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Highlights: 18 
• FTIR and MultiGAS measurements at Yasur Volcano constrain volcanic gas 19 

compositions 20 
• A new model is proposed to explain the cyclic variation in gas geochemistry, based 21 

on rupture and reforming of a crystal-rich plug. 22 
• High fluxes of volcanic gases have persisted at Yasur Volcano for decades. 23 

 24 

Abstract 25 

Open vent basaltic volcanoes account for a substantial portion of the global atmospheric 26 

outgassing flux, largely through passive degassing and mild explosive activity. We present 27 

volcanic gas flux and composition data from Yasur Volcano, Vanuatu collected in July 2018. 28 

The average volcanic plume chemistry is characterised by a mean molar CO2/SO2 ratio of 29 

2.14, H2O/SO2 of 148 and SO2/HCl of 1.02. The measured mean SO2 flux on 8 July is 4.2 kg 30 

s-1. Therefore, the mean fluxes of the other species are 5.9 kg∙s-1 CO2, 224 kg∙s-1 H2O and 2.3 31 

kg∙s-1 HCl.  The degassing regime at Yasur volcano ranges from ‘passive’ to ‘active’ styles, 32 

with the latter including Strombolian activity and spattering. Gases emitted during active 33 

degassing are enriched in SO2 over HCl and CO2 over SO2 relative to passive degassing, with 34 

CO2/SO2 ratios of 2.85 ± 0.17, SO2/HCl of 1.7 ±0.22, and H2O/SO2 of 315 ± 78.8. Gases 35 

emitted during passive degassing have CO2/SO2 ratios of 1.96 ± 0.12, SO2/HCl of 0.50 ±0.07 36 
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and H2O/SO2 of 174 ± 43.5. We use a model of volatile degassing derived from melt 37 

inclusion studies (Metrich et al., 2011), combined with our observations of chemical 38 

variations in the outgassing bubbles to propose a mechanism for magma degassing in the 39 

conduit at Yasur. We envisage a shallow conduit filled with crystal-rich magma, forming a 40 

viscous and mobile  plug that develops an effective yield strength from the surface to a depth 41 

of at least 1600 m, in which bubbles are trapped, grow, ascend towards the surface and burst 42 

in a typical Strombolian eruption. Deeper bubbles released during active degassing are 43 

enriched in CO2 and SO2 compared to bubbles released during ‘passive degassing’, which are 44 

sourced from close to the surface, and are, consequently, HCl-rich. 45 

 46 

Keywords: basaltic open vent volcanoes, Strombolian activity, Yasur, crystal content in 47 

magma, gas fluxes, magma fluxes. 48 

 49 

1. Introduction 50 

Basaltic volcanoes contribute a large proportion of the volcanic gas flux to the atmosphere 51 

(Burton et al., 2013, Aiuppa et al., 2019). Six of the ten most prolific volcanic outgassers are 52 

basaltic open-vent volcanoes (Burton et al., 2013, Carn et al., 2017), wherein degassing takes 53 

place from the free magma surface at an open vent. Characterising this style of degassing is 54 

important in order to monitor volcanic hazard, understand their role in the geochemical 55 

cycling of volatiles between the interior and atmosphere on a planetary scale, and quantify 56 

the volumes and depths of the magma bodies responsible for driving the degassing. The 57 

activity observed at basaltic open-vent volcanoes is characterised by a range of degassing 58 

regimes, from passive degassing and lava lake activity, through Strombolian activity, lava 59 

fountaining and sub-Plinian eruptions (e.g. Blackburn et al, 1976, Williams, 1983, Walker et 60 

al., 1984, Coltelli et al.,1995, Allard et al., 2005, Burton et al., 2007a, Aiuppa et al., 2010, 61 

Ilyinskaya et al., 2012, Tamburello et al., 2012). These styles of activity are dependent, to 62 

varying degrees, on magma rise speed, magma volatile content, bubble-melt separation depth, 63 

bubble ascent velocity and bulk magma viscosity (Wilson and Head, 1981, 1983,  Parfitt and 64 

Wilson, 1995, Slezin, 2003, Houghton and Gonnerman, 2008).  65 

 66 

Strombolian activity is associated with the bursting of large bubbles termed gas slugs (or 67 

Taylor bubbles) at the vent or lava lake surface (Blackburn et al., 1976, Sparks, 1978, Burton 68 

et al., 2007a, Houghton and Gonnermann, 2008, Parfitt, E.A., 2004, Pering et al., 2015). It is 69 

common at basaltic volcanoes because the comparatively low viscosity of the melt (10 - 104 70 
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Pa∙s) allows gas-melt segregation and bubble coalescence processes on the timescale of 71 

magma rise (Batchelor, 1967, Jaupart and Vergniolle, 1988, 1989, Woods and Cardoso, 1997, 72 

Francis and Oppenheimer, 2004, Parfitt and Wilson, 2008, James et al., 2009,). Gas slugs can 73 

range in length up to 200 m (Taddeucci et al., 2010, Del Bello et al., 2012,). The rise of a 74 

large gas bubble or slug is often accompanied by an increase in the height of the magma 75 

surface until the bubble bursts at the surface and releases a large volume of magmatic gas, 76 

ejecting metre-scale molten magma fragments and ash into the air (Taddeucci et al., 2012a,b, 77 

Gaudin et al., 2016, Houghton et al., 2008). Typical volumes of gas released by a single 78 

bubble at Stromboli vary from 10 – 1000 m3 (Vergniolle and Brandeis, 1996, Ripepe and 79 

Marchetti, 2002, Mori and Burton, 2009, Del Bello et al., 2012, Pering and McGonigle, 80 

2018).  Another key characteristic of Strombolian eruptions is periodic or quasi-periodic, 81 

short-duration eruptions (5-6 events of 5-10 seconds duration per hour) (Allard et al., 1994, 82 

Ripepe and Harris., 2008, Taddeucci et al., 2012a,b, Houghton et al., 2016, Gaudin et al., 83 

2016). 84 

 85 

Among the volcanoes that exhibit strombolian behaviour are Stromboli (Italy), Pacaya 86 

(Guatemala), Erebus (Antarctica), Villarrica (Chile), Reventador (Ecuador), Arenal (Costa 87 

Rica) and Yasur (Vanuatu) (Ntepe and Dorel, 1990, Neuberg et al., 1994, Vergniolle and 88 

Brandeis, 1996, Seyfriend and Hort, 1999, Chouet et al., 1999,2003, Urbanski et al., 2002, 89 

