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Recent progress in matter-wave interferometry aims to directly probe the quantum properties of matter on ever
increasing scales. However, in order to perform interferometric experiments with massive mesoscopic objects,
taking into account the constraints on the experimental setups, the pointlike-particle approximation needs to be
cast aside. In this work, we consider near-field interferometry based on the Talbot effects with a single optical
grating for large spherical particles beyond the point-particle approximation. We account for the suppression of
the coherent grating effect and, at the same time, the enhancement of the decoherence effects due to scattering
and absorption of grating photons.
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I. INTRODUCTION

The experimental observation of quantum superpositions at
the macroscopic level has proven to be a tall order, due mainly
to quantum decoherence effects. In this context, matter-wave
interferometry, which directly probes the superposition prin-
ciple of quantum mechanics, offers the possibility of the
testing of quantum mechanics and modification thereof with
increasingly larger objects [1]. This paves the way to the
characterization of the quantum-classical transition and poten-
tially the investigation of possible modifications of quantum
mechanics [2–6] and the assessment of quantum space-time
effects [6,7].

Near-field interferometry with optical gratings [8–10], in-
stead of material ones, is of particular interest for exploring
the limits of quantum mechanics. In combination with current
levitation and cooling techniques, it is the core of recent pro-
posals for observing quantum superposition of increasingly
large systems, most prominently macromolecules [11–14] and
nanospheres [5,6]. However, all the current proposals employ-
ing near-field interferometry with optical gratings work in a
regime where the system of interest has a linear dimension
much smaller than the grating laser’s wavelength, i.e., when
the Rayleigh approximation holds true. Thus, in view of
applying this technique to larger and larger objects it is crucial
to sidestep the pointlike approximation and account for the
reduced coherent effect of the grating in combination with its
enhanced decoherence effects.

In this work we take a step in this direction by applying
the formalism developed in Ref. [15] to account for the de-
coherence effect due to scattered grating photons on spherical
particles. The reduced coherent effect of the grating is also
considered, and the effect of absorbed photons is touched
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upon. We give some examples of interference patterns and
quantum visibilities when realistic experimental parameters
are considered.

The remainder of the paper is organized as follow. In Sec. II
we briefly review the Talbot-Lau effect for optical grating and
give the expressions for the interference pattern and Talbot
coefficients which determine it. In Sec. III, we discuss the
reduced coherent effect of the grating when the Rayleigh
approximation is not valid. In Sec. IV, we introduce decoher-
ence effects due to scattering of grating photons off spherical
particles. Furthermore, we consider how to include the effect
of absorption in the picture, while the fact that a fully fledged
quantum formalism for this is currently not available. Finally,
we discuss how to obtain the classical limit and its relevance to
the problem at hand. In Sec. V, some examples of interference
patterns are shown which highlight the effects of misusing the
Rayleigh approximation. We conclude this work in Sec. VI
with a discussion of the results and future perspectives.

II. TALBOT-LAU EFFECT FOR OPTICAL GRATINGS

Here, we provide a concise review of the Talbot effect for
matter-wave interferometry in the eikonal approximation. A
more in-depth analysis can be found in Refs. [16–19].

The dynamics of a polarizable quantum particle interacting
with an electromagnetic standing wave in the interaction
picture is described by the master equation

∂tρt = − i

h̄
[V (r̂t , t ), ρt ] + Lt (ρt ), (1)

where V (r̂t , t ) is the interaction potential and Lt = Lsca +
Labs is the dissipative term taking into account the effects due
to scattering (Lsca) and absorption (Labs) of grating photons.

As a full quantum description of matter-light interaction
encompassing both scattering and absorption mechanisms is
currently lacking, we make use of the results in Ref. [15]
to describe both the coherent effects of the grating and the
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FIG. 1. Optical standing-wave grating. The figure shows the
coordinate convention that we use, in which z is the relevant direction
in the longitudinal eikonal approximation. We consider a standing
wave linearly polarized in the x direction which gives rise to a grating
of period d = λ/2.

decoherence due to photon scattering, while making use
of semiclassical arguments [17,18], to include decoherence
effects due to absorption. This results in the interaction po-
tential

V (r̂t , t ) = −ε0ε
R
c

4

∫
Vn (r̂t )

dr|Esw(r)|2, (2)

where ε0 is the vacuum permittivity, εR
c is the real part of

εc = 3(ε − 1)/(ε + 2) with ε the relative permittivity, and
Esw(r) is the electric field of the standing wave. The integral
is extended over the volume Vn(r̂) of the dielectric particle.
We give explicit forms for the scattering and absorption de-
coherence terms described by Lsca (ρ) and Labs(ρ) in Sec. III
[cf. Eqs. (23) and (35), respectively].

The net effect of the optical grating on the matter-wave
density matrix is then given by

ρ → T e
∫ τint

0 dτLτ ρ, (3)

where the superoperator Lt is defined through Lt (ρ) =
− i

h̄ [V (x̂, t ), ρt ] + Lt (ρt ), τint is the interaction time, and T
denotes the time ordering operator. Note that, in the case of
pulsed-light grating, the interaction time is determined by the
duration of the pulse.

