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We compute the supersymmetry-breaking three-form fluxes generated by the addition of anti-D3
branes at the tip of a Klebanov-Strassler throat. These fluxes give rise to nontrivial terms in the
superpotential when the throat is embedded in a flux compactification. We describe these terms
both from a ten-dimensional and from a four-dimensional perspective and show that, upon including
Kähler-moduli stabilization, the resulting potential admits de Sitter minima. Our proposed de Sitter
construction does not require additional supersymmetry-breaking (0, 3) fluxes, and hence is more
minimalist than the KKLT proposal.

1. INTRODUCTION

The accelerated expansion of our Universe points to-
wards the existence of a positive vacuum energy density,
whose value is about 120 orders of magnitudes smaller
than the value expected from field-theory estimates. On
the other hand, there are by now several arguments [1]
that stable de Sitter vacua cannot be constructed in con-
trolled low-energy effective theories that are consistent
with quantum gravity. This leaves only two open possi-
bilities: either the accelerated expansion of our Universe
comes from a time-dependent vacuum energy density, or
there is a problem with the no-de-Sitter conjecture, which
can be disproved by an explicit construction.

Unfortunately, constructing metastable de Sitter vacua
is notoriously difficult in String Theory. Despite its in-
tricate ingredients, short-comings and potential instabil-
ities, the almost-twenty-year-old construction of Kachru,
Kallosh, Linde and Trivedi (KKLT) [2] still stands out as
one of the very few generic proposals that has not been
fully proven to be unstable. It is a three-step construc-
tion that combines fluxes, non-perturbative phenomena
and anti-D3 branes in a warped Calabi-Yau compacti-
fication with a deformed conifold-type throat. In order
to obtain a positive and small cosmological constant, the
fluxes required in the first step need to break supersym-
metry generating a very small superpotential W0,KKLT.
This has been criticized on two counts: theory and prac-
tice. On the formal side, these supersymmetry-breaking
runaway solutions are not protected against corrections,
and it was argued in [3] that they are not a good ground
onto which one can add the non-perturbative ingredi-
ents necessary in the second step to prevent the runaway
and stabilize the volume moduli. On the practical side,
it is very hard to obtain explicit solutions with a suf-
ficiently small superpotential, although there has been
recent progress in engineering this type of flux vacua [4?
? ].

The purpose of this Letter is to take a step towards
bridging the conflict between the no-de-Sitter swampland
arguments [1] and what can be constructed explicitly and
controllably in String Theory. We propose a new method
to construct de Sitter vacua, which has one less ingredi-
ent than the KKLT construction, and hence is potentially
plagued by less problems. More precisely, we show that

one can construct de Sitter vacua with a small cosmolog-
ical constant without the need of a flux superpotential
W0,KKLT.

Our key observation is that the anti-D3-branes neces-
sary to uplift the cosmological constant source fluxes that
generate precisely a small superpotential. Therefore, in
our “bare bones” de Sitter construction, only supersym-
metric fluxes are needed in the first step, thus avoiding
the problems mentioned above.

2. FLUXES GENERATED BY D3 BRANES

A strongly warped region in a Calabi-Yau compacti-
fication can be engineered as a Klebanov-Strassler (KS)
throat [5]. This is a cone over an S2×S3 base (see Figure
1). The two-sphere of the base shrinks at the tip of the
cone while the three-sphere has always finite size, param-
eterized by a modulus Z. The base can be also thought
as a U(1) fibration over S2 × S2. The symmetries of the
geometry consist of two SU(2) factors acting on the base
two-spheres and a Z2 swapping them.

S3

S2

IR : τ = 0 UV : τ = ∞
FIG. 1: An artist’s impression of the KS geometry.

The most general deformation of the conifold metric
with fluxes preserving the SU(2)2 × Z2 symmetry can
be written in terms of eight functions of a radial coordi-
nate {Φi(r)} [6]; this space of type-IIB supergravity so-
lutions includes the Klebanov-Strassler [5], Maldacena-
Nuñez [7], and baryonic branch solutions [8]. In this
Letter, we are interested in the deformation of the KS
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solution caused by the addition of N anti-D3 branes at
the tip of the throat. In particular, we calculate how the
anti-D3 branes affect the complexified three-form fluxG3,
whose (p,q) components can be put in correspondence
with various quantities in the effective four-dimensional
low-energy theory describing the system.

