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The symmetrization postulate in quantum mechanics is formally reflected in the appearance of
an exchange phase ruling the symmetry of identical particle global states under particle swapping.
Many indirect measurements of this fundamental phase have been reported thus far, while a direct
observation has been only recently achieved for photons. Here we propose a general scheme capa-
ble of directly measuring the exchange phase of any type of particles (bosons, fermions, anyons),
exploiting the operational framework of spatially localized operations and classical communication.
We experimentally implement it in an all-optical platform providing proof-of-principle for different
simulated exchange phases. As a byproduct, we supply a direct measurement of the real bosonic
exchange phase of photons. Additionally, we analyze the performance of the proposed scheme when
mixtures of particles of different natures are injected. Our results confirm the symmetrization tenet
and provide a tool to explore it in various scenarios. Finally, we show that the proposed setup
is suited to generate indistinguishability-driven N00N states useful for quantum-enhanced phase
estimation.

The symmetrization postulate divides particles living
in a 3-dimensional space into two groups: bosons and
fermions. Such a postulate forces the state of an ensemble
of identical bosons (fermions) to be symmetric (antisym-
metric) under the exchange of any pair of particles [1].
Considering a system of two identical particles, its global
state must then satisfy |ψ(1, 2)〉 = eiφ |ψ(2, 1)〉, where
1 and 2 refer to the two constituents and the relative
phase φ is the particle exchange phase (EP), with φ = 0
for bosons and φ = π for fermions. Furthermore, the ex-
istence of particles called anyons living in 2-dimensional
spaces with a fractional EP φ ∈ (0, 2π) \ (π) has been
suggested [2, 3], attracting the attention of the scien-
tific community in recent decades [4–6]. This fundamen-
tal phase has been indirectly measured by various ex-
periments [7–12]. Despite the fundamental importance
of the symmetrization postulate in both understanding
the quantum world and practical applications, only the
bosonic nature of photons has been so far directly proven
by a state transport protocol [13, 14]. A direct observa-
tion of fermionic and anyonic EPs is still missing, leaving
the field open to the introduction of new techniques ca-
pable to fill that gap.

In the standard approach to identical particles [1] the
global state vector is symmetrized or antisymmetrized
with respect to unphysical labels associated to each con-
stituent. This approach is known to exhibit drawbacks
when trying to assess real quantum correlations between
constituents [15, 16]. Given the key role played by en-
tanglement in quantum technologies, different methods
have been developed to fix such an issue [16–23]. Among

these, the no-label approach [21] provides some advan-
tages: it straightforwardly identifies physical entangle-
ment and establishes its quantitative relation with the
degree of spatial indistinguishability [24]; the latter is
associated to the spatial overlap of particle wave func-
tions. Importantly, in the no-label formalism, the role
played by the particles’ nature does not manifest itself
in the (anti)symmetrization of the quantum state but in
the probability amplitudes of the global system [21, 22].

The no-label approach has been widely exploited
within spatially localized operations and classical com-
munication (sLOCC) environments [23–31]. Such a pro-
cedure can be seen as a natural extension of standard
local operations and classical communication (LOCC)
for distinguishable particles to the case of indistinguish-
able and individually unaddressable constituents. Oper-
ationally, sLOCC makes the global state of indistinguish-
able particles undergo a projective measurement over
spatially-separated regions, followed by a post-selection
when one particle is found in each location. Consider
a state of two independent identical qubits |ψD〉 =
|ϕD ↑, ϕ′D ↓〉, where ϕD, ϕ′D are spatial wave functions
and ↑, ↓ are pseudospins. The result of sLOCC onto |ψD〉
gives [23]

|ψLR〉 =
lr′ |L ↑,R ↓〉+ eiφrl′ |L ↓,R ↑〉√

|lr′|2 + |rl′|2
, (1)

where l, l′ (r, r′) are the probability amplitudes for each
particle to be found in the region L (R), while φ is the ex-
change (statistical) phase; |ψLR〉 is entangled only if the
qubits spatially overlap, i.e., are spatially indistinguish-



2

able, at the regions L and R. Remarkably, the sLOCC
process makes particle statistics naturally emerge in the
final entangled state. The entanglement obtained is ex-
perimentally accessible [29, 30], and has been exploited
for teleportation [29] and phase discrimination [31]. Also,
sLOCC-based indistinguishability is useful for protecting
entanglement against noise [24, 26–28].

