

– 9 –
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the index R runs from 1 to n = 2(k2 − 1), the number of vector multiplets. When we

couple them to the gravity multiplet (3.2), the 3n scalars φiR together parameterize a

moduli space
SO(3, n)

SO(3)× SO(n)
. (3.4)

We can parameterize this space with a coset representative LIJ ∈ SO(3, n), where the

index I = (i, R) goes from 1 to 3 + n.

In general we could then gauge any 3 + n-dimensional subgroup of SO(3 + n) whose

structure constants fLIJ satisfy the “linear constraint” which imposes that fIJK ≡
fLIJηKL are totally antisymmetric. We will not write the Lagrangian here; it can be

found in [29, (2.11)]. All we will need is the scalar potential

V =
1

4
e−σ

(
CiRCiR −

1

9
C2

)
+ 16h2e4σ − 4

√
2

3
h e3σ/2C , (3.5)

and the fermionic supersymmetry transformations in absence of gauge fields

δψµ = 2Dµε−
√

2

30
e−σ/2Cγµε−

4

5
he2σγµε ,

δχ = −1

2
γµ∂µσε+

√
2

30
e−σ/2Cε− 16

5
e2σhε , (3.6)

δλR = iγµP iRµ σiε− i√
2
e−σ/2CiRσiε .

(We have suppressed the R-symmetry indices A here, and we will do so from now on.)

Here h is a topological mass term, which is necessary in order to find supersymmetric

AdS7 vacua [12, 14]. We have also defined5

C = − 1√
2
fIJKL

I
i L

J
j L

K
k ε

ijk ,

CiR =
1√
2
fIJKL

I
j L

J
k L

K
R ε

ijk ,

P iRµ = LIR
(
δKI ∂µ + fIJ

K AJµ
)
LiK .

(3.7)

Putting together the bulk duals of R-symmetry and flavor symmetry, we need6

G = SU(2)R0 × SU(k)× SU(k) . (3.8)

Thus the structure constants will split as

fIJK = {g3εijk , gLfrst , gRfr̂ŝt̂} (3.9)

5We follow the formalism in [31], where the first index of LIJ is split in (i, R) and both i and R are

lowered with δ’s, while the index J is raised and lowered with an η.
6This is consistent with a general finding by [29], which says that supersymmetric AdS7 vacua exist

in these theories only if the gauge group is of the form G0 × H, with G0 ⊃ SU(2) and H compact and

semisimple.
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where now frst and fr̂ŝt̂ are the structure constants of the two copies of SU(k); both r

and r̂ indices go from 1 to k2 − 1. We are not venturing to offer an identification of

the coupling constants g3, gL,R we just introduced (and of the topological mass h we saw

earlier), again because we do not have an uplift procedure that explicitly takes our theory

to IIA supergravity. In [12] it was found that the uplift procedure found there for the case

without vector multiplets required g3 = 2
√

2h, but this might conceivably get modified for

the present case with vectors. In section 4.3 we will determine at least one relation among

the coupling constants, by using holography.

4 Vacua

Having guessed the seven-dimensional supergravity, we now need to somehow come up

with an Ansatz to find vacua that can plausibly represent the AdS7 solutions (2.16) upon

reduction. Our guiding principles will be that we should find vacua that are

• in one-to-one correspondence with a choice of two Young diagrams, which are the

main data in the SCFTs (2.1) and their AdS7 duals;

• on which the residual gauge symmetries reproduce (2.11).

In fact, to simplify the problem, for the time being we will look for vacua that are deter-

mined by the choice of a single Young diagram µL ≡ µ, and where the second copy of SU(k)

in the gauge group is unbroken. So in this section all the fields in the second copy of the

SU(k) vector multiplet will be set to zero. We will come back to the general case in section 6.

4.1 The Ansatz

It is natural to think that the su(2) representation (2.14) should play a role: it is naturally

associated with the data of the theory, and its stabilizer gives automatically S (ΠaU(fa)),

thus reproducing the left half of (2.11). Thus we will simply assume

φi = ψσi . (4.1)

(One might try to put a different number ψa in front of each block σia, but the vacuum

equations quickly impose that all the ψa are equal.) It might look like the R-symmetry

SU(2)R0 is broken, because the three φi are different; but this difference can be reabsorbed

in the SU(2) ⊂ SU(k) action inside the gauge group defined by the σi. In other words,

in this Ansatz the R-symmetry is realized as the diagonal SU(2)R of the original SU(2)R0

and of an SU(2) subgroup of the rest of the gauge group.

Moreover, once we expand the φi on a basis of generators T rf of the gauge algebra (in

the fundamental representation), we have

φi = φirT
r
f ; (4.2)

the matrix φir has the right structure to be one of the blocks of the scalars LIJ . We will

normalize T rf such that Tr(T rf T
s
f ) = −δrs. Recall indeed that the indices I, J decompose

– 11 –



J
H
E
P
0
3
(
2
0
1
9
)
0
3
5

naturally as (i, r); so φir might be related to the blocks Lir or Lsj . It appears natural to

use the quotient in (3.4) to set the blocks Lij and Lrs to zero. This leads to a matrix(
0 φir

φsj 0

)
(4.3)

where φsj = φjs. This is in fact an element of the Lie algebra so(3, n), so it looks promising.

