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Abstract
We establish several bounds on the cardinality of a topological space involving the Haus-
dorff pseudocharacter Hψ(X). This invariant has the property ψc(X) ≤ Hψ(X) ≤ χ(X)

for a Hausdorff space X . We show the cardinality of a Hausdorff space X is bounded by
2pwLc(X)Hψ(X), where pwLc(X) ≤ L(X) and pwLc(X) ≤ c(X). This generalizes results
of Bella and Spadaro, as well as Hodel. We show additionally that if X is a Hausdorff lin-
early Lindelöf space such that Hψ(X) = ω, then |X | ≤ 2ω, under the assumption that
either 2<c = c or c < ℵω. The following game-theoretic result is shown: if X is a regular
space such that player two has a winning strategy in the game Gκ

1(O,OD), Hψ(X) < κ and
χ(X) ≤ 2<κ , then |X | ≤ 2<κ . This improves a result of Aurichi, Bella, and Spadaro. Gen-
eralizing a result for first-countable spaces, we demonstrate that if X is a Hausdorff almost
discretely Lindelöf space satisfying Hψ(X) = ω, then |X | ≤ 2ω under the assumption
2<c = c. Finally, we show |X | ≤ 2wL(X)Hψ(X) if X is a Hausdorff space with a π-base with
elements with compact closures. This is a variation of a result of Bella, Carlson, and Gotchev.

Keywords Cardinality bounds · Hausdorff pseudocharacter · Topological games
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1 Introduction

In his paper [19], besides popularizing a new method for proving cardinal function inequal-
ities, Richard Hodel introduced a new cardinal function which captures exactly how much
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of the character is needed in two well-known cardinal inequalities for Hausdorff spaces:
Arhangel’skii’s theorem stating that |X | ≤ 2χ(X)·L(X) and the Hajnal–Juhász inequality stat-
ing that |X | ≤ 2χ(X)·c(X) (where χ(X), L(X) and c(X) denote, respectively, the character,
the Lindelöf number and the cellularity of X ).

Let X be a Hausdorff space. The Hausdorff pseudocharacter of X , denoted by Hψ(X),
is defined as the minimum cardinal κ such that for every x ∈ X there is a family Vx of open
neighbourhoods of x such that |Vx | ≤ κ and, for every pair of distinct points x, y ∈ X there
are Vx ∈ Vx and Vy ∈ Vy such that Vx ∩ Vy = ∅.

Let ψ(X) denote the pseudocharacter of X . It is clear that ψ(X) ≤ Hψ(X) ≤ χ(X), for
every Hausdorff space X , and Hodel showed that χ(X) can be replaced with Hψ(X) in both
Arhangel’skii’s Theorem and the Hajnal–Juhász inequality.

Various authors have later attempted to refine cardinal inequalities involving the char-
acter by means of the Hausdorff pseudocharacter and similarly defined cardinal functions,
including Kortezov [21]. Fedeli [17], Stavrova [23], Bella, Bonanzinga and Matveev [7] and
Bonanzinga, Cuzzupé and Pansera [14]. In this paper we implement this approach systemat-
ically on a series of cardinal function inequalities that have appeared in the literature in the
last few years.

In [12] Bella and Spadaro gave a common proof of Arhangel’skii’s Theorem and the
Hajnal–Juhász inequality by establishing that |X | ≤ 2pwLc(X)χ(X) for any Hausdorff space
X . The cardinal invariant pwLc(X), defined in 2.8, has the properties pwLc(X) ≤ L(X)

and pwLc(X) ≤ c(X). In Sect. 2 we show that the character can be replaced with the
Hausdorff pseudocharacter Hψ(X) in this inequality. As a corollary follow the results of
Hodel mentioned above. We also construct an example of a Hausdorff space X such that
ψ(X) < Hψ(X) < χ(X).

In Sect. 3 we give an analogous improvement to a cardinal inequality for linearly Lindelöf
spaces that was proved by the first author in [6], which is in turn related to Arhangel’skii and
Buzyakova’s upper bound on the cardinality of linearly Lindelöf first-countable Tychonoff
spaces [1].

In Sect. 4 we present a refinement of a game-theoretic cardinal bound proved by Aurichi,
Bella, and Spadaro in [2]. We show that if X is a regular space such that player two has a
winning strategy in the game Gκ

1(O,OD), Hψ(X) < κ and χ(X) ≤ 2<κ , then |X | ≤ 2<κ .
In Sect. 5 we show that the consistent upper bound on the cardinality of almost discretely

Lindelöf first-countable Hausdorff spaces proved by the first and the third author in [11]
continues to hold if “first-countable” is replaced with “Hausdorff pseudocharacter”.

In the final section of the paper we show that |X | ≤ 2wL(X)Hψ(X) if X is Hausdorff space
with a compact π-base; that is, a π -base with elements with compact closures. This is a
variation of a result in [8] due to Bella, Carlson, and Gotchev. We ask if this bound is a bound
for the cardinality of any normal space. This question is related to a question asked by Bell,
Ginsburg, and Woods in [5].

All spaces are defined to be at least Hausdorff. We refer to [16, 20] and [22] for undefined
notions.

2 Hausdorff spaces

Let X be a Hausdorff space and let the Hausdorff pseudocharacter Hψ(X) be bounded
above by a cardinal κ . For all x ∈ X fix families Vx of open sets containing x such that
|Vx | ≤ κ and for all x �= y there exist U ∈ Vx and V ∈ Vy such that U ∩ V = ∅.
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Furthermore, assume the families Vx are closed under finite intersections. For A ⊆ X ,
define c(A) = {x ∈ X : V ∩ A �= ∅ for all V ∈ Vx }. The following is a straightforward
modification of Proposition 2.4 in [15].

Proposition 2.1 Let X be a Hausdorff space, D ⊆ X, and suppose there exists a cardinal
κ such that for all x ∈ X there exists Bx ∈ [[D]≤κ

]≤κ
such that {x} = ⋂

B∈Bx
c(B). Then

|X | ≤ |D|κ .
The following gives a bound for the cardinality of c(A), where A is a subset of a Hausdorff

space X .