Here we give further value to sLOCC by experimen-
tally showing, in a quantum-optical setup, that its theo-
retical framework enables a phase-estimation procedure
to directly access the EPs of indistinguishable particles
of any nature (Fig. 1(a)).

Theoretical background. The conceptual proce-
dure is depicted in Fig. 1(a). Let us take a pair of
two-level identical particles independently prepared and
initially uncorrelated, whose spatial wave functions and
pseudospins are respectively ϕ, ↑ and ϕ′, ↓. In the no-
label formalism, we write this state as |ψin〉 = |ϕ ↑, ϕ′ ↓〉.
Then, a deformation operation |ϕ〉 → |ϕD〉, |ϕ′〉 →
|ϕ′D〉 is performed [24, 26, 32] to distribute the spatial
wave functions over two distinct regions L and R in a
controllable way, thus transforming |ψin〉 into |ψD〉 =
|ϕD ↑, ϕ′D ↓〉, where

|ϕD〉 = l |L〉+ r |R〉 , |ϕ′D〉 = l′ |L〉+ r′ |R〉 . (2)

Here, the coefficients l = 〈L|ϕD〉, l′ = 〈L|ϕ′D〉, r =
〈R|ϕD〉 and r′ = 〈R|ϕ′D〉 are the tunable probability am-
plitudes of finding the particle whose spatial wave func-
tion is ϕD or ϕ′D in the site L and R, respectively.

To implement the sLOCC measurement we per-
form the post-selected detection of the states where
exactly one qubit per region is recorded. In
total, this last step amounts to projecting the
state |ψD〉 onto the two particle basis BLR =
{|L ↑,R ↑〉 , |L ↑,R ↓〉 , |L ↓,R ↑〉 , |L ↓,R ↓〉} via the pro-
jection operator Π̂LR =

∑
σ,τ=↑,↓ |Lσ,Rτ〉 〈Lσ,Rτ |.

We recall that the two particles in the state |ψD〉 are
indistinguishable to the eyes of the detectors. This means
that it is not possible to know the region of space where
each detected constituent comes. Such no which-way in-
formation is encoded in the result of the sLOCC oper-
ation, which is easily computed to be the (normalized)
two-particle entangled state

|ψLR〉 =
Π̂LR |ψD〉√
〈ψD| Π̂LR |ψD〉

=
lr′ |L ↑,R ↓〉+ eiφrl′ |L ↓,R ↑〉√

|lr′|2 + |rl′|2
,

(3)

generated with probability PLR = |lr′|2 + |rl′|2 [23]. The
naturally emerged phase φ in Eq. (3) is exactly the rel-
ative EP we want to measure (Fig. 1(a)). In fact, it is
fundamentally contained in the probability amplitudes
〈χL, χR|ψD〉 = 〈χL|χD〉 〈χR|χ′D〉 + η 〈χL|χ′D〉 〈χR|χD〉
[21], where χL = Lσ, χR = Rτ , χD = ϕD ↑, χ′D = ϕ′D ↓

and η = eiφ is the particle statistics parameter. It is
worth highlighting that the state |ψLR〉, resulting from
the sLOCC process, describes two particles occupying
two distinct regions of space, thus being now distinguish-
able and individually addressable. The spatial indistin-
guishability I under sLOCC associated to the state |ψD〉,
and thus to the state |ψLR〉, is given by [24]

I = − |lr′|2

|lr′|2 + |l′r|2
log2

|lr′|2

|lr′|2 + |l′r|2

− |l′r|2

|lr′|2 + |l′r|2
log2

|l′r|2

|lr′|2 + |l′r|2
. (4)