By assuming a waist of the standing wave that is much
larger than the matter-wave profile, and an interaction time
(τint) that is negligible compared to the characteristic time of
spreading of the matter waves, we can rely on the longitu-
dinal eikonal approximation [19] to reduce the problem to
an effective one-dimensional dynamic along the direction of
propagation of the standing wave (cf. Fig. 1 for the coordinate
setting). This approximation allows us to rewrite Eq. (3) as

ρ(z, z′) → R(z, z′)T (z, z′)ρ(z, z′), (4)

where ρ(z, z′) = 〈z|ρ|z′〉 is the matter-wave density matrix in
the position representation, and we have introduced the phase-
modification mask

T (z, z′) = t (z)t∗(z′) = e− i
h̄

∫ t
0 dτ [V (z,τ )−V (z′,τ )], (5)

with V (z, t ) the classical interaction potential, and a decoher-
ence mask,

R(z, z′) = e
∫ τint

0 dτLt (z,z′ ) = Rsca (z, z′)Rabs(z, z′). (6)

In order to make the description more transparent, it is
convenient to rewrite Eq. (4) in a phase-space picture. We thus
introduce the Wigner function associated with ρ, defined as

w(z, p) = 1

2π h̄

∫
ds e

i
h̄ ps〈z − s/2|ρ|z + s/2〉, (7)

with z and p the position and momentum coordinates in phase
space. The effect of the grating in Eq. (4) is then described by
the action of a convolution kernel T̃ (z, p − q) on the Wigner
function of the system [16], that is,

w′(z, p) =
∫

dq T̃ (z, p − q)w(z, q). (8)

The convolution kernel can be written explicitly as

T̃ (z, p) =
∫

dqR(z, p − q)Tcoh(z, q), (9)

where

Tcoh(z, p) = 1

2π h̄

∫
ds e

ips
h̄ t

(
z − s

2

)
t∗

(
z + s

2

)
(10)

describes the coherent effect of the grating on the matter wave,
and

R(z, p) = 1

2π h̄

∫
ds e

ips
h̄ R

(
z − s

2
, z + s

2

)
(11)

accounts for the incoherent effects of the grating. Exploit-
ing the periodicity of the grating, the transmission function
[Eq. (5)] and decoherence mask [Eq. (6)] can be written in
Fourier series as

t (z)=
∞∑

n=−∞
bne

2π inz
d ,

R
(

z− s

2
, z+ s

2

)
=

∞∑
n=−∞

Rn

( s

d

)
e

2π inz
d , (12)

where d is the grating period, bn = 1
d

∫ d/2
−d/2 dz e

2π inz
d t (z), and

Rn

( s

d

)
= 1

d

∫ d/2

−d/2
dze

2π inz
d R

(
z − s

2
, z + s

2

)
. (13)

Finally, using Eq. (12) the convolution kernel takes the form

T̃ (z, p) = 1

2π h̄

∑
n

e
2π inz

d

∫
ds e

i
h̄ psB̃n

( s

d

)
, (14)

where

B̃n

( s

d

)
=

∑
j

Bn− j

( s

d

)
Rj

( s

d

)
. (15)

The B̃n’s are known as Talbot coefficients and characterize
the fringe pattern due to quantum matter-wave interference.1

1In order to arrive at the full-fledged interference pattern,
the evolution in phase space of the Wigner function from the
source to the grating and from past the grating to the detection
stage has to be obtained. Once the final Wigner function is given, the
interference pattern can be straightforwardly derived noting that the
position probability density function is just a marginal of the Wigner
pseudoprobability. See, e.g., [20].
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These coefficients are conveniently expressed in Eq. (15) in
terms of the Fourier coefficients of the decoherence mask
function Rn and of the transmission function bn. The latter are
indeed contained in the Talbot coefficients Bn,

Bn

( s

d

)
=

∑
k

bkb∗
k−ne

iπ (n−2k)s
d , (16)

which describe only the coherent grating effect.

III. COHERENT GRATING FOR LARGE SPHERES

The periodic modulation of the phase of the matter-wave
quantum state of a polarizable particle operated by the optical
grating is the basis of the Talbot effect. We consider the case
in which the grating is realized by retroreflection of a laser
pulse off a mirror. This produces a linearly polarized standing-
wave field E(r) = E0 êx f (x, y) cos(kz), where f (x, y) is the
transverse mode profile and êx is the polarization unit vector.
In the following, we assume that the dimension of the particle
is much smaller than the waist of the laser in the transverse
directions. This allows us to neglect the transverse mode
profile and, thus, take f (x, y) � 1.

The use of short laser pulses to generate the optical grating
[18] justifies the eikonal approximation used to determine the
coherent phase modulation and allows us to neglect any trans-
verse force. Thus, we concentrate only on the reduced one-
dimensional state of the matter wave along the standing-wave
axis, i.e., we work in the longitudinal eikonal approximation.
It should be noted that setups with laser pulses have been used
in [21] and advocated for ground- and space-based experi-
ments aiming to use massive objects [5,6]. On the contrary, the
use of a continuous laser for the grating introduces limitations
on the speed of the particles, which need to traverse the grating
rapidly enough for the eikonal approximation to be valid. See
[19] for how to go beyond the eikonal approximation.

A. Polarizable pointlike particles

Let us start by reviewing well-known results on the effect
of optical grating for particles in the Rayleigh regime. Given
k = 2π/λ, the wave number of the standing wave, and the
radius R of the particle, the condition for the particle to be in
the Rayleigh regime reads kR 	 1. In this regime, the dipole
interaction potential due to the standing wave E is given by

V (z, t ) = − 1
4 Re(χ )|E(z, t )|2, (17)

where the polarizability χ is

χ = 4πε0R3 ε(ω) − 1

ε(ω) + 2
= ε0εcV. (18)

In the latter expression the relative permittivity ε is the square
of the complex refractive index n(ω) of the particle’s material,

V = 4πR3/3 is the volume of the particle, and we define
εc = 3(ε − 1)/(ε + 2). When the polarizable point particle
interacts with the standing-wave grating, and ignoring inco-
herent effects for the moment, its quantum state (reduced
in the longitudinal direction) evolves unitarily as 〈z|ψ〉 →
exp(iφ0 cos2 kz)〈z|ψ〉, where the eikonal phase factor φ0 is
obtained by integrating the dipole potential over the laser
pulse duration [5]

φ(z) = 1

h̄

∫
τ

dtV (z, t ) = φ0 cos2 kz. (19)

In particular, we have that φ0 can be expressed in terms of the
material polarizability as well as the laser parameters as

φ0 = 2Re(χ )EL

h̄cε0aL
, (20)

where EL is the pulse energy and aL is the spot area of the
laser.

