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Abstract. We introduce the notion of star-fundamental algebra over a field of characteristic zero. We prove
that in the framework of the theory of polynomial identities, these algebras are the building blocks of a finite

dimensional algebra with involution ∗.

To any star-algebra A is attached a numerical sequence c∗n(A), n ≥ 1, called the sequence of ∗-codimensions
of A. Its asymptotics is an invariant giving a measure of the ∗-polynomial identities satisfied by A. It is well-

known that for a PI-algebra such sequence is exponentially bounded and exp∗(A) = limn→∞
n
√

c∗n(A) can be

explicitly computed. Here we prove that if A is a star-fundamental algebra,

(1) C1n
texp∗(A)n ≤ c∗n(A) ≤ C2n

texp∗(A)n,

where C1 > 0, C2, t are constants and t is explicitly computed as a linear function of the dimension of the
skew semisimple part of A and the nilpotency index of the Jacobson radical of A. We also prove that any

finite dimensional star-algebra has the same ∗-identities as a finite direct sum of star-fundamental algebras.

As a consequence, by the main result in [38] we get that if A is any finitely generated star-algebra satisfying

a polynomial identity, then (1) still holds and, so, limn→∞ logn
c∗n(A)

exp∗(A)n
exists and is an integer or half an

integer.

1. Introduction

Let A be an algebra with involution ∗ over a field F of characteristic zero. This paper is devoted to the
computation of an invariant of the ideal of ∗-polynomial identities of A when A is a ∗-fundamental algebra.

Recall that one can attach to any algebra A with involution a numerical sequence c∗n(A), n = 1, 2, . . ., called
the sequence of ∗-codimensions of A. Such sequence is built out of the dimensions of the multilinear ∗-polynomial
identities of degree n ≥ 1 satisfied by the algebra A. Its asymptotics is the invariant we are searching for and it
gives a measure of the ideal of the free algebra with involution consisting of the ∗-polynomial identities satisfied
by A. Recall that such ideals are precisely the ones invariant under the endomorphisms of the free algebra.

Here we compute such invariant, up to a constant, for any ∗-fundamental algebra. As an outcome of the
theory developed here, it turns out that any finite dimensional ∗-algebra has the same ∗-identities as a finite
direct sum of ∗-fundamental algebras. It follows that the above invariant can be computed, up to a constant, for
any finite dimensional ∗-algebra (actually by [38], for any finitely generated ∗-algebra satisfying a polynomial
identity). This motivates the relevance of such algebras.

In order to provide a motivation and a better understanding of the results obtained in this paper we shortly
describe the state of the art of the area when dealing with algebras with no additional structure.

In general let F 〈X 〉 be a free algebra over F on a countable set X . The T-ideals of F 〈X 〉, i.e., the ideals
invariant under all endomorphisms of F 〈X 〉, are an interesting object of study since they coincide with the sets
of polynomial identities satisfied by the algebras over F .

Even though by a famous theorem of Kemer the proper T-ideals are finitely generated [29], they turn out
to be quite obscure objects. A way of measuring them is through a numerical sequence called the sequence of
codimensions.

Let A be an associative F -algebra and Id(A) the T-ideal of polynomial identities satisfied by A. In charac-
teristic zero one may restrict oneself to the study of the multilinear polynomials. Then, for every n ≥ 1, one
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defines Pn(A) to be the space of multilinear polynomials in n fixed variables modulo the identities of A, and
the sequence of codimensions of A is cn(A) = dimPn(A), n = 1, 2, . . ..

Such sequence has been extensively studied ([11], [12], [13], [30], [31] ), but it turns out that it can be explicitly
computed only in very few cases. Since Regev in [35] proved that if A satisfies a non-trivial identity (A is a
PI-algebra), the corresponding sequence of codimensions is exponentially bounded, the interest focused in the
computation of such asymptotics since they represent an invariant of the T-ideal Id(A). In this perspective,
inspired by a conjecture of Amitsur, in [16] and [17] the authors proved that for any PI-algebra A, there exist
constants C1 > 0, C2, t, s, d such that C1n

tdn ≤ cn(A) ≤ C2n
sdn, for all n ≥ 1, and d is an integer called the

PI-exponent exp(A) of A.
Later Berele and Regev in [9] and [6] extended such result by verifying for algebras with 1 a conjecture of

Regev stating that the asymptotic equality cn(A) ' Cntexp(A)n holds, where C, t are constants and t ∈ 1
2Z.

Since the sequence of codimensions is eventually non decreasing ([23]) then by [9, Lemma 39] and [6, Theorem
4.18] it follows that if A is any arbitrary PI-algebra

(2) C1n
texp(A)n ≤ cn(A) ≤ C2n

texp(A)n

holds where C1 > 0, C2, t are constants and t ∈ 1
2Z.

This result gives a second invariant of a T-ideal, after the PI-exponent, namely

t = lim
n→∞

logn
cn(A)

exp(A)n
.

Since the results in [9] and [6] do not provide an interpretation of t, next step is the explicit computation of this
second invariant. In case of k × k matrices Regev in [36] had computed the precise asymptotics. It turns out
that if Mk(F ) is the algebra of k × k matrices over F , then cn(Mk(F )) ' Cnt(k2)n, where C is an explicitly
computed constant and t = − 1

2 (k2 − 1). Based on this result this asymptotic equality and on further results of
[20] and [8] it turns out that one can compute such invariant also for the upper block triangular matrix algebras.
These algebras are a special case of the so-called fundamental algebras.

Recall that a fundamental algebra (called also basic algebra) is a finite dimensional algebra over an alge-
braically closed field F that can be defined in terms of some multialternating polynomials called Kemer poly-
nomials or a pair of integers called the Kemer index or by means of the representation theory of the symmetric
group. These algebras were introduced by Kemer as a basic tool of his theory ([27], [28], [29]).

More recently Aljadeff, Janssens and Karasik in [2] were able to compute the invariant t for any fundamental
algebra. The result is the following: let A be a fundamental algebra over F . Let q be the number of simple
components in the decomposition of a maximal semisimple subalgebra of A and let s+1 be the nilpotency index

of the Jacobson radical of A. Then limn→∞ logn
cn(A)
exp(A)n = − 1

2 (exp(A) − q) + s. Now, any finite dimensional

algebra over F has the same identities as a finite direct sum of fundamental algebras. Hence, since codimensions
do not change upon extension of the base field this result rediscovers the result in [9, Lemma 39] given in (2)
for finite dimensional algebras. This is the state of the art of the theory.

It is worth mentioning that some aspects of the theory have been generalized by considering an extra structure
such as group grading, group action or generalized Hopf algebra action ([24, Section 3], see also [26], [1]).

Next we turn to the theory of algebras with involution.
If A has an involution ∗, e.g. the algebra of k× k matrices, one can introduce finer invariants defined by the

∗-polynomial identities of A. Recall that by a well-known theorem of Amitsur ([4]) if an algebra A satisfies a
∗-identity, it also satisfies an ordinary identity (no involution), and this gives a close relation between identities
and ∗-identities.

As for the general setting, one considers the free algebra with involution F 〈X , ∗〉 on a countable set X . If A
is an algebra with involution (or a ∗-algebra), we let Id∗(A) be the ideal of ∗-polynomial identities satisfied by
A. This is a so-called T∗-ideal, i.e., an ideal of the free algebra invariant under all endomorphisms commuting
with the involution ∗.

As in the ordinary case one constructs the sequence of ∗-codimensions of A by setting c∗n(A) = dimP ∗n(A),
n = 1, 2, . . ., where P ∗n(A) is the space of multilinear ∗-polynomials in n fixed variables modulo the ∗-identities
of A.
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Now, in [15] it was shown that for any PI-algebra A, cn(A) ≤ c∗n(A) ≤ 2ncn(A), holds for all n ≥ 1. On the
other hand the explicit computation of the ∗-codimensions has been carried out in very few examples ([32], [33],
[34]) and, as in the ordinary case, the attention focused on computing their asymptotics.

An interesting algebra endowed with different involutions is the algebra Mk(F ) of k × k matrices. It turns
out that there are only two T∗-ideals of identities of Mk(F ) and they correspond to the transpose and the
symplectic involution (see for instance [21, Section 3.6] or [21, Theorem 3.6.8]). The asymptotics of the ∗-
codimensions of Mk(F ) were computed in [7] for both types of involution. It turns out that if ∗ is the transpose

involution, c∗n(Mk(F )) ' C1n
− 1

4k(k−1)k2n, for some constant C1, and if ∗ is the symplectic involution, k is even

and c∗n(Mk(F )) ' C2n
− 1

4k(k+1)k2n, for some constant C2.
As we mentioned above, the ∗-codimensions of a PI-algebra are exponentially bounded, and their exponential

growth was computed and shown to be an integer, for any finite dimensional algebra in [18]. For general PI-
algebras with involution the result was achieved much later in [14]. It turns out that there exist constants
C1 > 0, C2, t1, t2, d such that

(3) C1n
t1dn ≤ c∗n(A) ≤ C2n

t2dn,

for all n ≥ 1, and d is an integer called the ∗-exponent exp∗(A) of A.
The reason for such a delay was due to the lack of a suitable structure theorem for PI-algebras with in-

volution. Such result was proved recently in [1] as a consequence of a close relation between involutions and
superinvolutions of an algebra and its Grassmann envelope. It turns out that any PI-algebra with involution has
the same ∗-identities as the Grassmann envelope of a finite dimensional superalgebra B with superinvolution.
Then when F is algebraically closed, the ∗-exponent can be described as the dimension of a suitable semisimple
subalgebra of B.

Next step is to ask if the polynomial factor in (3) is uniquely determined, i.e., t1 = t2, giving in this way a
second invariant of a T∗-ideal, after the ∗-exponent. A more concrete question would be the following: can one
compute such polynomial factor for a certain class of algebras relating it to the structure of the algebra itself?

In this paper we are able to give a positive answer to this question for the class of ∗-fundamental algebras
that here we define. As a consequence we prove that t1 = t2 ∈ 1

2Z, for any finitely generated ∗-algebra satisfying
a polynomial identity.

First, in accordance to Kemer’s theory we introduce the notion of ∗-fundamental algebra. The main feature
of these algebras is that any finite dimensional algebra has the same ∗-identities as a finite direct sum of ∗-
fundamental algebras. Then we develop the theory of such algebras and as an outcome we are able to compute
the polynomial factor of the ∗-codimensions of any ∗-fundamental algebra in terms of some fixed parameters.
More precisely we prove the following: let A be a ∗-fundamental algebra over an algebraically closed field and
let A = Ā+ J be its Wedderburn-Malcev decomposition, as algebra with involution, where Ā is a ∗-semisimple
subalgebra and J is the Jacobson radical of A. Let s+ 1 be the nilpotency index of J , i.e, s ≥ 0 is the smallest
integer such that Js+1 = 0. Let also r be the number of ∗-simple algebras appearing in the decomposition of Ā
which are not simple algebras. Then

C1n
− 1

2 (dim(Ā)−−r)+s(dim Ā)n ≤ c∗n(A) ≤ C2n
− 1

2 (dim(Ā)−−r)+s(dim Ā)n,

for some constants C1 > 0, C2, where (Ā)− = {a ∈ Ā | a∗ = −a} is the Lie algebra of skew elements of Ā.
As a corollary, from [38] we get that if A is any finitely generated PI-algebra with involution over a field of

characteristic 0, then
C1n

t(exp∗A)n ≤ c∗n(A) ≤ C2n
t(exp∗A)n,

where t ∈ 1
2Z. Hence limn→∞ logn

c∗n(A)
exp∗(A)n exists and is an integer or half an integer.

2. The general setting

Throughout this paper, we shall denote by F a field of characteristic zero and by A an associative algebra
with involution ∗ (or ∗-algebra) over F. We recall that ∗ is an antiautomorphism of order at most two. We refer
to [25] for an account of classical results on algebras with involution.

Let X = {x1, x2, . . .} be a countable set and let F 〈X , ∗〉 = F 〈x1, x
∗
1, x2, x

∗
2, . . .〉 be the free associative algebra

with involution on X over F. Recall that F 〈X , ∗〉 is characterized by the following universal property: if A is
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any algebra with involution, any set theoretical map X → A can be uniquely extended to a homomorphism
of algebras with involution. In order to simplify the notation we shall simply writef(x1, . . . , xn), to indicate a
∗-polynomial of F 〈X , ∗〉 in which the variables x1, . . . , xn or their star appear.