In general, the state of Eq. (3) represents a quantum
superposition of two-particle states whose relative phase
contains the EP of the particles. Notice that one of the
major difficulties in directly measuring the particle sta-
tistical phase consists in creating quantum interference
between a given state and its counterpart where particles
have been physically exchanged [14]. A so-called state-
dependent transport protocol has been first engineered
to this aim [33] and successively realized with photons
[13]. On the other hand, in our scheme, the fundamental
EP straightforwardly appears as a natural consequence
of spatial overlap at separated regions plus the sLOCC
procedure, making it amenable to be directly measured
via individual operations on the particles. We then pro-
ceed by rotating the pseudospin of both qubits by π/4.
Given the single particle operator

M̂X =
1√
2

(
1 −1
1 1

)
, (5)

performing such operation on the region X = L, R, the
resulting state is given by |ψf 〉 = M̂L ⊗ M̂R |ψLR〉. Fi-
nally, a direct measurement of the pseudospin along the z-
axis in both regions L and R provides information about
the EP. Indeed, we find that

〈ψf |σ̂zL ⊗ σ̂zR|ψf 〉 =
2lr′rl′

|lr′|2 + |rl′|2
cosφ, (6)

where we have taken the coefficients l, r, l′, r′ to be real
since we are able to directly control the distribution of
the initial spatial wave functions over L and R during
the preparation of the state |ψD〉. By knowing such am-
plitudes, it is thus possible to recover the value of the
EP from repeated pseudospin measurements along the
z-axis.

Remarkably, the role of spatial indistinguishability I
clearly emerges from Eq. (6): indeed, as its value varies
from I = 1 (maximum indistinguishability, obtained,
e.g., when l = r = l′ = r′ = 1/

√
2) to I = 0 (distin-

guishable particles, e.g., when l = r′ = 1, l′ = r = 0)
[24], the values assumed by Eq. (6) continuously change
from cosφ to zero, correspondingly. It follows that spa-
tial indistinguishability is not only an essential element
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FIG. 1. Theoretical scheme and experimental setup. (a) Conceptual procedure. The wave functions of two identical particles
are distributed over two distinct regions L and R and adjusted to spatially overlap, generating spatial indistinguishability. A
sLOCC measurement is used to directly observe the EP using a single-particle rotation M̂ in the two regions. (b) Experimental
setup. Two independently prepared photons with opposite polarizations are distributed to two distinct spatial regions L and
R, respectively. In each region, a beam displacer (BD) is used to merge two beams, generating spatial indistinguishability
between the two photons. The relative phase between two spatial modes of photons is properly tuned using a phase adjustment
consisting of the fused silicon (FS) shown in (d). The four outputs are individually directed towards four single-photon detectors
(SPDs), where a coincidence device (CD) is used to deal with the signals. PBS: polarization beam splitter, HWP: half-wave
plate. (c) Replacement setup for the dashed frame in (b). The unbalanced interferometer is used to prepare the mixed states.

for measuring the EP with our procedure, but it also acts
as a sensibility regulator which tunes our ability to access
the value of φ.

Experiment. Denoting with |H〉 and |V 〉 the hori-
zontal and vertical polarization of a photon, respectively,
we make the correspondence |H〉 ↔ |↑〉 and |V 〉 ↔ |↓〉.
A pulsed ultraviolet beam with wavelength at 400 nm
is used to pump a type-II phase-matched β-barium bo-
rate (BBO) crystal to generate two uncorrelated photons
(|H〉⊗|V 〉) via spontaneous parametric down conversion.
Hong-Ou-Mandel interference is performed to character-
ize the indistinguishability of the two photons, providing
a visibility of 97.7% [29]. Single-mode fibers collect the
photons via fiber couplers and direct them towards the ef-
fective experimental setup illustrated in Fig. 1(b). Here,
the weights of their horizontal and vertical polarizations
are tuned using a pair of half wave plates (HWPs) fixed
at 22.5◦ and −β/2 (adjustable angle), respectively. An
additional pair of HWPs at 45◦ is placed on L to restore
the original input polarizations. The result is the prepa-
ration of the state |ψD〉 with |ϕD〉 = (|L〉 + |R〉)/

√
2,

|ϕ′D〉 = sinβ |L〉+ cosβ |R〉.
Using a home-made phase adjustment composed of a

thin plate of fused silicon (FS) fixed in R and of another
identical plate tilted and placed in L (Fig.1(b), (d)), an
arbitrary relative phase φs is judiciously introduced be-
tween the components L and R of the photon ϕ′D, which
becomes |ϕ′D〉 = eiφs sinβ |L〉 + cosβ |R〉. As shown in
Fig. 1(d), φs is tuned by directly adjusting the distance
x (mm) of a movable plate. The relation between φs
and x is displayed in Fig. 2(a) with experimental re-
sults (dots) and theoretical prediction (solid line) with

a plate’s thickness d = 199.94 ± 1.43 µm and a rotation
radius r = 102.36± 0.91 mm (Supplementary note I).