Hort et al., 2003, Oppenheimer et al., 2006, Ripepe et al., 2007; Patrick et al., 2007, Gaudin 90 

et al., 2014, Ripepe et al., 1993).  Strombolian activity is characterised by discrete, rhythmic, 91 

mild to moderate bursting of over-pressurised bubbles lasting for a few seconds, with a low 92 

eruption rate of a variety of pyroclastics including lapilli, bombs, ash and lithic blocks (Rosi 93 

et al., 2013, Houghton et al., 2016). This typical activity can be subdivided qualitatively into 94 

normal, major and  paroxysmal kinds of explosion  (Rosi et al., 2013) or, based on the 95 

products of the explosion, into ballistic- or ash-dominated explosions (Rosi et al., 2013, 96 

Patrick et al., 2007, Gaudin et al., 2017). The transition between these different types of 97 

eruption is still not well understood but might correlate with the slug size and the presence of 98 

a layer of degassed and cooled magma on top (Del Bello et al., 2015, Capponi et al., 2016, 99 

Spina et al., 2019b, Oppenheimer et al., 2020)  100 

 101 

Between strombolian eruptions, many open vent basaltic volcanoes exhibit persistent 102 

degassing (Andres and Kasgnoc, 1998, Aiuppa et al., 2008, Burton et al., 2000, Burton et al., 103 
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2013, Carn et al., 2017, Girona et al., 2015,), which is poorly understood. Persistent 104 

degassing has been linked to magma convection in the conduit, whereby gas-rich magma 105 

rises and outgasses, then denser, gas-poor magma sinks back down the conduit, supplying gas 106 

to the atmosphere without eruption of magma (Francis et al., 1993, Allard et al., 1994, 107 

Kazahaya et al., 1994, Stevenson and Blake 1998, Burton et al., 2007b, Huppert and 108 

Hallworth., 2007, Beckett et al., 2014). The rate of magma convection for Stromboli, for 109 

example, has been proposed to range from 300-1300 kg∙s-1 (Harris and Stevenson, 1997), to 110 

account for the flux of magmatic gases emitted from the volcano (Allard et al., 1994). The 111 

style of magma flow in the conduit may be described either as Poiseuille flow (steady, 112 

axisymmetric flow through a pipe) or, if the conduit is inclined, bubbly magma will ascend 113 

along the upper wall and degassed magma back down along the lower wall (James et al., 114 

2004); or as the ascent of undegassed magma spheres through stagnant, degassed magma 115 

(Koyaguchi,1985, 1987, Kazahaya et al., 1994). In order to sustain surface degassing 116 

continuously for long timescales (e.g. over 103 years at Stromboli Volcano), a continuous 117 

input of new volatile-rich magma is required to be supplied to the shallow plumbing system 118 

(Francis et al., 1993; Allard et al., 2005, Burton et al., 2007b, Girona et al., 2015,).  119 

Typical models of magma convection in a conduit are simplified models of two-phase 120 

exchange flows, in which melt is assumed to rise to a specific depth, degas and then return to 121 

a deeper reservoir. In practice, convection processes will be more complex due to 122 

crystallisation and the exsolution of gas from melt during magma ascent. An increase in 123 

magma crystallinity can dramatically affect the rheological properties of the ascending 124 

magma and therefore, also influence eruption style (Sparks, 1978, Belien et al., 2010, 125 

Cimarelli, et al., 2011, Oppenheimer et al., 2015, Barth et al., 2019). The presence of a 126 

crystal phase in a liquid may strongly influence the mobility of bubbles, as shown in recent 127 

studies involving three-phase analogue experiments (Belien et al., 2010; Oppenheimer et al., 128 

2015, 2020, Barth et al., 2019). In a densely packed suspension, outgassing occurs as bursts 129 

or puffs because the granular network in the particle pack resists bubble growth and instead 130 

promotes bubble coalescence and the formation of permeable pathways (Oppenheimer et al. 131 

2015). Similar experimental results were presented by Barth et al. (2019), who proposed that 132 

the episodic gas release during Strombolian eruptions occurs because crystalline mush in the 133 

shallow plumbing system acts as a valve to control a continuous gas supply. In their model, 134 

the size of the gas pocket depends on the overpressure within the bubble prior to the tensile 135 

failure of the particle-rich suspension. These experiments provide new insights into the 136 
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mechanisms linking degassing cyclicity to the presence of crystals. Numerical simulations 137 

performed by Parmigiani et al., (2014, 2016, 2017) focusses on the interaction between 138 

bubbles and crystals at a pore scale. In their simulations, bubbles accumulate in the magma 139 

until they overcome the capillary pressure within the pores in the crystalline magma, which 140 

promotes bubble coalescence. Additionally, the authors propose that the bubble transport 141 

dynamics changes with increasing crystal volume fraction: from suspension and channel 142 

formation to the arrest of bubbles. In analogue experiments, Pistone et al., (2017) observed 143 

that at high crystal fractions, gas exsolution can generate sufficient overpressure to form 144 

microfractures in the magma. Spina et al, (2019 b) illustrated the strong control of 145 

crystallinity on gas permeability and mobility in analogue magmas in a series of experiments. 146 

Yasur magmas typically contain > 30 vol. % crystals (Metrich et al., 2011) and thus is an 147 

ideal natural laboratory to study the effect of the crystal phase on degassing dynamics. In this 148 

paper, we present the results of a field campaign to measure the flux and composition of 149 

volcanic gases emitted from Yasur Volcano (Vanuatu) in July 2018. We quantify gas 150 

chemistry and flux changes over timescales of seconds during small-scale strombolian 151 

activity, passive degassing, and recharge periods, and relate the gas composition and flux to 152 

degassing mechanisms (e.g. ‘open’ vs ‘closed’ degassing and depth of gas-melt decoupling). 153 

We analyse high frequency time-series of Yasur’s emitted plume composition and flux 154 

collected by open-path Fourier transformed infrared spectrometer (OP-FTIR), 155 

multicomponent volcanic gas analyser (MultiGAS) and ultraviolet cameras (UV cameras). 156 

We also correlate several hours of video footage with the corresponding gas data to elucidate 157 

differences in gas composition associated with explosion and outgassing dynamics. This 158 

footage was used to document morphological changes in the crater and to count the 159 

frequency of bubble bursts. We use a previously published degassing model based on melt 160 

inclusion data (Metrich et al., 2011) to reconstruct volatile partitioning into an exsolved phase 161 

during magma ascent from 200 MPa to the surface, and incorporate the effect of 162 

crystallization in the shallow conduit. We use the observed CO2/SO2 ratio combined with 163 

melt inclusion systematics to infer the primary minimum melt CO2 content of the Yasur 164 

melts. These model results are compared with our surface gas measurements to infer the 165 

mixing (coalescence) processes and approximate depths of gas-melt separation for different 166 

modes of outgassing with the aim to better understand Yasur’s shallow plumbing system. We 167 

consider whether the high crystallinity of Yasur’s magma influences the outgassing style.  168 
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2. Geological setting 169 