B. Coherent grating for large particles

Having briefly reviewed the point-particle case, we move
now to consider spherical particles for which kR � 1. We
follow Ref. [18], where the coherent effect of optical standing-
wave gratings on extended spherical particles is analyzed. The
expressions that we obtain in the following will allow us to
construct the Talbot coefficients in the general case where
incoherent effects are relevant.

When the pointlike-particle approximation ceases to hold,
a general treatment of light-matter interaction is in order since
the particle can no longer be approximated by an electric
dipole, and higher-order multipoles should be considered.
For homogeneous spherical particles, Mie scattering theory
[22–24] is appropriate. In fact, this theory offers exact solu-
tions to Maxwell equations for light scattering from spherical
objects. In order to derive the optical potential we look at
the longitudinal light-induced force on the dielectric sphere.
Note that, as remarked in Ref. [18], transverse forces and
corrections due to the finite-mode waist can be neglected
owing to the short laser pulses that we consider. The light-
induced forces acting on the dielectric particle can be ob-
tained by integrating the electromagnetic stress-energy tensor
over a spherical surface surrounding the particle. We follow
Ref. [25], where a series-expansion expression of the net radi-
ation force on a spherical particle of arbitrary size illuminated
by a monochromatic light is obtained (see also Ref. [18]). It
should be noted that, strictly speaking, Mie scattering theory
considers plane electromagnetic waves. Thus, in obtaining the
following expressions, the standing-wave profile of interest
must be considered (see the Appendix). We report here the
expression for the longitudinal force on a dielectric sphere in
vacuum in which we are interested,

Fz(z)

I0k−2c−1
= −(kR)4

∞∑
�=1

∑
m=±1

Im

[
�(� + 2)

√
(� − m + 1)(� + m + 1)

(2� + 3)(2� + 1)
(2a�+1,ma∗

�m + a�+1,mA∗
�m

+ A�+1,ma∗
�m + 2b�+1,mb∗

�m + b�+1,mB∗
�m + B�+1,mb∗

�m) + m(2a�,mb∗
�m + a�,mB∗

�m + A�,mb∗
�m)

]
, (21)
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FIG. 2. F0 [in units of I0/(ck2 )] as a function of the size param-
eter kR for a silicon (Si) sphere at λ = 354 nm, where the bulk
refractive index [26] is n = 5.656 + i 2.952. The solid green line
is the result of Mie theory. The dashed red line is the prediction
resulting from Rayleigh approximation.

where I0 = cε0|E0|2/2 is the intensity parameter of the
incident light. This series contains several coefficients—
a�,m, b�,m, A�,m, B�,m—that are derived starting from Mie
scattering theory and that we report in the Appendix for ease
of exposition. As the longitudinal force due to the linearly
polarized standing wave E is of the form Fz(z) = −F0 sin 2kz,
the eikonal phase φ0 can be written as2

φ0 = 8F0EL

h̄cε0aLk|E0|2 . (22)

In order to determine F0, and thus φ0, we can just evaluate
Eq. (21) at z = −λ/8. Figure 2 shows an example of its behav-
ior for a Si sphere at λ = 354 nm with the bulk refractive index
n = 5.656 + i2.952 (as tabulated in Ref. [26]). As expected,
the Rayleigh prediction (dashed red line) stops being valid
for kR � 1 and F0 stops increasing with the volume of the
sphere, showcasing an oscillatory behavior. While a physical
intuition behind this behavior is provided in Ref. [18], here
we focus on the fact that, at the values of kR corresponding
to the nodes of the oscillations, the phase grating will be
completely absent. This suggests that care should be used
when choosing the size of large particles, so as to maximize
the grating effects and avoid regions where the grating effect
disappears. Moreover, one should bear in mind that the grating
effect of the optical standing wave is greatly reduced for
large particles with respect to the prediction of Rayleigh
theory.

Another interesting point to consider here is the sensitivity
of F0 to changes in the refractive index. Indeed, it appears
that the behavior of F0 against kR can change significantly
under variations of the refractive index. Figure 3 shows the

2We write the conservative force Fz(z) as the gradient of a po-
tential V (z), i.e., F (z) = −∇V (z). Inverting this relation we obtain
V (z) = − F0

k cos2(kz). Assuming a rectangular pulse of duration τ ,
from Eq. (19) we get φ0 = (F0/kh̄)τ . Finally, given the relation
τ = 8EL/(cε0|E0|2aL ) between the impulse time and laser energy EL

and the spot area aL , Eq. (22) is easily obtained.

effect of a ±5% variation in the value of the refractive index
for fused silica at 100 nm. Fluctuations in the real part of
n can lead to quantitatively significant changes: the relative
error in F0 at the maxima can be as large as 10% and even
larger at the nodes. On the other hand, analogous inaccuracies
in the imaginary part of n lead to less important effects.
We can conclude that, when doing Talbot-Lau interferometry
with large spherical particles, the refractive index needs to
be carefully estimated. Thus, the use of the bulk material
refractive index could be too gross an approximation to the
sphere refractive index.3 This point deserves to be accounted
for when planning experimental realizations.