Recall that f(x1, . . . , xn) ∈ F 〈X , ∗〉 is a ∗-polynomial identity (or simply a ∗-identity) of A and we write
f ≡ 0 if f(a1, . . . , an) = 0, for all a1, . . . , an ∈ A.

We denote by Id∗(A) = {f ∈ F 〈X , ∗〉 | f ≡ 0 on A} the set of ∗-polynomial identities of A. Clearly Id∗(A)
is a T∗-ideal of F 〈X , ∗〉, i.e., an ideal invariant under all endomorphisms of the free algebra (commuting with
the involution). It is well known that in characteristic zero Id∗(A) is completely determined by its multilinear
polynomials and we denote by

P ∗n = spanF {wσ(1) · · ·wσ(n)| σ ∈ Sn, wi = xi or wi = x∗i , 1 ≤ i ≤ n}

the space of multilinear ∗-polynomials of degree n in x1, . . . , xn, i.e., for every i = 1, . . . , n, either xi or x∗i
appears in every monomial of P ∗n at degree 1 (but not both). Notice that dimP ∗n = 2nn!.

The symmetric group Sn acts on the left on P ∗n : if σ ∈ Sn and f = f(x1, . . . , xn) ∈ P ∗n , then

σf = f(xσ(1), . . . , xσ(n)).

Since the subspace P ∗n ∩ Id∗(A) is invariant under this action,

P ∗n(A) =
P ∗n

P ∗n ∩ Id∗(A)

has a structure of Sn-module and its dimension, c∗n(A), is called the nth ∗-codimension of A.
In order to capture the exponential rate of growth of the sequence of ∗-codimensions, in [14] the authors

proved that for any associative ∗-algebra A, satisfying an ordinary identity, the limit

exp∗(A) = lim
n→∞

n
√
c∗n(A)

exists and is an integer. It is called the ∗-exponent of A. Moreover exp∗(A) can be explicitly computed; it
turns out to be the dimension of a suitable finite dimensional semisimple ∗-algebra when the base field F is
algebraically closed.

An important example of algebra with involution is Mk(F ), the algebra of k × k matrices over F. The
significant involutions on Mk(F ) are the transpose involution t and the symplectic involution s. Recall that s

is defined only when k = 2m is even as follows: let C ∈M2m(F ) be written as C =

(
B D
E G

)
where B,D,E,G

are m×m matrices; then Cs =

(
Gt −Dt

−Et Bt

)
. The relevance of t and s in PI-theory is given by the fact that

if ∗ is any involution on Mk(F ), then Id∗(Mk(F )) = Idt(Mk(F )) or Ids(Mk(F )) (see [21, Theorem 3.6.8]).
Now assume that A is a finite dimensional algebra with involution ∗ over an algebraically closed field F of

characteristic zero.
By the Wedderburn-Malcev theorem [21, Theorem 3.4.4] for algebras with involution we can write

A = Ā⊕ J

where Ā is a semisimple subalgebra of A, J = J(A) is the Jacobson radical and both Ā and J are stable under
the involution. Moreover

(4) Ā = A1 ⊕ · · · ⊕Aq,

where A1, . . . , Aq are ∗-simple algebras.
Recall that a ∗-simple algebra is either simple or a direct sum of a simple algebra and its opposite with

exchange involution ([37, Proposition 2.13.24]). Also, as mentioned above, a simple algebra with involution has
the same ∗-identities as the algebra Mk(F ) with transpose or symplectic involution. Hence in (4) we shall assume
that there is r ≥ 0 such that Ai ∼= Mdi(F )⊕Mdi(F )op with exchange involution if i ≤ r and Ai ∼= Mdi(F ) with
transpose or symplectic involution if r+ 1 ≤ i ≤ q. In other words among the ∗-simple algebras A1, . . . , Aq only
the last q − r are simple. In order to simplify the notation we shall identify Ai ≡Mdi(F ), when r + 1 ≤ i ≤ q,
and Ai ≡Mdi(F )⊕Mdi(F )op, when i ≤ r.
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If we denote by ei the unit element of the ∗-simple component Ai, then 1Ā =
∑q
i=1 ei is the unit element of

Ā. In case A has a unit element 1 = 1Ā, since for i 6= k, eiĀek = 0, we have the decomposition

A = ⊕qi,k=1eiAek = (⊕qi=1eiAiei)⊕ (⊕qi,k=1eiJek).

When A does not have a unit element, we consider the algebra A′ = F ⊕ A obtained from A by adjoining
1. Recall that the multiplication in A′ is defined as follows: (α + a)(β + b) = αβ + αb + βa + ab, for every
α + a, β + b ∈ A′. Clearly ∗ on A extends to A′ by defining (α + a)∗ = α + a∗. Let 1A′ be the unit element of
A′. Then if we define e0 = 1A′ −

∑q
i=1 ei ∈ A′, since e0ei = eie0 for i 6= 0, we have the decomposition

A′ = F ⊕ (⊕qi=1eiAiei)⊕ (⊕qi,k=0eiJek).

Clearly the relation between the ∗-codimensions of A and A′ is c∗n(A) ≤ c∗n(A′). We remark that their
exponential growth can also be different (see [22, Lemma 1]).

In what follows we shall be dealing with multilinear ∗-polynomials. Hence in order to check that any such
polynomial is a ∗-identity of an algebra A, it will be enough to evaluate the variables on elements of a basis of
A. To this end we choose a basis of our finite dimensional algebra A = Ā+ J as the union of a basis of J and
a basis of Ā, which is the union of bases of the ∗-simple components.

Now, sinceAi = Mdi(F ) orAi = Mdi(F )⊕Mdi(F )op, we can decompose ei =
∑di
j=1 e

(i)
j,j or ei =

∑di
j=1(e

(i)
j,j , 0)+∑di

j=1(0, e
(i)
j,j), where the e

(i)
j,j ’s are the matrix units of Mdi(F ). By abuse of notation, in case Ai = Mdi(F ) ⊕

Mdi(F )op, e
(i)
j,j will denote also (e

(i)
j,j , 0) or (0, e

(i)
j,j). Hence we can write the elements of A as a linear combination

of elements of the spaces

e
(i)
j,jAie

(i)
k,k, e

(i)
j,jJe

(l)
m,m, 1 ≤ j, k ≤ di, 1 ≤ m ≤ dl, 1 ≤ i, l ≤ q

and, when A does not have a unit element, we have to add the spaces

e
(0)
1,1Je

(i)
k,k, e

(i)
j,jJe

(0)
1,1, e

(0)
1,1Je

(0)
1,1,

where e
(0)
1,1 = e0.

Definition 2.1. Let f be a ∗-polynomial. A substitution of all the variables of f with elements of one of the

spaces e
(i)
j,jAie

(i)
k,k, e

(i)
j,jJe

(l)
k,k is called an elementary substitution. A variable in an elementary substitution will

be called semisimple or radical if it is evaluated in an element of Ā or J , respectively.

3. Alternating polynomials

Let f(x1, . . . , xn, Y ) be a ∗-polynomial depending on the variables x1, . . . , xn and on a finite set of variables
Y ⊆ X . We assume that f is linear in the variables x1, . . . , xn, i.e., for every i = 1, 2, . . . , n, either xi or x∗i
appears in every monomial of f at degree 1. We say that f is alternating in x1, . . . , xn if f vanishes whenever
we identify any two of these variables. Notice that we identify only the indices of the two variables leaving the
exponents (∗ or no ∗) unchanged. Since the characteristic of the base field is different from 2 this is equivalent
to say that

f(x1, . . . , xi, . . . , xj , . . . , xn, Y ) = −f(x1, . . . , xj , . . . , xi, . . . , xn, Y ), for all 1 ≤ i < j ≤ n.

For instance x∗1x2 − x2x
∗
1 is not alternating in x1 and x2 whereas x1x

∗
2 − x2x

∗
1 is alternating in x1 and x2.

A basic example of an alternating polynomial is the nth Capelli polynomial defined as follows: if X =
{x1, . . . , xn} and Y = {y1, . . . , yn+1} then

Capn(X,Y ) = Capn(x1, . . . , xn, y1, . . . , yn+1) =
∑
σ∈Sn

(sgnσ)y1xσ(1)y2xσ(2) · · · ynxσ(n)yn+1,

where Sn is the symmetric group. Such polynomial is alternating in the variables x1, . . . , xn. It is well known
that Capd2(X,Y ) is not an identity of d × d matrices over F (see for instance [21, Prop. 1.7.1]). Hence, since
any ordinary polynomial can be viewed as a ∗-polynomial, we get that Capd2(X,Y ) is not a ∗-identity of A,
where either A = Md(F ) ⊕Md(F )op with exchange involution or A = Md(F ) with transpose or symplectic
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involution. Moreover, any element eh,k of A can be obtained as an evaluation of Capd2(X,Y ), where in case
A = Md(F )⊕Md(F )op, eh,k denotes (eh,k, 0) or (0, eh,k). For instance

(5) Capd2(e1,1, e1,2, . . . , e1,d, e2,1, . . . , ed,d−1, ed,d, eh,1, e1,1, e2,1, ed−1,d, ed,k) = eh,k,

where for x1, . . . , xd2 , we substituted all the ei,j ’s ordered according to the left lexicographic order of the
indices, the indeterminates y1, yd2+1 were replaced by eh,1, ed,k, respectively and for all other yi’s we made the
unique substitution making y1x1y2x2 · · ·xd2yd2+1 the only monomial with non-zero evaluation. Clearly, in case
A = Md(F )⊕Md(F )op, the ei,j ’s in the previous evaluation must have all the same component different from
zero.

Proposition 3.1. Let A be a ∗-simple algebra. For every µ ≥ 1 there exists a multilinear ∗-polynomial

(6) f(X1, . . . , Xµ, Y ) /∈ Id∗(A)

alternating on each of the disjoint sets X1, . . . , Xµ, where |X1| = · · · = |Xµ| = dim(A) and |Y | <∞.
Such a polynomial has the property that it can take any value of the type ei,i, 1 ≤ i ≤ d, when evaluated in A.

The proof of the Proposition follows from the following considerations.

Definition 3.1. For every µ ≥ 1, define

Capµ,n(X1, . . . , Xµ, Y ) :=

µ∏
i=1

Capn(Xi, Yi),

where Xi = {xi,1, . . . , xi,n}, Yi = {yi,1, . . . , yi,n+1}, i = 1, . . . , µ, are distinct sets of variables and Y = ∪Yi.

Notice that if A = Md(F ) with transpose or symplectic involution, Capµ,d2 is the required polynomial (6)
that we are searching for.

Recall that given any ∗-polynomial f(x1, . . . , xn, Y ) linear in each of the variables in X = {x1, . . . , xn}, the
operator of alternation AltX is defined as

AltXf(x1, . . . , xn, Y ) =
∑
σ∈Sn

(sgnσ)f(xσ(1), . . . , xσ(n), Y ).

The new polynomial AltXf(x1, . . . , xn, Y ) is multilinear and alternating in x1, . . . , xn.
Now given X = {x1, . . . , x2n} and Y = {y1, . . . , y2n+2} define

Capn(X,Y, ∗) := Capn(x1, . . . , xn, y1, . . . , yn+1)Capn(x∗n+1, . . . , x
∗
2n, y

∗
n+2, . . . , y

∗
2n+2).

Notice that Capd2(X,Y, ∗) 6∈ Id∗(A), where A = Md(F ) ⊕Md(F )op, and any value of the type ei,i ∈ A can
be obtained by evaluating the variables xi, yi, x

∗
i and y∗i as in (5).

Now by applying the operator of alternation to Capn(X,Y, ∗) we get a ∗-polynomial:

G2n(X,Y, ∗) = AltXCapn(X,Y, ∗)

multilinear and alternating in x1, . . . , x2n.