Proposition 2.2 Let X be a Hausdorff space and let κ be a cardinal such that Hψ(X) ≤ κ .
If A ⊆ X, then |c(A)| ≤ |A|κ .
Proof Fix x ∈ c(A). For all V ∈ Vx , there exists xV ∈ V ∩ A. Let Ax = {xV : V ∈ V}.
Then |Ax | ≤ κ and x ∈ c(Ax ). We show for all V ∈ V that x ∈ c(V ∩ Ax ). Let W ∈ Vx .
As Vx is closed under finite intersections, there exists U ∈ Vx such that x ∈ U ⊆ W ∩ V .
There exists xU ∈ U ∩ Ax ⊆ W ∩ V ∩ Ax . Thus x ∈ c(V ∩ Ax ) for all V ∈ V . Let
Bx = {V ∩ Ax : V ∈ Vx }. Then Bx ∈ [[A]≤κ

]≤κ and x ∈ ⋂
B∈Bx

c(B). Now let y �= x .
There exists Vx ∈ Vx and Vy ∈ Vy such that Vx ∩ Vy = ∅. Thus, Vy ∩ Vx ∩ Ax = ∅, and
therefore y /∈ c(Vx ∩ Ax ). This says y /∈ ⋂

B∈Bx
c(B) and {x} = ⋂

B∈Bx
c(B). Now apply

Proposition 2.1 to the Hausdorff space c(A) and conclude |c(A)| ≤ |A|κ . 	

As A ⊆ c(A) for any subset A of a space X , the following is an immediate consequence

of the above Proposition.

Proposition 2.3 If X is a Hausdorff space then |X | ≤ d(X)Hψ(X).

Proposition 2.4 If {Aα : α < κ+} is a non-decreasing chain of sets, then c(
⋃

α<κ+ Aα) =⋃
α<κ+ c(Aα).

Proof Let x ∈ c(
⋃

α<κ+ Aα). Then for all V ∈ Vx there exists xV ∈ V ∩ ⋃
α<κ+ Aα .

There exists α < κ+ such that {xV : V ∈ Vx } ⊆ Aα . This implies that for all V ∈
Vx , V ∩ Aα �= ∅. Thus, x ∈ c(Aα). This shows, c(

⋃
α<κ+ Aα) ⊆ ⋃

α<κ+ c(Aα). As
c(

⋃
α<κ+ Aα) ⊇ ⋃

α<κ+ c(Aα), this completes the proof. 	

Definition 2.5 Let X be a space and let A ⊆ X . A is c-closed if c(A) = A. Define the
c-closed hull of A, denoted by [A]c, as the intersection of all c-closed sets containing A.

We show below that not only is the cardinality of c(A) bounded by |A|Hψ(X), but in fact
so is the cardinality of the c-closed hull of A.

Proposition 2.6 For a set A ⊆ X, |[A]c| ≤ |A|Hψ(X).

Proof Let κ = Hψ(X). Let A0 = A and, by transfinite induction, for any α < κ+ define

Aα = c
(⋃

β<α Aβ

)
. It is straightforward to see that

⋃
α<κ+ Aα ⊆ [A]c.

Now, as {Aα : α < κ+} is a non-decreasing chain of sets, by Proposition 2.4 we see that
for any x ∈ c

(⋃
α<κ+ Aα

)
there exists α < κ+ such that x ∈ c(Aα) ⊆ Aα+1 ⊆ ⋃

α<κ+ Aα .
Therefore c

(⋃
α<κ+ Aα

) ⊆ ⋃
α<κ+ Aα and

⋃
α<κ+ Aα is c-closed. This implies [A]c ⊆⋃

α<κ+ Aα and thus [A]c = ⋃
α<κ+ Aα .

To complete the proof, it suffices to show that
∣∣⋃

α<κ+ Aα

∣∣ ≤ |A|κ ; that is,we need to show
that |Aα| ≤ |A|κ for everyα < κ+. Suppose the contrary and letβ be the smallest ordinal such

123



  129 Page 4 of 16 A. Bella et al.

that |Aβ | > |A|κ . We have |Aγ | ≤ |A|κ for any γ < β and therefore | ⋃γ<β Aγ | ≤ |A|κ .
Then, by Proposition 2.2, we have |Aβ | =

∣
∣
∣c

(⋃
γ<β Aγ

)∣
∣
∣ ≤

∣
∣
∣
⋃

γ<β Aγ

∣
∣
∣
κ ≤ (|A|κ )κ =

|A|κ . This is a contradiction and the proof is complete. 	

Observe that the proof of Proposition 2.6 shows that [A]c can be obtained by iterating the

c operator Hψ(X)+-many times.

Proposition 2.7 A c-closed set is closed.

Proof Let A be a subset of X such that c(A) = A and pick x /∈ c(A) = A. Then there exists
V ∈ Vx such that V ∩ A = ∅, and thus V ∩ c(A) = ∅. 	


The following cardinal invariantswere introduced byBella andSpadaro in [12].Given a set
S and a set I of indiceswe call {Si : i ∈ I } ⊂ P(S) adecomposition of S if S = ⋃{Si : i ∈ I }.
Definition 2.8 Let X be a space.ThepiecewiseweakLindelöf degree pwL(X)of X is the least
infinite cardinal κ such that for every open coverU of X and every decomposition {Ui : i ∈ I }
of U , there are families Vi ∈ [Ui ]≤κ for every i ∈ I such that X ⊆ ⋃{⋃Vi : i ∈ I }.
The piecewise weak Lindelöf degree for closed sets pwLc(X) of X is the least infinite
cardinal κ such that for every closed set F ⊆ X , for every open cover U of F , and every
decomposition {Ui : i ∈ I } of U , there are families Vi ∈ [Ui ]≤κ for every i ∈ I such that
F ⊆ ⋃{⋃Vi : i ∈ I }.

We give our main theorem in this section, which extends the result of Bella and Spadaro
in [12].

Theorem 2.9 If X is a Hausdorff space then |X | ≤ 2pwLc(X)Hψ(X).

Proof Let κ = pwLc(X)Hψ(X). Declare families Vx as above. We build a non-decreasing
chain {Aα : α < κ+} of subsets of X such that for each α < κ+,

(1) |Aα| ≤ 2κ , and

(2) Whenever {Vβ : β < κ} ∈
[[⋃

x∈Aα
Vx

]≤κ
]≤κ

and X\⋃{⋃Vβ : β < κ} �= ∅, then

Aα+1\⋃{⋃Vβ : β < κ} �= ∅.

For limit ordinals α < κ+, let Aα = ⋃
β<α Aβ . Then |Aα| ≤ 2κ and |c(Aα)| ≤ |Aα|κ ≤

2κ by Proposition 2.2.