IV. INCOHERENT EFFECTS

A. Scattering

In order to describe the incoherent effects due to scattering
of standing-wave photons we rely on the theory developed
in [28] for light-matter interaction in the Mie regime. Ac-
cording to [28], the effect of the scattering is described,
under the assumption that the laser waist is much larger
than the size of the particle, by the action of the Lindblad
superoperator

Lsca (ρ) = |α(t )|2
∫

dkδ(ωk − ω0)

× (2Tk,c(r̂)ρT ∗
k,c(r̂) − {|Tk,c(r̂)|2, ρ}), (23)

where the collisional operators are defined as

Tk,c(r̂) = ic2

2πω

∫
dk′ 〈k′|c〉 f (k, k′)e−i(k−k′ )·r̂, (24)

with f (k, k′) the Mie scattering amplitude and |c〉
the mode function of the standing wave, i.e., 〈r|c〉 =
1/

√
V0 f (x, y) cos(kz) (V0 is the mode volume of the standing

wave). Assuming that the free evolution is negligible during
the interaction time, and working in the longitudinal eikonal
approximation, the effect on the matter wave due to the
scattering of grating photons is described by the action of
the scattering mask Rsca (z, z′) = e

∫
dτLsca (z,z′ ) in the position

representation, where

Lsca (z, z′) = |α(t )|2
∫

dkδ(ωk − ω0)[2Tk,c(z)T ∗
k,c(z′)

−|Tk,c(z)|2 − |Tk,c(z′)|2]. (25)

In our case, the standing wave is described in good ap-
proximation by E(r) ∼ E0êx cos(kz). Thus, using the mode
function 〈z|c〉 = 1/

√
V0 cos(kz), one can show that

Tk,c(z) =
√

2π3

V0

(
T ∗

k0,k(z) + T ∗
−k0,k(z)

)
. (26)

3Note that this effect may be very large for conducting nanoparti-
cles, as the wave function of free electrons is sensitive to the size of
the particle.
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Substituting z → z− = z − s/2 and z′ → z+ = z + s/2, and
with the help of the above equation, we have

Lsca (z−, z+) = |α(t )|2πc

V0

[∫
d�| f (k, kn)|2(e−i(1−nz )ks−1)

+
∫

d� f ∗(k, kn) f (−k, kn)e−i2kz(eiknzs − cos(ks))

+
∫

d� f ∗(−k, kn) f (k, kn)ei2kz(eiknzs − cos(ks))

+
∫

d�| f (−k, kn)|2(ei(1+nz )ks − 1)

]
, (27)

where n = k′/|k|, and � is the solid angle associated with k′
assuming that k is pointing in the z direction.

We note that the spherical symmetry of the nanoparti-
cle is reflected in the following symmetry of the scattering
amplitude4 f (−k, kn) = f (k,−kn). Exploiting the symme-
try, and through lengthy but otherwise straightforward alge-
bra, we finally get

Rsca (z−, z+) = exp(F (s) + a(s) cos(2kz) + ib(s) sin(2kz)),

(28)

where

a(s) = 2πc

V0

∫
dτ |α(τ )|2

∫
d� Re( f ∗(k, kn) f (−k, kn))[cos(knzs) − cos(ks)],

b(s) = 2πc

V0

∫
dτ |α(τ )|2

∫
d� Im( f ∗(k, kn) f (−k, kn)) sin(knzs),

F (s) = 2πc

V0

∫
dτ |α(τ )|2

∫
d� | f (k, kn)|2[cos((1 − nz )ks) − 1]. (29)

Henceforth, for ease of notation, we omit the explicit de-
pendence on s of the functions a(s), b(s), and F (s). Note
that

∫
dτ |α(τ )|2 can be expressed in terms of the laser

pulse parameters as
∫

dτ |α(τ )|2 = 4V0EL/(h̄cω aL ). We can
now compute the Fourier coefficients of the scattering mask
Rsca (z, z′) which enters in the Talbot coefficients of Eq. (15),

Rn

( s

d

)
= 1

d

∫ d/2

−d/2
dzei2π nz

d ea cos( 2πz
d )+ib sin( 2πz

d )+F

= eF

(
a − b

a + b

)n/2

In(sign(a − b)
√

a2 − b2), (30)

where In(a) are modified Bessel functions of the first kind.
We can then use Graf’s addition theorem [29] to rewrite the
Fourier coefficients as

Rn

( s

d

)
= eF

∑
k

Ik+n(a)Jn(b), (31)

where Jn(b) are Bessel functions of the first kind. Exploiting
this result we can conveniently write the Talbot coefficient,
modified by the presence of scattering mechanisms, as

B̃n

( s

d

)
= eF

∑
k,m

Jn−k (ξcoh )Ik+m(a)Ik (b) (32)

where ξcoh = φ0 sin ( πs
d ) and, again using Graf’s theorem,

obtain

B̃
( s

d

)
=

∑
k

�
n+k

2 Jk+n

(
sign(ζcoh − a)

√
ζ 2

coh − a2

)
Jn(b),

(33)

with � = eF (ζcoh + a)/(ζcoh − a).

B. Absorption

Apart from the scattering of grating photons, their absorp-
tion gives rise to an additional incoherent effect. This effect
is relevant unless very low-absorbing material spheres are
employed, and it is amplified by the size of the spheres. How-
ever, while a quantum formalism beyond the point-particle ap-
proximation exists for the description of scattering of grating
photons, no such formalism is available for absorption.