Definition 3.2. For every µ ≥ 1, define

Gµ,2n(X1, . . . , Xµ, Y, ∗) :=

µ∏
i=1

G2n(Xi, Yi, ∗),

where Xi = {xi,1, . . . , xi,2n}, Yi = {yi,1, . . . , yi,2n+2}, i = 1, . . . , µ, are distinct sets of variables and Y = ∪Yi.

Notice that if A = Md(F )⊕Md(F )op with exchange involution, Gµ,2d2 is the polynomial (6) we are looking
for. Moreover, by evaluating G2d2(X,Y, ∗) as in (5), we can get, up to a scalar, any value of the type ei,i,
1 ≤ i ≤ d.
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4. Star-Reduced algebras

In this section A will be a finite dimensional algebra with involution ∗ over an algebraically closed field F of
characteristic zero. We write A = Ā⊕ J, where Ā = A1 ⊕ · · · ⊕Aq with A1, . . . , Aq ∗-simple algebras and s ≥ 0
is the smallest integer such that Js+1 = 0.

We make the following.

Definition 4.1. The algebra A is ∗-reduced if up to a rearrangement of the ∗-simple components A1JA2J · · · JAq 6=
0.

We remark that in the non-involution setting this property is called reduced or full. In the next lemma we
use the symbol ˆ to indicate omission. For instance A1 ⊕ Â2 ⊕A3 = A1 ⊕A3.

Lemma 4.1. A is ∗-reduced if and only if either A is ∗-simple or Id∗(A)  ∩qi=1Id∗(Bi), where Bi = A1⊕· · ·⊕
Âi ⊕ · · · ⊕Aq + J, 1 ≤ i ≤ q.

Proof. Let A be not ∗-simple. Suppose that there exists a multilinear ∗-polynomial f such that f 6∈ Id∗(A)
and f ∈

⋂q
i=1 Id∗(Bi), and take a non-zero evaluation ϕ. Since f is a ∗-identity for each Bi, in order to get a

non-zero evaluation of f, we must substitute at least one element from each ∗-simple component Ai. Let M be
a monomial of f such that ϕ(M) 6= 0. Since AiAj = 0 for i 6= j, between two variables ofM that are evaluated
in Ai and Aj , respectively, we must have a variable evaluated in J. Thus Aσ(1)JAσ(2) · · · JAσ(q) 6= 0, for some
rearrangement of the ∗-simple components.

Suppose now that A is ∗-reduced and A1JA2J · · · JAq 6= 0. Then there exist elements a1 ∈ A1, . . . , aq ∈ Aq
and u1, . . . , uq−1 ∈ J such that

a1u1a2u2 · · ·uq−1aq 6= 0.

If ei denotes the unit element of Ai, set vi = aiui, 1 ≤ i ≤ q − 1, and from the above inequality we get

e1v1e2v2 · · · vq−1eq 6= 0.

This says that

e
(1)
i1,i1

v1e
(2)
i2,i2
· · · vq−1e

(q)
iq,iq
6= 0,

for some matrix units e
(j)
ij ,ij
∈ Aj , and we may assume that vj ∈ ejJej+1. Recall that in case Aj = Mdj (F ) ⊕

Mdj (F )op then e
(j)
ij ,ij

means either (e
(j)
ij ,ij

, 0) or (0, e
(j)
ij ,ij

).

Now take any integer µ ≥ q − 1 and write µ = t+ q. For each j = 1, . . . , q let

fj = fj(X
(j)
1 , . . . , X(j)

µ , Y (j)) = Capµ,d2j (X
(j)
1 , . . . , X(j)

µ , Y (j))

or

fj = fj(X
(j)
1 , . . . , X(j)

µ , Y (j), ∗) = Gµ,2d2j (X
(j)
1 , . . . , X(j)

µ , Y (j), ∗)
according as Aj = Mdj (F ) or Aj = Mdj (F )⊕Mdj (F )op and let

f = f1z1f2z2 · · · zq−1fq.

Notice that the polynomial f depends on the integer t. If we evaluate f in A by evaluating fj in Aj so that its

value is e
(j)
ij ,ij

and zj in vj , we get the value e
(1)
i1,i1

v1e
(2)
i2,i2
· · · vq−1e

(q)
iq,iq
6= 0. We call ϕ such an evaluation.

Set Xl = X
(1)
l ∪ · · · ∪X

(q)
l , 1 ≤ l ≤ µ, Zl = Xl ∪ {zl}, 1 ≤ l ≤ q − 1, Y = Y (1) ∪ · · · ∪ Y (q) and let

f̃ = f̃(Z1, . . . , Zq−1, Xq, . . . , Xµ, Y ) = AltZ1
· · ·AltZq−1

AltXq · · ·AltXµf(Z1, . . . , Zq−1, Xq, . . . , Xµ, Y )

be the polynomial obtained from f by alternating each set Zl, 1 ≤ l ≤ q− 1, and each set Xi, q ≤ i ≤ µ. Notice
that |Zl| = d+ 1 and |Xi| = d where d = dim Ā.

We claim that for the above evaluation ϕ we have ϕ(f̃) = αϕ(f) 6= 0, for some integer α.
In fact, when we exchange two variables of an alternating set Zl or Xi that are semisimple, if they are

evaluated, say, in Ak and Al, with k 6= l, the corresponding evaluation gives zero since AkAl = AlAk = 0. On
the other hand suppose one of the two variables, say zj , is a radical variable and let ϕ(zj) ∈ ejJej+1. Since
ej and ej+1 belong to distinct simple components, we still get zero when we exchange zj with a semisimple
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variable. Hence ϕ(f̃) coincides with ϕ(f) up to an integer α counting, for any ∗-simple component, the number

of permutations of each alternating set. This proves the claim and f̃ 6∈ Id∗(A).

Next we show that if the integer µ is taken such that Jµ = 0, then f̃ ∈ Id∗(Bi), 1 ≤ i ≤ q. Recall that the

polynomial f̃ is alternating on each set Zj , 1 ≤ j ≤ q−1, and on each set Xk, q ≤ k ≤ µ. Moreover |Zj | = d+ 1

and |Xk| = d. Since dimBi/J < d, in order to get a non-zero evaluation of f̃ , we must evaluate at least one

variable of each alternating set into a radical element. Since Jµ = 0 we get that f̃ ∈ Id∗(Bi), as wished. �

Definition 4.2. A multilinear ∗-polynomial f such that f ∈
⋂q
i=1 Id∗(Bi) and f 6∈ Id∗(A) will be called ∗-

reduced.

5. The Kemer index for algebras with involution

As in the previous section A will be a finite dimensional algebra with involution ∗ over an algebraically closed
field F of characteristic zero. We have A = Ā⊕ J where Ā = A1 ⊕ · · · ⊕ Aq with A1, . . . , Aq ∗-simple algebras
and J = J(A).

Definition 5.1. The (t, s)-index of A is Indt,s(A) = (dim Ā, sA) where sA ≥ 0 is the smallest integer such that
JsA+1 = 0.

Notice that this is the same as the (t, s)-index of A as an algebra without involution.

Definition 5.2. Let Γ ⊆ F 〈X , ∗〉 be a T∗-ideal. We define β(Γ) to be the greatest integer t such that for
every µ ≥ 1, there exists a multilinear ∗-polynomial f(X1, . . . , Xµ, Y ) 6∈ Γ alternating in the µ sets Xi with
|Xi| = t. Then we define γ(Γ) to be the greatest integer s for which there exists for all µ ≥ 1, a multilinear
∗-polynomial f(X1, . . . , Xµ, Z1, . . . , Zs, Y ) 6∈ Γ alternating in the µ sets Xi with |Xi| = β(Γ) and in the s sets
Zj with |Zj | = β(Γ) + 1.

Definition 5.3. Ind∗K(Γ) = (β(Γ), γ(Γ)) is called the Kemer ∗-index of Γ.

In case Γ = Id∗(A), we also say that (β(Γ), γ(Γ)) = (β(A), γ(A)) = Ind∗K(A) is the Kemer ∗-index of A.
Even if Definition 5.2 and 5.3 make sense for a wider class of ∗-algebras, i.e., finitely generated PI-algebras, we
shall make use of them only for finite dimensional algebras.

As an example we consider A = Md(F )⊕Md(F )op with exchange involution. For every µ ≥ 1 the polynomial
Gµ,2d2 given in Definition 3.2 is alternating in the µ sets Xi with |Xi| = 2d2 and is not a ∗-identity of A. Moreover
since dimA = 2d2 any ∗-polynomial alternating in 2d2 + 1 elements is a ∗-identity of A. Hence β(A) = 2d2 and
γ(A) = 0. Notice that in case A = Md(F ) with transpose or symplectic involution, Ind∗K(A) = (d2, 0). In fact
Capµ,d2 6∈ Id∗(A) and it has the prescribed properties.

We remark that by the definition of γ(Γ) there exists a smallest integer µ0 such that every multilinear ∗-
polynomial f(X1, . . . , Xµ, Z1, . . . , Zγ(Γ)+1, Y ), alternating in µ ≥ µ0 sets Xi with β(Γ) elements and in γ(Γ) + 1
sets Zj with β(Γ) + 1 elements lies in Γ.

Definition 5.4. A multilinear ∗-polynomial f(X1, . . . , Xµ, Z1, . . . , Zγ(Γ), Y ) 6∈ Γ which is alternating in µ > µ0

sets Xi with |Xi| = β(Γ) and in γ(Γ) sets Zi with |Zi| = β(Γ) + 1 is called a Kemer ∗-polynomial related to Γ.

Remark 5.1. If A is a finite dimensional ∗-algebra, then Ind∗K(A) ≤ Indt,s(A) in the left lexicographic order.

Proof. Let f(X1, . . . , Xµ, Z1, . . . , Zγ(A), Y ) 6∈ Id∗(A) be a Kemer ∗-polynomial with |Xi| = β(A), |Zi| = β(A)+1.

If β(A) > dim Ā, then in order to have a non-zero evaluation of f in A we have to evaluate at least one variable
of each set Xi into J . Since µ can be taken arbitrarily large and J is nilpotent we get a contradiction. Hence
β(A) ≤ dim Ā. Now if β(A) = dim Ā then γ(A) ≤ sA, where sA ≥ 0 is such that JsA+1 = 0. If not, in order to
have a non-zero evaluation we must evaluate at least one variable of each Zi into J . Since the number of Zi’s
is greater than sA we get a contradiction. �

In what follows, by abuse of notation we shall write sA = s.
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6. Star-fundamental algebras

We start with the following construction. Let A = Ā+J be a finite dimensional algebra with involution over
an algebraically closed field F , Js 6= 0, Js+1 = 0 and let n = dim J. Then define

A′ = Ā ∗ F 〈x1, . . . , xn, ∗〉,

the free product of Ā and the free algebra F 〈x1, . . . , xn, ∗〉. Clearly

A′ = Ā⊕ I,

where I is the ∗-ideal of A′ generated by x1, . . . , xn. If I1 is the ∗-ideal generated by {f(A′) | f ∈ Id∗(A)}, then
since f(Ā) = 0, for f ∈ Id∗(A), we have that I1 ⊆ I.

We define

As = A′/(Is+1 + I1).

Since Id∗(A) is generated by its multilinear ∗-polynomials, I1 is also generated by the evaluations of the mul-
tilinear ∗-polynomials in Id∗(A). In order to get a close connection between A and As, we notice that by the
universal property of the free product, given any elements a1, . . . , an ∈ A there is a unique ∗-homomorphism
ϕa1,...,an : A′ → A such that ϕa1,...,an is the identity on Ā and ϕa1,...,an(xi) = ai, 1 ≤ i ≤ n. Now take
a1, . . . , an ∈ J . Then in this case Is+1 + I1 ⊆ Kerϕa1,...,an and ϕa1,...,an induces a ∗-homomorphism which we
still call ϕa1,...,an : As → A.

In particular if we choose a1, . . . , an as generators of J , then ϕa1,...,an : As → A becomes surjective and, so,
A is isomorphic to a quotient of As. It follows that Id∗(As) ⊆ Id∗(A).

The basic properties of the algebra As are the following.

Lemma 6.1.

