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Abstract 12 

The present study investigates the effects of non-uniformity of bundle porosity by considering a 13 

model channel made up of “dense” (low porosity) and “loose” (high porosity) regions. In a simplified 14 

treatment, they are assumed to be non-interacting and the flow and scalar concentration fields to be 15 

fully developed, requiring previously obtained results for the Darcy permeability and the Sherwood 16 

number. Then, 3-D CFD simulations are conducted for a checkerboard arrangement of alternately 17 

“dense” and “loose” regions with square-arrayed fibers, accounting for entry effects and interactions. 18 

Non-uniformity causes a significant increase of the permeability and a strong reduction of the 19 

Sherwood number. The effects are larger, approaching those obtained for non-interacting regions, if 20 

the regions’ length scale is large. The attainment of fully developed conditions is greatly shifted 21 

forward in non-uniform bundles and the mass transfer development length may largely exceed the 22 

physical length of most hollow-fiber devices. 23 

 24 

Keywords: Hollow fiber; non-uniform porosity; Darcy permeability; Sherwood number; CFD; entry 25 

effects  26 

Self-archived version of the article published in Chemical 
Engineering Science: 

N. Cancilla, L. Gurreri, M. Ciofalo, A. Cipollina, A. Tamburini, G. Micale 
Hydrodynamics and mass transfer in straight fiber bundles with non-uniform porosity, 

Chemical Engineering Science, 279, 2023, 118935. 

https://doi.org/10.1016/j.ces.2023.118935 

mailto:luigi.gurreri@unict.it


 

2 

 

1. Introduction 27 

The widespread use of hollow fiber membrane contactors in various fields of engineering (e.g. 28 

chemical, biomedical, environmental) has led to an ever-increasing interest in the modeling of the 29 

phenomena involving fluid dynamics and mass transfer in these systems.  30 

During the last decades, research efforts have focused on the effects on the performances of 31 

such features as fiber internal diameter, gas permeance, selectivity (Lemanski and Lipscomb, 2000; 32 

Lipscomb and Sonalkar, 2004; Liu et al., 2001); or the influence of the fluid flow distribution both in 33 

the lumen (Park and Chang, 1986) and in the shell side (Kim et al., 2013, 2009; Łabȩcki et al., 1995; 34 

Lemanski and Lipscomb, 2002, 1995; Noda et al., 1979).  35 

The effects of the design of the shell side inlet and outlet ports have also been investigated 36 

experimentally (Frank et al., 2001, 2000) and computationally (Ding et al., 2004), as well as the 37 

possibility of improving a module’s performance by using new geometries, alternative to the 38 

commercial ones (Cancilla et al., 2022).  39 

The comparison of fluid dynamics and mass transfer in regular arrays (Cancilla et al., 2021; 40 

Happel, 1959; Ishimi et al., 1987; Miyagi, 1958; Noda and Gryte, 1979; Sparrow and Loeffler, 1959) 41 

as opposed to random distributions (Wang et al., 2003) of hollow fibers has been investigated for 42 

both the constant wall flux condition (Bao and Lipscomb, 2002a) and the constant wall concentration 43 

one (Bao and Lipscomb, 2002b), and mass transfer entry effects have also been studied (Bao et al., 44 

1999). A recent paper (Sun et al., 2022) focused on the effects of a non-uniform porosity at the fibers-45 

module case interface on the performance of a gas separation module.  46 

The porosity may be unequally distributed over the cross section of the bundle. Such condition 47 

is very common in real hollow fiber bundles used in several membrane contactors, for example due 48 

to the manufacturing process or as the result of the interaction of the flow with the fiber bundle (Ando 49 

et al. 2022). Figure 1 shows a sketch of two portions of a bundle, arranged in a regular square and 50 

hexagonal lattice, in comparison with photographs of a cross section for a real fiber bundle 51 

(hemodialyzer), with details of two portions of different local porosity. The photograph in  52 