In order to estimate the incoherent effect due to absorption,
we follow here a semiclassical approach, fostered in Ref. [18],
which is valid in the Rayleigh regime. Nonetheless, we im-
prove on it by considering the actual number of absorbed
photons, which depends on the Mie absorption cross section.
The result coming from this analysis only embodies a rough
estimate of the real effect of absorbed photons and, in general,
results in a lower bound on the actual amount of decoherence.
We comment on how to possibly extend this approach at the
end of this section.

In Ref. [18] a Lindblad (super)operator describing the
incoherent effect of photon absorption is obtained by treating
absorption as a Poisson process and using the corresponding
noise in a stochastic Schrödinger equation describing the evo-
lution of the state of an absorbing particle. The end result, after
averaging, is a Lindblad-like equation with jump operators
describing the evolution of the state of the particle every
time an absorption event occurs. In order to determine the
jump operator characterizing absorption, consider a spherical
particle in the Rayleigh limit with complex polarizability and
the effect of absorbing a photon from the linearly polarized
incident light with the mode function f (r)êx. As the mode

4Note that in the Rayleigh approximation a further symmetry
appears because the particle is treated as pointlike. In particular,
f (−k, kn) = f (k, kn). Employing this symmetry, it is straightfor-
ward to obtain the Rayleigh scattering expressions from Eq. (27)
[18].
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function can be expanded on the basis of plane waves f (r) =∑
fk exp ik · r, and the absorption of a plane-wave photon

amounts to a shift in momentum space by h̄k, the effect
of absorbing a photon from the incident light transforms a
momentum state of the particle as

|p〉 →
∑

fk|p + h̄k〉 = f (r)|p〉. (34)

Thus, the effect of the jump operator is given simply by the
scalar mode function. The rate at which the absorption occurs
is related to the number of photons in the light field |α|2 times
the single-photon absorption rate cσabs/V0, where σabs is the
absorption cross section and V0 is the mode volume of the
incident light.

For a standing wave, and neglecting the effect on the
transverse motion of the particle, the action of the Lindblad
operator on the particle’s density matrix reads

Labs(ρ) = cσabs

V0
|α(t )|2

[
cos(kz)ρ cos(kz) − 1

2
{cos2(kz), ρ}

]
,

(35)

where the time dependence of |α|2 reflects the fact that we are
considering a pulse.

In order to better estimate the effects of absorption for
large particles, a first crude approximation is to consider the
same Lindblad superoperator as in Eq. (35) while considering
the right absorption cross section as given by Mie scattering
theory. This is given by σabs = σext − σsca, i.e., the difference
between the total extinction cross section and the scattering
one. Explicitly,

σabs = 2π (2n + 1)

k2

∞∑
n=1

(Re(an + bn) − |an|2 − |bn|2), (36)

in terms of the Mie coefficients, which are given in the
Appendix.

With these expressions at hand, we can again follow the
steps in Sec. IV A, while including also the absorption super-
operator. The decoherence mask due to absorption is given by

Rabs(z, z′) = exp

[
−2n0 sin2

(
k0

z + z′

2

)
sin2

(
k0

z − z′

2

)]
,

(37)

where n0 is the mean number of absorbed photons at the
antinodes n0 = 4σabs

hc
EL
aL

λ = I0
cF0

σabsφ0. Note that, by substitut-
ing z → z− and z′ → z+ and including also the effect of
scattering, Eq. (30) is modified to

Rn

( s

d

)
= eF

d

∫ d/2

−d/2
dz e−2π in z

d ea cos ( 2πz
d )−b sin ( 2πz

d )−2n0 sin2 (π z
d ) sin2 ( πs

2d )

= eF− cabs
2

d

∫ d/2

−d/2
dze−2π in z

d e(a+ cabs
2 ) cos ( 2πz

d )−b sin ( 2πz
d ), (38)

where cabs = n0(1 − cos(πs/d )). We can now follow exactly the same steps as for the scattering case and end up with new
Talbot coefficients that include absorption:

B̃n

( s

d

)
= eF−cabs/2

∞∑
k=−∞

(
ζcoh + a + cabs/2

ζcoh − a − cabs/2

) n+k
2

Jk (b) Jn+k (sign(ζcoh − a − cabs/2)
√

ζ 2
coh − (a + cabs/2)2). (39)

It should be noted that the only difference between the expres-
sions for absorption presented here and the ones in, e.g., [18]
is the use of the Mie absorption cross section.

The treatment of the absorption decoherence is based on
a semiclassical approach in the Rayleigh limit, i.e., treating
the particle as pointlike. While we have refined the result by
using the Mie theory absorption cross section, the formalism
does not properly account for the finite size of the particle
and the variation of the light intensity across it. In order to
extend the formalism beyond the Rayleigh approximation, we
look at the nonconservative part of the classical force acting
on a polarizable particle of finite size interacting with the
electromagnetic field,

Fnc(r) = −ε0ε
I
c

2

∫
Vn (rt )

dr Im{[∇ · E∗(r)]E (r)}, (40)

where ε I
c is the imaginary part of εc. The appearance of a

nonconservative force is an artifact of having ignored the
dynamics of the internal degrees of freedom of the particle. If
the latter were to be included, the complete dynamics would
be fully unitary and no nonconservative force would appear.