The LIJ are in the group SO(3, n), but this is easily fixed by inserting an exponential. So

we end up with

LIJ = (LiJ , L
r
J) = exp

[
0 φir

φsj 0

]
. (4.4)

Encouragingly, a very particular case of the Ansatz (4.4) was considered in [14], where

it indeed led to a new vacuum. That paper considered minimal gauged supergravity coupled

to three vector multiplets, with an SU(2)R0 × SU(2) gauge group rather than (3.8); so it

is more or less a particular case of the theory in our paper, if we take k = 2 and leave the

second SU(k = 2) factor in (3.8). For k = 2, the only non-trivial partition that we can

consider is . In this case φir is simply proportional to δir; (4.4) then becomes the Ansatz

in [14, (3.1)], which was found there to lead to a supersymmetric vacuum.

4.2 Finding vacua

All this sounds encouraging; let us now see if we can indeed find vacua with the Ansatz (4.4).

We first need to compute the exponential in (4.4). Already at quadratic order we need to

compute φirφ
j
r and φskφ

t
k, which we will now proceed to do.

From (4.1), (2.14) we have

φirφ
j
r = −Tr(φirT

r
f φ

j
sT

s
f ) = −Tr

(
φiφj

)
= ψ2

∑
a

κ2
aδ
ij = α2δij ,

α2 ≡ ψ2κ2 , κ2 ≡
∑
a

κ2
a .

(4.5)

On the other hand, P st ≡ φsjφ
t
j is a little more subtle. This can have rank at most 3, and

so in particular it cannot be proportional to the identity δst. However, using (4.5) we see

that it is proportional to a projector:

P rsP st = φrjφ
s
jφ
s
kφ

t
k = α2φrjδ

jkφtk = α2P rt . (4.6)

With (4.5) and (4.6), the exponential in (4.4) can be resummed and gives

LIJ =

(
coshαδij sinhα

α φir
sinhα
α φsj δrs + coshα−1

α2 P rs

)
. (4.7)

We now have to check whether this leads to a supersymmetric vacuum. The quickest

way is to use the BPS equations, which consist in setting to zero the fermionic transfor-

mations laws (3.6). On a vacuum, all scalars are constant; then δχ = 0 = δλr give

Cir = 0 , C = 48
√

2he5/2σ . (4.8)
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We can compute C and Cir from (4.1), (2.14), (2.15):

C = −3
√

2
(
−g3 cosh(α)3 +

gL

κ
sinh(α)3

)
, (4.9a)

Cir =

√
2

α
coshα sinhα

(
−g3 coshα+

gL

κ
sinhα

)
φir . (4.9b)

Imposing (4.8) then results in

tanh(ψκ) =
κ g3

gL
, e

5σ
2 =

g3 gL

16h
√
g2

L − g2
3 κ

2
. (4.10)

Thus we have succeeded in finding a BPS vacuum for each choice of partition µL. Let

us summarize it: the vector multiplet scalars are given by (4.1), with κ2 =
∑

a κ
2
a and (2.14)

the reducible su(2) representation associated to µL. ψ and the gravity multiplet scalar σ

are determined in (4.10).

The vacua we found are in one-to-one correspondence with a partition µL, as expected.

(Recall we have kept µR = 0 in this section; we will allow µR to be nontrivial as well in

section 6.) More precisely, the non-abelian nature of the Ansatz (4.1) for the scalars,

and in particular the appearance of a reducible SU(2) representation (2.14), suggest a

Myers-like effect [16] in which the D6-branes of the trivial vacuum φi = 0 expand into

spherical D8-branes in the internal directions. It was already widely suspected that such

an interpretation would be possible for the IIA AdS7 solutions of [5–7].

These are encouraging signs that these vacua represent the AdS7 solutions (2.16) of

type IIA. In the next two subsections we will perform some simple checks of this picture.

In section 4.3 we will consider the cosmological constant in these vacua, comparing it with

the one in ten dimensions. In section 4.4 we will compute the masses of the scalars around

vacua, and consequently the dual operator dimensions.

It would also be possible to look for non-supersymmetric vacua with the same Ansatz.

We know that these exist, since one exists already in the minimal theory with no vec-

tors [32]; given the universal lift of [12], in fact we even know that every supersymmetric

solution has a non-supersymmetric twin. These were given a CFT interpretation in [33],

but were later found to be unstable within the larger theory with abelian vectors [15] (which

should represent transverse D6-brane motions rather than the Myers effect described in this

paper). In maximal SO(5) gauged supergravity, the perturbative instability of the AdS7

vacuum were first shown in [34]. Given this instability, we have not analyzed such vacua.

4.3 Cosmological constant

The cosmological constant on our vacua can be computed from (3.5), which gives V =

−240e4σh2. In terms of the cosmological constant V0 for the trivial vacuum we get(
VµL
V0

)5/4

=
1

1− κ2 g
2
3

g2L

. (4.11)

We would like to compare this with the computation performed in [7] directly in IIA

supergravity. That result was successfully matched there with a field theory computation
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in the large N limit. More precisely, if one makes N large and nothing else, the D8-branes

in the gravity solution become smaller and smaller, ending up with a solution with only

D6-branes (the dual of the T NSU(k),0,0 theory). To get a more interesting match, one can

also make large the D6-charges of the D8s, which are proportional to their radii. In the

language of this paper, this means that the dimensions da of the blocks in (2.14) are large.