Figure 1(c) shows the simultaneous presence of regions of higher packing density (low porosity) and 53 

regions of lower packing density (high porosity). In particular, the observation of Figure 1(c) 54 

confirms the presence of a wide central region of the photographed bundle portion characterized by 55 

a significant void fraction opposed to the neighboring bundle regions characterized by the presence 56 

of fibers that almost touch each other. 57 

 58 
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   59 

 (a) (b) 60 

 61 

 (c) 62 

Figure 1: Top: schematic representation of regular arrays of hollow fibers, arranged in (a) a square lattice 63 

and (b) a hexagonal lattice. Bottom: photograph of a real hollow fiber bundle, showing regions of 64 

higher packing density (low porosity) and regions of lower packing density (high porosity). 65 

 66 

The non-uniformity may vary in amount and in length scale according to the specific application 67 

and may affect both hydrodynamics and mass transfer.  68 

Lipscomb and co-workers studied (Bao et al., 1999) these effects on mass transfer in the entry 69 

region by solving the governing equations under the boundary layer approximation. They concluded 70 

that mass transfer coefficients in random hollow fiber bundles are much lower than in regular arrays.  71 

In subsequent work (Bao and Lipscomb, 2002a, 2002b) the authors extended their investigation 72 

to the fully developed region. The results are surprising: the random fiber packing significantly 73 

reduces mass transfer coefficients, much more in the well-developed limit than in the entry region. 74 

The overall performances are controlled by the regions of the bundle having the lowest packing 75 

density (i.e., the highest porosity) and thus crossed by the highest flow rates: in these regions, the 76 

fluid residence times are lower than in the low porosity regions and the mass transfer coefficient 77 

dramatically decreases with respect to a regular fiber arrangement. Mass transfer coefficients for 78 

random distributions are only 5–10% (constant wall flux boundary condition) and ~15–25% (constant 79 

wall concentration) of the values for regular arrays. Moreover, while for regular arrays mass transfer 80 

coefficients exhibit a strong dependence on the bundle porosity (Cancilla et al., 2023), for random 81 
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arrangements such dependence is very softened. These results suggest that bundles of random hollow 82 

fibers should not be used for applications operating in the ranges of low Graetz numbers. 83 

In this work, the effects of the bundle non-uniformity are investigated by considering a model 84 

channel made up of low porosity and high porosity regions.  85 

The paper is made up of two parts: the first one assumes that these regions are non-interacting 86 

and the flow and concentration fields are fully developed under an axial pressure gradient; this allows 87 

a simplified treatment of the problem. The second part considers three dimensional CFD simulations 88 

of fluid flow with mass transfer in a checkerboard arrangement of alternately high porosity and low 89 

porosity regions, each provided with a regular square array of fibers. This allows entry effects and 90 

the influence of region-to-region momentum and mass transfer to be taken into account. 91 

 92 

2. Simplified treatment - non-interacting regions, fully developed conditions 93 

If the flow and concentration fields are assumed to be fully developed and the regions of 94 

different porosity non-interacting, interesting results concerning the distribution of flow rates and 95 

mass transfer in a non-uniform bundle can be obtained from elementary considerations based on 96 

existing experimental or computational results for uniform bundles.  97 

For simplicity, consider a generic porous channel of total cross sectional area A, filled with a 98 

fluid of viscosity  and divided into two equal parts, characterized by local porosities l (“loose”) and 99 

d (“dense”) with l>d (Figure 2). 100 

 101 

  102 

Figure 2: A generic porous channel divided into two regions with equal areas and different porosities. 103 

 104 

The two porosities l and d can be expressed as functions of the mean porosity =(l+d)/2 and 105 

of the ratio Rε=l/d>1: 106 

 2
1

l

R

R






 


 (1) 107 

A, A/2

d
A/2

l



 

5 

 

 2
1

d
R


 


 (2) 108 

The mean porosity  may only range between a minimum packing value min, which depends 109 

on the lattice geometry and is 0.21 for a square lattice and 0.09 for a hexagonal lattice, and 1. 110 

Moreover, for any porosity ratio R,  is limited by the double constraint that the porosity l of the 111 