Mount Yasur Volcano (361 m a.s.l) is a basaltic-andesitic volcano on Tanna island, in the 170 

archipelago of Vanuatu in the Southwest Pacific Ocean (figure 1). Tanna is located in the 171 

central part of the New Hebrides Island Arc and approximately 150 km above the Benioff 172 

zone caused by the subduction of the Indo-Australian underneath the Pacific plate (Carney 173 

and Macfarlane, 1979; Louat et al., 1988, Bani and Lardy, 2007, Spina et al., 2016,). The 174 

convergence rate varies from 90-120 mm per year and is controlled by the dynamics of the 175 

subduction zone and the back-arc North-Fiji basin (Taylor et al., 1995, Vergniolle and 176 

Metrich, 2016). Yasur has two summit craters, named North and South crater. Previous 177 

studies refer to three active vents (A, B, C) (e.g. Bani et al., 2013) but locals reported the 178 

permanent existence of four vents named Kraesun (South Crater, vent B in Bani et al., 2013), 179 

Wei Wei (South Crater, vent A in Bani et al., 2013), Kaunaung (North Crater, vent C in Bani 180 

et al., 2013) and Kasmiren (North Crater, vent C in Bani et al., 2013). The volcano exhibits 181 

long-lived, persistent degassing, which may have been maintained over the last 1400 years 182 

(Metrich et al., 2011, Vergniolle and Metrich, 2016), with sporadic Strombolian activity 183 

(Oppenheimer et al., 2006, Bani et al., 2013, Gaudin et al., 2014, Battaglia et al., 2016, 184 

Vergniolle and Metrich, 2016).  185 

 186 

Previous studies of volcanic outgassing at Yasur combined a high-speed thermal camera with 187 

an infrasonic sensor (Spina et al., 2016) and distinguished between two explosion classes in 188 

the South crater based on distinct spectral features and waveforms: minor explosions caused 189 

by small and continuously-bursting over-pressurised gas bubbles; and larger events, 190 

characterized as Strombolian eruptions. According to Spina et al. (2016), these kinds of 191 

eruptive events are decoupled and represent distinct mechanisms of degassing. Another 192 

classification of Yasur’s explosions in both North and South crater (Meier et al., 2016) based 193 

on a multi-parametric dataset of doppler radar, infrared imagery, and infrasound, categorised 194 

two explosion styles: ash-rich, and ash-free. A classification based solely on infrared thermal 195 

imaging in the South crater (Bani et al., 2013) differentiates between low and high energy 196 

events, and suggests that low-energy events originate in the shallow conduit, whereas the 197 

high energy events originate deeper and are associated with the bursting of slugs. Seismic 198 

(LP events) reveal that Strombolian activity is associated with signals originating at 700 – 199 

1200 m below the summit (Battaglia et al., 2016). Oppenheimer et al (2006) identified, using 200 

OP-FTIR measurements, variations in the SO2/HCl molar ratio between ‘passive’ (degassing 201 
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between explosions) and ‘active’ degassing (Strombolian eruptions) in the South crater. 202 

Gases emitted during Strombolian explosions at Yasur in 2005 were characterised by molar 203 

SO2/HCl ratios of up to 30 whereas those associated with passive degassing had a typical 204 

ratio between about 1.5 and 2.5 (Oppenheimer et al., 2006). The differences in the SO2/HCl 205 

ratio were explained using two gas sources: a gas rich in SO2, sourced at a greater depth 206 

where larger gas slugs are formed, and the shallower source rich in HCl and responsible for 207 

passive degassing (Oppenheimer et al., 2006).  208 

 209 

Studies quantifying the volatile contents of melt inclusions (H2O, CO2, S, Cl) combined with 210 

MELTS modelling (Ghiorso and Sack, 1995) have suggested that extensive degassing of the 211 

melt begins at 4 or 5 km beneath the surface at Yasur (Metrich et al., 2011). In this part of the 212 

plumbing system, the basaltic-trachyandesitic magma crystallizes extensively (by > 30 vol. 213 

%), predominantly forming plagioclase feldspar (Metrich et al., 2011).  214 

 215 

Ground-based gas measurements in October 2007 revealed that Yasur was emitting > 155  216 

kg∙s-1 H2O, 7.9 kg∙s-1 of SO2, 9.7 kg∙s-1 CO2, 1.9 kg∙s-1 HCl and 0.3 kg∙s-1 HF (Metrich et al., 217 

2011). The SO2 emission rate derived from satellite-based Ozone Mapping Instrument (OMI) 218 

measurements from 2000 to 2015 averaged 16.3 kg∙s-1 (Carn et al., 2017). As a result, Yasur 219 

ranks at number 11 in a list of 91 degassing volcanic SO2 sources (Carn et al., 2017). SO2 220 

flux measurements during field campaigns in 2004, 2005 and 2007 reveals fluxes ranging 221 

from 1.9 to 14.5 kg∙s-1 SO2 in 2004 and 2005 (Bani and Lardi, 2007) and 7.9 ± 3.8  kg∙s-1 SO2 222 

in 2007 (Metrich et al., 2011).  223 

3. Methods 224 

Volcanic gas composition and flux measurements were carried out on Yasur Volcano from 6 225 

to 16 July 2018 using an open path Fourier transform infrared spectrometer (OP-FTIR), 226 

Multi-GAS and UV cameras (figure 1). On 16 July, a MIDAC M4410-S FTIR spectrometer 227 

fitted with a ZnSe beam splitter and a Stirling engine-cooled detector was deployed on the 228 

southern crater rim (location shown on figure 1e), powered by a 20 Ah battery. A laptop 229 

running AutoQuant Pro 4.5 software, connected to the FTIR, controlled data acquisition. The 230 

spectrometer was placed on a tripod and positioned to collect infrared radiation from a hot 231 

vent in the South crater (figure 1). The nominal field of view of the spectrometer is 20 mrad. 232 

The distance between the infrared source and the spectrometer was approximately 300 m. 233 
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The volcanic gases from the multiple different vents mixed inside the crater, such that 234 

measurements of gases from only one particular vent was not possible. Analysis of FTIR 235 

spectra is based on the principles of absorption spectroscopy. We used the HITRAN database 236 

2008, which provides the absorption coefficients (Rothman et al., 2009).  237 

Spectra were acquired during the following intervals (in GMT time): 06:41-06:56 h (set 1), 238 

08:19-08:24 h (set 2) and 08:56-09:03 (set 3). All interferograms were collected at a time step 239 

of 1 second and a nominal 0.5 cm-1 spectral resolution. In total 698 spectra were collected. 240 

Column amounts of SO2, and HCl were retrieved from single beam spectra using a code that 241 

simulates and fits atmospheric transmittance in discrete wavebands (Burton et al., 2000). The 242 

code gives for each selected gas a ‘goodness of fit’, which provide information about how 243 

close the computed and the measured spectra fit. The average fitting error for SO2 is 4.8 % 244 