For successor ordinals α + 1, for all V = {Vβ : β < κ} ∈
[[⋃

x∈Aα
Vx

]≤κ
]≤κ

such that

X\⋃{⋃Vβ : β < κ} �= ∅, let xV ∈ X\⋃{⋃Vβ : β < κ}. Define Aα+1 = c(Aα

⋃{xV :
V = {Vβ : β < κ} ∈

[[⋃
x∈Aα

Vx
]≤κ

]≤κ

and X\⋃{⋃Vβ : β < κ} �= ∅}). Then a

counting argument and Proposition 2.2 shows that |Aα+1| ≤ 2κ . Also, conditions (1) and (2)
above are satisfied.

Let F = ⋃
α<κ+ Aα , and note |F | ≤ 2κ · κ+ = 2κ . Then, by Proposition 2.4, c(F) =

c(
⋃

α<κ+ Aα) = ⋃
α<κ+ c(Aα) ⊆ ⋃

α<κ+ Aα+1 = F . This shows F is c-closed, and by
Proposition 2.7, F is closed. We show X = F . Suppose by way of contradiction that there
exists x ∈ X\F . For all y ∈ F , there exists Vy ∈ Vx andUy ∈ Vy such that Vy ∩Uy = ∅. Let
U = {Uy : y ∈ F} and note U covers F . For all V ∈ Vx , let UV = {U ∈ U : V ∩ U = ∅}.
Observe that U = ⋃

V∈Vx
UV and that {UV : V ∈ Vx } is a decomposition of U . Since

F is closed and pwLc(X) ≤ κ , for all V ∈ Vx there exists WV ∈ [UV ]≤κ such that
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F ⊆ ⋃{⋃WV : V ∈ Vx }. As V ∩⋃WV = ∅ for every V ∈ Vx , we see that x ∈ X\⋃WV

for every V ∈ Vx . This implies x ∈ X\⋃{⋃WV : V ∈ Vx } �= ∅. As {WV : V ∈ Vx }
fits condition (2) and {WV : V ∈ Vx } ∈

[[⋃
x∈Aα

Vx
]≤κ

]≤κ

for some α < κ+, we have

∅ �= Aα+1\⋃{⋃WV : V ∈ Vx } ⊆ F ⊆ ⋃{⋃WV : V ∈ Vx }. As this is a contradiction,
we have X = F . This implies |X | = |F | ≤ 2κ . 	


The above proof is a classical “closing-off” argument. Below we give an alternative proof
of Theorem 2.9 using the elementary submodels technique.

Proof Let κ = pwLc(X) · Hψ(X) and let θ be a large enough regular cardinal. For every
x ∈ X let Vx be a family of open neighbourhoods of x witnessing that Hψ(X) ≤ κ and let
� : X → P(τ ) be the function defined by �(x) = Vx . Let M be a κ-closed elementary
submodel of H(θ) such that X ,� ∈ M , κ + 1 ⊂ M . 	

Claim. X ∩ M is a closed subset of X .

Proof of Claim 1 It suffices to prove that X ∩ M is c-closed. Let p ∈ c(X ∩ M) and let
{Vα : α < κ} be an enumeration of Vp . For every α < κ fix a point xα ∈ X ∩ M ∩ Vα .
Let A = {xα : α < κ}. Since M is < κ-closed, A ∈ M . Obviously p ∈ c(A) and hence
p ∈ c(A ∩ Vα) for every α < κ . Moreover

⋂
α<κ c(A ∩ Vα) = {p}. Indeed let y ∈ X be

a point distinct from p. Then there is V ∈ Vx and α < κ such that V ∩ Vα = ∅ and hence
y /∈ c(A ∩ Vα). Now, applying again κ-closedness of M we see that A ∩ Vα ∈ M and thus,
by elementarity c(A ∩ Vα) ∈ M . Hence, one final application of κ-closedness of M shows
that {p} = ⋂

α<κ c(A ∩Uα) ∈ M and therefore X ∩ M is c-closed. 	

We now claim that X ⊂ M which implies that |X | ≤ 2κ . Suppose by contradiction that

this is not true and let z ∈ X\M . Let {Vα : α < κ} be an enumeration of Vz . For every
x ∈ X ∩ M choose Vx ∈ Vx and αx < κ such that Vx ∩ Vα = ∅. For every α < κ let
Vα = {Vx : αx = α}. Then ⋃{Vα : α < κ} is an open cover of X ∩ M and hence, by
pwLc(X) ≤ κ we can find a subcollection Uα of Vα of cardinality ≤ κ such that

X ∩ M ⊂
⋃ {⋃

Uα : α < κ
}

.

Applying repeatedly the κ-closedness of M , we see that the left hand side of the previous
equation belongs to M and therefore:

M |� X ⊂
⋃{⋃

Uα : α < κ
}

Therefore, by elementarity:

H(θ) |�
⋃ {⋃

Uα : α < κ
}

But that contradicts the fact that z /∈ ⋃{⋃Uα : α < κ}. 	

As Hψ(X) ≤ χ(X), as a corollary we have the following result of Bella and Spadaro.

Corollary 2.10 (Bella and Spadaro [12]) If X is Hausdorff then |X | ≤ 2pwLc(X)χ(X).

As pwLc(X) ≤ L(X), as another corollary we have the following 1991 result of Hodel
[19].

Corollary 2.11 (Hodel, [19]) If X is Hausdorff then |X | ≤ 2L(X)Hψ(X).
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Also, as pwLc(X) ≤ c(X), we have another corollary of Theorem 2.9.

Corollary 2.12 If X is Hausdorff then |X | ≤ 2c(X)Hψ(X).

The previous corollary has a direct proof using the Erdős–Rado Theorem. This is
essentially the proof given in 2.15(b) in [20]. We give this proof here for completeness.

Proof Let κ = c(X)Hψ(X) and assume by way of contradiction that |X | > 2κ . For each
x ∈ X , let {V (x, α) : α < κ} be a family of open sets containing x such that whenever
x �= y ∈ X , there exists α < κ and β < κ such that V (x, α) ∩ V (y, β) = ∅. Fix a linear
ordering < on X . If x �= y ∈ X and x < y, there exists α(x, y) ≤ κ and β(x, y) < κ such
that V (x, α(x, y)) ∩ V (y, β(x, y)) = ∅.

Define the map f : [X ]2 → κ × κ by f (x, y) = (α(x, y), β(x, y)). By the Erdős–
Rado Theorem, there exists (α, β) ∈ κ and a set Y ∈ [X ]κ+

such that α(x, y) = α and
β(x, y) = β) for all {x, y} ∈ [Y ]2.