1) As is a finite dimensional algebra and Id∗(As) = Id∗(A).
2) Indt,s(As) = Indt,s(A).
3) Any evaluation of a multilinear ∗-polynomial f in A factorizes through an evaluation of f in As in the

following sense: given a multilinear ∗-polynomial f(y1, . . . , ym) and an evaluation f(a1, . . . , am) ∈ A
where a1, . . . , ak ∈ Ā, ak+1, . . . , am ∈ J , there is an evaluation f(a1, . . . , ak, x1, . . . , xm−k) ∈ As such
that

f(a1, . . . , am) = ϕak+1,...,,amf(a1, . . . , ak, x1, . . . , xm−k),

where ϕak+1,...,,am : As → A is the homomorphism which is the identity map on Ā and ϕak+1,...,,am(xi) =
ak+i, 1 ≤ i ≤ m− k.

Proof.
1) The algebra A′/Is+1 is finite dimensional. In fact, its coset representatives are a linear combination of

words of the type a0w1a1w2a2 · · ·wtat where the ai are elements of Ā, the wi are words in the xi and x∗i ,

1 ≤ i ≤ n, and the degree of w1w2 · · ·wt is at most s. Since As = A′/(Is+1 + I1) ∼= A′/Is+1

(Is+1+I1)/Is+1 is isomorphic

to a quotient of A′/Is+1, then also As is finite dimensional.
Since I1 is the ∗-ideal of A′ generated by all valuations of the ∗-identities of A in A′, Id∗(A) ⊆ Id∗(As). The

other inclusion was proved earlier.
2) As we remarked above, I1 ⊆ I. Then consider the ideal I ′ = I/(Is+1 + I1) of As. We have that As/I ′ ∼=

A′/I ∼= Ā and since (I ′)s+1 = 0, Ā is a maximal semisimple subalgebra of As. Thus Indt,s(As) = (dim Ā,−).
As we remarked above, if a1, . . . , an are generators of J , then ϕa1,...,an : As → A is surjective and I ′ is

mapped onto J . Since Js 6= 0 then also (I ′)s 6= 0. Thus Indt,s(As) = (dim Ā, s) = Indt,s(A).
3) This follows from the construction of As. �

From the above discussion we have that As ∼= Ā+ I ′, (I ′)s 6= 0, (I ′)s+1 = 0 and Indt,s(As) = (dim Ā, s).

Definition 6.1. We define

B0 = As/(I ′)s.
Hence Id∗(A) = Id∗(As) ⊆ Id∗(B0), and Indt,s(B0) = (dim Ā, s− 1).
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We fix again the notation. Let A = Ā+ J , Ā = A1 ⊕ · · · ⊕ Aq, where the Ai’s are ∗-simple algebras and let
s ≥ 0 be the smallest integer such that Js+1 = 0.

Now, for any 1 ≤ i ≤ q we denote

Bi = A1 ⊕ · · · Âi · · · ⊕Aq + J,

where the symbol Âi means that the algebra Ai is omitted in the direct sum.

Definition 6.2. The algebra A is ∗-fundamental if either A is ∗-simple or s > 0 and

Id∗(A)  ∩qi=1Id∗(Bi) ∩ Id∗(B0).

In this case a multilinear ∗-polynomial f is ∗-fundamental if f ∈ ∩qi=1Id∗(Bi) ∩ Id∗(B0) and f 6∈ Id∗(A).

We remark that in case s > 0, the algebras Bi have a lower (t, s)-index. In fact the first index is lower. Also
the algebra B0 has a lower (t, s)-index, since Indt,s(B0) = (dim Ā, s− 1).

It is clear that any ∗-fundamental algebra is ∗-reduced by Lemma 4.1. We should mention that in the
non-involution setting fundamental algebras are also called basic algebras (see for instance [1], [2]).

Proposition 6.1. Every finite dimensional algebra with involution has the same ∗-identities as a finite direct
sum of ∗-fundamental algebras.

Proof. If A is semisimple the conclusion of the proposition is clear since each Ai is ∗-fundamental. Let J 6= 0
and suppose A not ∗-fundamental so that Id∗(A) = ∩qi=1Id∗(Bi) ∩ Id∗(B0). Hence A has the same ∗-identities
as B1 ⊕ · · · ⊕Bq ⊕ B0 and each summand has a lower (t, s)-index. The proof is completed by induction on the
(t, s)-index. �

Next we want to characterize ∗-fundamental algebras in terms of the Kemer ∗-index. To this end we make
the following.

Definition 6.3. A multilinear ∗-polynomial f has property K with respect to A if every non-zero elementary
evaluation in A has precisely s radical substitutions.

Lemma 6.2. Let f be a multilinear ∗-polynomial.

1) f is ∗-reduced if and only if in every non-zero elementary evaluation f(a1, . . . , am), for every i, 1 ≤ i ≤ q,
there is at least one variable xj evaluated in aj ∈ Ai.

2) Let f be ∗-reduced and s > 0. Then f is ∗-fundamental if and only if f has property K.

Proof. 1) Suppose f(a1, . . . , am) 6= 0. If no variable of f is evaluated in a ∗-simple component, say Ak, then
f is actually evaluated in Bk. Since f is ∗-reduced, f ∈

⋂q
i=1 Id∗(Bi); hence in particular f ∈ Id∗(Bk) and

f(a1, . . . , am) = 0, a contradiction. A similar argument proves also the converse.
2) Let f be ∗-fundamental. We shall prove that f has property K.
Consider an elementary evaluation f(a1, . . . , am) 6= 0 in A. Since Js+1 = 0, at most s among the ai’s belong

to J and let a1, . . . , ak ∈ Ā, ak+1, . . . , am ∈ J .
By the universal property of As given in Lemma 6.1, f(a1, . . . , am) = ϕak+1,...,,amf(a1, . . . , ak, x1, . . . , xm−k),

where ϕak+1,...,,am : As → A is the ∗-homomorphism which is the identity map on Ā and maps xi → ak+i,
1 ≤ i ≤ m− k.

Now, if m− k ≤ s− 1, i.e., at most s− 1 of the ai’s belong to J , f(a1, . . . , ak, x1, . . . , xm−k) is still non-zero
in the projection As → As/(I ′)s = B0. Since by hypothesis f is a ∗-identity of B0, we get a contradiction.

Conversely, suppose that a multilinear ∗-polynomial f has property K. Being f ∗-reduced we already know
that f ∈ ∩qi=1Id∗(Bi). Moreover if every non-zero elementary evaluation has s radical substitutions, the corre-
sponding ∗-polynomial through which f factorizes is a ∗-identity of B0 and, so, f ∈ Id∗(B0). �

The proof of the following theorem follows the main lines of the original proof of Kemer and the approach
given by the authors in [3]. The reader should keep in mind that the ingredients of the proof are ∗-polynomials
versus ordinary polynomials and ∗-simple algebras versus simple algebras. In the upcoming construction of
Kemer ∗-polynomials the multialternating polynomials corresponding to ∗-simple components which are not
simple are those given in Definition 3.2 and they differ from the ordinary ones.
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Theorem 6.1. Let A be a finite dimensional algebra with involution. Then A is ∗-fundamental if and only if
Ind∗K(A) = Indt,s(A).

Proof. Suppose Ind∗K(A) = Indt,s(A). If A is not ∗-fundamental by Proposition 6.1 and its proof, A satisfies the
same ∗-identities as a finite direct sum of ∗-fundamental algebras B1⊕ · · · ⊕Br having lower (t, s)-index. Since
the Kemer ∗-index of a direct sum is the largest of the Kemer ∗-indices of the components, and Ind∗K(Bi) ≤
Indt,s(Bi), we get Ind∗K(A) = maxiInd

∗
K(Bi) ≤ maxiIndt,s(Bi) < Indt,s(A), a contradiction.

Now we assume that A is a ∗-fundamental algebra and we distinguish several cases. Recall that A = Ā+ J ,
Ā = A1 ⊕ · · · ⊕Aq, with Ai = Mdi(F ) or Ai = Mdi(F )⊕Mdi(F )op and Js+1 = 0.

CASE 1. s = 0. In this case A is ∗-simple. Hence the Kemer ∗-index of A is (dimA, 0), and so, it coincides
with the (t, s)-index.

CASE 2. dim Ā = 0. We have A = J, a nilpotent algebra. Then x1 · · ·xs is a Kemer ∗-polynomial and
Ind∗K(A) = Indt,s(A) = (0, s).

CASE 3. dim Ā > 0 and s > 0. Let f(z1, . . . , zs, y1, . . . , ym) be a ∗-fundamental polynomial for A. Recall
that f has property K and, so, any non-zero evaluation has precisely s radical substitutions and also, since
f is ∗-reduced, all the ∗-simple components must appear among the semisimple evaluations. So, denote by
η : F 〈X , ∗〉 → A a non-zero elementary evaluation, i.e, η(f) = f(r1, . . . , rs, b1, . . . , bm) 6= 0, where r1, . . . , rs ∈ J
and b1, . . . , bm ∈ Ā.

Out of the polynomial f we shall construct a Kemer ∗-polynomial for A alternating on µ sets each of size
t = dim Ā and on s sets each of size dim Ā+ 1. It will follow that Ind∗K(A) = Indt,s(A).

We need to distinguish the cases q > 1 and q = 1.
CASE 3.1. Let q > 1 and let M be a monomial in the elements r1, . . . , rs, b1, . . . , bm appearing in the

evaluation η of f which is non-zero. We may clearly assume that all variables appearing in M are without
∗. Given a ∗-simple component Ai there is an ai ∈ Ai, ai ∈ {b1, . . . , bm} such that either M = wairtiajw

′ or
M = wajrtiaiw

′, for some aj ∈ Aj , aj ∈ {b1, . . . , bm}, j 6= i, and for some rti ∈ J. Here w,w′ are eventually
empty monomials in the remaining elements. In this way we associate to every ∗-simple component Ai a radical
element rti and, so, a radical variable zti that we call selected.

Notice that it can happen that the same radical variable is associated to two distinct ∗-simple components
one to the left and one to the right of the variable. In any case the number of selected radical variables is at
most q. Let zt1 , . . . , ztu be such radical variables, u ≤ q.

Let ν = µ + s > q + s be any integer. For every i ∈ {1, . . . , q} let fν,ci(X
(i)) = fν,ci(X

(i)
1 , . . . , X

(i)
ν , Y (i)) be

the ∗-polynomial constructed in Definition 3.1 or 3.2 alternating on each of the sets X
(i)
j , |X(i)

j | = ci = dimAi
and taking a non-zero value in Ai.

Next we introduce new variables u1, v1, . . . , uq, vq distinct from the variables of f and from those of fν,ci(X
(i)),

for 1 ≤ i ≤ q. We construct a map ψ : F 〈X , ∗〉 → F 〈X , ∗〉 which is the identity on all the non selected variables
and if a selected variable zl ∈ {zt1 , . . . , ztu} is associated to a ∗-simple component Ai which lies to the left,
we set ψ(zl) = uifν,ci(X

(i))vizl. On the other hand if zl is associated to a ∗-simple component Ai which lies

to the right, we set ψ(zl) = zluifν,ci(X
(i))vi. Finally if zl is associated to two ∗-simple components Ai to the

left and Aj to the right, we set ψ(zl) = uifν,ci(X
(i))vizlujfν,cj (X

(j))vj . Define f̂ = ψ(f). Recall that if a

selected variable zl is evaluated in rl, we may assume that rl = e
(i)
h,hrle

(j)
k,k, for some idempotents e

(i)
h,h, e

(j)
k,k with

h ∈ {1, . . . , di}, k ∈ {1, . . . , dj} and i 6= j. Notice that in case Ai = Mdi(F )⊕Mdi(F )op, by e
(i)
h,h we mean either

(e
(i)
h,h, 0) or (0, e

(i)
h,h).

Next we extend the evaluation η to the new variables as follows. If a selected variable zl is associated to

a ∗-simple component Ai and zl is evaluated in rl = e
(i)
h,hrle

(j)
k,k, the variables ui, vi and those appearing in

fν,ci(X
(i)) take values in Ai in such a way that η(fν,ci(X

(i))) = η(ui) = η(vi) = e
(i)
h,h. A similar evaluation is

performed in case zl is associated to the right or to both sides of ∗-simple components.