(standard deviation of the average error, sd: ± 0.63 %) and 6.9 % (sd: ± 0.86 %) for HCl. 245 

Laboratory experiments were carried out in previous studies to validate the precision of the 246 

measurements using primary gas standards, suggesting accuracies of order of 5 % for 247 

retrieved column amounts of SO2 and CO (Horrocks et al., 2001,). The wavebands selected to 248 

retrieve volcanic gas species were: 2020 to 2100 cm-1 for H2O and CO2, 2430 to 2530 cm-1 249 

for SO2 and 2680 to 2835 cm-1 for HCl. The uncertainty on FTIR gas ratios was calculated by 250 

propagating the errors on individual retrievals i.e. the root of the sum of the individual 251 

maximum fitting errors. The maximum fitting error for SO2 was of 8.7 % and for HCl is was 252 

of 10.4 %. Therefore, the calculated error for this SO2/HCl ratio is 14 %. 253 

A multicomponent gas analyser system (MultiGAS; Aiuppa et al., 2005, 2010, Shinohara, 254 

2005) was used to measure the composition of the volcanic plume (sourced from both, the 255 

North and South crater; figure 1e) from 6 to 16 July 2018. The Multi-GAS hosts infrared 256 

sensors (LI-840 NDIR closed-path spectrometer, measurement range 0-3000 ppmv for CO2 257 

accuracy, ± 1.5 %), and electrochemical sensors (model 3ST/F, Cod.TD2D-1A,City 258 

Technology Ltd., calibration range, 0–30 ppmv; repeatability 1%) for SO2. The infrared and 259 

the electrochemical sensors are protected by a pelican case and the volcanic plume is pumped 260 

at a rate of 0.6 L min-1 to the sensors. The sensors are connected to a data logger that is 261 

programmed to capture measurements of the plume at a sampling rate of 1 Hz (Aiuppa et al., 262 

2010). The Multi-GAS was placed at the southern and western rim of Yasur (figure 1e) and 263 

powered by lithium battery. It measured the concentration of the volcanic gases by 264 

integrating the infrared sensor for CO2, the electrochemical sensors for SO2 and temperature, 265 
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pressure and relative humidity of H2O. MultiGAS time series were post-processed by using 266 

the Ratiocalc software (Tamburello et al., 2015). Uncertainties in derived molar ratios, based 267 

on laboratory test results are, for CO2/SO2 with SO2 > 0.16 mol, ± 6 % and with SO2 < 0.16 268 

mol the error increases to ± 12% (Liu et al., 2019). Errors for H2O/SO2 ratios, based on 269 

laboratory tests, are ± 25%. For this study, we obtained 7523 measurements.  270 

 271 

 272 

Figure 1 (a) Location of Vanuatu in the southwestern Pacific (yellow rectangle (b) Tanna island 273 
with Yasur located in the eastern part of the island (green rectangle),(c) Yasur Volcano, one of 274 
the most active volcanoes in Vanuatu and the world,(d) bird’s eye view of North (N) and South 275 
(S) crater of Yasur with the position of the equipment along the crater rim pointing into the South 276 
crater: FTIR (red circle), MultiGAS (green circle) and cameras (blue circle). The arrows pointing 277 
in the west showing the prevailing plume direction. 278 
 279 

Ultraviolet (UV) cameras (PiCam; Wilkes et al., 2017) were used to measure the emission 280 

rate of SO2 during the same time period (the methods and results are described and presented 281 

in). The method is based on the characteristic absorption of scattered UV sunlight by SO2 282 

between 300 and 320 nm (Mori and Burton, 2006, Kantzas et al., 2010, Kern et al., 2015). 283 
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The PiCam UV camera uses two UV bandpass filters that transmit radiation at about 310 nm 284 

(with absorption due to SO2) and at 330 nm (with no absorption due to SO2). The estimated 285 

error for this PiCam system is about 15% (Wilkes et al., 2017). SO2 emission rates derived 286 

from the PiCam data on 8 July 2018 were used to derive fluxes of the other gas species. The 287 

calculated error for the HCl flux is 20% based on propagating errors from the SO2 flux 288 

measurement and error on molar SO2/HCl (from FTIR).  289 

 290 

Lastly, videos and photos captured eruptive activity enabling recording of gas burst 291 

frequency, changes in crater morphology and volcanological features of the crater and vents 292 

during the period of the field work, using a 12 MP camera at 60 fps (iphone SE). To compare 293 

the activity between the North and South craters, a 12 MP camera at 240 fps (go pro hero 7) 294 

was installed at the eastern rim to overlook the North and South craters. Both camera 295 

positions in figure 1c were used to acquire video images for counting bubble bursts. 296 

 297 

4. Results 298 

4.1 Video observations of the South crater  299 

The number of active vents in the South crater emitting gas and/or magma during the 300 

fieldwork varied from 5 to 7 (figure 2). Six vents were observed on 9 July (figure 2a), 7 on 11 301 

July (figure 2b), 6 on 13 July (figure 2c) and 5 on 15 and 16 July (figure 2d). The two 302 

principal vents ( vent 1 and 2 in figure 2) did not change their position during the field period 303 

whereas other minor vents changed their positions and sizes or appeared and disappeared 304 

from day to day. Video observations reveal that small bubble bursts generated ejecta that rose 305 

a few tens of metres above the vents whereas larger bubble-bursting events generated bombs 306 

that were expelled to a height of > 10 metres above the vents and landed outside the crater. 307 

The overall number of large bubble bursts which were counted on the video (and generated 308 

ejecta) per second was 4 ± 0.1 s-1 on 9 July, 1.3 ± 0.3 s-1 on 11 July, 0.8 ± 0.3 s-1 for 13 July 309 

in the morning and 0.7 ± 0.3 s-1 in the evening and 1.3 ± 0.1 s-1 for 15 and 16 July. Table 1 310 

shows the overall number of bubbles which were observed in different vents of figure 2.  The 311 

average time interval between large bubble bursts (strombolian explosions) from 8 to 16 July 312 

was 54 (± 44) seconds i.e. 0.02 large bubble bursts s-1. One of the principal vents exhibited a 313 

consistent style of volcanic activity throughout the measurement period, characterised by 314 

strombolian explosions, which expelled volcanic bombs that occasionally reached the crater 315 
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rim and were sometimes accompanied by shock waves. The second principal vent showed a 316 

different behaviour, exhibiting jet-like gas emission after the bursts that lasted for several 317 

seconds. These strombolian explosions ejected volcanic bombs several hundred meters into 318 

the air and were accompanied by shock waves. All the other vents were less active, erupting 319 

only a little material (via spattering).  320 

 321 

Figure 2 Vent location in the crater of Yasur Volcano, Vanuatu, on (a) 9th July, (b) 11th July, (c) 13th 322 
July and (d) 15th - 16th July 2018. ~Estimated field of view is between 200 and 300 m.  323 