For each x ∈ Y , letUx = V (x, α) ∩ V (x, β) and note x ∈ Ux , implyingUx is nonempty.
Also, for each x, y ∈ Y and x < y, we have Ux ∩ Uy = ∅. Therefore, {Ux : x ∈ Y } is
a cellular family with cardinality exactly κ+. This contradicts that c(X) ≤ κ . We conclude
|X | ≤ 2κ . 	

Example 2.13 There is a Hausdorff space X such that ψ(X) < Hψ(X) < χ(X).

Proof Let κ = ℵω and for every n < ω, let Xn = { f ∈ 2κ : | f −1(1)| ≤ n} and define
X = ⋃{Xn : n < ω}. For every function σ from a finite subset of κ to 2, let [σ ] = { f ∈ X :
σ ⊂ f }. Call a subset A of X bounded if there is n < ω such that A ⊂ Xn and unbounded
otherwise. Let A be any bounded subset of X , let F be any countable subset of X and let
σ ∈ Fn(κ, 2) be any partial function. Define a topology τ on X by declaring [σ ] \ (A ∪ F)

to be a basic open set.
The topology τ is a refinement of the usual topology on X as a subset of 2κ and hence it’s

a Hausdorff topology. 	

Claim 1. ψ(X) = ω.

Proof of Claim 1 We will prove much more, namely that every subset of X is a Gδ . Note that
this is equivalent to the fact that every subset S of X is an Fσ , but this is clear by decomposing
S into S = ⋃{S ∩ Xn : n < ω} and observing that S ∩ Xn is closed in X . 	

Claim 2. χ(X) > κ

Proof of Claim 2 Let f ∈ X be a point and let U be a local base at f . Let C be the set of all
countable subsets of X and recall that |C| = κω > κ . For every C ∈ C there is UC ∈ U such
that f ∈ UC ⊂ X\C . Without loss of generality we can assume thatUC = [σC ]\(AC ∪FC ),
where σC ∈ Fn(κ, 2) is a finite partial function, AC ⊂ X is a bounded set and FC ⊂ X
is a countable set. By the pigeonhole principle we can find D ⊂ C such that |D| = κ+ and
a positive integer k < ω such that AC ⊂ Xk , for every C ∈ D. Applying the pigeonhole
principle again we can find E ⊂ D such that |E| = κ+ and a single partial function σ ∈
Fn(κ, 2) such that σC = σ , for every C ∈ E . But since the set of all countable subsets of
[σ ] \ Xk has cardinality κω > κ the set {FC : C ∈ E} must have cardinality κ+ and hence
χ(X) ≥ κ+. 	

Claim 3. Hψ(X) = κ .
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Proof of Claim 3 We will prove that, for every finite partial function σ ∈ Fn(κ, 2), for every
bounded set A ⊂ X and for every countable set F ⊂ X , clτ ([σ ]\(A ∪ F)) = [σ ] and
hence ψc(X) = κ . Therefore, since κ = ψc(X) ≤ Hψ(X) ≤ |X | = κ , that will imply that
Hψ(X) = κ .

Start by noting that since τ is an enlargement of the usual topology on X , the set [σ ]
is still closed in τ and therefore clτ ([σ ] \ (A ∪ F)) ⊂ [σ ]. Hence it suffices to show that
[σ ] ⊂ clτ ([σ ]\(A ∪ F)). To that end, let x ∈ [σ ] and let σ ′ ∈ Fn(κ, 2), A′ ⊂ X and
F ′ ⊂ X be respectively a finite partial function, a bounded set and a countable set such that
x ∈ [σ ′]\(A′ ∪ F ′). Note that since x ∈ [σ ] ∩ [σ ′] = [σ ∪ σ ′], this last set is non-empty. A
moment’s thought reveals that it is actually an unbounded and uncountable set and therefore
([σ ′]\(A′ ∪ F ′)) ∩ ([σ ]\(A ∪ F)) �= ∅, whence x ∈ clτ ([σ ]\(A ∪ F)). 	


It is easy to see that Example 2.13 is Hausdorff non-regular and therefore the following
question remains open:

Question 2.14 Is there a regular space X such that ψ(X) < Hψ(X) < χ(X)?

Also note that in Example 2.13 we have Hψ(X) = ψc(X) and that suggests the following
natural question. Obviously an example answering this question cannot be a regular space.

Question 2.15 Is there an example of a Hausdorff space X satisfying the following chain of
strict inequalities?

ψ(X) < ψc(X) < Hψ(X) < χ(X)

Let X be a Urysohn space and let the Urysohn pseudocharacter Uψ(X) be bounded
above by a cardinal κ . For all x ∈ X fix families Vx of open sets containing x such that
|Vx | ≤ κ and for all x �= y there exist U ∈ Vx and V ∈ Vy such that U ∩ V �= ∅.
Furthermore, assume the families Vx are closed under finite intersections. For A ⊆ X , define
c′(A) = {x ∈ X : V ∩ A �= ∅ for all V ∈ Vx }.
Definition 2.16 A subset A of a Urysohn space X is c′-closed if c′(A) = A.

The following is a straightforward modification of Proposition 2.4 in [15].

Proposition 2.17 Let X be a Urysohn space, D ⊆ X, and suppose there exists a cardinal κ
such that for all x ∈ X there exists Bx ∈ [[D]≤κ

]≤κ
such that {x} = ⋂

B∈Bx
c′(B). Then

|X | ≤ |D|κ .
The following two propositions have proofs similar to that of Propositions 2.2 and 2.4.

Proposition 2.18 Let X be a Urysohn space and let Uψ(X) ≤ κ . If A ⊆ X, then |c′(A)| ≤
|A|κ .
Proposition 2.19 If {Aα : α < κ+} is a non-decreasing chain of sets, then c′(

⋃
α<κ+ Aα) =⋃

α<κ+ c′(Aα).

By using the above propositions and suitably modifying the proof of Theorem 2.9, we
can obtain the following result for Urysohn spaces. The proof is a closing-off argument left
to the reader.

Theorem 2.20 If X is a Urysohn space then |X | ≤ 2pwL(X)Uψ(X).
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As pwL(X) ≤ aL(X) as mentioned in [12], we have as a corollary the following result
of Stavrova.

Corollary 2.21 (Stavrova [23]) If X is Urysohn then |X | ≤ 2aL(X)Uψ(X).

AsUψ(X) ≤ χ(X) for a Urysohn space X , we have as another corollary of Theorem 2.20
the following result of Bella and Spadaro.