Notice that η(ψ(zl)) = η(zl) so that η(f̂) = η(f) 6= 0.
Set

Xj = X
(1)
j ∪ · · · ∪X

(q)
j , 1 ≤ j ≤ ν = µ+ s
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and

Zi = Xµ+i ∪ {zi}, 1 ≤ i ≤ s.
Hence |Xi| = dim Ā and |Zi| = dim Ā+ 1.

Next we alternate in the previous polynomial f̂ independently each set Xi, 1 ≤ i ≤ µ, and each set Zi,
1 ≤ i ≤ s, and we set

g = AltX1
· · ·AltXµAltZ1

· · ·AltZs f̂
the ∗-polynomial so obtained. Hence g is alternating on µ sets each of size t = dim Ā and on s sets each of size
dim Ā+ 1. Since Ind∗K(A) ≤ Indt,s(A), if we prove that g has a non-zero evaluation in A, it will follow that g
is a Kemer ∗-polynomial and Ind∗K(A) = Indt,s(A) will follow, as wished.

Let SU be the symmetric group acting on the set U. Then we can write g as

(7) g =
∑
σ∈G

(sgnσ)σf̂ ,

where G :=
∏µ
i=1 SXi×

∏s
j=1 SZj . Consider the subgroup H =

∏ν
j=1

∏q
i=1 SX(i)

j
. Clearly if σ ∈ H, (sgnσ)σf̂ = f̂

and, so,

η(g) = η(
∑
σ∈G

(sgnσ)σf̂) = η(
∑

σ∈G\H

(sgnσ)σf̂) + |H|η(f̂).

Since η(f̂) 6= 0, in order to show that η(g) 6= 0 it is enough to prove that η(σf̂) = 0 for any σ ∈ G \H.
Now, if σ(zt) = zt for all radical variables there is at least one variable in some X

(i)
k which is exchanged with

some variable in X
(j)
k with i 6= j. Then in the evaluation η(σ(uifν,ci(X

(i))vi)) one variable in X
(i)
k is evaluated

in an element of Aj , j 6= i. But since ui and vi are evaluated in Ai and AiAk = AkAi = 0 for all k 6= i, it

follows that η(σf̂) = 0.
Hence we may assume that σ ∈ G \H is such that σ(zt) 6= zt for some t.
Let η′ be the evaluation of f = f(z1, . . . , zs, y1, . . . , ym) such that η′(yi) = η(yi) and η′(zt) = η(σψ(zt)). It

follows that η′(f) = η(σf̂). Notice that if zt is not a selected variable, η′(zt) = η(σ(zt)).
A basic remark is the following.

Remark 6.1. In the evaluation η′ all the variables yi remain semisimple while some of the radical variables zt
may become semisimple. If this happens, η′(f) = 0 by property K.

Suppose first that σ(zt) 6= zt for a non-selected variable zt. Then σ(zt) ∈ Xµ+t and, so, η′(zt) = η(σ(zt)) is

a semisimple element. Hence the evaluation η′(f) = η(σf̂) vanishes by Remark 6.1 and we are done.
Therefore we may assume that all the non-selected variables are fixed by σ.
Let z1, . . . , zk be the selected variables exchanged with elements xi ∈ Xµ+i by σ. If for one of these variables

zl we have η′(zl) = η(σ(ψ(zl)) = 0 we are done since η′(f) = 0 in this case. The same conclusion holds if one
of the elements η′(zl) = η(σ(ψ(zl)) is a semisimple element by Remark 6.1.

Consider now zl, 1 ≤ l ≤ k, and suppose for instance that ψ(zl) = uifν,ci(X
(i))vizl so that σ(ψ(zl)) =

uiσ(fν,ci(X
(i)))viσ(zl). We consider the case when the polynomial fν,ci(X

(i)) is associated to the left of the
variable zl. The other cases are treated similarly.

Since σ(zl) 6= zl, σ(zl) ∈ Xµ+l is a semisimple element. The evaluation of η′(zl) is

η′(zl) = η(σ(ψ(zl))) = η(uiσ(fν,ci(X
(i)))vi)η(σ(zl))

= e
(i)
h,hη(σ(fν,ci(X

(i)))e
(i)
h,hη(σ(zl))

and if it is 0 or semisimple we are done by property K. Hence we may assume that η′(zl) 6= 0 is radical and it
happens if η(σ(fν,ci(X

(i)))) is a non-zero radical element of eiJei and also η(σ(zl)) ∈ Ai .

But if η(σ(fν,ci(X
(i)))) is a radical element this means that we have substituted through σ some of the

variables of X
(i)
l with some selected radical variables. Recall that the selected variables are evaluated in some

eaJeb with a 6= b.
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Hence if only one say zt is exchanged in fν,ci(X
(i)) and η(zt) ∈ eaJeb, since all the other elements of

σ(fν,ci(X
(i))) are in ∪Xj , j = 1, . . . , ν, we obtain that η(σ(fν,ci(X

(i))) ∈ eaJeb or ebJea, a 6= b, contrary to our
assumption.

It follows that at least two selected variables must be exchanged in fν,ci(X
(i)). This happens for each of

the selected variables zl, 1 ≤ l ≤ k. Hence we have substituted in each polynomial fν,ci(X
(i)) associated to

a variable zl, 1 ≤ l ≤ k, at least two selected variables zt, 1 ≤ t ≤ k. Since such polynomials associated to
distinct selected variables involve distinct variables in ∪Xj , we need at least 2k selected variables zl. But this
is impossible since we have only k such variables at our disposal.

CASE 3.2. Let q = 1. We distinguish two subcases. Assume first that the algebra A has a unit e1. Recall
that f is a ∗-fundamental polynomial for A with a non-zero evaluation η(f) 6= 0 as above.

Hence e1η(f) = η(f) and there exists an index h such that e
(1)
h,hη(f) 6= 0.

Consider the polynomial fν,c1(X(1))f where fν,c1(X(1)) = fν,c1(X
(1)
1 , . . . , X

(1)
ν , Y (1)) is, as above, the ∗-

polynomial constructed in Definition 3.1 or 3.2 with ν = µ + s. Clearly η can be extended to an evaluation

of fν,c1(X(1))f such that η(fν,c1(X(1))f) = e
(1)
h,hη(f) 6= 0. Next we perform the alternation of the s sets Zi =

X
(1)
µ+i ∪ {zi}, 1 ≤ i ≤ s, obtaining the polynomial f̃ and we show that the evaluation η(f̃) is non-zero. In fact,

when in the alternation of the s sets Zi = X
(1)
µ+i ∪ {zi}, we export a radical variable outside the polynomial f

and we import in f a semisimple variable as above, by property K the value of f̃ is zero. Hence f̃ is a Kemer
∗-polynomial and we are done.

Finally assume that q = 1 and the algebra A = A1 + J does not have a unit. We regard J as a (A1, A1)-
bimodule by considering the left and right multiplication by the unit element of A1. Then J decomposes into
the direct sum of bimodules (see [19, Lemma 2])

J = J00 ⊕ J01 ⊕ J10 ⊕ J11,

where for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as i = 1 or i = 0, respectively.
Similarly, Jik is a right faithful module or a 0-right module according as k = 1 or k = 0, respectively. Moreover,
for i, k, l,m ∈ {0, 1}, JikJlm ⊆ δklJim where δkl is the Kronecker delta.

If all the variables appearing in f are evaluated in A1 + J11 we can replace A with A1 + J11 and we are in
the previous case of an algebra with 1. Otherwise, since f is ∗-fundamental and s > 0 at least one variable
is evaluated under η into J10 ∪ J01 ∪ J00. Since η is a non-zero evaluation and f is ∗-reduced at least one
variable must be evaluated in J10 or J01. Let z1 be such variable evaluated for instance in J10 and assume that

η(z1) = e
(1)
h,hr1, with r1 ∈ J.

Then we replace the variable z1 with ufν,c1(X(1))vz1, where fν,c1(X(1)) = fν,c1(X
(1)
1 , . . . , X

(1)
ν , Y (1)) with

ν = µ + s, and let f̂ be the resulting ∗-polynomial. We extend η to an evaluation of f̂ as above so that

η(fν,c1(X(1))) = η(u) = η(v) = e
(1)
h,h and η(f̂) = η(f) 6= 0. Next we perform the alternation of the s sets

Zi = Xµ+i ∪ {zi}, 1 ≤ i ≤ s, and we show that the same evaluation η is non-zero.

As before, when in the alternation a variable zi 6= z1 is substituted in X
(1)
µ+i we get zero by property K.

Finally if z1 is substituted in X
(1)
µ+i, the ∗-polynomial ufν,c1(X(1))v vanishes since z1 is evaluated in J10. In this

way we obtain a Kemer ∗-polynomial and we are done. �

7. Some tools

Recall that two functions f(x), g(x) of a real variable are asymptotically equal and we write f(x) ' g(x) if

limx→∞
f(x)
g(x) = 1. Also if A is an algebra with involution ∗, we denote by A− = {a ∈ A | a = −a∗} the set of

skew elements of A. Recall that A− is a Lie algebra under the bracket [x, y] = xy − yx.
We start by recalling the following result proved in [7]

Theorem 7.1. Let Md(F ) be the algebra of d × d matrices over F with transpose or symplectic involution.
Then

1) If ∗ = t is the transpose involution, c∗n(Md(F )) ' C1n
− 1

4d(d−1)d2n, for some constant C1.
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2) If ∗ = s is the symplectic involution, c∗n(Md(F )) ' C2n
− 1

4d(d+1)d2n, for some constant C2.

Recalling the dimension of the space of skew elements, the above asymptotic equalities can be rewritten as follows.
If ∗ is either the transpose or the symplectic involution, then

c∗n(Md(F )) ' Cn− 1
2 dimMd(F )−(dimMd(F ))n,

for some constant C.

Notice that if A is an algebra with involution ∗ then the map ϕ : A → Aop such that ϕ(a) = a∗, is an
isomorphism of algebras. Hence Id(A) = Id(Aop).

Theorem 7.2. If A = Md(F )⊕Md(F )op with exchange involution, then

c∗n(A) ' Cn− 1
2 (dimA−−1)(dimA)n,

for some constant C.

Proof. Let us write yi = xi + x∗i and zi = xi − x∗i , for symmetric and skew variables of the free algebra with
involution, respectively. It is clear that any multilinear ∗-polynomial identity of an algebra A can be written as
a linear combination of multilinear polynomial identities in those symmetric and skew variables. We point out
that multilinear in this case means that in every monomial either yi or zi appears.

Now for any k, 0 ≤ k ≤ n, define

Pk,n−k = span{wσ(1) · · ·wσ(n) | σ ∈ Sn, wi = yi for 1 ≤ i ≤ k and wi = zi, for k + 1 ≤ i ≤ n}.

If f(x1, . . . , xn) ∈ Pn let f̃ = f(y1, . . . , yk, zk+1, . . . , zn) ∈ Pk,n−k be the ∗-polynomial obtained from f

by replacing x1, . . . , xn with y1, . . . , yk, zk+1, . . . , zn, respectively. Clearly f → f̃ is a linear isomorphism of

Pn onto Pk,n−k. We claim that such isomorphism extends to a linear isomorphism of
Pn

Pn ∩ Id(Md(F ))
onto

Pk,n−k
Pk,n−k ∩ Id∗(A)

.

In fact, if f ∈ Pn, f /∈ Id(Md(F )) let a1, . . . , an ∈Md(F ) be such that f(a1, . . . , an) 6= 0. Then

f̃((a1, a1), . . . , (ak, ak), (ak+1,−ak+1), . . . , (an,−an)) = (f(a1, . . . , an), f(a1, . . . , ak,−ak+1, . . . ,−an) 6= (0, 0).

Viceversa, if f̃ /∈ Id∗(A) and a non-zero evaluation is given by the above elements, then we deduce that either
f(a1, . . . , an) 6= 0 or f(a1, . . . , ak,−ak+1, . . . ,−an) 6= 0. As we remarked before the theorem Id(Md(F )) =
Id(Md(F )op), hence we deduce that f(x1, . . . , xn) /∈ Id(Md(F )).

As a consequence we have that

cn(Md(F )) = dim
Pn

Pn ∩ Id(Md(F ))
= dim

Pk,n−k
Pk,n−k ∩ Id∗(A)

= ck,n−k(A).