 324 
Table 1. Calculated bubble bursts per s-1 from vents at Yasur Volcano, Vanuatu in July 2018. The 325 
location of the vents are shown in figure 2 over different days. Each calculation is based on 224 to 326 
776 seconds worth of video data. 327 

day Bubble bursts per second 

 Vent 1 Vent 2 Vent 3 Vent 4 Vent 5 Vent 6 Vent 7 

9th July 0.01 0.05  0.06 0.02   

11th July 0.009 0.03 0.40  0.29  0.018 

13th July 0.003 0.17 0.43 0.16 0.45 0.01  

15th/16th July 0.009 0.36 0.26 0.26 0.36   

 328 

4.2 Volcanic plume composition from MultiGAS 329 

MultiGAS results are shown in figure 3 and table 2. Across all days, the mean gas 330 

concentrations varied between 17.7 and 25.4 ppm CO2, 14.1 to 14.8 ppm SO2 and 364 to 854 331 

ppm H2O.  The mean volcanic gas concentrations in the plume across all four days is: 22.2 332 

ppm CO2, 14.4 ppm SO2 and 610 ppm H2O. The mean molar plume composition for all four 333 

days is 97.9 mol % H2O, 1.44 mol % CO2 and 0.66 mol % SO2. 334 

 335 

 336 

 337 
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 338 

 339 

 340 

 341 

 342 

Figure 3 Scatter plots of Yasur Volcano’s plume gas emissions for 8th to 16th July: (a) Molar 343 
CO2/SO2 vs. SO2  and (b) Molar H2O/SO2 vs. SO2, with the average value of CO2/SO2 and 344 
H2O/SO2 ratios (with SO2>0.3) marked as a horizontal line, marked with value. Each point 345 
corresponds in (a) to a CO2/SO2 and in (b) to a H2O/SO2 peak in the measured data set (CO2/SO2: 346 
315 data points, H2O/SO2: 86 data points). Below SO2 concentrations of 0.16 mol% the error 347 
increases from ± 6 to ± 12%.  348 
 349 

Table 2 shows the mean molar CO2/SO2 plume ratios for all days, which ranged from 1.80 350 

on 9 July to 2.48 on 16 July. Figure 3a shows CO2/SO2 ratios plotted against SO2 for single 351 

eruption gas peaks recorded in the volcanic plume for each day and shows that CO2/SO2 were 352 

consistent from day to day, converging on an overall mean of 2.14 for molar SO2 values > 353 

0.16 (there is a larger spread at lower SO2 values; figure 3a). The daily molar H2O/SO2 354 

plume ratios (table 2; figure 3b)  are highly variable, ranging from a mean of 89.3 ± 22.3 for 355 

11 July and 205 ± 51.3 for 16 July with a mean value of 190 for molar SO2 values > 0.3 mol 356 

%, although there is considerable scatter (figure 3b). This variability in molar H2O/SO2 is 357 

linked strongly to degassing regime: low H2O/SO2 is associated with powerful strombolian 358 

eruptions (figure 2a-d).  359 

Table 2: Composition of Yasur Volcano’s volcanic gas plume measured by MultiGAS on for 9, 10, 11, 360 
and 16 July 2018. n: number of measurements including data measurements with SO2 < 0.16 mol, 361 
*mean concentration, in ppm (standard deviation), $molar percentage of each component, ^molar 362 
ratios.  363 

  16 July 11 July 10 July 9 July Mean 

 n  4809 959 1280 475  

*Mean concentration CO2 25.4 (10.1) 23.3 (8.0) 22.2 (7.1) 17.7(102) 22.2 

 SO2 14.8 (4.9) 14.4 (3.9) 14.1(3.3) 14.4 (5.3) 14.4 

 H2O 854 (274) 364 (276) 747 (289) 474 (389) 610 
$Molar composition, % H2O 98.3 96.4 98.3 97.7 97.9 
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 CO2 1.20 2.53 1.18 1.49 1.44 

 SO2 0.48 1.10 0.52 0.82 0.66 

^Molar ratios  CO2/ SO2 2.48 2.33 2.31 1.80 2.22 

 H2O/ SO2 205 89.3 189 118 148 

 H2O/CO2 82.6 38.3 81.9  65.6 61.1 

 364 

 365 

Figure 4 H2O/SO2 ratio for a Multi-GAS measurement period on 16th July from 5:22 to 6:45 pm.  366 
Photos from (a) to (d) show the prevailing different eruption styles in North and South crater: (a, 367 
d): spattering activity in the Southern crater, (b) spattering and a mild strombolian eruption in the 368 
South crater and (c) mild strombolian eruption in the South crater and powerful strombolian 369 
eruption in the North crater. Both, the H2O and the SO2 content of the volcanic gases increases 370 
from spattering over mild to powerful strombolian eruptions. Eruptive events occur on average 371 
every 62 (sd: 30) seconds.  372 

4.3 Volcanic gas composition from OP-FTIR spectroscopy 373 

Figure 5 shows the retrieved column amounts for HCl, CO2, and SO2 from the time series of 374 

set 1 from the South crater, which was obtained from the southern crater rim. The record 375 

identifies 16 explosions in 360 s (identified by the rapid increase in gas column amounts) and 376 

provides information about changes in gas ratios before and during explosions. We 377 
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differentiate between active degassing, consisting of intermittent strombolian explosions and 378 

spattering; and passive degassing.  379 

 380 

Figure 5 Time-series of retrieved column amounts of HCl (green), SO2 (violet), CO2 (red) for 381 
data set 1, in molecules∙cm-2. Prominent strombolian explosions are numbered with 1, 2, 3 and 382 
occur ~every 100 seconds. Numbered peaks from 4 to 16 mark minor explosive events prior to 383 
the strombolian events.  384 
 385 
A cyclicity is visible when less active periods are interrupted by explosions, identified by an 386 

increase in SO2 and CO2 followed by a decrease (figure 5); explosions occur at the peaks of 387 

these cycles. In set 1, explosions 1, 2 and 3 were accompanied by a rise in SO2 column 388 

amounts, followed by a decrease to pre-explosion column amounts of SO2 after ~ 60 seconds. 389 

Smaller explosions (4, 5, 7, 9, 10, 11, 13,  and 16; figure 5) are associated with peaks in SO2 390 

column amounts up to <4.93 ∙ 1019 molecules∙cm-2 after which SO2 column amounts remain 391 

elevated above the pre-explosion level. Explosions 6 and 8 were associated with increases in 392 