A beam displacer (BD) is used to make the two beams
overlap over both regions. We proceed by setting an
HWP at 22.5◦ after the BD in both L and R to im-
plement the desired rotation, producing the final state
|ψf 〉. The pseudospin measurement σ̂(L)

z ⊗ σ̂(R)
z is then

performed as a coincidence counting by placing each po-
larization beam splitter (PBS) on both regions L and R.
And each output of PBS is individually directed towards
a single-photon detector. The corresponding measured
observable is

〈Ô〉 = n̂13 + n̂24 − n̂14 − n̂23, (7)

where n̂ij is the coincidence count between the outputs n̂i
and n̂j which are shown in Fig. 1(b). This spatially local-
ized operation (sLO), implemented through local count-
ing on L and R, and classical communication (CC) tools,
realized via the coincidence device, create the state of
Eq. (1) with l = r = 1/

√
2, l′ = sinβ, r′ = cosβ, i.e.,

|ψLR〉 = cosβ |LH,RV 〉+ eiφs sinβ |LV,RH〉 , (8)

before the final rotation transforms it into |ψf 〉. Notice
that the relative phase φs in Eq. (8) plays the exact same
role of the real EP φ in Eq. (3) (which here is set to zero
since our experiment is run by bosons). Changing φs
amounts to simulating the behaviour of identical particles
with different natures. In other words, the validity of
our setup capable of directly measuring φs provides a
tough advocacy to directly detect the EP of any type of
particles. Renaming φ the simulated exchange phase, we
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FIG. 2. (a) Relation between the distance x of the moving
plate and the generated relative phase φ. The black dots
represent the experimental results, while the black curve is
the theoretical prediction. Errorbars are too small to be vis-
ible. (b) Relation between 〈Ô〉 and cosφ. Results are re-
ported for different values of β in which the purple, blue,
green, and brown colors represent β = 45◦, 30◦, 20◦, and 10◦,
respectively. The solid lines represent the ideal expected re-
sults, while the dashed lines show the predictions when noise
is taken into consideration. Experimental values are repre-
sented with markers. The inset two panels show the coinci-
dence counting n̂13, n̂14, n̂23, and n̂24 for bosons and fermions,
respectively.

obtain

〈Ô〉 ≡ 〈ψf | Ô |ψf 〉 = sin(2β) cosφ, (9)

from which φ can be easily achieved.
We set β = 45◦ and φ = 0 to prepare two maximally

indistinguishable photons (bosons), generating maximum
entanglement |ψLR〉 = (|LH,RV 〉 + |LV,RH〉)/

√
2 with

a fidelity of 0.99 ± 0.01. Unavoidable experimental er-
rors prevent the achievement of ideal maximum indistin-
guishability, which leads to a non-optimal performance of
the real setup. Following the method used in Ref. [13], we
treat such errors as a constant factor affecting the final
experimental results. We assume that the experimentally

prepared state is the desired (ideal) one with probability
F , while errors give rise to a spoiled state with probability
1−F . Within this model, the spoiled state does not con-
tribute to the expectation value of Ô, leading to the ex-
perimentally measured expectation value 〈Ô〉e = F 〈Ô〉i
where 〈Ô〉i is the ideal prediction. By preparing several
states of Eq. (8) for different values of φ, we use quantum
state tomography [34] to estimate the probability to be
F = 0.977 (Supplementary note II).