Corollary 2.22 (Bella and Spadaro [12]) If X is Urysohn then |X | ≤ 2pwL(X)χ(X).

3 Linearly Lindelöf spaces

The notion of a linearly Lindelöf space is an important weakening of Lindelöfness. It is
equivalent to the assertion that every set of regular uncountable cardinality has a complete
accumulation point. There are examples of first-countable or locally compact linearly Lin-
delöf spaces which are not Lindelöf. An outstanding open problem is to find a normal linearly
Lindelöf space which is not Lindelöf. Such a space would be a strong kind of Dowker space.

In this section we show that if X is a Hausdorff linearly Lindelöf space with Hψ(X) = ω

then |X | ≤ 2ω, under the assumption that either 2<c = c or c < ℵω.

Definition 3.1 A space is linearly Lindelöf provided that every increasing open cover has a
countable subcover.

The following is Lemma 3.2 in [6].

Lemma 3.2 ([6, Lemma 3.2]) Assume either c < ℵω or 2<c = c. Let X be a linearly Lindelöf
T1 space. If ψ(X) ≤ c, then any closed set of cardinality at most c is the intersection of
c-many open sets.

Definition 3.3 A space is ω1-Lindelöf if every open cover of size at most ω1 has a countable
subcover.

The following is straightforward to prove.

Lemma 3.4 Every linearly Lindelöf space is ω1-Lindelöf.

Theorem 3.5 Let X be a Hausdorff space satisfying Hψ(X) = ω. If X is ω1-Lindelöf and
ψ(C, X) ≤ 2ω for every c-closed set C with |C | ≤ 2ω, then |X | ≤ 2ω.

Proof Let {Ux : x ∈ X} be a collectionwitnessing Hψ(X) = ω and c the associated operator.
For any c-closed set H with |H | ≤ 2ω fix a family V(H) of open sets satisfying |V(H)| ≤ 2ω

and H = ⋂V(H).
We will construct by transfinite induction a nondecreasing family {Hα : α < ω1} of

c-closed subsets of X satisfying:

(1) |Hα| ≤ 2ω;
(2) if X \⋃V �= ∅ for some countable family V ⊆ ⋃{V(Hβ) : β ≤ α}, then Hα+1\ ⋃V �=

∅.

Fix a choice function φ and assume we have already defined Hβ for each β < α. If α is a
limit ordinal, put Hα = [⋃{Hβ : β < α}]c. If α = γ + 1, put Hα = [Hγ ∪ {φ(X\⋃V) : V
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countable subfamily of
⋃{V(Hβ) : β ≤ γ }]c. After the induction, put H = ⋃{Hα : α <

ω1}. Because Hψ(X) = ω, we have that H is c- closed.
Since |H | ≤ 2ω, it suffices to check that H = X . If not, fix p ∈ X \ H . For any α choose

Vα ∈ V(Hα) such that p /∈ Vα . Since H is c-closed, it is also closed in X . Therefore, H
is ω1-Lindelöf and we may then fix a countable subcover V ⊆ {Vα : α < ω1}. Since there
exists an ordinal γ < ω1 such that V ⊆ ⋃{V(Hα) : α ≤ γ }, we reach a contradiction with
the definition of Hγ+1. This completes the proof. 	


Now, we immediately get the following as a consequence of the above theorem and
Lemmas 3.2 and 3.4.

Corollary 3.6 Assume either 2<c = c or c < ℵω. If X is a Hausdorff linearly Lindelöf space
with Hψ(X) = ω, then |X | ≤ 2ω.

It is still unknown, even for first countable spaces, whether the above corollary is true
in ZFC. However, Arhangel′skiı̆ and Buzyakova proved this works for Tychonoff spaces.
The crucial point in [1, Lemma 2.10] is a proof that lemma holds in ZFC for Tychonoff
spaces. Their argument uses the fact that in a first countable linearly Lindelöf space every
free sequence is countable. As Example 3.7 shows, this may fail at least for Hausdorff spaces.
We do not know what happens for Tychonoff spaces, but formally Lemma 2.10 in [1] cannot
be immediately adapted to spaces of countable Hausdorff pseudocharacter.

Example 3.7 Refine the topology of the Double Alexandroff of the unit interval so as to make
every countable set closed discrete. The resulting space X is a Lindelöf space of countable
Hausdorff pseudocharacter and any ω1-sized discrete subset of X is a free sequence.

Question 3.8 Let X be a Tychonoff linearly Lindelöf space with Hψ(X) = ω. Is it true that
ψ(C, X) ≤ c for every c-closed set C satisfying |C | ≤ c?

Question 3.9 Let X be a Tychonoff linearly Lindelöf space with Hψ(X) = ω. Is |X | ≤ 2ω?

4 Game-theoretic bounds

For an infinite cardinal κ , let Gκ
1(O,OD) be the two-player game in κ-many innings where

at inning α < κ , player I plays an open cover Oα of X and player II responds by picking
an open set Oα ∈ Oα . Player II wins if

⋃{Oα : α < κ} = X . Obviously, if player II has
a winning strategy in Gκ

1(O,OD) then wL(X) ≤ κ , so the countable version of this game
provides a natural game-theoretic strengthening of the weak Lindelöf property.

Let Gp
o (κ) be the two-player game in κ many innings where at inning α < κ player I

chooses a point pα ∈ X and player II responds by picking an open neighbourhood Oα of pα

and player I wins if
⋃{Oα : α < κ} = X . This game is a variant of the classical point-open

game defined by Galvin in [18].
It was shown in [3] that the games Gp

o (κ) and Gκ
1(O,OD) are dual, that is, player I

(respectively, player II) has a winning strategy in the first game if and only if player II
(respectively, player I) has a winning strategy in the second game.

Theorem 4.1 Let (X , τ ) be a regular space such that player two has a winning strategy in
the game Gκ

1(O,OD), Hψ(X) < κ and χ(X) ≤ 2<κ . Then |X | ≤ 2<κ .
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Proof Fix a winning strategy σ for the first player in the game Gp
o (κ). By the assumption on

the Hausdorff pseudocharacter, for every x ∈ X we can fix a family Vx of open sets such that
|Vx | < κ and for every couple of distinct points x, y ∈ X there are Vx ∈ Vx and Vy ∈ Vy

such that Vx ∩Vy = ∅. Without loss we can assume that each family Vx is closed under finite
intersections. Let � : X → P(τ ) be the map �(x) = Vx .