So the limit where the holographic match in [7] is most interesting is

N →∞ , da →∞ , da/N ≡ δa finite. (4.12)

So we can approximate (2.15) as κ2
a ∼ d3a

12 , and κ2 ∼∑a
d3a
12 . Recalling (2.8), we can rewrite

this as

κ2 ∼ 1

12

∑
a

a3fa . (4.13)

The regime (4.12) is now the one where the fa are non-zero only for large a.

On the other hand, after some massaging the expression for the a anomaly given in [7,

(3.15)–(3.16)] can be rewritten as

aµL = N3 k
2

12
−N k

6

∑
a

a3fa + . . . , (4.14)

where the . . . denote terms of order N0 and N−1. a is in fact proportional to L5
AdS, which

is in turn proportional to V −5/2. So we can rephrase (4.14) as(
VµL
V0

)−5/2

= 1− 2N−2k−1
∑
a

a3fa + . . . . (4.15)

Taking into account (4.13), this matches the behavior we observed in (4.11), if we identify

g2
3

g2
L

=
1

Nk2
. (4.16)

Notice that the ratio between the a-anomaly in the UV and in the IR can be read from (4.11)

in terms of the field σ at the UV and the IR vacua(
VµL
V0

)−5/2

= e10(σUV −σIR) . (4.17)

(This is similar to a relation in the context of holographic RG flows in N = 4 five di-

mensional supergravity in [35, eq. (3.56)], which was also shown to match the field theory

derivation.)

As commented at the end of section 3, so far we had not ventured to identify the

parameters of the seven-dimensional theory with those of IIA, because we have no consistent

truncation procedure.

So we managed to match the structure of (4.14) or (4.15) with our seven-dimensional

supergravity results. Let us look a little more closely. The two terms of (4.14) are both of

order N5 in the limit (4.12): from (2.10) we see k ∼ Nδ, and from (4.13) we see κ2 ∼ N3δ,

where δ is a typical δa as defined in (4.12). The terms . . . in (4.14) in fact also scale like N5
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in the limit (4.12), even though they are superficially of order N0 and N−1. These terms

were in fact considered in [7], and they also matched the field theory computation perfectly.

So one might want to recover these further . . . terms in (4.14) or (4.15) as well. This

does not work; but with a little thought one sees why. The vectors multiplets we have added

to our pure minimal supergravity in seven dimensions have the usual quadratic action. But

in ten dimensions they originate from the brane action, which is not quadratic. For this

reason, as we anticipated in the introduction, a IIA reduction can never literally reproduce

our seven-dimensional gauged supergravity. For a perfect match, one should improve our

vector multiplet action by adding higher-derivative terms, something which is currently

beyond the state of the art.

For this reason, a perfect quantitative match between the cosmological constant as

computed in IIA and in our seven-dimensional supergravity can only be obtained when the

vev’s of the vector multiplet fields are not too large. It is natural to interpret this as saying

that the δa in (4.12) should not be too large (even if the da = δaN are large). Under this

condition, the . . . terms in (4.14), (4.15) are in fact subdominant. Thus we obtain a match

in the regime where our approach can be quantitatively justified.

In retrospect, it is quite impressive that we still obtain a qualitative match with ten

dimensions even beyond this regime, in the sense that we obtain all the vacua expected

from ten dimensions. In the next section we will see that even the RG flows between these

vacua are in qualitative agreement with expectations, this time from field theory.

4.4 Masses and dimensions

We now perform another routine computation: the scalar masses around our vacua.

As a warm-up, we notice that it is particularly easy to compute the masses for the dila-

ton σ, and for the particular direction in the LIJ space associated to ψ, which corresponds

to taking δφi ∝ φi. In that case, we can simply rely on the formulas of section 4.2, obtaining

m2
σ =

4

5
∂2
σV = −8

(
− V

15

)
= − 8

L2
AdS

, m2
ψ =

1

3κ2
∂2
ψV = 40

(
− V

15

)
=

40

L2
AdS

. (4.18)

(The factors 4/5 and 1/3κ2 are included to normalize the scalars canonically in the

Lagrangian). As expected for a BPS solution, the two masses satisfies the unitarity bound

m2 > − 9
LAdS

. From the usual holographic relation m2L2
AdS = ∆(∆− 6) one reads off the

conformal dimensions of the dual SCFT operators ∆ = 4 and 10.

There are many other scalars, and we may in particular wonder about the remaining

3(k2−1)−1 scalars in the active SU(k)L vector multiplet. This means we have to consider

a more general fluctuation δφi, not proportional to φi. To analyze the masses of such

fluctuations, we have to extend a bit our computations from section 4.2.

First of all we have to be more precise about how the δφi appear in the scalar fluctua-

tions. The scalars LIJ live in the coset (3.4); in particular they are elements of SO(3, 3+n).