“loose” region cannot exceed 1 and the porosity d of the “dense” region cannot be less than min, 112 

which leads to the double inequality: 113 

  
11

1
2 2

min
R

R
R










    (3) 114 

For example, for R=2.25 and min=0.21, Eq. (3) yields 0.341<<0.722. Corresponding 115 

limitations apply to R if the mean porosity  is chosen. 116 

Let us make the following hypotheses: 117 

i) the flow is fully developed (this implies that there is no transverse flow and thus no advective 118 

scalar flux between regions at different porosity); 119 

ii) there are no shear forces between the two regions (i.e. each of the two porous sub-channels 120 

behaves as if it were alone); 121 

iii) each of the two regions of the porous medium follows Darcy’s law with its own permeability 122 

K: 123 

 
2

l
l l

Kdp A
Q

dz



  (4) 124 

 
2

d
d d

Kdp A
Q

dz



  (5) 125 

in which dp/dz is the pressure gradient along the direction of the channel’s axis z, common to 126 

the two regions, while Ql and Qd are the flow rates. 127 

For bundles of identical cylindrical fibers of diameter d, the permeability is a function of the 128 

porosity and of the fiber arrangement. In square and hexagonal regular lattices, CFD results for 129 

hydrodynamically fully developed flow were obtained by Cancilla et al. (2023) and are reported as 130 

symbols in Figure 3. In the range 0.21-0.90, the permeability for square lattices can be 131 

approximated with sufficient accuracy by the single exponential function, also shown in the figure: 132 

  4

2
1.85 10 exp 8.34

K

d


   (6) 133 
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The permeability for hexagonal lattices exhibits a more complex behavior and is not 134 

comparably easy to approximate with elementary functions. 135 

Note that, by definition, in laminar parallel flow the Darcy permeability is independent from 136 

the Reynolds number, i.e. from the flow rate, as was verified by repeating some of the simulations 137 

leading to Eq. (6) at different Reynolds numbers <100. 138 

 139 

 140 

Figure 3: CFD results for the axial permeability K as a function of the porosity  in regular square and 141 

hexagonal lattices. Permeabilities are made dimensionless as K/d2. The exponential correlation 142 

for a square lattice in Eq. (6) is also shown. 143 

 144 

By dividing Eq. (5) by Eq. (4) and taking account of Eqs. (1), (2) and (6), the flow rate ratio 145 

Ql/Qd is obtained: 146 
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 (7) 147 

Eq. (7) is represented in Figure 4 and predicts the redistribution of the flow rates in the fiber 148 

bundle. Even moderate values of the porosity ratio Rε=l/d yield very large values of the flow rate 149 
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ratio Ql/Qd; for example, for =0.5 and R=2.25 one has Ql/Qd25. In Figure 4, the constraints in Eq. 150 

(3) are explicitly indicated. 151 

 152 

 153 

Figure 4: Flow rate ratio Ql/Qd as a function of the mean porosity  for different values of the porosity ratio 154 

R. 155 

 156 

Another noteworthy quantity is the ratio Qtot/Qunif between the actual total flow rate Qtot=Qd+Ql 157 

across the whole section A (exhibiting non-uniform porosity) and the flow rate that would be obtained 158 

if the fibers were uniformly re-distributed across the section A, resulting in a uniform porosity 159 

=(l+d)/2.  160 

Based on Eqs. (1)-(6), the actual total flow rate Qtot can be expressed as  161 

 

2
58 75 10 exp 16.68 exp 16.68

1 1
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 (8) 162 

If the fibers were uniformly distributed with the mean porosity , the total flow rate would be 163 

  -4d
1.75 10 exp 8.34

d

2

unif

p Ad
Q

z



   (9) 164 

Based on Eqs. (8) and (9), the ratio Qtot/Qunif can be expressed as a function of  and R as: 165 
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Eq. (10) is represented in Figure 5. For example, for =0.5 and R=2.25, one has Qtot/Qunif2.6. 167 

Thus, a non-uniform distribution of the fibers causes an increase of the overall (i.e., apparent) 168 

permeability and flow rate for any given pressure gradient. 169 

 170 

 171 

Figure 5: Flow rate ratio Qtot/Qunif as a function of the mean porosity  for different values of the porosity 172 

ratio R. 173 
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Similar considerations apply in regard to the transfer of a passive scalar (e.g., a solute’s 175 

concentration). Besides assumptions (i)-(iii) above, let the following two also hold: 176 

iv) the scalar field is also fully developed; 177 

v) there are no diffusive scalar fluxes between the two regions (i.e. each of the two porous sub-178 

channels behaves as if it were alone also from the point of view of scalar transfer). 179 