Now, by [36] cn(Md(F )) ' Cn− 1
2 (d2−1)d2n and by [10] c∗n(A) =

∑n
k=0

(
n
k

)
ck,n−k(A). Hence we get that

c∗n(A) =

n∑
k=0

(
n

k

)
cn(Md(F )) = 2ncn(Md(F )) ' Cn− 1

2 (d2−1)(2d2)n.

�

In the following sections we shall need the following result on the asymptotics of product of ∗-codimensions.

Lemma 7.1. Let Ā = A1 ⊕ · · · ⊕Aq be a finite dimensional ∗-semisimple algebra over a field of characteristic
zero, where the Ai’s are ∗-simple algebras. Then we have∑

m1+···+mq=m

(
m

m1, . . . ,mq

)
c∗m1

(A1) · · · c∗mq (Aq) ' Cm
− 1

2 (dim(Ā)−−r)(dim Ā)m,

where C is a constant, r is the number of ∗-simple algebras Ai which are not simple.
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Proof. Recall that by a theorem of Beckner and Regev [5], if (p1, . . . , pq) ∈ Qq is such that
∑
i pi = 1 and

F (x1, . . . , xq) is a continuous function homogeneous of degree r with 0 < F (p1, . . . , pq) <∞, then

(8)
∑

m1+···+mq=m

(
m

m1, . . . ,mq

)
pm1

1 · · · pmqq F (m1, . . . ,mq) ' mrF (p1, . . . , pq).

We apply this formula to the following setting: suppose that the algebras A1, . . . , Ar are not simple, i.e, Ai =
Mdi(F )⊕Mdi(F )op with exchange involution, 1 ≤ i ≤ r, and Ar+1, . . . , Aq are simple algebras, i.e., Ai = Mdi(F )
with transpose or symplectic involution, r + 1 ≤ i ≤ q. If d = dim Ā, then d =

∑r
j=1 2d2

j +
∑q
j=r+1 d

2
j and we

set pj =
2d2j
d if 1 ≤ j ≤ r and pj =

d2j
d if r + 1 ≤ j ≤ q.

Consider the function

F (x1, . . . , xq) =

r∏
j=1

x
− 1

2 (dimA−j −1)

j

q∏
j=r+1

x
− 1

2 dimA−j
j

which is a homogeneous polynomial of degree

−1

2

r∑
j=1

(dimA−j − 1)− 1

2

q∑
j=r+1

dimA−j = −1

2
(dim(Ā)− − r).

Then applying the formula (8) we get
(9) ∑
m1+···+mq=m

(
m

m1, . . . ,mq

) r∏
j=1

(
2d2
j

d
)mj

q∏
j=r+1

(
d2
j

d
)mj

r∏
j=1

m
− 1

2 (dimA−j −1)

j

q∏
j=r+1

m
− 1

2 dimA−j
j ' Cm− 1

2 (dim(Ā)−−r),

where C = F (
2d21
d , . . . ,

d2q
d ) is a constant. Thus∑

m1+···+mq=m

(
m

m1, . . . ,mq

)
c∗m1

(A1) · · · c∗mq (Aq)

' C1

∑
m1+···+mq=m

(
m

m1, . . . ,mq

) r∏
j=1

m
− 1

2 (dimA−j −1)

j (2d2
j )
mj

q∏
j=r+1

m
− 1

2 dimA−j
j (d2

j )
mj

' C2m
− 1

2 (dim(Ā)−−r)(dim Ā)m.

�

8. An upper bound for finite dimensional ∗-algebras

In this section A = Ā+J is a finite dimensional algebra with involution over an algebraically closed field F of
characteristic zero. We have Ā = A1⊕· · ·⊕Aq, where Js 6= 0, Js+1 = 0 and the Ai’s are ∗-simple algebras with
Ai = Mdi(F ) ⊕Mdi(F )op with exchange involution, 1 ≤ i ≤ r and Ai = Mdi(F ) with transpose or symplectic
involution, r+1 ≤ i ≤ q . Fix a basis {u1, . . . , um} of A which is the union of the standard bases of the ∗-simple

components and of a basis {w1, . . . , wp} of J. If 1 ∈ A, wt ∈ e(i)
j,jJe

(l)
k,k, for some 1 ≤ j ≤ di, 1 ≤ k ≤ dl, 1 ≤

i, l ≤ q, where in case Ai = Mdi(F ) ⊕Mdi(F )op, e
(i)
j,l stands for (e

(i)
j,l , 0) or (0, e

(i)
l,j ). When A does not have a

unit element, wt can belong also to the spaces e
(0)
1,1Je

(l)
k,k, e

(i)
j,jJe

(0)
1,1, e

(0)
1,1Je

(0)
1,1, where e

(0)
1,1 = e0.

We define the generic elements of A and their star as

(10) Uj =

m∑
i=1

ξi,jui, U∗j =

m∑
i=1

ξi,ju
∗
i , for j ≥ 1,

where the elements ξi,j are commutative variables. Hence Uj , U
∗
j ∈ A⊗ F [ξi,j | 1 ≤ i ≤ m, j ≥ 1].

Let

Vn = span{Uε1σ(1) · · ·U
εn
σ(n) | σ ∈ Sn, εi = 1 or ∗}.
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Since a multilinear ∗-polynomial is a ∗-identity of A if and only if it vanishes on the generic elements Uj (see
[21, Theorem 1.4.4]), it follows that

(11) c∗n(A) = dimVn.

The aim of this section is to compute an upper bound of c∗n(A). We follow the approach of the proof given in
[2]. Nevertheless in the involution case we face the difficulties coming from a more subtle decomposition of the
Wedderburn-Malcev structure theorem of finite dimensional algebras.

We start by fixing a basis of the ∗-simple components. Let {a(l)
1 , . . . , a

(l)
ml} be a basis of the ∗-simple algebra Al,

1 ≤ l ≤ q. Recall that either Al = Mdl(F ) with transpose or symplectic involution or Al = Mdl(F )⊕Mdl(F )op

with exchange involution. Thus in the first case ml = d2
l and a basis consists of the matrix units e

(l)
i,j , and in

the second case ml = 2d2
l and a basis consists of the elements (e

(l)
i,j , 0) and (0, e

(l)
i,j).

Next we rewrite the generic elements in the following form

(12) Uj =

q∑
l=1

U
(l)
j +Wj , U∗j =

q∑
l=1

(U
(l)
j )∗ +W ∗j ,

where

U
(l)
j =

ml∑
i=1

ξ
(l)
i,ja

(l)
i , (U

(l)
j )∗ =

ml∑
i=1

ξ
(l)
i,j (a

(l)
i )∗, Wj =

p∑
i=1

ηi,jwi, W ∗j =

p∑
i=1

ηi,jw
∗
i .

Thus U1, U
∗
1 , . . . , Un, U

∗
n ∈ A⊗ F [ξ

(l)
i,j , ηk,j | 1 ≤ j ≤ n, 1 ≤ i ≤ ml, 1 ≤ k ≤ p, 1 ≤ l ≤ q], where the ηi,j are also

commutative indeterminates.
Notice that if Al = Mdl(F ), then U

(l)
j is a generic matrix and (U

(l)
j )∗ is its star. When Al = Mdl(F ) ⊕

Mdl(F )op, then U
(l)
j is actually a pair of generic matrices. Anyway by abuse of notation we shall call U

(l)
j a

generic matrix also in this last case. The following remark is in order.

Remark 8.1. Consider kl generic matrices U
(l)
j1
, . . . , U

(l)
jkl

and let Ũ
(l)
j1
, . . . , Ũ

(l)
jkl

be the same generic matrices

partially evaluated (we have specialized some of the coefficients ξ
(l)
i,jr

to scalars in some way). Then

dim span{(Ũ (l)
jσ(1)

)ε1 · · · (Ũ (l)
jσ(kl)

)εkl | σ ∈ Skl , εi = 1 or ∗}

≤ dim span{(U (l)
jσ(1)

)ε1 · · · (U (l)
jσ(kl)

)εkl | σ ∈ Skl , εi = 1 or ∗} = c∗kl(Al).

In order to compute an upper bound of c∗n(A) we define

Yn = span{Tσ(1) · · ·Tσ(n) | Tj = U
(l)
j or (U

(l)
j )∗ or ηi,jwi or ηi,jw

∗
i , for some 1 ≤ l ≤ q, 1 ≤ i ≤ p}.

By linearity we have that Vn ⊆ Yn; so c∗n(A) ≤ dimYn and our aim is to find a suitable upper bound of dimYn.
Notice that, since Js+1 = 0, in every non-zero monomial of Yn at most s elements wi or w∗i can appear.
For any u ≤ s, let (wε1t1 , . . . , w

εu
tu ) = ~w be a fixed sequence of elements of the basis of J and their star, and

consider the subspace Y ~w
n of Yn defined as

Y ~w
n = span{M0ηt1,j1w

ε1
t1M1ηt2,j2w

ε2
t2 · · ·Mu−1ηtu,juw

εu
tuMu | {j1, . . . ju} ⊆ {1, . . . , n},

M0,M1, . . . ,Mu are multilinear monomials in U
(l)
k or (U

(l)
k )∗, k ∈ {1, . . . , n} \ {j1, . . . , ju}, 1 ≤ l ≤ q}.

In particular when u = 0, ~w = ∅ and

Y ~w
n = span{M0 |M0 multilinear monomial in U

(l)
k or (U

(l)
k )∗, 1 ≤ k ≤ n, 1 ≤ l ≤ q}.

Thus dimYn ≤
∑

~w dimY ~w
n where the sum runs over all sequences ~w = (wε1t1 , . . . , w

εu
tu ) with 0 ≤ u ≤ s.

Since

M0ηt1,j1w
ε1
t1M1ηt2,j2w

ε2
t2 · · ·Mu−1ηtu,juw

εu
tuMu =

u∏
i=1

ηti,jiM0w
ε1
t1M1w

ε2
t2 · · ·Mu−1w

εu
tuMu,
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we define a new space

(13) Ȳ ~w
n = span{M0w

ε1
t1M1w

ε2
t2 · · ·Mu−1w

εu
tuMu |M0,M1, . . . ,Mu are monomials in U

(l)
k or (U

(l)
k )∗,

k ∈ {1, . . . , n} \ {j1, . . . , ju}, 1 ≤ l ≤ q}.
It follows that

dimY ~w
n ≤ u!

(
n

u

)
dim Ȳ ~w

n ,

where
(
n
u

)
counts the distinct subsets {j1, . . . , ju} of {1, . . . , , n} and u! counts the number of permutations of

j1, . . . , ju.
Thus since n >> s,

(14) c∗n(A) ≤ dimYn ≤
∑
~w

dimY ~w
n ≤ Cs!

(
n

s

)
dim Ȳ ~w

n ,

where C counts the number of sequences (of length ≤ s) of the basis of J and their star, and ~w is a sequence
such that dim Ȳ ~w

n is maximal.
In the next step we shall compute an upper bound of dim Ȳ ~w

n , for any ~w = (wε1t1 , . . . , w
εu
tu ). In order to do so,

for fixed n1, . . . , nq such that n1 + · · ·+ nq = n− u, we define

Zn1,...,nq = span{M = M0w
ε1
t1M1w

ε2
t2 · · ·Mu−1w

εu
tuMu ∈ Ȳ ~w

n | ni =

number of U
(i)
j or (U

(i)
j )∗ appearing in M, 1 ≤ i ≤ q}.

Clearly

(15) dim Ȳ ~w
n ≤

∑
n1+···+nq=n−u

(
n− u

n1, . . . , nq

)
dimZn1,...,nq ,

and our aim is to find an upper bound of dimZn1,...,nq . In order to simplify the notation, from now on we
assume that A has 1 since the case when A does not have 1 follows the same pattern of proof.

Lemma 8.1. There are constants b1, . . . , bq,
∑q
i=1 bi ≤ s+ 1, such that

dimZn1,...,nq ≤ Cc∗k1(A1) · · · c∗kq (Aq),
for some constant C, where ki = ni + bi + 1, for i = 1, . . . , q.

Proof. Let us consider a non-zero monomial

M = M0w
ε1
t1M1w

ε2
t2 · · ·Mu−1w

εu
tuMu ∈ Zn1,...,nq .