The two inset panels in Fig. 2(b) show the coincidence
counts n̂13, n̂14, n̂23 and n̂24 for the cases of (real) bosons
and (simulated) fermions, respectively, with β = 45◦.
Treating experimental errors following the above intro-
duction, we obtain φb = 0.04 ± 0.06 for bosons and
φf = 3.12 ± 0.05 for fermions, which match well with
their expected EPs. Here, the errorbar is the standard
deviation which is estimated based on the experimental
data via the Monte Carlo method.

As shown in Fig. 2(b), by rotating the angle β, we
implement various spatial overlaps to provide deeper in-
sights on the role played by spatial indistinguishability in
our scheme, and adjust the EPs (including anyonic ones)
with the homemade device. The detected values of 〈Ô〉
are given as a function of cosφ, in which φ is obtained
via tomographic measurements, for different degrees of
spatial overlap and, hence, of spatial indistinguishability
I = − sin2 β log2(sin2 β) − cos2 β log2(cos2 β) [24]. The
experimental results match quite well with the theoret-
ical predictions. In particular, the case of β = 45◦ cor-
responds to the maximum spatial overlap (I = 1), while
β = 30◦, β = 20◦, β = 10◦ are associated to partial spa-
tial overlaps (I < 1). Notice that when I decreases, the
ranges of values of 〈Ô〉 decrease accordingly, leading to
a lower sensibility. Spatial indistinguishability acts as a
sensitive regulator ruling the range of measured values.

As an extension of our framework, we analyze the sce-
nario where the input is a flux of particle pairs whose
exchange phase is known to be either φ1 with probability
p or φ2 with probability 1− p. Each two-particle state is
thus given by the classical mixture

ρ = p |ψ1〉 〈ψ1|+ (1− p) |ψ2〉 〈ψ2| , (10)

where |ψ1〉 = cosβ |LH,RV 〉 + eiφ1 sinβ |LV,RH〉 and
|ψ2〉 = cosβ |LH,RV 〉 + eiφ2 sinβ |LV,RH〉. We now
want to exploit our procedure to estimate the probabil-
ity distribution p of the two types of particles by directly
measuring their EPs.

To prepare ρ, we replace the dotted box in Fig. 1(b)
with the unbalanced interferometer shown in Fig. 1(c).
Here, a BD equipped with two HWPs separately placed
on each beam is used to split each beam into two verti-
cal beams. The two upper arms are used to prepare the
particle with EP φ1, while two lower arms are used to
prepare the particle with EP φ2. By changing the angles
of the two HWPs before the BD, the probability distri-
butions p could be adjusted. And as mentioned above,
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FIG. 3. Probability distribution pd for a mixture of two-type
particles measured by our procedure versus the value p di-
rectly generated by rotating HWPs. Experimental results for
a mixture of bosons and anyons with EP φ = π/2 (red mark-
ers), and for a mixture of bosons and fermions (brown mark-
ers). Solid lines represent ideal expected values, while dashed
lines are the theoretical predictions when noise is considered.
Errorbars are too small to be visible.

the EPs φ1 and φ2 are regulated with the corresponding
homemade phase adjustment devices. Then, another BD
together with several HWPs combines two upper (lower)
arms into one beam horizontally. At last, two beams are
combined with a beam splitter in which the desired clas-
sical mixed state of Eq. (10) is generated in one output
and the other output is blocked.

The expectation value 〈Ô〉 = Tr[ρ Ô] = p 〈ψ1| Ô |ψ1〉+
(1−p) 〈ψ2| Ô |ψ2〉 is measured following the same method
introduced above. For simplicity, we assume that the val-
ues of φ1 and φ2 are provided as the prior information,
leading to a reduction in 〈Ô〉 as a linear function of p.
Notice that, if this is not the case, the values of φ1 and φ2
can nonetheless be obtained by our procedure to directly
measure them on a sufficiently big sample of particles.
We start with φ1 = 0 and φ2 = π/2 to investigate a
classical mixture of bosons and anyons with β = 45◦.
We generate different probability distributions p by ro-
tating the two HWPs before the first BD as shown in
Fig. 1(c). Also, we set φ2 = π to investigate a mixture of
bosons and fermions. The results are reported in Fig. 3,
where the detected probability distributions pd, obtained
based on the measured values of 〈Ô〉, are shown versus
the values p directly generated by rotating the HWPs.
Excellent agreement with theoretical predictions is ob-
served (Supplementary note III). This latest experiment
demonstrates how our procedure can be used to obtain
information on the probability distribution p for a mix-
ture of two known different types of particles. If the
number of types of particles is increased or unknown, a
complete characterization of the incoming flux can still
be given by directly measuring the various EPs of the
particle pairs composing a sufficiently large sample.