Then δLL−1 ≡ δφ is in the Lie algebra so(3, 3 +n). We can now parameterize fluctuations

with a δφ that has no generators in the subalgebra so(3) ⊕ so(3 + n). In other words we
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have

δLIJ =

(
0 δφis

δφrj 0

)(
Ljk L

j
t

Lsk L
s
t

)
. (4.19)

(This approach was also followed in [29, section 2.3].) We can now compute the variations

δCir = Cijδφ
lr + 2Cijrsδφjs , δC = −3Cirδφir , (4.20)

where

Cil = εijkfIJKL
I
jL

J
kL

K
l , Cijrs = εijkfIJKL

IrLJsLKk . (4.21)

Cir vanishes on the vacuum; from (4.20) we also read that δC = 0. The second variation

of the potential then reads

δ2V =
1

2
e−σ

(
δCirδCir −

1

9
Cδ2C

)
− 4
√

2

3
he3σ/2δ2C . (4.22)

A lengthy computation results in

δ2V = −8Tr
(
δφiδφi − 2[σi, δφj ][σi, δφj ] + 2[σi, δφj ][σj , δφi] + [σi, σj ][δφi, δφj ]

)
, (4.23)

where σi denotes the reducible representation (2.14) of su(2), to which the scalars φi were

taken proportional in (4.1). To normalize fields canonically, one also has to evaluate the

kinetic term in the Lagrangian, which reads more simply Tr(∂µδφ
i∂µδφi).

Define now

[σi, T f
r ] ≡ jirsT f

s , (4.24)

in terms of the basis T f
r of the Lie algebra su(k). In terms of this definition, we can write

the mass matrix (with canonically normalized scalars) as

M ij
αβ = −8

(
δij(1 + 2jkjk)− 2j(ijj)

)
αβ

. (4.25)

The σi satisfy the su(2) algebra. By the Jacobi identity, the jirs also satisfy the same

algebra: jirtj
j
ts − jjrtj

i
ts = εijkjkrs. In other words, the ji form an su(2) representation of

dimension k2− 1. This representation depends on k and on our choice of block dimensions

in (2.14), which are the da of the Young diagrams. For example, if k = 2 and we take the σi

to have a single block (corresponding to µ = [2]), the ji simply form the l = 1 representation

of su(2). More generally, the representation of the ji is reducible: it contains several values

of l. For example, if we take the σi to be a single dimension k block, corresponding to

µ = [k], the ji are the direct sum of representations of dimensions 1, 3, . . . 2k + 1. The

fully general rule is this: the representation ji is the reducible representation

(d1 ⊕ d2 ⊕ . . .)⊗ (d1 ⊕ d2 ⊕ . . .)
= ⊕a(2da − 1⊕ 2da − 3⊕ . . .1)⊕ (4.26)

2⊕a>b (da + db − 1⊕ da + db − 3⊕ . . .⊕ da − db + 1) ,

subtracting one singlet 1 from the result. Here we denote irreducible su(2) representations

by their dimension.
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∆ SU(2)R rep.

6 d

4l+6 =2d+4 d-2

4l+4 =2d+2 d+2

Table 1. Operator dimensions, and their R-symmetry representation. The ∆ = 6 in the first line

is absent in the singlet case, d = 1. The second line is only present for d > 2.

Now we can evaluate the mass matrix (4.25). The term jkjk is a Casimir invariant; the

matrix N ij
αβ ≡ (j(ijj))αβ is more complicated, but it can be seen to have (on a representation

of spin l) eigenvalues {−l(l + 1) + 1
2 ,

1
2(l + 1),− l

2}, with multiplicities 2l + 1 (or 0 if l =

0), 2l − 1, 2l + 3 respectively. With this information one can obtain the masses m2 as

eigenvalues of (4.25), and the corresponding operator dimensions again with the formula

m2L2
AdS = ∆(∆ − 6). The results of this analysis are detailed in table 1. We list them

in terms of SU(2)R representations, which as we mentioned below (4.1) is the diagonal of

the original SU(2)R0 and of the SU(2) ⊂ SU(k) defined by the σi. The results of table 1

should be applied to all the irreducible SU(2) representations contained in (4.26).

As an example, if we consider k = 2 with a single block, corresponding to the partition

µ = [2], as we mentioned earlier (4.26) gives us a single triplet, d = 3; table 1 then produces

an operator with ∆ = 6 in the 3, one with ∆ = 10 in the 1, and one with ∆ = 8 in the 5.

This agrees with [14, section 3.1].

The presence of marginal operators (∆ = 6) deserves some comment. They would

seem to suggest the presence of deformations for our vacua. This seems to disagree with

general arguments [29, 36] forbidding supersymmetric deformations for AdS7 vacua (or

their CFT6 duals), and in fact with the classification of type II AdS7 vacua [5–7] that we

want to reproduce. However, recall that part of our gauge group has been broken, in the

pattern SU(k)L → S(ΠaU(fL
a )). The broken gauge vectors have obtained a mass, and thus

have eaten some scalars. One can show that the number of such gauge vectors is exactly

equal to the ∆ = 6 operators from the first line of table 1.

There are additional ∆ = 6 operators, coming from the last line of table 1 for l = 1/2

(or d = 2). However, so far we have looked at all deformations, without examining whether

they are supersymmetric or not. Following [29], supersymmetric deformations turn out to

be those that satisfy

δφi = εijk[σi, δφk] . (4.27)

In terms of the ji in (4.24), this is equivalent to finding eigenvectors of the matrix Eijαβ ≡
εijkjkαβ with eigenvalue 1. This matrix commutes with the earlier matrix N ij

αβ ≡ (j(ijj))αβ ,

which appeared in the mass matrix (4.25); so they are simultaneously diagonalizable. The

eigenspace of E with eigenvalue 1 is precisely the first line of table 1; all the others give

different eigenvalues, so do not satisfy condition (4.27) and do not correspond to super-

symmetric deformations. Thus we have no contradiction with the results in [29, 36].
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5 Domain walls

The AdS7 vacua obtained so far can be connected by supersymmetric domain walls cor-

responding to RG flows in the dual 6D SCFT. Their construction is the subject of this

section.