Assuming that the backreaction of the anti-D3 branes
on the geometry is small and can be studied in pertur-
bation theory, the deformed geometry is given by

Φi = ΦKSi + λφi +O(λ2) , (1)

where the analytical dependence of the fluctuations φi
has been computed in [9–11] and the small expansion
parameter is:

λ =
N

gsM2
, (2)

where M is the integral of the Ramond-Ramond F3-flux
on the S3. Usually, the number of anti-D3 branes is taken
to be N = 1, since configurations with multiple anti-D3
branes have a tachyon [12], but we will keep track of it
for completeness.

In the KS solution, the complexified three-form flux,
G3, is (2, 1) with respect to the choice of complex struc-
ture picked by supersymmetry [13]. When the anti-D3
branes are added at the tip of throat, the three-form flux

also gets corrections, G3 =GKS
3 +GD3

3 and, at the same
time, the complex structure is rotated. This implies that
in general G3 is not of (2,1)-type anymore (and neither is
imaginary-self-dual (ISD)) but it develops all other com-
ponents: for example, the (0,3) component is

GD3
(0,3) =

8π2λ

gsZ0

∂τϕ(τ)

sinh2(τ)
Ω̄KS +O(λ2) ,

ϕ = gs sinh(τ)φ7 + cosh( τ2 )φ5 − sinh( τ2 )φ6 ,

(3)

where ΩKS is the (3,0) form defined by the KS complex
structure, Z0 is the fixed value of the conifold modulus
and φ5,6,7 are functions of the radius, whose UV and IR
expansions are in [9], and whose full analytic expression
can be found in [10]. This component of the three-form
flux generates a non-vanishing (on-shell) Gukov-Vafa-
Witten (GVW) superpotential [14] (expressed in Planck
units):

WD3 =

∫
GD3

3 ∧ Ω . (4)

This integral can be performed explicitly, giving

WD3 = −0.87 i λM Z0 +O(λ2) , (5)

where the first-order term is obtained using ΩKS. The
anti-D3-brane not only generates this flux component,
but also imaginary-anti-self-dual (IASD) pieces. These
generate F-terms for the axio-dilaton and conifold mod-
uli, given by

DτW = − i gs
2

∫
G∗D3

3 ∧Ω , DZW =

∫
GD3

3 ∧ χ , (6)

where χ is a (2, 1)-form (whose first-order expression in λ
can be found in [15]). Such integrals can be numerically

evaluated using the explicit form of GD3
− given in [16]:

DZW = −1.5 i λM +O(λ2) ,

DτW = 0.6λ gsM Z0 +O(λ2) .
(7)

This on-shell superpotential and F-terms, computed us-
ing the ten-dimensional solution, will be used in section 4
to compute an effective potential for the Kähler modulus
in a KKLT-like construction.

3. 4D SUPERGRAVITY DESCRIPTION

Before adding the D3 branes at the tip of the throat,
the superpotential and Kähler potential describing the
conifold-modulus dynamics in a warped compactification
has been computed in [17, 18] :

W =
M

2πi

(
Z log

Λ3
UV

Z
+ Z + wZ

)
+ i

K

gs
Z ,

K = −3 log

(
ρ+ ρ̄− ξ

3
|Z|2/3

)
+ log(2γ4) ,

(8)

where γ2 = 16
√

2π7||Ω||2, ξ = 9c′gsM
2 and c′ ≈ 1.18 is

a numerical factor coming from the warping [19]. Notice
that the Kähler potential for the Z modulus is known
in a small-field expansion, and only the Z2/3 term was
worked-out explicitly. To avoid cumbersome expressions
in what follows, we use the log form of the Kähler po-
tential above (8), but it is understood that in the final
results only the leading term in Z2/3 is kept.

The supersymmetric Minkowksi vacuum is given by:

∂ZW |ZKS = 0 ⇒ ZKS = Λ3
UV e

− 2πK
gsM . (9)

Since the KS scalar potential and superpotential have to
be zero on-shell in a supersymmetric Minkowski vacuum,
this fixes the constant wZ in (8):

Won-shell = 0 ⇒ wZ = −Λ3
UV e

− 2πK
gsM . (10)

We can promote this to an off-shell superpotential for
the axion-dilaton as well, given by

WKS =
M

2πi

[
Z

(
log

Λ3
UV

Z
+ 1

)
− Λ3

UVe
2πiτK
M

]
+KτZ .