While, as far as we know, a full model for dielectric particles
is not present, for a single atom interacting with a single quan-
tized field mode such a treatment is viable [30,31] and indeed
leads to the absorption and scattering of photons by the atom.
Notwithstanding the technical details, from the form of the
nonconservative classical force we could argue that, replacing
∇ · E with the particle charge density ρq and including its
dynamics, a potential term coupling the incident field with
the internal phonons modes would arise. These terms will
be analogous to the coupling between the incident and the
scattered electric field used in [15] to derive Eq. (25), with
now, instead of the scattering amplitudes, the absorption ones.
This suggests that the right form of the absorption term should
be similar to Eq. (27) with the appropriate amplitudes and
phononic mode functions. However, as already mentioned,
a microscopic model for the interaction between the internal
degrees of freedom and light is currently missing.

C. Classical limit

In near-field matter interferometry, a fringe pattern
may also appear when a classical description of the
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FIG. 3. F0 [in units of I0/(ck2 )] as a function of the size param-
eter kR for a fused silica (SiO2) sphere at λ = 100 nm, where the
bulk refractive index has been roughly estimated as n = 1.3 + i 0.8
from tables in the Supplementary Material of [5] (see also [27]).
The dashed black line is F0 at n = 1.3 + i 0.8. The green region
represents the result of a ±5% error in the real part of the refractive
index. Inset: The red region represents the result of a ±5% error in
the imaginary part of the refractive index.

particle—in terms of ballistic trajectories—is adopted. This is
due to partial reflection by the light grating [16]. Therefore, a
nonvanishing fringe contrast is not sufficient to prove genuine
quantum interference and one would have to resort to a direct
comparison between the quantum and the classical models
for the dynamics. The classical behavior can be obtained as
the limiting case of Eqs. (10) and (11) for h̄ → 0 (applied to
a classical probability distribution in phase space). Here, we
do so for the coherent and incoherent convolution kernels, for
both the scattering and the absorption case, as the h̄ → 0 limit
of the quantum expression.

To show how the limit is performed, it is convenient to
consider first the coherent convolution kernel, Eq. (10),

Tcoh(z, p) = 1

2π h̄

∫
ds e

ips
h̄ e− i

h̄

∫ t
0 dτ [V (z−s/2,τ )−V (z+s/2,τ )],

(41)

where we have used Eq. (5). We first rescale the integration
variable as s → sh̄, to have h̄ appearing only in the argument
of the exponential, and then Taylor expand the potential V (z ±
sh̄) to first order in h̄. In this way, we get

Tcoh(z, p) � 1

2π

∫
ds e

i s
(

p+∫ t
0 dτ∇V (z,τ )

)
+O(h̄)

, (42)

which, upon taking the limit h̄ → 0, gives us the classical
convolution kernel

Tclass(z, p) = δ

(
p +

∫
dτ∇V (z, τ )

)
. (43)

Following the same logic, the classical limit of the deco-
herence convolution kernels can be obtained. It should be
noted that, rescaling s and then expanding around h̄ = 0 is
equivalent to only performing an expansion around s = 0 of
the argument of the exponential in the Fourier transform of
the kernels.

TABLE I. Parameters considered for Si spheres. Other parame-
ters entering the generalized Talbot coefficients and the interference
pattern (cf. Eq. (4) in Ref. [5]) can be inferred from the table. In
particular, σz = √

kBT/(4π 2mν2), D = d (t1 + t2)/t1, and the Talbot
time tT = d2m/h. The mass m of the spheres enters also into the
definition of the sphere radius via R3 = (3/4π )(m/ρSi ); the greater
the mass, the larger its radius.

Laser λ = 2d = 354 × 10−9 m
ρSi = 2.3290 × 103 kg/m3

T = 20 × 10−3 K
Refractive index at λ n = 5.656 + i 2.952
Trapping frequency ν = 200 × 103 Hz
Interferometer d = 177 × 10−9 m

t1 = 2tT

t2 = 1.6tT

Consider Eq. (11) with Rsca (z−, z+) given by Eq. (28).
Rescaling the integration variable, the dependence on h̄ occurs
only in the functions a, b, and F in Eq. (29). It is crucial
to note at this stage that, for the electromagnetic field, the
identification of |α|2 with the classical intensity I (τ ) over h̄
requires expanding the trigonometric functions in a, b, and
F to first order in h̄, in analogy with the coherent kernel.
It is easy to see that the only nonvanishing contribution to
the classical decoherence kernel arises from the function b.
The same argument shows that the classical limit of the
absorption decoherence kernel in Eq. (37) vanishes, making
no contribution to the classical dynamics. However, a more
refined treatment of absorption decoherence—along the lines
depicted in Sec. IV B—should make a contribution similar
to the one found for scattering. It is interesting to note that
treating the light-matter interaction in the Rayleigh limit
would lead to the complete absence of a decoherent effect for
the classical dynamics,5 in contrast to what has been argued
in the existing literature. This observation could already be
relevant for upcoming experiments working in the Rayleigh
approximation, as it would help identify the working point at
which the differences between classical and quantum interfer-
ence patterns are maximum (cf. Figs. 4 and 5).