Let θ be a large enough regular cardinal and M be a < κ-closed elementary submodel of
H(θ) such that X , σ,� ∈ M and |M | ≤ 2<κ . 	

Claim 1. X ∩ M is a closed subset of X .

Proof of Claim 1 It suffices to prove that X ∩ M is c-closed. Let p ∈ c(X ∩ M) and let
{Vα : α < μ} be an enumeration of Vp , where μ < κ . For every α < μ fix a point
xα ∈ X ∩ M ∩ Vα . Let A = {xα : α < μ}. Since M is < κ-closed, A ∈ M . Obviously
p ∈ c(A) and hence p ∈ c(A ∩ Vα) for every α < μ. Moreover

⋂
α<μ c(A ∩ Vα) = {p}.

Indeed let y ∈ X be a point distinct from p. Then there is V ∈ Vx and α < μ such that
V ∩ Vα = ∅ and hence y /∈ c(A ∩ Vα). Now, applying again < κ-closedness of M we see
that A ∩ Vα ∈ M and hence, by elementarity c(A ∩ Vα) ∈ M . Hence, one final application
of < κ-closedness of M shows that {p} = ⋂

α<μ c(A ∩ Uα) ∈ M and therefore X ∩ M is
c-closed. 	

Claim 2. X ∩ M is dense in X .

Proof of Claim 2 Suppose this is not true, then there is a non-empty open subset V of X such
that V ∩ (X ∩ M) = ∅. We play a game of Gp

o (κ) where player II uses the strategy σ .
In the first inning player I picks the point x0 = σ(∅) ∈ X ∩ M . By elementarity we can

fix a local base U ∈ M for x0 having cardinality 2<κ . Since 2<κ + 1 ⊂ M we actually have
U ⊂ M and hence, since x0 /∈ V , we can choose an open neighbourhoodU0 ∈ M of x0 such
that U0 ∩ V = ∅.

Let now β < κ and, for every α < β, suppose player II picked an open set Uα ∈ M such
that Uα ∩ V = ∅ at inning α. Since M is < κ-closed xβ = σ({Uα : α < β}) ∈ M and
therefore, reasoning as before, player II can choose an open neighbourhood Uβ of xβ such
that Uβ ∩ V = ∅.

Eventually, since σ is a winning strategy for player I in Gp
o (κ), the set

⋃{Uα : α < κ} is
dense in X , but this contradicts the fact that V ∩Uα = ∅, for every α < κ . 	


Since X ∩ M is both closed and dense in X we have X = X ∩ M and hence |X | ≤ 2<κ .
As pointed out by the referee, Claim 2 of the above theorem is related to Galvin’s theorem

that if player I has a winning strategy in the point-open game of countable length on a space X
with points Gδ then X is countable. Indeed, if we assume that player I has a winning strategy
in the point-open game, then by a similar argument as the one proving Claim 2 (replacing
local basewith local pseudobase) we see that X = X ∩ M . The countable case of Claim 2 is
also a consequence of Theorem 9 of [4] (which is attributed there to Tkachuk. See also [10]).

Lemma 4.2 Every c′-closed set is θ -closed.

Proof Let A be a c′-closed set and let x /∈ A. Then there is V ∈ Vx such that V ∩ A = ∅ and
hence x /∈ clθ (A). This proves that clθ (A) ⊂ A and hence A is θ -closed. 	


The next theorem improves Theorem 3 in [2] (see [13] for a related result).

Theorem 4.3 Let (X , τ ) be a Urysohn space such that player two has a winning strategy in
the game Gκ

1(O,OD), Uψ(X) < κ and χ(X) ≤ 2<κ . Then |X | ≤ 2<κ .
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Proof Fix a winning strategy σ for the first player in the game Gp
o (κ). By the assumption on

the Urysohn pseudocharacter, for every x ∈ X we can fix a family Vx of open sets such that
|Vx | < κ and for every couple of distinct points x, y ∈ X there are Vx ∈ Vx and Vy ∈ Vy

such that Vx ∩Vy = ∅. Without loss we can assume that each family Vx is closed under finite
intersections. Let � : X → P(τ ) be the function �(x) = Vx .

Let θ be a large enough regular cardinal and M be a < κ-closed elementary submodel of
H(θ) such that X , σ,� ∈ M and |M | ≤ 2<κ . 	

Claim 1. X ∩ M is a θ -closed subset of X .

Proof of Claim 1 In view of Lemma 4.2 it suffices to prove that X ∩ M is c′-closed. Let
p ∈ c′(X ∩ M) and let {Vα : α < μ} be an enumeration of Vp , where μ < κ . For every
α < μ fix a point xα ∈ X ∩ M ∩ Vα . Let A = {xα : α < μ}. Since M is < κ-closed,
A ∈ M . Obviously p ∈ c′(A) and hence p ∈ c′(A ∩ Vα) for every α < μ. Moreover⋂

α<μ c′(A ∩ Vα) = {p}. Indeed let y ∈ X be a point distinct from p. Then there is V ∈ Vx

and α < μ such that V ∩ Vα = ∅ and hence y /∈ c′(A ∩ Vα). Now, applying again < κ-
closedness ofM we see that A∩Vα ∈ M and hence, by elementarity c′(A∩Vα) ∈ M . Hence,
one final application of < κ-closedness of M shows that {p} = ⋂

α<μ c′(A ∩Uα) ∈ M and
therefore X ∩ M is c′-closed. 	

Claim 2. X ∩ M is a θ -dense subset of X .

Proof of Claim 2 The proof is the same as that of Claim 2 of the previous theorem. 	

Since X∩M is both θ -closed and θ -dense in X we have X = X∩M and hence |X | ≤ 2<κ .

5 Almost discretely Lindelöf spaces

In this section we show that a theorem proved in [11] for first countable spaces continues
to hold for spaces with countable Hausdorff pseudocharacter. A space is almost discretely
Lindelöf provided that every discrete set is contained in a Lindelöf subspace.

Theorem 5.1 [2<c = c] If X is a Hausdorff almost discretely Lindelöf space satisfying
Hψ(X) = ω, then |X | ≤ 2ω.

Proof Let c be the operator associated to a witness {Vx : x ∈ X} for Hψ(X) = ω. Let L be
a left-separated subset of X .

We will construct by trasfinite induction a non decreasing family {Hα : α < c} of c-closed
subsets of X satisfying:

(1) |Hα| ≤ c;
(2) if L \ ⋃V �= ∅ for some family V ∈ [⋃{Vx : x ∈ Hα}]<c, then L ∩ Hα+1\⋃V �= ∅.