Note that, as remarked above, the absence of advective scalar fluxes is implied by the 180 

assumption (i) of hydrodynamically fully developed flow. 181 

A dimensionless mass transfer coefficient (Sherwood number Sh) for the transfer of a generic 182 

scalar of diffusivity D, based on the fibers’ diameter d, can be defined for each region as 183 
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concentration in region “r”, defined as the mass flow – weighted average of the species concentration 187 

on a cross section of region “r”.  188 

CFD results for regular square and hexagonal arrays of cylindrical fibers in fully developed 189 

flow and concentration fields under boundary conditions of constant wall mass flux j or constant wall 190 

concentration Cw are reported in Figure 6. Results for constant j have already been reported in a 191 

previous paper (Cancilla et al., 2023) and are in excellent agreement with the CFD results presented 192 

by Bao and Lipscomb (2002a). Results for constant Cw (unpublished so far) do not completely agree 193 

with those presented by Bao and Lipscomb (2002b), which exhibit lower values of Sh at low and 194 

intermediate porosities.  195 

 196 

 197 

Figure 6: Sherwood number as a function of the mean porosity  for regular square and hexagonal fiber 198 

arrays under conditions of constant wall mass flux j and constant wall concentration Cw. Symbols: 199 

CFD results; lines: best-fit polynomial curves. 200 
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The results can be approximated by suitable functions (6th-order polynomials were used here 202 

for the calculations that follow). All curves exhibit a maximum at some intermediate  and low values 203 

for very small or very large porosities. For the square array, the maximum occurs at 0.60 (constant 204 

j) or ~0.50 (constant Cw); for the hexagonal array, the maximum occurs at 0.37 (constant j) or ~0.25 205 

(constant Cw). In the whole porosity range and for both boundary conditions, Sh is larger for 206 

hexagonal than for square arrays, the difference decreasing at large .  207 
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For both geometries, Sh is larger under constant-Cw than under constant-j boundary conditions 208 

at low , while the boundary conditions become irrelevant for  larger than a certain value (~0.65 for 209 

the square lattice and ~0.5 for the hexagonal one). This behavior is opposite to that observed in plane 210 

channels and circular pipes, in which uniform-j boundary conditions yield larger values of Sh. 211 

Under the present parallel flow conditions, the Sherwood number is independent both from the 212 

Reynolds number (flow rate), as was verified by repeating some of the simulations reported in Figure 213 

6 for different Reynolds numbers <100, and from the Schmidt number, as was verified by comparing 214 

results for Sc=1 and 500. 215 

The results in Figure 6 can be used to compute the ratio Shl/Shd of the Sherwood numbers 216 

occurring in the two, “loose” and “dense”, halves of the channel for any realizable combination of 217 

the mean porosity  and the porosity ratio R. For the case of a square lattice and constant wall mass 218 

flux, the results are represented in Figure 7. Note that all curves are limited by the two constraints 219 

d>min and l<1. It can be observed that a critical porosity value c0.6 exists, such that for <c the 220 

Sherwood number is larger in the “loose” region of the channel, whereas the opposite is true for >c. 221 

For example, for =0.5 and R=2.25, one has Shl/Shd1.85.  222 

 223 

 224 

Figure 7: Sherwood number ratio Shl/Shd as a function of the mean porosity  for different values of the 225 

porosity ratio R (square lattice, constant wall scalar flux). 226 
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would be obtained if the fibers were uniformly re-distributed, resulting in a uniform porosity 230 

=(l+d)/2.  231 

The Sherwood number Shunif in the denominator can simply be obtained from polynomial 232 

approximations of the results in Figure 6.  233 

The numerator (mean Sherwood number Sh in the two-region non-uniform channel) can be 234 

evaluated from Eq. (11) by omitting the subscript “r”, i.e., computing the mean mass flux j and the 235 

mean wall concentration w
C over all the fibers, and the bulk concentration Cb over the whole cross 236 

section A.  237 

Considering, for simplicity, only the case of uniform wall mass flux j, the mean mass flux 238 

obviously is j j .  239 

The partial flow rates Qd and Ql are given, for any pressure gradient and viscosity, by Eqs. (1) 240 

and (2) in which the Darcy permeabilities can be expressed using Eq. (6). The bulk concentration in 241 

either region “r” is then given by a scalar balance from z=0 to the generic axial location z by: 242 