V. REALISTIC EXAMPLE

We now study the effects of scattering and absorption
of grating photons on the interference pattern. The figure
of merit embodied by the sinusoidal fringe visibility Vsin is
used here to complement the predictions coming from the
interference pattern. As outlined in Refs. [5] and [18], the
interference pattern is often dominated by the first Fourier
amplitude. Thus, the fringe contrast is well described by
(cf. the caption of Table I)

Vsin = 2

∣∣∣∣B̃1

(
t1t2

tT (t1 + t2)

)∣∣∣∣ exp

(
− 2π2σ 2

z t2
2

d2(t1 + t2)2

)
. (44)

5In the Rayleigh approximation, the b term in Eq. (29) is identically
0 due to the symmetry property of the scattering amplitude.
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FIG. 4. Effect of the optical grating, photon scattering, and absorption on the interference pattern in the classical limit. Here we use the
parameters in Table I with m = 106 a.m.u. and the corresponding x = kR ∼ 0.098, where the use of the Rayleigh limit is well justified.
We have assumed the same experimental arrangements and configuration as in Ref. [5], with the exception of (gravitational) acceleration
and environmental decoherence effects during the free evolution times t1 and t2, which have been neglected to highlight the effects of the
grating, scattering, and absorption mechanisms. (a) The classical fringe pattern, when varying the maximum phase modulation φ0, without
decoherence, i.e., what we obtain by taking the classical limit as discussed in the text. (b) The decoherence terms due to scattering and
absorption are evaluated using the same integral kernels as for the quantum case. This is what has been advocated previously in the literature
(cf. Ref. [17]). (c) An instance of the interference patterns for φ0 = 4. The solid black curve corresponds to (a); the dashed blue curve, to (b);
and the dotted red curve, to the quantum interference pattern including decoherence due to scattering and absorption of the grating photons.
Due to different notations, the Rayleigh limit of the Lindblad superoperator in Eq. (27) differs from Eq. (2.24) in Ref. [18] by a factor of 1/4π .

Here we focus on the fringe visibility of the quantum interfer-
ence pattern. We follow a recent proposal for an experimental
realization of matter-wave interferometry with nanoparticles
[5] from which the parameters in Table I have been drawn.
There, silicon nanoparticles with a mass of 106 a.m.u. are
considered. For such a mass, the scattering of grating photons
is completely negligible, while the effect of absorption is
not insignificant. Nevertheless, the results obtained from Mie
and Rayleigh theory for both scattering and absorption are
in good agreement, as should be expected given the value
x = kR ∼ 0.098 of the parameter controlling the validity of
the pointlike approximation.

However, a mass of 108 a.m.u. makes x = kR ∼ 0.46.
Although this is a modest increase with respect to the previous

case, it turns out that the Rayleigh approximation is no longer
well justified. Figure 6 shows the difference in the predic-
tions obtained using the Rayleigh approximation versus those
arising from Mie theory. It should be noted that in Fig. 6 we
consider only decoherence effects due to scattering of grating
photons, of which we have full control. Thus, no decoherence
effect due to black-body radiation, gas particle collisions, or,
most importantly, absorption of grating photons is considered
in this case. As can be easily seen, the visibility is strongly
affected. Even more significantly, the form of the interference
pattern is significantly modified, the deformation being even
more important at higher values of the mass parameter. Fi-
nally, we note that, while we employ the sinusoidal visibility
to show the results associated with the use of Mie theory, this
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FIG. 5. Effect of the coherent grating and photon scattering on the interference pattern in the classical limit. Here we used the parameter
in Table I with a mass m = 108 a.m.u., which corresponds to a value of x = kR ∼ 0.46, for which the Rayleigh approximation is not well
justified. The figure shows an instance of the interference patters for φ0 = 2, where only the decoherence due to scattering of grating photons,
of which we have full control, is considered. The solid black curve corresponds to the classical limit as obtained in this work. The dashed
blue curve corresponds to the classical limit obtained without modifying the incoherent kernels from the quantum case. The dotted red curve
represents the quantum case. Note the striking difference between the two classical interference patters, which is larger with respect to the
Rayleigh case given the greater effect of scattering decoherence in the Mie regime.

is not a very useful indicator when it comes to comparing
the quantum prediction for the interference pattern with the
classical shadow pattern. Indeed, while the quantum visibility
could be smaller than its counterpart corresponding to the
classical pattern, the interference figures could still be clearly
distinguishable due to the position and shape of the oscillatory
peaks. We stress here that a better figure of merit should
be used in order to certify the quantumness of an observed
interference pattern.

VI. DISCUSSION AND CONCLUSION

We have addressed the Talbot-Lau effect beyond the
Rayleigh limit, accounting for the suppression of coherent
grating effects due to large-size particles, scattering, and pho-
ton absorption. We have only considered polarizable spher-
ical particles and neglected their internal degrees of free-
dom. These approximations are the usual workhorse in many
matter-wave experiments and allow us to neglect decoherence

FIG. 6. Sinusoidal visibility of the interfer-
ence pattern for a particle of mass m = 108

a.m.u., which corresponds to a value x = kR ∼
0.46 for the parameters reported in Table I.
For these parameters, the use of the Rayleigh
approximation is not fully justified. The dashed
blue curve represents the interference pattern
visibility in the case in which Rayleigh approx-
imation is used. The solid red curve represents
the visibility when Mie theory is employed.
Inset: An instance of the interference patters for
φ0 = 2 showing a significant difference between
the two situations.
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effects due to coupling between the center-of-mass motion
and other degrees of freedom.

The main results of this work are the expressions needed
to describe the coherent and incoherent effects—beyond the
Rayleigh approximation—due to optical grating. Nonethe-
less, the discussion of the classical limit provides some in-
teresting insight. Indeed, we have shown that the classical
limit of the decoherent effects due to scattering and absorp-
tion of grating photons is qualitatively different from the
results presented in the current literature. In particular, it
appears that when the Rayleigh approximation is well justi-
fied, then, in the classical limit, no effect due to scattering
and absorption survives, leaving only the deflection of bal-
listic trajectories due to the standing wave. While relevant
for current experimental proposals, this result has striking
consequences also for future experiments aiming to study
large-particle superpositions, as it significantly reduces the
decoherence suppressing the would-be classical shadow effect
from which the quantum interference pattern needs to be
distinguishable.