(11)
This satisfies the supersymmetry condition in the axion-
dilaton direction DτW |ZKS = ∂τW |ZKS = 0.

We now add anti-D3 branes, whose backreaction can
be captured in the language of the four-dimensional ef-
fective theory by:

• an uplift term in the scalar potential, breaking su-
persymmetry and shifting the conifold modulus vev
from ZKS to Z0 (to be computed below).

• A (0, 3) flux giving rise to an additional superpoten-
tial WD3, whose off-shell dependence on the coni-
fold and dilaton-axion moduli will be determined
by requiring consistency with the ten-dimensional
computation (5).
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To compute the former, it is useful to describe the
antibrane uplift potential in a manifestly supersymmet-
ric way (more precisely in a non-linearly supersymmetric
way) introducing a nilpotent chiral multiplet X [20, 21],
with the following Kähler potential and superpotential
[18]

K = −3 log

(
ρ+ ρ̄− |X|

2

3
− ξ

3
|Z| 23

)
− log

(
Imτ

γ4

)
,

W = WKS +
1

M

√
c′′N

π
Z2/3τX +Ae−aρ +WD3 ,(12)

where c′′ ≈ 1.75 is a numerical factor related to the anti
D3 brane energy [22] and we have also included the non-
perturbative contribution to the superpotential coming
from gaugino condensation or D3-brane instantons. The
four-dimensional scalar potential can then be written in
the convenient form

V =
γ4gs
r2

{
9

ξ
|Z|4/3|∂ZW |2 + |∂XW |2 +

4

g2
sr
|DτW |2

+
ρ+ ρ̄

3
|∂ρWeff −

3

ρ+ ρ̄
Weff|2 −

3

ρ+ ρ̄
|Weff|2

}
, (13)

where

Weff =
M

2πi

(
Z − Λ3

UVe
− 2πK
gsM

)
+Ae−aρ +WD3 , (14)

and r ≡ ρ+ ρ̄− ξ
3 |Z|

2/3 and where we used the on-shell

axion-dilaton value Imτ = g−1
s . In the absence of the

non-perturbative term (setting A = 0), the second line
in (13) is zero and the modulus ρ becomes a flat direction
of the scalar potential, the so-called no-scale modulus. In
this limit the scalar potential becomes

V =
γ4|Z|4/3

c′r2

{
| 1

2πi
log

Λ3
UV

Z
+

iK

gsM
|2 +

c′ c′′

π
λ

}
+ · · · .

The term in brackets is the KS + uplift scalar potential,
whereas the · · · denote terms of order Z2

0 and are sub-
leading. As a function of the conifold modulus Z, this
potential has a minimum at

Z0 '
(

1− 8πc′c′′

3
λ

)
ZKS ≡ ZKS + δZ , (15)

where we expanded to the first order in the D3 uplift
parameter λ, defined in (2), in order to compare to the
10d computation.

The on-shell value of the superpotential is then com-
puted to first order

W (Z0) 'WKS(ZKS) + ∂ZWKS(ZKS)δZ +WD3

= WD3 = −0.87 i λMZ0 , (16)

where in the first line we used (9) and (10) and in the
second line we inserted the 10d input (5).

The F-term of the conifold modulus can similarly be
evaluated

DZW (Z0) = ∂ZW (Z0) +KZW (Z0) '

∂2
ZWKS(ZKS)δZ +KZWD3 '

4c′c′′

3i
λM ' −2.75 iλM ,

where in deriving the result we anticipated, using the ex-
plicit form of the Kähler potential in (12), that the term

KZWD3 ∼ O(Z
2/3
0 ) and is therefore subleading. This

F-term has the same parametric dependence as its 10d
counterpart (7), with a different numerical coefficient.

Finally, the F-term of the axion-dilaton is

DτW (Z0) ' ∂Z∂τW (ZKS)δZ + ∂τWD3 +KτWD3

= −8πc′c′′K

3
λZKS +

0.435

M
Z0 + ∂τWD3 .

In order to obtain the correct parametric dependence of
the ten-dimensional result (7) we impose

∂τWD3 =
8πc′c′′K

3
λZKS ' K(Z0 − ZKS) , (17)

and thus

DτW (Z0) = 0.435 gsMλZ0 . (18)

The off-shell value of WD3 should therefore be considered
as an expansion

WD3(τ) = WD3(τ0) + ∂τWD3(τ0)(τ − τ0) + · · · , (19)

where we have determined the first two coefficients
WD3(τ0) and ∂τWD3(τ0) by consistency with the 10d re-
sults.