Since (U
(l)
j )ε(U

(r)
m )δ = 0 for l 6= r, where ε, δ ∈ {1, ∗}, in order forM to be non-zero, each Mi must be computed

in generic elements U
(ai)
j (and their star) of a ∗-simple algebra Aai for 0 ≤ i ≤ u. We shall write

Mi = Mi(U
(ai)
j , ∗).

Recall that for every 1 ≤ i ≤ u, we have that wεiti = e
(ai−1)
hi,hi

wεiti e
(ai)
ki,ki

. Here e
(i)
j,l is the usual matrix unit in

case Ai = Mdi(F ) and e
(i)
j,l = (e

(i)
j,l , 0) or (0, e

(i)
l,j ) in case Ai = Mdi(F ) ⊕Mdi(F )op. In the computation of an

upper bound for dimZn1,...,nq we have to keep in mind that the sequence (wε1t1 , . . . , w
εu
tu ) is fixed and, so, also

the indices h1, k1, . . . , hu, ku. Also, in order for M to be non-zero, in case Aai = Mdi(F )⊕Mdi(F )op, we must

have that e
(ai)
ki,ki

= (e
(ai)
ki,ki

, 0) and e
(ai)
hi+1,hi+1

= (e
(ai)
hi+1,hi+1

, 0) or e
(ai)
ki,ki

= (0, e
(ai)
ki,ki

) and e
(ai)
hi+1,hi+1

= (0, e
(ai)
hi+1,hi+1

).

Notice that a0, a1, . . . , au ∈ {1, . . . , , q} are not necessarily distinct and the number of generic elements U
(bj)
j or

their star appearing in this monomial is n− u.
Then M is a linear combination of monomials of the type

Nk0,hu+1
= e

(a0)
k0,k0

M0e
(a0)
h1,h1

wε1t1 e
(a1)
k1,k1

M1e
(a1)
h2,h2

wε2t2 e
(a2)
k2,k2

· · · e(au−1)
ku−1,ku−1

Mu−1e
(au−1)
hu,hu

wεutu e
(au)
ku,ku

Mue
(au)
hu+1,hu+1

= (M0)k0,h1e
(a0)
k0,h1

wε1t1 (M1)k1,h2e
(a1)
k1,h2

wε2t2 · · · (Mu−1)ku−1,hue
(au−1)
ku−1,hu

wεutu (Mu)ku,hu+1e
(au)
ku,hu+1
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= (M0)k0,h1(M1)k1,h2 · · · (Mu−1)ku−1,hu(Mu)ku,hu+1e
(a0)
k0,h1

wε1t1 e
(a1)
k1,h2

wε2t2 · · · e
(au−1)
ku−1,hu

wεutu e
(au)
ku,hu+1

,

where (Mi)ki,hi+1 is the (ki, hi+1)-entry of Mi = Mi(U
(ai)
j , ∗) in case Aai = Mdai

(F ) and, in case Aai =

Mdai
(F )⊕Mdai

(F )op, (Mi)ki,hi+1 = ((M0
i )ki,hi+1 , 0) or (Mi)ki,hi+1 = (0, (M1

i )hi+1,ki
), with Mi = (M0

i ,M
1
i ), ac-

cording as e
(ai)
hi+1,hi+1

= (e
(ai)
hi+1,hi+1

, 0) or e
(ai)
hi+1,hi+1

= (0, e
(ai)
hi+1,hi+1

); here k0 ∈ {1, . . . , da0} and hu+1{1, . . . , dau}.
Thus we can write

(16) Nk0,hu+1
= F (U, ∗)e(a0)

k0,h1
wε1t1 e

(a1)
k1,h2

wε2t2 · · · e
(au−1)
ku−1,hu

wεutu e
(au)
ku,hu+1

,

where

F (U, ∗) =

u∏
i=0

(Mi)ki,hi+1

is a multilinear function of the generic elements U
(m)
j and their star which depends on the monomials M0, . . . ,Mu

and the two indices k0, hu+1.
Next we group together all indices ai which are equal among themselves. Let s1, . . . , sbl be all the distinct

indices i such that ai = l, i.e.,
as1 = · · · = asbl = l.

Hence their number is bl. Let us also write k̄i = ksi , h̄i+1 = hsi+1, for 1 ≤ i ≤ bl. Notice that b1 + · · · + bq =
u+ 1 ≤ s+ 1. Then set

Fl(U
(l)
j , ∗) =

bl∏
i=1

(Msi)k̄i,h̄i+1
.

and consequently

(17) F (U, ∗) =

q∏
l=1

Fl(U
(l)
j , ∗),

where we set Fl(U
(l)
j , ∗) = 1 if U

(l)
j or its ∗ does not appear in Nk0,hu+1

, for any j.

Let Sl = span{Fl(U (l)
j , ∗)} be the F -vector space spanned by all the expressions Fl(U

(l)
j , ∗), for fixed k0, hu+1.

In order to compute dimSl = dimSle(l)
1,1, in case Al = Mdl(F ) we write

(18) Fl(U
(l)
j , ∗)e(l)

1,1 = e
(l)

1,k̄1
Ms1e

(l)

h̄2,k̄2
Ms2e

(l)

h̄3,k̄3
· · · e(l)

h̄bl ,k̄bl
Msbl

e
(l)

h̄bl+1
,1
,

and, in case Al = Mdl(F ) ⊕ Mdl(F )op, we obtain an expression similar to (18) where the computation is
performed for instance on the first component. The above elements are just the evaluations of a monomial in

nl generic matrices of Al and their star, and in bl + 1 matrix units e
(l)
i,j , where nl = number of generic matrices

in Ms1Ms2 · · ·Msbl
.

Define kl = nl + bl + 1. Then

(19) k =

q∑
l=1

kl = n− u+

q∑
l=1

bl + q = n+K,

where K = −u+
∑q
l=1 bl + q ≤ −u+ s+ q + 1 is a constant independent of n.

Now we can apply Remark 8.1 to the space Sle(l)
1,1 by noticing that we have specialized bl+1 generic matrices

to the elements e
(l)

1,k̄1
, . . . , e

(l)

h̄bl+1
,1
. Hence we get that

dimSl ≤ c∗kl(Al).
Recalling the definition of Zn1,...,nq , we get that

dimZn1,...,nq ≤ C
q∏
l=1

dimSl ≤ Cc∗k1(A1) · · · c∗kq (Aq),

where C ≤ dim Ā counts the number of indices k0, hu+1. �
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Now we can collect the results so far obtained and prove the following

Theorem 8.1. Let A = Ā + J be a finite dimensional algebra with involution ∗ over an algebraically closed
field F of characteristic zero. Let Ā = A1 ⊕ · · ·Ar ⊕ Ar+1 ⊕ · · · ⊕ Aq be a direct sum of ∗-simple algebras with
A1, . . . , Ar not simple algebras, Js 6= 0, Js+1 = 0. Then

c∗n(A) ≤ Cn− 1
2 (dim(Ā)−−r)+s(dim Ā)n.

for some constant C.

Proof. By (14) and (15) we have that

c∗n(A) ≤ C ′
(
n

s

) ∑
n1+···+nq=n−u

(
n− u

n1, . . . , nq

)
dimZn1,...,nq ,

for some constant C ′. Then by Lemma 8.1 and Lemma 7.1 we get that

c∗n(A) ≤ C ′
(
n

s

) ∑
n1+···+nq=n−u

(
n− u

n1, . . . , nq

)
c∗k1(A1) · · · c∗kq (Aq),

where ki = ni + bi + 1,
∑q
i=1 bi = u+ 1. Hence

c∗n(A) ≤ C ′
(
n

s

) ∑
k1+···+kq=k

(
k

k1, . . . , kq

)
c∗k1(A1) · · · c∗kq (Aq) ≤ C

′
(
n

s

)
k−

1
2 (dim(Ā)−−r)(dim Ā)k

≤ C ′
(
n

s

)
(n+K)−

1
2 (dim(Ā)−−r)(dim Ā)n+K ≤ C ′′n− 1

2 (dim(Ā)−−r)+s(dim Ā)n,

for some constant C ′′, where K is a constant independent of n (see (19)). �

9. A lower bound for ∗-fundamental algebras

The aim of this section is to find a suitable lower bound of c∗n(A) for any ∗-fundamental algebra. We start by
remarking a result about generic elements. Let A = Mk(F ) be a ∗-simple algebra and let U1, . . . , Ut be generic
elements of A defined as in (10). Clearly if A = Mk(F ), then Uj is a generic matrix and we write

Uj =

k∑
i,l=1

ξji,lei,l.

Notice that U∗j is also a generic matrix.
When A = Mk(F )⊕Mk(F )op, then Uj is actually a pair of generic matrices:

Uj = (U0
j , U

1
j ) = (

k∑
i,l=1

ξji,lei,l,

2k∑
i,l=k+1

ξji,lei,l).

Anyway by abuse of notation we shall call Uj a generic matrix also in this last case. Even in this case U∗j is a
generic matrix.

Let g(x1, . . . , xt) be a multilinear ∗-monomial. Then g(U1, . . . , Ut) is a non-zero element in A⊗ F [ξ], where

F [ξ] = F [ξji,l], 1 ≤ j ≤ t, with 1 ≤ i, l ≤ k or 1 ≤ i, l ≤ 2k, according as A = Mk(F ) or A = Mk(F )⊕Mk(F )op.

If A = Mk(F )⊕Mk(F )op, then g(U1, . . . , Ut) = (g0, g1) with g0, g1 6= 0. We have the following.

Lemma 9.1. Under the above conditions, all the diagonal entries of G = g(U1, . . . , Ut) are non-zero polyno-
mials.

Proof. In case A = Mk(F ) ⊕Mk(F )op, we prove the result only for one component, say g0 and we shall write
g = g0.

Suppose by contradiction that some entry on the diagonal, say G11, vanishes. Now for any invertible matrix
h ∈ GL(k, F ) we have that

hGh−1 = g(hU1h
−1, . . . , hUth

−1).
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Let h̄ : F [ξ] −→ F [ξ] be the automorphism induced by h on the polynomial ring F [ξ], that is:

h̄(ξji,l) = h̄((Uj)i,l) := (hUjh
−1)i,l and, so, (hGh−1)i,l = h̄(Gi,l).

Since G11 = 0 then, for all h ∈ GL(k, F ), the entry (hGh−1)1,1 = 0. Now suppose that there exist indices i 6= j
with Gi,j = 0. Then by conjugating by a permutation matrix we get

Gσ(i),σ(j) = (σGσ−1)i,j = 0,

and, so, all off diagonal entries are zero. Hence, since G11 = 0 the element G has determinant zero, a con-
tradiction since all non-zero elements of the algebra of generic matrices are invertible. This proves that all off
diagonal entries are non-zero. But if we conjugate G with the matrix h = 1− e2,1 we have:

0 = h̄(G1,1) = (hGh−1)1,1 = G1,2 6= 0,

a contradiction. �

The main result of this section is the following.

Theorem 9.1. Let A = Ā+ J be a ∗-fundamental algebra over an algebraically closed field F of characteristic
zero and let Ā = A1 ⊕ · · ·Ar ⊕Ar+1 ⊕ · · · ⊕Aq be a direct sum of ∗-simple algebras with A1, . . . , Ar not simple
algebras, Js+1 = 0, s ≥ 0. Then

c∗n(A) ≥ Cn− 1
2 (dim(Ā)−−r)+s(dim Ā)n,

for some constant C > 0.

Proof. If A is ∗-simple the result follows from Theorems 7.1 and 7.2. Hence we may assume that s > 0 and let
(d, s) be the (t, s)-index of A.

Since A is ∗-fundamental, there exists a ∗-fundamental polynomial f(Z1, . . . , Zs, y1, . . . , yq, X) /∈ Id∗(A)
multilinear and alternating in s sets of variables Zi = {xi,1, . . . , xi,d+1} each with d+ 1 variables, linear in the
variables y1, . . . , yq and eventually depending on some extra variables X. In order to get a non-zero evaluation,
for all i = 1, . . . q, the variable yi (up to a permutation of the indices) must be evaluated in Ai and precisely
one variable of each Zi must be evaluated in J. Let us assume that the first variable zi := xi,1, 1 ≤ i ≤ s, is
evaluated in J .