SO2 column amounts up to 5.26 ∙ 1019 and 7.07 ∙ 1019 molecules∙cm-2 respectively, which then 393 

decreased after the explosions, returning to pre-explosion values after ~20 seconds. Variation 394 

in the concentration-pathlengths of the measured gases could be also caused by the dilution 395 

effect of wind gusts in the crater but we regard it unlikely as these changes occur 396 

periodically, which is more consistent with the observed volcanic activity.  397 

 398 

 399 
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 400 

 401 

Figure 6 Column amounts for SO2 and HCl for spectra from set 1 (green circles; 06:41-06:56 h), 402 
set 2 (red circles;08:19-08:24 h) set 3 (blue circles; 08:56-09:03 h) measured all from the same 403 
position on the South crater on 16 July 2018 and data from the South crater on 1 January 2005 404 
including set 4( yellow diamonds: 09:19-09:22 h), set 5 (pink diamonds: 09.23-09.24 h) and set 6 405 
(blue diamonds: 09:24-.09:25 h) (Oppenheimer et al., 2006). Solid lines indicate the SO2/HCl 406 
ratios. Passive degassing is characterised by HCl>SO2 whereas active degassing has higher SO2 407 
concentrations (SO2> HCl). Higher ratios indicate a higher proportion of explosive gas. Set 1 is 408 
compared to set 2 and set 3 a period of higher activity. (Average HCl error: ± 7 % and SO2 error: 409 
± 4.8 %). 410 
 411 
We observe that active degassing from the South crater is distinguished by a molar SO2/HCl 412 

ratio between 1 and 1.7 (table 3); whereas a SO2/HCl < 1, where HCl is dominant compared 413 

to SO2 in the gas phase, characterises the passive degassing periods (table 3). In 2005, 414 

Strombolian eruptions in the South crater emitted gas with molar SO2/HCl >30, and passive 415 

degassing was characterised by molar SO2/HCl between 1.5 and 2.5 (Oppenheimer et al., 416 

2006). Photos taken in 2005 revealed more violent eruptions occupying the whole crater and 417 

with a higher number of volcanic pyroclasts, ejected to greater heights (Oppenheimer et al., 418 

2006). This violent type of eruption was not observed in July 2018. The composition of 419 

volcanic gases during active and passive phases is shown in table 3.  420 

 421 
Table 3: Mean chemical composition (as molar ratios) of volcanic gases emitted from Yasur Volcano, 422 
Vanuatu, during ‘active’ and ‘passive’ (non-explosive) phases on 16 July 2019. *South crater 423 
measured by OP-FTIR ; +Plume of North and South crater measured by MultiGAS. Uncertainties on 424 



16 
 

the mean molar ratios are shown as a ± range. Number of measurements in each case are shown in 425 
brackets. 426 

 427 
Molar ratio Active phase Passive phase 
+H2O/SO2 315 ± 78.8 (222) 

 
174 ± 43.5 (477) 

+CO2/SO2 2.85 ± 0.17 (222) 

 
1.96± 0.12  (477) 

*SO2/HCl 1.7 ± 0. 22 (84) 0.5 ± 0.07 (423) 
 428 

4.4 Volcanic gas fluxes 429 

In table 4 we show the flux of SO2, CO2 and HCl from Yasur Volcano in 2018, derived from 430 

UV camera data  and from the Multi-GAS and FTIR molar ratios (table 2) compared to those 431 

of other basaltic open vent volcanoes known for their strombolian activity. The mean SO2 432 

flux has been measured as 7.9 kg∙s-1 (Bani and Lardi, 2007), 7.9 kg∙s-1(Metrich et al., 2011) 433 

and 4.2 kg s-1 in this study. 434 

Combining the flux measured in 2018 with the mean mass ratios in the gas plume (table 2 435 

and the average SO2/HCl value of 1.02) we calculate daily fluxes of 5.90 kg∙s-1 CO2 (± 16.2 436 

%), 224 kg∙s-1 H2O (± 29.2%) and 2.33 kg∙s-1 HCl (± 13.6%).  In 2007 the corresponding 437 

fluxes were 9.7 kg∙s-1 CO2 (64 % higher than in 2018), the HCl flux was 1.9 kg∙s-1 (18 % 438 

lower than in 2018) and the SO2 flux was 7.9 kg∙s-1 (88 % higher than in 2018). We compare 439 

the active and passive CO2/SO2 and SO2/HCl ratios with the overall mean ratios in order to 440 

get an estimate of the amount of gas supplied by active rather than passive degassing. For 441 

example, the mean molar CO2/SO2 is 2.14 and the gases emitted during active degassing 442 

periods have a CO2/SO2 of 2.85 and the passive degassing periods 1.96. Active degassing 443 

therefore provides 20% of the total gas flux. The same value (20%) is derived using the 444 

overall mean molar CO2/SO2 of 2.14 and the active and passive degassing ratios (2.85 and 445 

1.96). An SO2 flux of 4.2 ± 0.6 kg∙s-1 is the same as 363 ± 54 tonnes of SO2 per day, of which 446 

only ~ 73 tonnes per day is derived from active degassing, the rest passive degassing. Using a 447 

bubble burst frequency of every 0.02 seconds; we infer a bubble volume of 5095 m3. 448 

 449 

Table 4: Average volcanic gas composition (molar ratios) and fluxes (in kg∙s-1) emitted from Yasur 450 
Volcano, Vanuatu, in July 2018 Stromboli (Italy), Villarrica (Chile) and Masaya (Nicaragua). 451 

  Yasur, 

Vanuatu 

Stromboli, 

Italy 

Villarrica, 

Chile 

Masaya, 

Nicaragua 
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Molar ratios CO2/SO2 2.14 ± 0.13 a 5.7 b ± 0.34 -  

8g ± 0.48 

1.5 d ± 0.09 

 1.7 d ± 0.11 

2.7 ± 0.3 e 

 H2O/SO2 190  ± 48a 26.7 b ± 6.7 - 

48.8g ± 5.7 

67 d ± 16.8- 

75 d ± 18.8 

63±7  e 

 

 SO2/HCl 1.0  ± 0.14 a 1.00 h± 0.08 

- 

1.50 h ± 0.12  

3 ± 0.1j 2 ± 0.03 e 

Mass fluxes SO2  4.2 ± 0.6 a 0.7 c ± 0.12 - 

3.0 ± 0.45 g 

1.5d ± 0.18- 

3.7 i ± 0.56 

 

7.9 ± 2.37e 

 HCl  2.3 ± 0.34 0.4c,g-1.1f,h 0.3d,i-0.7i 2.2 e 

 CO2 

H2O 

 

Total gas  

5.9 ± 0.94 

224 

 