Fix a choice function φ and assume we have already defined Hβ for each β < α. If α is a
limit ordinal, let Hα = [⋃{Hβ : β < α}]c. If α = γ +1, then let Hα = [Hγ ∪{φ(L\⋃V) :
V ∈ [⋃{Vx : x ∈ Hγ }]<c}]c. Proposition 2.6 and our set-theoretic assumption guarantee
that |Hα+1| ≤ c. After the induction let H = ⋃{Hα : α < c}. It is clear that |H | ≤ c.
Moreover, as Hψ(X) = ω, we have that H is c-closed.

We will check that L ⊂ H . If not, fix p ∈ L \ H . For any x ∈ H choose Vx ∈ Vx such
that p /∈ Vx and let U = {Vx : x ∈ H}. 	
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Claim. There is a < c-sized subcollection V of U covering L ∩ H .

Proof of Claim Of course, if |L ∩ H | < c there is nothing to prove. So, assume |L ∩ H | = c.
Let {Uα : α < c} be an enumeration of U in type c and set Vα = Uα\⋃{Uβ : β < α}.
Suppose by way of contradiction that the statement of the Claim is not true. Then the set
S = {α < c : Vα ∩ (L ∩ H) �= ∅} has cardinality continuum.

Pick a point xα ∈ Vα ∩ L , for every α ∈ S. Then R = {xα : α ∈ S} is a set of size
continuum which is both right-separated and left-separated. So by 2.12 of [20], the set R
contains a discrete set D having cardinality continuum.

Since X is almost discretely Lindelöf, we can find a Lindelöf subspace Y ⊂ X . such that
D ⊂ Y . Now, H being c-closed and hence closed in X , the set Y ∩ H is also Lindelöf, and
since U covers Y ∩ H , we can find an ordinal δ < c such that D ⊂ Y ∩ H ⊂ ⋃{Uα : α < δ}.
But since D has cardinality continuum, there must be γ > δ such that D ∩ Vγ �= ∅ and this
contradicts the fact that Vγ is disjoint from

⋃{Uα : α < δ}. 	

Fix a subcollection V ⊂ U of cardinality smaller than the continuum such that L ∩ H ⊂⋃V . 2<c = c implies that c is a regular cardinal and so there exists γ < c such that

V ∈ [⋃{Vx : x ∈ Hγ }<c. Since L\⋃V �= ∅, according to the way Hγ+1 was constructed,
we should have L∩Hγ+1\⋃V �= ∅. But, this is a contradiction becausewe have L∩Hγ+1 ⊂
L ∩ H ⊂ ⋃V .

What has been proved so far shows that every left-separated subset of X has size not
exceeding c. In particular, this means that d(X) ≤ c. Thus, by Proposition 2.3, we finally
have |X | ≤ d(X)Hψ(X) ≤ cω = c.

We now present a shorter proof of the above theorem using elementary submodels.

Proof Let μ be a large enough regular cardinal. Let M be a < c-closed elementary submodel
of H(μ) such that |M | = c, c + 1 ⊂ M and X ∈ M . 	

Claim 1. X ∩ M is a closed subset of X .

Proof The proof is the same as that of Claim 1 of Theorem 4.1 	

In view of Proposition 2.3 it suffices to prove that d(X) ≤ c.
Suppose by contradiction that d(X) ≥ c+. Using that, it is easy to find a left-separated

subset L of X having cardinality c+. Without loss we can assume that L ∈ M .
Since L has cardinality larger than the continuum, we can pick a point p ∈ L \ M . Fix

a point x ∈ X ∩ M . Since ψ(X) ≤ Hψ(X), we can find a countable family of open sets
Ux ∈ M such that

⋂Ux = {x}. Since ω + 1 ⊂ M we actually have that Ux ⊂ M . Hence, for
every x ∈ X ∩ M , we can find an open set Ux ∈ M such that x ∈ Ux and p /∈ Ux .

Now U = {Ux : x ∈ X ∩ M} is an open cover of X ∩ M .
Claim 2. There is a < c-sized subcollection of U covering L ∩ M .

Proof of Claim If the set L ∩ M had cardinality smaller than the continuum, this would be
trivially true. Hence we may assume that |L ∩ M | = c.

Let {Uα : α < c} be an enumeration of U in type c and set Vα = Uα\⋃{Uβ : β < α}.
Suppose by contradiction that the statement of Claim 2 is not true. Then the set S = {α <

c : Vα ∩ (L ∩ M) �= ∅} has cardinality continuum.
Pick a point xα ∈ Vα ∩ L , for every α ∈ S. Then R = {xα : α ∈ S} is a set of size

continuum which is both right-separated and left-separated. So by 2.12 of [20] the set R
contains a discrete set D having cardinality continuum.
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Since X is almost discretely Lindelöf, we can find a Lindelöf subspace Y ⊂ X . such that
D ⊂ Y . Now, X ∩M being closed, the set Y ∩M is also Lindelöf, and since U covers Y ∩M ,
we can find an ordinal δ < c such that D ⊂ Y ∩ M ⊂ ⋃{Uα : α < δ}. But since D has
cardinality continuum, there must be γ > δ such that D ∩ Vγ �= ∅ and this contradicts the
fact that Vγ is disjoint from

⋃{Uα : α < δ}. 	

Fix a subcollection V ⊂ U of cardinality smaller than the continuum such that L ∩ M ⊂⋃V .
Since M is < c-closed we have that V ∈ M and since L is also an element of M it follows

that: M |� L ⊂ ⋃V .
By elementarity H(μ) |� L ⊂ ⋃V , but that is a contradiction because p ∈ L\ ⋃V .

6 Spaces with a compact �-base

We say that a space X has a compact π -base if X has a π-base B such that B is compact for
each B ∈ B. Observe that every locally compact space and every space with a dense set of
isolated points has a compact π -base. It was shown by Bella, Carlson, and Gotchev in [9]
that the cardinality of a Hausdorff space with a compact π-base is at most 2wL(X)t(X)ψc(X).
Spaces with a compact π -base were further studied in [8] where improvements and variations
weremade to this cardinality bound. Using the Hausdorff pseudocharacter Hψ(X)we obtain
a further bound for these spaces in Theorem 6.1.

Recall that a space is quasiregular if every nonempty open set contains the closure of a
nonempty open set. It was shown in [9] that any space with a compact π-base is quasiregular.
This fact is used in the next theorem.