Now we are going to consider a non-zero elementary evaluation η of f.

In such an evaluation yi is evaluated in e
(i)
hi,ki

, 1 ≤ i ≤ q. Recall that if Ai = Mdi(F )⊕Mdi(F )op the element

e
(i)
hi,ki

stands for (e
(i)
hi,ki

, 0) or (0, e
(i)
ki,hi

).

Let f̃ be the polynomial obtained from f by replacing yi by uiviwiyi, where ui, vi, wi are new variables
different from the ones appearing in f. Clearly the evaluation η of f can be extended to a non-zero evaluation

η′ of f̃ by evaluating the new variables ui, vi, wi in e
(i)
hi,hi

, 1 ≤ i ≤ q.
Next we performe a partial evaluation of f̃ by evaluating only the variables ui, wi, yi, xj,k, k > 1, 1 ≤ j ≤ s,

as in η′. In this way we obtain an expression g(v1, . . . , vq, z1, . . . , zs) which is a linear combination of monomials
made out of elements of A and the variables vi, zj and their ∗. We call such g a generalized ∗-polynomial.

Recall that if we evaluate some zj in Ā or some vi in J then g vanishes.
Let n = (n1, . . . , nq) be a composition of n into q parts, i.e.,

∑q
i=1 ni = n, and set m = n + nq+1, where

nq+1 = s.
The set {1, . . . ,m} is partitioned in q + 1 subsets B1, . . . , Bq+1, with

Bi = {bi−1 + 1, bi−1 + 2, . . . , bi}, |Bi| = ni,

where b0 = 0, bi := n1 + . . .+ ni, 1 ≤ i ≤ q + 1, and we set P = {B1, . . . , Bq+1}. P is called a multipartition of
m.

Fix a sequence ε = (ε1, . . . , εn), where εi = 1 or ∗, and consider the set of variables T = {x′1, . . . , x′n, xn+1, . . . , xm},
where x′i = xεii , 1 ≤ i ≤ n. Let Mε

1 , . . . ,M
ε
q be the monomials in some of the variables of T defined by

Mε
i = Mε

i (x′bi−1+1, x
′
bi−1+2, . . . , x

′
bi) = x′bi−1+1x

′
bi−1+2 . . . x

′
bi .

In other words Mε
i is a multilinear product of ni consecutive variables x′h indexed by the elements of Bi.
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Now if in g we replace vi by the monomial Mε
i , 1 ≤ i ≤ q, and zj by the variable xn+j , 1 ≤ j ≤ s, then we

get a generalized ∗-polynomial:

gεP(x′1, . . . , x
′
n, xn+1, . . . , xm) := g(Mε

1 , . . . ,M
ε
q , xn+1, . . . , xm).

Consider m generic elements of A

Uj =

q∑
i=1

U
(i)
j +Wj , j = 1, . . . ,m,

with U
(i)
j generic elements of Ai and Wj generic elements of J as in (12).

For σ ∈ Sm, set

Mε,σ
i = Mε

i (U
(i)
σ(bi−1+1), U

(i)
σ(bi−1+2), . . . , U

(i)
σ(bi)

) = (U
(i)
σ(bi−1+1))

εbi−1+1(U
(i)
σ(bi−1+2))

εbi−1+2 · · · (U (i)
σ(bi)

)εbi .

In case Ai = Mdi(F )⊕Mdi(F )op then

Mε,σ
i = ((Mε,σ

i )0, (Mε,σ
i )1)

= ((U
(i)
σ(bi−1+1))

ai1 (U
(i)
σ(bi−1+2))

ai2 · · · (U (i)
σ(bi)

)aini , (U
(i)
σ(bi−1+1))

bi1 (U
(i)
σ(bi−1+2))

bi2 · · · (U (i)
σ(bi)

)bini ),

where aij = 0 if εbi−1+j = 1 and aij = 1 if εbi−1+j = ∗, whereas bij = 1 if εbi−1+j = 1 and bij = 0 if

εbi−1+j = ∗. We set (Mε,σ
i )hi,hi = (((Mε,σ

i )0)hi,hi , 0) or (0, ((Mε,σ
i )1)hi,hi) according as yi is evaluated in

(e
(i)
hi,ki

, 0) or (0, e
(i)
ki,hi

), respectively.
We have

(20) gεP(Uσ(1), . . . , Uσ(m)) =

q∏
i=1

(Mε,σ
i )hi,hiG(Wσ(n+1), . . . ,Wσ(m)),

where

G(Wσ(n+1), . . . ,Wσ(m)) = g(e
(1)
h1,h1

, . . . , e
(q)
hq,hq

,Wσ(n+1) . . . ,Wσ(m)),

and, in case Ai = Mdi(F ) ⊕Mdi(F )op, e
(i)
hi,hi

= (e
(i)
hi,hi

, 0) if yi is evaluated in (e
(i)
hi,ki

, 0) and e
(i)
hi,hi

= (0, e
(i)
hi,hi

)

if yi is evaluated in (0, e
(i)
hi,ki

).
In order to complete the proof we need the following.

Lemma 9.2. Let P = {B1, . . . , Bq+1} be as above and let Σ = {σ ∈ Sm | σ(Bi) = Bi, 1 ≤ i ≤ q and σ(n+ j) =
n+ j, 1 ≤ j ≤ s}. Then if GP = span{gεP(Uσ(1), . . . , Uσ(m)), σ ∈ Σ, ε ∈ {1, ∗}n} we have that

dimGP = c∗n1
(A1) · · · c∗nq (Aq).

Proof. Since σ(n+ i) = n+ i, i = 1, . . . , s, then G(Wσ(n+1), . . . ,Wσ(m)) = G(Wn+1, . . . ,Wm) 6= 0. Hence if we
write σ ∈ Σ as σ = τ1 · · · τq, where τi = σ|Sni = σ|SBi we have that

GP ∼=M = span{
q∏
i=1

(Mε,τi
i )hi,hi , | τi ∈ Sni , ε ∈ {1, ∗}n}.

For each i the polynomial functions (Mε,τi
i )hi,hi depend only upon the generic elements U

(i)
j , where j ∈ Bi.

Moreover, if i 6= l, Mε,τi
i and Mε′,τl

l are in disjoint sets of variables for any τi ∈ Sni , τl ∈ Snl and ε, ε′ ∈ {1, ∗}n.
Therefore the space M is the tensor product of the spaces spanned by the polynomials (Mε,τi

i )hi,hi , 1 ≤ i ≤
q, τi ∈ Sni , ε ∈ {1, ∗}n.

Since Mε,τi
i is a non-zero element in Ai⊗F [ξ

(i)
j,l ] (the variables which appear are all distinct) then, by Lemma

9.1, all the diagonal entries are non-zero polynomials. Hence the linear map Mε,τi
i 7→ (Mε,τi

i )hi,hi from the

space generated by the multilinear monomials in U
(i)
τi(bi−1+1), U

(i)
τi(bi−1+2), . . . U

(i)
τi(bi)

and their ∗ to the polynomial

ring F [ξ
(i)
j,l ] is injective.

Hence the space spanned by the monomials (Mε,τi
i )hi,hi is isomorphic to the span of multilinear products of

ni generic elements of Ai which by (11) has dimension c∗ni(Ai). �
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Now we denote by Cn the set of all multipartitions {C1, . . . , Cq+1} of m such that each Cj has nj elements.

It is clear that Cn has m!∏q+1
i=1 ni!

=
(

m
n1,,...,nq+1

)
elements. Let C = {C1, . . . , Cq+1} ∈ Cn be a fixed multipartition

of m and let

MC = span{gεP(Uσ(1), . . . , Uσ(m)) | ε ∈ {1, ∗}n, σ ∈ Sm and σ(Bi) = Ci, 1 ≤ i ≤ q}.
Notice that the spaces {MC}C∈Cn form a direct sum since they are made of homogeneous elements of different
multidegree in the variables. Such a sum is contained in the space obtained by specializations of the span of
multilinear products of n + t generic elements of A, where t is independent of n and is equal to s plus the
number of variables of f̃ which are evaluated in A in the partial evaluation. Hence

(21)
∑

n=(n1,...,nq)∑
i ni=n

∑
C∈Cn

dim(MC) ≤ c∗n+t(A)

with t some fixed number. By symmetry we have dimMC = dimMP for all C ∈ Cn. Now, since

dimMP ≥ dimGP = c∗n1
(A1) · · · c∗nq (Aq)

and nq+1 = s, we have∑
C∈Cn

dimMC =

(
m

n1, . . . , nq+1

)
dimMP =

(
m

s

)(
n

n1, . . . , nq

)
dimMP

≥ C1n
s

(
n

n1, . . . , nq

)
c∗n1

(A1) · · · c∗nq (Aq),

for some constant C1 > 0. Hence, by (21) and Lemma 7.1 we get

(22) c∗n+t(A) ≥ C1n
s

∑
n=(n1,...,nq)∑

i ni=n

(
n

n1, . . . , nq

)
c∗n1

(A1) · · · c∗nq (Aq)

≥ C2n
− 1

2 (dim(Ā)−−r)+s(dim Ā)n,

for some constant C2 > 0. Hence formula (22) yields the conclusion

(23) c∗l (A) ≥ C2(l − t)− 1
2 (dim(Ā)−−r)+s(dim Ā)l−t ≥ C3l

− 1
2 (dim(Ā)−−r)+s(dim Ā)l,

for some constant C3.
�

10. The main results

Let A be a ∗-fundamental algebra. Recall that when A is ∗-simple the asymptotics of c∗n(A) are given in
Theorem 7.1 and Theorem 7.2. Then putting together these results and the bounds of c∗n(A) obtained in
Theorem 8.1 and Theorem 9.1 we get the following.

Theorem 10.1. Let A = Ā+J be a ∗-fundamental algebra over an algebraically closed field F of characteristic
zero and let s ≥ 0 be the least integer such that Js+1 = 0. Write Ā = A1 ⊕ · · ·Ar ⊕ Ar+1 ⊕ · · · ⊕ Aq, a direct
sum of ∗-simple algebras with A1, . . . , Ar not simple algebras, then

C1n
− 1

2 (dim(Ā)−−r)+s(dim Ā)n ≤ c∗n(A) ≤ C2n
− 1

2 (dim(Ā)−−r)+s(dim Ā)n,

for some constants C1 > 0, C2. Hence

lim
n→∞

logn
c∗n(A)

exp∗(A)n
= −1

2
(dim(Ā)− − r) + s.

Now let A be a finitely generated ∗-algebra satisfying a polynomial identity. By [38] A has the same ∗-
identities as a finite dimensional ∗-algebra B. By Proposition 6.1, B has the same ∗-identities as a finite direct
sum of ∗-fundamental algebras D1 ⊕ · · · ⊕Dm. Since c∗n(B) ' c∗n(Dl) for a suitable Dl, we get the following.



STAR-FUNDAMENTAL ALGEBRAS: POLYNOMIAL IDENTITIES AND ASYMPTOTICS 23

Theorem 10.2. Let A be a finitely generated ∗-algebra over a field F of characteristic zero. If A satisfies a
polynomial identity then

C1n
texp∗(A)n ≤ c∗n(A) ≤ C2n

texp∗(A)n,

where t ∈ 1
2Z, for some constants C1 > 0, C2. Hence limn→∞ logn

c∗n(A)
exp∗(A)n exists and is a half integer.

It is worth mentioning that by Theorem 8.1 and Theorem 10.1 the above upper bound can be specialized for
any finite dimensional ∗-algebra which is ∗-simple or non-semisimple. We have.

Theorem 10.3. Let A = Ā + J be a finite dimensional algebra with involution ∗ over an algebraically closed
field F of characteristic zero. Let Ā = A1 ⊕ · · ·Ar ⊕ Ar+1 ⊕ · · · ⊕ Aq be a direct sum of ∗-simple algebras with
A1, . . . , Ar not simple algebras. Then if A is ∗-simple or non-semisimple

c∗n(A) ≤ Cn− 1
2 (dim(Ā)−−r)+s(dim Ā)n.

for some constant C, where s+ 1 is the nilpotency index of J .
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