The first order BPS scalar flow will be described as a gradient flow in section 5.1. In

section 5.2 we will reduce the BPS equations to a study of Nahm equations. In section 5.3

we will review the literature about those equations, showing that solutions exist exactly

when they are expected to exist from the point of view of the field theory duals.

5.1 Killing spinors and first order flow

By setting to zero the fermionic supersymmetry variations (3.6) we obtain the BPS equa-

tions for the scalar fields and the Killing spinor preserved along the flow. We are going to

derive their form explicitly in this section.

Let’s consider the following Ansatz for the domain walls metric

ds2
7 = e2A(ρ)ds2

Mink6
+ e2B(ρ)dρ2 , (5.1)

with ρ the radial coordinate corresponding to the direction of the flow, and define a super-

potential function

W (σ, φir) =

√
2

30
e−σ/2C +

4

5
he2σ . (5.2)

If all fields have only radial dependence, by imposing the projection eBγρε = γ1ε = ε the

BPS equations yield7

σ′ = −4eB∂σW , P irρ = −5eB∂φirW . (5.3)

The BPS equation obtained from the gravitino variation requires more attention. In the

covariant derivative of the Killing spinor, Dµε = ∂µε+ 1
4ω

mn
µ γmnε+ i

4ε
ijkQµjkσ

iε, the term

containing

Qijµ = LIj(δKI∂µ + f K
IJ AJµ)L i

K (5.4)

would require an additional projection on ε involving σi, that however restricts the number

of preserved supersymmetries along the flow. We therefore make the Ansatz, consistent

with the solutions considered in the rest of this paper, that Qµ[ij] = 0. By setting

A′ = eBW , (5.5)

the BPS equations obtained from δψµ reduce to

∂ρε =
1

2
eBW (σ, φia) , ∂µ̂ε = 0 , (5.6)

where xµ̂ = {t, xi} corresponds to Mink6 coordinates. They can be easily integrated to

ε(r) = exp

(
1

2

∫ ρ

eBW (σ(ρ′), φ(ρ′))dρ′
)
η (5.7)

7Notice that δC = −3Cirδφir, thus ∂φi
r
W = − 1

5
√
2
Cire−σ/2.
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for a constant spinor satisfying γ1η = η, that parametrizes the residual 1/2-supersymmetry

along the flow.

At each endpoint of the flow, (5.3) and (5.5) describe an AdS7 vacuum, fully super-

symmetric, satisfying the attractor equations and Killing spinor equation

〈∂σW 〉 = 0 , 〈∂φirW 〉 = 0 , Dµε−
1

2
〈W 〉γµε = 0 . (5.8)

The latter is simply the Killing spinor equation for AdS with radius L = 〈W 〉−1, which

explains the enhancement of supersymmetry at the vacuum. The AdS7 geometries found

in section 4 are solutions of (5.8).

Notice finally that, in terms of the superpotential W (σ, φir), the scalar potential (3.5)

can be written as

V = 5

(
−3W 2 + 2∂σW

2 +
5

2
∂φirW∂φriW

)
. (5.9)

It can be easily verified that the BPS flow, expressed as the gradient flow (5.3), (5.5),

implies the second order equations of motion of the scalars of seven-dimensional half-

maximal supergravity in absence of gauge fields. The warp factor e2B represents a choice

of radial parametrization and thus it is not constrained by the first order flow. We will

show in the remaining of this section that, in order to solve the equations for the scalars,

a convenient radial parametrization will be necessary, leading to a choice for e2B.

5.2 Solving the BPS equations

In section 4 we have found a large set of vacua of seven-dimensional supergravity coupled

to vector multiplets, in one-to-one correspondence with a choice of partition µL. In this

section we are going to explicitly construct BPS domain walls connecting two such vacua.

In the metric (5.1) we will redefine

2B = 2Q+ σ , (5.10)

for later convenience. At ρ → ±∞, we will impose that A → A±ρ, where A± are two

constants, whereas Q and all the scalars (including σ) will have to become constants; for

example

φi(−∞) = φiµL− , φi(+∞) = φiµL+
, (5.11)

where φiµL± will be proportional to the su(2) representations associated to two partitions

µL± as in (2.14). (As we anticipated, in this section we are still keeping µR = 0.) The limits

ρ→ ±∞ represent respectively the ultraviolet (UV) and infrared (IR) limits of the RG flow.

We will again find a solution by solving the BPS equations (5.3), (5.5). C and Cir
now are different from (4.9a) because we no longer assume the φi to be proportional to

a reducible su(2) representation as in (4.1). Moreover, the P ir do not vanish, since the
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scalars now depend on the radial coordinate ρ. We obtain

P irρ = −φir
sinhα

α
∂ρ coshα+

(
δrs +

coshα− 1

α2
Prs

)
∂ρ

(
sinhα

α
φis

)
, (5.12a)

Cir =
√

2

(
− g3

α
cosh2 α sinhαφir

+ gL
sinh2 α

2α2

(
δrs +

coshα− 1

α2
Prs

)[
φj , φk

]
s
εijk
)
, (5.12b)

C =
1√
2

(
6g3 cosh3 α+ gL

sinh3 α

α3
εijkTr (φi [φj , φk])

)
; (5.12c)

recall α was defined by Tr(φiφj) = −α2δij back in (4.5).