Theorem 6.1 If X is a Hausdorff space with a compact π-base, then |X | ≤ 2wL(X)Hψ(X).

Proof Let κ = wL(X)Hψ(X) and let B be a π -base of non-empty open sets with compact
closures.

For each x ∈ X fix a collection Vx of open neighborhoods of x such that |Vx | ≤ κ

witnessing Hψ(X) ≤ κ and let c(·) be the associated operator. Without loss of generality
we may assume that each Vx is closed under finite intersections.

Since ψ(B) ≤ Hψ(X) and B is compact, we have |B| ≤ 2ψ(B) ≤ 2Hψ(X) ≤ 2κ . In
particular, every element of B has cardinality not exceeding 2κ .

We will construct by transfinite recursion a non-decreasing chain of open sets {Uα : α <

κ+} such that

(1) |Uα| ≤ 2κ for every α < κ+, and
(2) if X \ [⋃M]c �= ∅ for someM ∈ [⋃{Vx : x ∈ [Uα]c}]≤κ , then there is BM ∈ B such

that BM ⊂ Uα+1\[⋃M]c.
Let B0 ∈ B be arbitrary and set U0 = B0. If β = α + 1, for some α, then for every M ∈

[⋃{Vx : x ∈ [Uα]c}]≤κ such that X \ [⋃M]c �= ∅, we choose BM ∈ B such that BM ⊆
X\[⋃M]c. We define Uβ = Uα ∪ ⋃{BM : M ∈ [⋃{Vx : x ∈ [Uα]c}]≤κ , X\[⋃M]c �=
∅}. Since |[Uα]c| ≤ |Uα|Hψ(X) ≤ (2κ )κ = 2κ , we see that |Uβ | ≤ 2κ as required. If β < κ+
is a limit ordinal we let Uβ = ⋃

α<β Uα .
Let F = ⋃{[Uα]c : α < κ+}. Then |F | ≤ 2κ . Since Hψ(X) ≤ κ , we have F = [⋃{Uα :

α < κ+}]c = [W ]c, where W = ⋃{Uα : α < κ+}.
We will show that X = F . Suppose that X �= F . Since F is closed and a Hausdorff

space with a compact π -base is quasiregular, there is B ∈ B such that B ⊆ X\F . Then
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for every x ∈ F and y ∈ B there is Vx (y) ∈ Vx such that y /∈ Vx (y). Therefore, using
the compactness of B and the fact that each Vx is closed under finite intersections, for
every x ∈ F we can find Vx ∈ Vx such that Vx ∩ B = ∅; hence B ∩ Vx = ∅. Clearly
{Vx : x ∈ F} is an open cover of F and hence {Vx : x ∈ F} ∪ {X \ F} is an open cover
of X . Since wL(X) ≤ κ , there exists M ∈ {Vx : x ∈ F}≤κ such that X = ⋃M ∪ X\F .
As W ⊆ F and X \ W is closed, we have X\F ⊆ X\W and so W ⊆ ⋃M. Observe that
for any set S we always have S ⊆ c(S) and consequently [S]c ⊆ [S]c ⊆ [c(S)]c = [S]c.
From this we obtain F = [W ]c ⊆ [cl⋃M]c = [⋃M]c. Then there exists α < κ+ such
that M ∈ [⋃{Vx : x ∈ [Uα]c}]≤κ . We claim that B ∩ [⋃M]c = ∅. To this end, fix
x ∈ B. Since B is compact Hausdorff (and hence regular), there is an open set O satisfying
x ∈ O ⊆ O ⊆ B. From {x} = ⋂{V : V ∈ Vx } and the compactness of O we deduce
the existence of V ∈ Vx such that V ⊆ V ⊆ O ⊆ B. This means x /∈ c(X\B). We then
have c(X\B) ⊆ X\B implying X\B is c-closed. Thus [X \ B]c = X \ B. Now, from⋃M ⊆ X\B, it follows that [⋃M]c ⊆ [X\B]c = X\B, as required.

B ⊆ X \ [⋃M]c implies X \ [⋃M]c �= ∅. Thus, there exists BM ∈ B such that
∅ �= BM ⊆ Uα+1\[⋃M]c ⊆ F\[⋃M]c = ∅. Since this is a contradiction, we conclude
that X = F and the proof is completed. 	


As every space with a dense set of isolated points has a compact π-base, we have the
following corollary.

Corollary 6.2 If X is a Hausdorff space with a dense set of isolated points then |X | ≤
2wL(X)Hψ(X).

Recall that Bell, Ginsburg and Woods [5] showed that if X is normal then |X | ≤
2wL(X)χ(X). In light of the above theorem, we ask the following.

Question 6.3 If X is normal, is |X | ≤ 2wL(X)Hψ(X)?

This is related to Question 4.1 in [5], which asks if |X | ≤ 2wL(X)t(X)ψc(X) for normal
spaces X . However, note that if X is normal then it is easily seen that pwLc(X) = pwL(X)

and hence |X | ≤ 2pwL(X)Hψ(X) by Theorem 2.9. This represents an improvement over
Theorem 2.20 in the case where X is normal.

While we do not know the answer to Question 6.3, the answer is negative in the case when
X is Tychonoff as the following example demonstrates.

Example 6.4 A weakly Lindelöf zero-dimensional T1 (hence Tychonoff) space X with
Hψ(X) = ω whose cardinality may be arbitrarily large.

Let κ be any cardinal, let Q denote the rationals, and let A be any countable dense subset
of the space of irrational numbers. Let Y be the set (Q× κ)∪ A with the following topology.
If q ∈ Q and α < κ then a neighborhood base at (q, α) is {Un(q, α) : n = 1, 2, . . .} where
Un(q, α) = {(r , α) : r ∈ Q and |r − q| < 1/n}. If a ∈ A, n ∈ N, and F ∈ [κ]<ω, let
Vn,F (a) = {b ∈ A : |b − a| ≤ 1/n} ∪ {(q, α) ∈ Q × κ : |q − a| < 1/n and α /∈ F}. Then
{Vn,F (a) : n ∈ N and F ∈ [κ]<ω} is a neighborhood base at a.

A shown in [5], the space Y is a weakly Lindelöf zero-dimensional T1 space. Let us check
that Hψ(Y ) = ω. As a witness of it, we take the collection {{Un(q, α) : n = 1, 2, . . .} :
(q, α) ∈ Q × κ} ∪ {{Vn,∅(a) : n = 1, 2, . . .} : a ∈ A}.
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