Let us stress that we do not expect exact numerical
agreement between the ten and four-dimensional results,
but we do get the same parametric dependence. One of
the reasons that the numerical factors might not exactly
match is that the four-dimensional theory misses the ef-
fects of massive but light modes of the compactification
[17].

Before closing this section, note that the complete
scalar potential (13) has an approximately decoupled
structure

V = VKS+uplift + VKKLT , (20)

with

VKKLT =
γ4gs
r2

{
ρ+ ρ̄

3
|∂ρWeff −

3Weff

ρ+ ρ̄
|2 − 3|Weff|2

ρ+ ρ̄

}
+VD3

and

VD3 = VKS+uplift(Z0) ' c′′|Z0|4/3

π

γ4

(ρ+ ρ̄)2
λ . (21)

Furthermore, the KKLT small superpotential constant
W0 is given in our construction by the on-shell value of
the ρ-independent term in (14)

W0,KKLT =
M

2πi

(
Z0 − Λ3

UVe
− 2πK
gsM

)
+WD3

' −i
(

0.87− 4

3
c′c′′

)
λM ZKS . (22)
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4. BARE-BONES DE SITTER

In this section, we show that for certain choices of the
parameters, the potential:

V = eK
(
Gi j̄DiWDjW − 3|W |2

)
(23)

leads to de Sitter vacua. The potential is computed us-
ing the 10d input DiW , W = WD3 + Ae−aρ and Kähler
potential as in (12).

In Figure 2 we plot the potential for a particular choice
of parameters. This choice is not unique: we have per-
formed a partial scan of the parameters and we are able
to find several other de Sitter vacua.

23.2 23.4 23.6 23.8 24.0
Reρ

1.02

1.03

1.04

V·106

FIG. 2: The potential for the choice of parameters a= π
3
, gs=

1
2
, A = 3 · 103 ,K = 134 ,M = 200. This gives Z0 ≈ 10−4.

For our de Sitter minimum the hierarchy between the
bottom of the KS throat and the UV scale is of order
2πK
gsM

≈ 8. For other de Sitter constructions without a

large warping, see [23].
In the future, it would be important (but rather non-

trivial) to check if the existence of this minimum survives
higher order corrections in λ and Z, as well as quantum
corrections.

5. CONCLUSIONS

A non-vanishing on-shell Gukov-Vafa-Witten superpo-
tential is crucial in a KKLT-like construction of de Sitter
vacua. In this Letter, we have shown that a small GVW

superpotential, dubbed WD3 above, is generated by D3
branes at the tip of a KS throat. This superpotential,
together with the anti D3-brane-generated F-terms pro-
vide all that is needed to obtain a compactification with
a positive cosmological constant.

As we explained above, our proposal for constructing
de Sitter solutions is more bare-bones and hence more
robust than the KKLT one, because it has one less in-
gredient. Of course, as in all phenomenological construc-
tions, adding more ingredients gives one more freedom to
tune the resulting physical parameters. Hence, one can
argue that our proposal, though more robust, is less ac-
commodating that the KKLT construction for obtaining
a parametrically small cosmological constant. However,
the aim of our Letter is not phenomenological, bur rather
to understand which ingredients are absolutely necessary
to construct de Sitter, and which are optional, with an
ultimate purpose of achieving a robust construction that
may provide a way to escape the no-go arguments of [1].
We believe our result represents a step in that direction.

Another interesting result of the calculation presented
in this Letter is the parametric agreement between the
first-principle, ten-dimensional computation of the effec-
tive potential (in section 2) and the four-dimensional-
supergravity computation (in section 3). To our knowl-
edge, this is the first confirmation of the validity of the
off-shell four-dimensional warped effective action [19] and
the analysis of [22].

Last, but not least, our proposal does not avoid some of
the known constraints on KKLT-like models. It would be
interesting to explore whether the problems underlined in
[? ] also apply to our model. Furthermore, the minimum
we found requires the contribution to the D3 tadpole of
the fluxes in the KS throat to be of order KM ≈ 2 ·
104. In [24] it was conjectured that such throats cannot
be embedded in a flux compactification with stabilized
moduli. It would be interesting to use our procedure
to search for vacua where this tadpole contribution is
smaller.

Acknowledgments We would like to thank Severin
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