We start by imposing δλ = 0, which is the second in (5.3). The presence in (5.12) of

the projector Prs acting on the derivative and on the commutator of φ’s makes solving the

equation apparently problematic. However, the recurring combination

Πrs ≡ δrs +
coshα− 1

α2
Prs (5.13)

is an invertible operator:

Π−1
rs = δrs −

coshα− 1

α2 coshα
Prs . (5.14)

Applying Π−1 to δλ = 0, we get

e−Q∂ρΦ
i = coshα

(
−g3Φi +

1

2

[
Φj , Φk

]
εijk
)
, Φi = gLφ

i tanhα

α
. (5.15)

(The presence of e−Q is due to the vielbein in γµP irµ .) We see that it is useful to fix the

radial gauge by setting

e−Q = coshα, (5.16)

which will be our choice from now on. With this, (5.15) becomes

∂ρΦ
i = −g3Φi +

1

2

[
Φj , Φk

]
εijk . (5.17)

This is a variant of the Nahm equation, to which it can be mapped by a change of variables.

We will study it in section 5.3; we will show that there exist solutions which at ρ → ±∞
approach two different vacua of the type we found in section 4, as in (5.11).

For now we turn to the other BPS equations, showing that they can be completely

solved once a solution Φi(ρ) (and hence α(ρ)) of (5.17) has been found. σ and A are

determined by the first in (5.3) and by (5.5). We replace the commutator in C using (5.15).

We obtain the equations

∂ρ

(
e−5σ/2

coshα

)
+ g3

e−5σ/2

coshα
− 16h

cosh2 α
= 0 , (5.18a)

∂ρA coshα− 1

5
(g3 − ∂ρ coshα)− 4

5
he5σ/2 = 0 . (5.18b)
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Eq. (5.18a) can be immediately solved for σ(ρ) analytically by performing an integral:

e−
5
2
σ = 16h e−g3ρ coshα

∫ ρ

ρ0

eg3y

cosh2 α(y)
dy (5.19)

A linear combination of (5.18) then gives

∂r

(
e4A+σ/2 coshα

)
− g3e

4A+σ/2 coshα = 0 (5.20)

whose solution is

A =
1

4

(
g3ρ− log coshα− 1

2
σ

)
+A0 . (5.21)

Thus A(ρ) and σ(ρ) are determined by the BPS equations, as promised. One can also

check that they obey the appropriate boundary conditions we demanded at the beginning

of this section, i.e. σ goes to constants σ± and A goes as A±ρ at ±∞. Moreover, the

precise values of σ± and A± agree with the values determined for the vacua in section 4.

In particular, for the cosmological constants we find(
V+

V−

)5/4

=
g2

L − κ2
−g

2
3

g2
L − κ2

+g
2
3

, (5.22)

in agreement with (4.11). In the next subsection we will see κ+ < κ−; it then follows

V+ < V−, as expected for a domain wall representing an RG flow.

5.3 Nahm equations

We will now review why (5.17) have solutions with boundary conditions (5.11), using results

in [19]. (Those results are also reviewed nicely in [37], where (5.17) appears in the context

of domain walls for the so-called N = 1∗ field theory in four dimensions.)

By the change of variables Ti = 1
g3s

Φi, s = e−g3ρ, (5.17) becomes the classic Nahm

equation

∂sTi = −1

2
εijk[Tj , Tk] . (5.23)

This is encouraging, since this equation is very well-studied; however, for us this transfor-

mation will be a bit of a curiosity, since in fact our (5.17) has already been studied in [19]

essentially already as it is. (If one wants to make contact with the notation there, one can

rescale ρ = 2
g3
t, Φi = −g3

2 A
i.)

Translated in our language, the main result in [19] is that the moduli space of solutions

to (5.17) with boundary conditions (5.11) is the space8

OµL− ∩ S(µL+) . (5.24)

8An intersection between a nilpotent orbit and a Slodowy slice appears in several places in the literature,

perhaps most notably as the moduli space of the three-dimensional theory T λµ in [18]. While a similar

description applies to Higgs moduli spaces of six-dimensional theories, it would require using orbits of a

group much larger than SU(k). This is equivalent to the formula (2.3) [23, section 2.2], which is in terms

of orbits of SU(k) but does not seem to have the structure (5.24).
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Here S(µ) is the so-called Slodowy slice:

S(µ) ≡ {φ−µ +X | [X,φ+
µ ] = 0} , (5.25)

where φiµ give the embedding su(2)→ su(k) associated to µ, as we discussed around (2.12),

and φ± ≡ 1
2(φ1 ± iφ2). This space has the property of intersecting Oµ in only one point

(namely φ−µ ). Moreover, it intersects every orbit Oµ′ such that µ < µ′. For example, S(0)

is any matrix, and it then meets every orbit. So (5.24) is non-empty if and only if

µL+ < µL− . (5.26)

The dimension of (5.24) is

1

2

(∑
a

(µtL+)2 −
∑
a

(µtL−)2

)
. (5.27)

Thus the orbit µL+, corresponding to the theory in the UV, should be dominated by

the orbit µL− corresponding to the theory in the IR. This precisely agrees with our field

theory prediction (1.1).