Discussion. In summary, we have experimentally

shown that the sLOCC framework is inherently amenable
for direct measurement of the EP of indistinguishable
particles. Particle statistics in the measured state is en-
tirely due to the spatial indistinguishability achieved via
the deformation of particle wave packets. The sLOCC
process functions as a trigger making the EP directly
accessible within the generated entanglement. For this
reason, physical exchange of particles and related geo-
metric phase do not occur here, in contrast with the tech-
nique previously adopted [13] to measure the bosonic EP
of photons. Our procedure works for bosons, fermions
and anyons. We have judiciously designed the optical
setup to simulate various particle statistics: different
from other methods used for this aim in photonic quan-
tum walks [35, 36], we have manually injected different
EPs by accurately tuning a phase adjustment, always
observing agreement between measured values and pre-
dictions. Our apparatus has confirmed the real bosonic
(symmetric) nature of photons, enclosing the result of
Ref. [13]. We have also proven that repeated measure-
ments of the EP permit to reconstruct the probability
distribution for statistical mixtures of states of particles
of different natures. Our work provides a general scheme
to directly explore the symmetrization principle and the
role of particle statistics in various contexts, which would
have extendable applications in other phase measurement
schemes [37–39].

As an outlook, it would be interesting to apply our
setup in non-optical platforms to achieve the first direct
measurement of real (not simulated) fermionic and any-
onic EPs. In fact, our scheme can be translated to any
platform implementing linear optics, such as electronic
optics [40], where the degree of indistinguishability can
be adjusted by quantum point contacts acting as elec-
tronic beam splitters [41]. Additionally, quantum dots
appear promising for on-demand generation of single elec-
trons [42], including their initialization and coherent con-
trol [43, 44], where tunnel effect in double quantum dots
could play the role of the deformation operation gener-
ating the indistinguishability [32, 45].

We also envisage possible practical applications of our
protocol to measure the EP of anyons in topological
quantum computers [4, 46, 47]. Furthermore, the pro-
posed theoretical and experimental setup can be easily
adapted to find application in a phase estimation proto-
col aided by indistinguishability. Indeed, suppose that in-
stead of post-selecting the states where exactly one qubit
per region is found with the sLOCC measurement, we
discard them by post-selecting the complementary ones.
This amounts to project the state |ψD〉 onto the two par-
ticle basis BXX = {|X ↑,X ↑〉 , |X ↑,X ↓〉 , |X ↓,X ↓〉} with
X = L,R. The resulting state is thus

|ψXX〉 =
ll′ |L ↑,L ↓〉+ rr′ |R ↑,R ↓〉√

|ll′|2 + |rr′|2
, (11)

which, as can be noticed by rewriting it in the Fock repre-
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sentation and disregarding the pseudospin, is equivalent
to

|ψXX〉 =
ll′ |2, 0〉+ rr′ |0, 2〉√
|ll′|2 + |rr′|2

. (12)

This is a N00N-like state exploitable for quantum-
enhanced phase estimation [48–50]. Adjusting the val-
ues of the coefficients one may obtain a N00N state with
various weights for the terms |2, 0〉 and |0, 2〉. Remark-
ably, since the only difference with the EP measurement
scheme relies in the postselection, this state can be ex-
perimentally generated with the same setup depicted in
Fig. 1(b) (excluding the final measurement step).

Finally, we highlight that while the sLOCC operational
framework is here exploited to achieve a result of funda-
mental interest, different practical applications have been
designed and experimentally implemented in fields rang-
ing from quantum communication to quantum metrol-
ogy and sensing, including the generation of entangle-
ment between identical constituents [23, 29], the protec-
tion of quantum correlations from detrimental external
noise [24, 26–28], and the generation of quantum coher-
ence for metrological applications [25, 31].
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