236 

2.6b,c15.8g,f 

5.2b,c-41.2g,f 

8.9-61.1 

1.5d-4.1d,h 

28.3d- 78.0d,h 

 

31.6-86.5 

13.9 e 

140 e 

 

164  

 452 
a This study: average composition 2018; b Aiuppa et al., 2010, c Tamburello et al., 2012, d Liu et al., 2018, e Martin et al., 453 

2010. fAllard ,2010, g Burton et al., 2007, h Sawyer et al., 2011,  454 

5. Discussion 455 

4.2 Gas evolution and outgassing in a crystal-rich conduit 456 
 457 
We use geochemical data from Yasur’s primitive melt inclusions in olivines (Metrich et al., 458 

2011) to generate a model of closed system magma degassing and compare it with the 459 

measured gas composition at the surface (table 3) to infer the approximate pressure of last 460 

gas-melt equilibration, which may be equivalent to the gas segregation pressure, for active 461 

and passive modes of degassing. Extensive petrological study of Yasur magmas has led to a 462 

model (figure 7; table 5) whereby primitive basaltic magmas enter the system at depths of > 463 

6 km containing ~2500 ppm CO2 (reconstructed from melt inclusion data and volcanic gas 464 

ratios; Metrich et al., 2011), ~ 1 wt% H2O, 0.1 wt% S and ~550 ppm Cl. We use the S 465 

contents of the melt inclusions and the mean CO2/SO2 of the gas plume in 2018 to estimate a 466 

‘primary’ (pre-degassing) melt CO2 content. Using an average sulfur content of melt 467 

inclusions of 0.1 wt. % (Metrich et al., 2011) and the average CO2/SO2 plume mass ratio of 468 

1.5 in July 2018, we obtain a pre-degassing bulk melt CO2 content of 3000 ppm, assuming 469 

complete degassing of sulfur and CO2 on eruption, compared with 2500 ppm estimated by 470 

Metrich et al. (2011) using the same method. 471 
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 472 

At pressures between 330 and 130 MPa, the exsolved volatile phase is comprised almost 473 

entirely of CO2 (resulting in the molar CO2/SO2 going to infinity at pressures >130 MPa in 474 

figure 7). The primitive basalt undergoes extensive crystallisation in a magma reservoir 475 

between 130 and 50 MPa (melt fraction remaining ~ 0.46) to produce basaltic-trachyandesite 476 

(Metrich et al., 2011). Olivine-hosted melt inclusions of basaltic-trachyandesite that are 477 

assumed to have originated in this reservoir contain up to 1 wt.% H2O, 780 ppm S, 1200 ppm 478 

Cl and ~500 ppm CO2 (Metrich et al., 2011). By this stage 63% of S, and 43% of bulk 479 

magmatic water content has been lost to the vapour phase. The exsolved volatile phase 480 

existing in equilibrium with the basaltic trachyandesite melt at this pressure has a molar 481 

CO2/SO2 of ~2.6, and molar SO2/HCl >100 (figure 7; table 5).  482 

 483 

Between 50 MPa (~ 2 km) and the surface (‘stage II’ of Metrich et al., 2011), S and Cl degas 484 

from the melt (table 5; figure 7). At the end of this stage, 29% of the Cl, 86% of the bulk S, 485 

and 90% of the bulk water has been lost from the magma (Metrich et al., 2011). The exsolved 486 

volatile phase is expected to have a molar CO2/SO2 of ~1.8-2.0 in this pressure interval, and a 487 

molar SO2/HCl of 2-6 (figure 7; table 5). On eruption (stage III), an additional ~ 40% of Cl 488 

exsolved into a vapour phase, as well as an additional 8% S and 4% H2O. This low pressure 489 

gas is highly enriched in HCl, generating a molar SO2/HCl of < 3, with a molar CO2/SO2 of 490 

1.7 to 2 (table 5; figure 7). 491 

 492 

Table 5 Yasur’s melt composition from primitive melt inclusions (Metrich et al., 2011) and the 493 
calculated emitted amount and gas composition for degassing stage I,II, and III in a closed degassing 494 
system. The melt fraction in each stage was used to calculate the crystal fraction at each stage (1-f) 495 
and incorporate fractional crystallization in the melt degassing process.  496 

Stage Pressure, MPa Melt, wt%   f, melt fraction Amount degassed, ppm 
 Volcanic gas ratios, 

molar 

 Max Min CO2 H2O S Cl Comp K2O0/K2O ΔCO2 ΔH2O ΔS ΔCl CO2/SO2 SO2/HCl 

 330 180 0.25 0.8 0.099 0.055 bas 1 0 0 0 0 ∞ ∞ 

I 130 50 0.05 1.2 0.078 0.1235 
bas-trach-

and 
0.46 4934 5391 1370 10 2.6 152 

II 50 0 0.005 1.2 0.033 0.091 
bas-trach-

and 
0.43 5763 6605 1972 369 2.1 5.9 

III 0  0 0.001 0.2 0.006 0.046 
bas-trach-

and 
0.35 7132 2087 2768 1111 1.9 2.8 

 497 

We compare our gas data (table 3) as well as previously published data (Merich et al., 2011) 498 

to the model (figure 7). The gas compositions for passive degassing are consistent with gases 499 

being derived predominantly from the shallowest parts of the conduit system, at pressures of 500 
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<10 MPa (depths approximately <400 m). These gases are relatively enriched in HCl and 501 

have the lowest CO2/SO2 values. During the ‘active’ degassing (strombolian explosions and 502 

spattering), the gases become depleted in HCl and more CO2-rich, consistent with their 503 

derivation from deeper in the conduit, perhaps down to 0.6 to 2 km depth (figure 7). 504 

 505 

Figure 7 Predicted volcanic molar gas composition from melt inclusion data with pressure 506 
and depth for Yasur Volcano, reconstructed from melt inclusion data (Metrich et al., 2011). 507 
Molar CO2/SO2 is shown in blue, and molar SO2/HCl in red. Depths are estimated using a 508 
crustal density of 2800 kg∙m-3. Bottom: volcanic gas compositions measured at Yasur for 509 
passive degassing, active degassing (Strombolian activity) and measurements taken 510 
integrated over both passive and active periods. S1-S3 stands for different stages proposed in 511 
Metrich et al., 2011.  Symbols denote data source. #: this study; *: Oppenheimer et al., 2006; 512 
+: Metrich et al., 2011. The dark rectangle denotes the mean value and the light shaded 513 
rectangle the range in probable values. 514 
 515 