Another non-trivial check of our conjecture consists in computing the conformal di-

mension of the scalars triggering the flows. In fact, as shown in [36], six-dimensional

superconformal theories do not admit relevant deformations. In order to do this, we need

to check the expansion of a general solution of the Nahm equations around the UV. So-

lutions to the Nahm equation (5.23) admit an asymptotic expansion consisting of a pole

plus a regular part, which we can write as

T i ∼ 1

s
T ip + T i0 + s T i1 + . . . . (5.28)

In terms of the original variables this becomes:

φi ∼ φiµR+
+mi e−c g3 ρ + . . . , (5.29)

where c ≥ 1 is a constant determining the first non-trivial contribution. Near the UV

boundary, moreover, we can introduce the correct AdS radius r = 4g3
L+

ρ, so that we recognise

the more standard form:

φi ∼ φiµR+
+mi e

−4c r
L+ + . . . , (5.30)

The AdC/CFT dictionary states that the fluctuation of scalar in the bulk must have the

following general profile:

δϕ ≈ ϕnonnorme
−(6−∆)ρ/L + ϕnorme

−∆ρ/L ; (5.31)

where the first term corresponds to deforming the theory by an operator O of dimension

∆, while the second contribution is associated to giving a vev to O. Let us now assume

that the flow is triggered by the source of a unitary operator, i.e. ∆ ≥ 2: comparing (5.31)

and (5.30) one finds that the unique two possibilities are ∆ = 6 and ∆ = 2. In the first
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case, we would obtain another leading term contradicting our initial assumption c ≥ 1; in

the second case the flow would be triggered by a free scalar and this is impossible.

Thus we discovered that our flows are triggered by the non-trivial vev of a unitary op-

erator, in perfect agreement with [36]; moreover, comparing again (5.31) and (5.30) we can

state that relevant “trigger” operators must have ∆ = 4. Observe that, studying the UV ex-

pansion of (5.19), one discovers that also σ is associated to a vev of an operator with ∆ = 4.

We will now give a simple example (taken from [37]) where the solution can be found

explicitly, and analyze it in more detail. It regards the case when the UV partition µL+ is

0. In that case

Φi =
g3

1 + eg3ρ
φiµL− (5.32)

is a solution for any µL. The constant matrices φiµL− form the (reducible) SU(2) represen-

tation associated to the partition µL−, normalized as in (2.15). Recalling the change of

variable performed in (5.15), the actual matrices parametrizing the scalar manifold read:

α = arctanh

[
g3 κL−
gL

1

1 + eg3ρ

]
⇒ φi =

1

κL−
arctanh

[
g3 κL−
gL

1

1 + eg3ρ

]
φiµL− . (5.33)

Using (5.18), it is possible to also compute the dilaton σ and the warping A, although their

explicit expressions are quite involved.

In the UV limit ρ → +∞,9 the metric is asymptotic to

ds2
7 ∼ e2

g3 ρ
4 ds2

Mink6
+ dρ2 , (5.34)

which we recognize as the AdS7 metric of radius L+ = 4/g3. The dilaton and the scalar

fields behave as

φi ∼ e
− 4ρ
L+ φiµL− , σ ∼ e

− 4ρ
L+ . (5.35)

Consistently with the general analysis, we can interpret (5.35) as saying that the RG flow

is triggered by a vev of two operators both with dimension ∆ = 4. There is also a simple

modification [37, (2.17)] of (5.32), also analytical, which connects the partition [k/2, k/2]

to the partition [k/2 + 1, k/2− 1]; in other words, it moves a single block from one row of

the diagrams to the next.

6 Two-tableau generalization

We will now study how the previous two sections get modified if one also makes µR non-

trivial.

6.1 Two-tableau vacua

Our Ansatz in this case is

φi =

(
ψL σ

i
L

ψR σ
i
R

)
, (6.1)

9In the following analysis, we will set 16 h = gL; with this choice, the vacuum expectation value of the

dilaton is zero for µL = [16].
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where ψL,R are two numbers, and σi are two reducible representations of su(2). (Re-

call (2.14) for the µR = 0 case.) We have then

[σiL,R, σ
j
L,R] = εijkσkL,R , Tr(σiL,Rσ

j
L,R) = κ2

L,Rδ
ij . (6.2)

Recalling (3.9), φi = φirT
r
f can now be further decomposed as φirT

r + φir̂T
r̂. We have

φirφ
r
j = TrL(φiφj) = ψ2

Lκ
2
L ≡ α2

Lδij , φir̂φ
r̂
j = TrL(φiφj) = ψ2

Rκ
2
R ≡ α2

Rδij . (6.3)

Moreover, now we have three different projectors:

φir φ
i
s = Prs , φir̂ φ

i
ŝ = Pr̂ŝ , φir φ

i
ŝ = Trŝ . (6.4)

They act on the fields as

Prs φ
s
i = α2

L φ
i
r , Pr̂ŝ φ

ŝ
i = α2

R φ
i
r̂ (6.5)