Our study is motivated by the need to account for in-
creasing sizes of particles in experiments aiming at probing
the quantum-to-classical transition. However, a number of as-
sumptions were necessary in order to develop our framework.
Two of them are particularly relevant for future endeavors:
spherical symmetry of the particles and their homogeneity.
While it could still be a very good approximation, the Mie
theory is not rigorously applicable when such assumptions
are relaxed. Moreover, additional decoherence effects can
arise due to the coupling between the center of mass and
the rotational degrees of freedom of a nonspherical and/or
anisotropic object and by coupling with the internal degrees of
freedom. The assessment of such questions will be the focus
of our future investigations.
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APPENDIX: MIE SCATTERING

In this Appendix we collect the expressions used in the
text which derive from Mie scattering theory. We do not
go into the details of the derivation, as we refer mostly to
[18] and [24] for an exhaustive treatment. Nonetheless, we
explain how we compute the scattering amplitudes used in
Sec. IV.

Mie theory serves to obtain an exact solution for the scat-
tering of light off spherical homogeneous particles of arbitrary
size. In a nutshell, consider a plane electromagnetic wave E0

impinging on a homogeneous sphere. The latter will develop
an internal field Eint and modify the incident field, adding a
scattering component, in such a way that the external field
is Eext = E0 + Es. From the symmetry of the problem, the
internal, incident, and scattered fields can all be expanded in
spherical harmonics. Then, by imposing boundary conditions
on the transverse fields at the sphere surface (plus the fact that
the internal field should be finite at r = 0), the scattered field
can be related to the incident one, thus providing the scattering
amplitudes and scattering—and absorption—cross section(s).

The scattering coefficients, characterizing the scattering of
a plane wave moving along the z axis and linearly polarized
in the x direction, are given by

an =
√

εψn(
√

εx)ψ ′
n(x) − ψn(x)ψ ′

n(
√

εx)√
εψn(

√
εx)ξ ′

n(x) − ξn(x)ψ ′
n(

√
εx)

, (A1)

bn = ψn(
√

εx)ψ ′
n(x) − √

εψn(x)ψ ′
n(

√
εx)

ψn(
√

εx)ξ ′
n(x) − √

εξn(x)ψ ′
n(

√
εx)

, (A2)

where x = kR, and ψn and ξn are Riccati-Bessell functions,
which are often expressed in terms of spherical Bessell j
functions and the spherical Henkel h(1) as

ψn(ρ) = ρ jn(ρ), (A3)

ξn(ρ) = ρh(1)
n (ρ). (A4)

Here, as in the text, ε is the relative permittivity of the sphere’s
material.

As should be clear from Sec. IV, in order to determine
the scattering amplitudes to obtain the incoherent effect of
scattering of grating photons, it is sufficient to consider the
aforementioned case of an incident plane wave linearly po-
larized in the x direction. The scattered field is related to the
incident one via a vector scattering amplitude X,

Es ∼ eik·r

kr
XE0.

For spherical particles, the latter can be written in terms of
the scalar scattering amplitude f (k, k′) and the polarization
direction of the scattered field ês as

X =
√

S2
2 cos2 φ + S2

1 sin2 φ ês, (A5)

where θ is the scattering angle and φ is the azimuthal angle
with respect to the polarization direction. Thus the scattering
amplitude reads

f (k, k′) =
√

S2
2 cos2 φ + S2

1 sin2 φ, (A6)

where

S1 =
∑ 2n + 1

n(n + 1)
(anπn + bnτn), (A7)

S2 =
∑ 2n + 1

n(n + 1)
(anτn + bnπn). (A8)
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The amplitude scattering matrix elements S1,2 are given in
terms of the scattering coefficients (A1) and the angular
functions

πn = P1
n

sin θ
= −dPn(cos θ )

dθ

1

sin θ
, (A9)

τn = dP1
n

dθ
= d

dθ

(
−dPn(cos θ )

dθ

)
, (A10)

where Pn(cos θ ) are the Legendre polynomials of degree n.
Note that in the Rayleigh limit (x 	 1) the scattering

coefficient

a1 = − i2x3

3

ε − 1

ε + 2
+ O(x5)

dominates, the scattering matrix elements become

S(Ray)
1 = 3

2 a1, S(Ray)
2 = 3

2 a1 cos θ,

and we recover the Rayleigh scattering result

f (k, k′) = S(Ray)
1 sin χ, (A11)

where χ is the angle between the polarization direction of the
incident light and the scattering direction.

Regarding Eq. (21), we need a slight extension of the
Mie theory to account for interaction with standing waves.
The way to obtain the final solution is the same as depicted
before. We refer the reader to [18] and [25] for the details
of the calculation. Here we limit ourselves to reporting the
expressions which appear in (21). The coefficients A�m=±1 and
B�m=±1 are given by

A�m = i�+1√4π (2� + 1)

2α2
√

l (l + 1)
mζ (� + 1), (A12)

B�m = i�
√

4π (2� + 1)

2α2
√

l (l + 1)
ζ (�), (A13)

where ζ (�) = 1
2 [(−1)� exp(−ikz) + exp(ikz)] and z repre-

sents the position of the center of mass of the sphere. The
remaining coefficients, a�m and b�m, appearing in Eq. (21) are
obtained by combining A�m=±1 and B�m=±1 with the scattering
coefficients, (A1):

a�m = a�A�m, (A14)

b�m = b�B�m. (A15)
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