Petrological studies have shown that between 6 and 1.8 km depth, the basaltic parent magma 516 

crystallises by > 46 vol% (Metrich et al., 2011) to produce the basaltic trachyandesites that 517 

are erupted. Erupted magmas contain around 30 vol% crystals (predominantly plagioclase 518 

phenocrysts up to 5 mm in size, and minor olivine, clinopyroxene and Fe-oxides; Metrich et 519 

al., 2011), which suggests that significant volumes of crystals (dominantly olivine) must 520 

accumulate in a subsurface mush pile. Extensive crystallisation in the upper 1-2 km of the 521 

conduit, driven by water degassing, induces changes in the rheological properties of the 522 

magma. We use the Giordano et al. (2008) viscosity model with a typical melt inclusion 523 
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composition from Metrich et al. (2011) and a H2O content of 1.1 wt% for pre-degassing and 524 

0.2 wt% after degassing. Based on the MELTS output the crystallinity increases from 10 to 525 

32 vol% on degassing. We find that the bulk magma effective viscosity increases from 5.8 x 526 

102 Pa∙s prior to degassing to 1.5 x 105 Pa∙s after degassing and crystallisation.   527 

 528 

In line with recent studies showing how the exsolved gas phase interacts with the crystal 529 

phase (Belien et al., 2010, Parmigiani et al., 2014, 2016, 2018, Oppenheimer et al., 530 

2015,2020, Pistone et al., 2017,  Barth et al., 2019, Spina et al., 2019b, ), we suggest that the 531 

increase in the crystallinity and bulk viscosity of the magma creates a plug at the top of the 532 

conduit that develops an effective yield strength (figure 8). Our hypothesis is consistent with 533 

previous work: Kremers et al., (2012) suggested that a degassed, viscous plug may exist in 534 

the upper conduit of Yasur, based on the observed mingling of sideromelane and microlite-535 

rich tachylite. We envisage Yasur’s shallow conduit consisting of a crystal-rich region with a 536 

thickness of at least 0.6 and up to 2 km, if extensive crystallization is driven by H2O 537 

degassing (Metrich et al., 2011). Magmatic gas bubbles (with a slight CO2-enrichment over 538 

gases closer to the surface, and poor in HCl) will accumulate in the crystal-rich plug , before 539 

generating a local overpressure that is sufficient to overcome the yield strength of the 540 

overlying crystal plug (figure 8a). The gas bubble will then migrate upward (figure 8b, c) 541 

and transport magma in its wake (Del Bello et al., 2015). At the surface, the bubble bursts as 542 

a typical Strombolian eruption with a gas phase enriched in CO2 compared to SO2 (figure 543 

8d). The plug rebuilds and bubbles begin to get trapped again and a new cycle starts (figure 544 

8g). Bubbles released during ‘passive degassing are sourced from close to the surface and in 545 

general, these shallow gases are richer in HCl than the deeper accumulated gases due to the 546 

fact that HCl exsolves at pressures < 10 MPa. 547 

 548 

4.3 Degassing rates and magma fluxes  549 

We may calculate the net upward flux of magma in the conduit required to supply the 550 

observed fluxes of SO2 at the surface (table 4). Using the maximum pre-eruptive sulphur 551 

concentrations of 1000 ppm in primitive olivine-hosted melt inclusions (Metrich et al., 2011) 552 

and mean SO2 fluxes (9.9 to 1.2 kg∙s-1 with a mean of 4.1 kg∙s-1) measured on 8 July ,we infer 553 

a magma supply rate between 770 and 6600 kg∙s-1, for a magma mean density of 2650 kg∙m-3 554 

and a crystallinity of 32 vol%. Our calculated bulk magma degassing rate of 2700 kg∙s-1 is 555 

lower than previous estimates of magma degassing rate of 4100 kg∙s-1 (Metrich et al, 2011). 556 
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We assume in this calculation that the magma degasses all of its sulfur (the S concentration in 557 

the erupted glass matrix is 0.006 wt.%). Yasur volcano has been degassing for the last 1400 558 

years (Vergniolle and Metrich, 2016). Over long timescales the flux of degassing (but not 559 

necessarily erupted) magma is 0.01 to 0.08 km3 per year, with a minimum of 13-109 km3 560 

degassed magma presumably stored as a plutonic body at depth over 1400 years, consistent 561 

with previous estimates (0.05 km3 per year; Metrich et al., 2011). 562 

 563 

These new data from Yasur volcano in 2018 provide insights into the influence of crystals on 564 

bubble formation events in the shallow conduit. These crystals may form a viscous plug that 565 

influences bubble formation depth and consequently their chemical fingerprint. It is known 566 

that magma in the shallow conduit of other Strombolian active volcanoes is crystal-rich, with 567 

30 to 60 vol. %. This crystal content might be high enough to develop an effective yield 568 

strength to trap bubbles and form slugs. 569 

 570 

 571 

 572 
Figure 8 Schematic diagram shows the shallow plumbing system of Yasur Volcano (from 573 
600 bar to the surface). (Described in main text). 574 

Conclusions 575 
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We present volcanic gas flux and composition data from Yasur Volcano, Vanuatu, during a 576 

field campaign in July 2018.  We draw the following conclusions: 577 

 578 

(1) The average volcanic plume chemistry is characterised by a mean molar CO2/SO2 579 

ratio of 2.14, H2O/SO2 of 190 and SO2/HCl of 1.02. The mean SO2 flux is 4.2 kg∙s-1. 580 

Therefore, the mean fluxes of the other species are 5.9 kg∙s-1 CO2, 224 kg∙s-1 H2O and 581 

2.3 kg∙s-1 HCl.  582 

 583 

(2) The degassing regime at Yasur Volcano, as also defined from previous studies 584 

(Oppenheimer et al., 2007; Metrich et al., 2011) ranges from ‘passive’ to ‘active’ 585 

styles, with the latter characterised by strombolian explosions. These styles are also 586 

distinguished by their characteristic gas compositions in July 2018: (a) gases emitted 587 

during active degassing are enriched in SO2 and CO2 with CO2/S ratios of 2.85 ± 588 

0.17, SO2/HCl with 1.7 ±0.22 and H2O/SO2 with 315 ± 78.8 (b) passive degassing is 589 

enriched in HCl with CO2/SO2 ratios of 1.96 ± 0.12, SO2/HCl with 0.50 ±0.07 and 590 

H2O/SO2 of 174 ± 43.5.  591 

 592 

(3) In order to understand the physical and chemical characteristics of the passive and 593 

active degassing at Yasur, we consider the gas compositions in the context of a 594 

volatile degassing model derived from melt inclusion studies (Metrich et al., 2011). 595 

We envisage Yasur’s shallow conduit consisting of a crystal-rich region with a 596 

thickness of at least 0.6 km, and up to 2 km from the surface. Magmatic gas bubbles 597 

(with a slight CO2-enrichment over gases closer to the surface, and poor in HCl) 598 

accumulate at the base of the crystal-rich plug, before generating a local overpressure 599 

that is sufficient to overcome the yield strength of the overlying crystal plug.   600 

 601 
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