Trŝ φ
ŝ
i = α2

R φ
i
r , Tr̂s φ

s
i = α2

L φ
i
r̂ , (6.6)

and satisfy the relations

Prs P
st = α2

L Pr
t , Pr̂ŝ P

ŝt̂ = α2
R Pr̂

t̂

Trŝ T
ŝt = α2

R Pr
t , Tr̂s T

st̂ = α2
L Pr̂

t̂

Prs T
st̂ = α2

L Tr
t̂ , Pr̂ŝ T

ŝt = α2
R Tr̂

t

(6.7)

At this point we can compute our scalar matrix as:

LIJ = exp


0 φis φ

i
ŝ

φrj 0 0

φr̂j 0 0

 =


δij coshα

sinhα

α
φis

sinhα

α
φiŝ

sinhα

α
φrj δrs+

coshα−1

α2
Prs

coshα−1

α2
Tr ŝ

sinhα

α
φr̂j

coshα−1

α2
Tr̂ s δr̂ŝ+

coshα−1

α2
Pr̂ŝ

 , (6.8)

with

α2 ≡ α2
L + α2

R . (6.9)

Now the quantities in (3.6) are

C = 3
√

2

(
g3 cosh3 α − sinh3 α

α3
Ĉ

)
, Ĉ ≡ gL ψL α

2
L + gR ψR α

2
R ,

Cir =
√

2
sinhα

α

(
−g3 cosh2 α +

sinhα

α

coshα− 1

α2
Ĉ + ψL gL

sinhα

α

)
φir ,

Cir̂ =
√

2
sinhα

α

(
−g3 cosh2 α +

sinhα

α

coshα− 1

α2
Ĉ + ψR gR

sinhα

α

)
φir̂ .

(6.10)

Just like in (4.8), we need to impose Cir = 0, which now reads Cir = Cir̂ = 0.

From (6.10) we then see

gL ψL = gR ψR . (6.11)
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Thus we can parametrise everything in terms of a single constant:

ψ ≡ ψL , ψR =
gL

gR
ψ . (6.12)

We also define

β2 =
κ2

L

g2
L

+
κ2

R

g2
R

⇒ α = ψ β gL . (6.13)

Going back to Cir = Cir̂ = 0, we now get

g3 cosh(ψ β gL) =
sinh(ψ β gL)

β
(6.14)

and thus finally we get

ψL =
1

gL β
arctanh(g3 β) , ψR =

1

gR β
arctanh(g3 β) . (6.15)

Finally we can read off σ from the C equation in (4.8):

e5σ/2 =
g3

16h

1√
1− g2

3 β
2
. (6.16)

The cosmological constant reads(
VµL,µR
V0,0

)5/4

=
1

1− g2
3β

2
=

1

1− g2
3

(
κ2

L

g2
L

+
κ2

R

g2
R

) (6.17)

generalizing (4.11).

Along the lines of section 4.3, we can compare with the results in [7]. Eq. (4.14) has

to be modified by adding the contribution from both µL,R:

aµL,µR = N3 k
2

12
−N k

6

(∑
a

a3fL
a +

∑
a

a3fR
a

)
+ . . . . (6.18)

The comparison with (6.17) now works if one assumes

gL = gR ≡ g ,
g2

3

g2
=

1

Nk2
. (6.19)

6.2 Two-tableau RG flows

To find domain walls connecting the vacua of the previous subsection, we proceed as we

did in section 5: we modify the vacuum Ansatz by allowing all fields to depend on the

radial coordinate ρ, and by no longer assuming that the φi are proportional to a reducible

su(2) representation, only recovering this at ρ→ ±∞.

Again we need to compute the quantities appearing in (3.6). Since they now become

a bit lengthy, we prefer writing them more compactly by defining

SRS =

 δrs +
coshα− 1

α2
Prs

coshα− 1

α2
Tr ŝ

coshα− 1

α2
Tr̂ s δr̂ŝ +

coshα− 1

α2
Pr̂ŝ

 , (6.20)
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which collects the four lower-right blocks in (6.8).

The only things we need to know about the pseudo-projector SRS is that it is invertible

and that:

SRS φ
S
i = coshαφiR , ⇒ S−1

RS φ
S
i =

1

coshα
φiR ; (6.21)

recall that α2 = α2
L + α2

R. We now have

S−1
RS P

iS
r = −sinhα

α
φiR

∂ρ coshα

coshα
+ ∂ρ

(
sinhα

α
φiR

)
,

√
2S−1

RS C
iS = −2 g3

sinhα cosh2 α

α
φiR + gL,R

sinh2 α

α2

[
φj , φk

]
R
εijk ,

(6.22)

where in the second line the choice gL,R depends whether the index R is r or r̂. As in the

single-tableau case, we find it useful to fix the radial gauge by taking Q as in (5.16).

From δλR = 0 we now obtain two copies of the Nahm-like equations (5.17):

∂ρΦ
i
L,R = −g3 Φi

L,R +
1

2
εijk

[
Φi
L,R Φj

L,R

]
, Φi

L,R ≡ gL,RφiL,R
tanhα

α
. (6.23)

Using this, the analysis of δψµ = 0 = δχ works just like in the single-tableau case, and we

will not repeat it here.

Also, the analysis of (6.23) simply involves repeating the considerations of section 5.3

separately for the nilpotent elements µL, µR.
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