 0,
r

b r

r

dN jz
C C

Q


   (12) 243 

where C0 is the inlet concentration, which is irrelevant for the present purposes and will be assumed 244 

to be zero, while Nr is the number of fibers in either region, which can be expressed as  245 

 
  

2

1 2

4

/

/

r

r

A
N

d






  (13) 246 

The mean bulk concentration, being the mass-flow-weighted average of the local concentration, 247 

can be computed as 248 

 
, ,b d d b l l

b

d l

C Q C Q
C

Q Q





 (14) 249 

The evaluation of the mean wall concentration w
C  is more cumbersome because it requires the 250 

partial averages of Cw over the “dense” and “loose” regions, 
,w d

C  and 
,w l

C . However, these can be 251 

evaluated starting from the partial Shd and Shl values computed for each porosity by using the results 252 

in Figure 4 and then inverting Eq. (11) to obtain, for either region “r”: 253 

 
Sh

, ,w r b r

r

j d
C C

D
    (15) 254 
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Finally, the overall average of Cw can be obtained as a weighted average over the fiber 255 

perimeters, proportional to their numerosity: 256 

 
, ,w d d w l l

w

d l

C N C N
C

N N





 (16) 257 

Once j, w
C  and Cb are known, Eq. (11) can be used to obtain the overall Sherwood number in 258 

the non-uniform bundle. 259 

For example, consider a square lattice with d=0.31, l=0.69 (mean porosity =0.5) and assume 260 

d=280·10-6 m, z=0.2 m, A=12.56·10-4 m2, j=1·10-5 mol/(m2s) (uniform), |dp/dz|=4·103 Pa/m, =10-3 261 

Pa·s, =103 kg/m3, Sc=500 so that D=/(Sc)=2·10-9 m2/s (these latter data are roughly representative 262 

of a hemodialyzer).  263 

From the results in Figure 4, the Sherwood number in a regular square lattice with =0.5 would 264 

be Shunif4.84. 265 

From Eq. (6) one has Kd=4.38·10-10 m2, Kl=6.49·10-9 m2. From Eqs. (1) and (2) one has 266 

Qd=3.41·10-7 m3/s (20.46 ml/min), Ql=11.04·10-6 m3/s (674.8 ml/min), so that Qtot=11.58·10-6 m3/s 267 

(695.4 ml/min). From Eq. (13) one has Nd=7037, Nl=3162 so that Eq. (12) yields bulk concentrations 268 

Cb,d=36.31 mol/m3, Cb,l=0.50 mol/m3 and Eq. (14) yields a “grand” mean bulk concentration Cb=1.55 269 

mol/m3. From the curve in Figure 5 relative to a square lattice with constant j (or from the relevant 270 

polynomial approximation) one has Shd2.5 for =0.31 and Shl4.6 for =0.69. Therefore, Eq. (15) 271 

yields for the mean wall concentrations 
,w d

C 36.87 mol/m3, 
,w l

C 0.81 mol/m3 while Eq. (16) yields 272 

a “grand” mean wall concentration w
C ≈25.69 mol/m3. Finally, Eq. (11) yields Sh=0.058 for the 273 

overall Sherwood number (note that this value is much less than either Shd or Shl) so that the Sh/Shunif 274 

ratio is 0.058/4.840.012 (i.e., Sh is almost two orders of magnitude less than Shunif). 275 

This procedure can be repeated for different values of the two porosities with the help of a 276 

spreadsheet. The resulting Sh/Shunif ratio for the case of a square lattice and constant wall mass flux 277 

is represented in Figure 8 as a function of the mean porosity  for different values of the porosity 278 

ratio R. Note that a logarithmic scale had to be used for the Sh/Shunif ratio because of the broad range 279 

spanned by this quantity, and that the constraints in Eq. (3) have been represented. 280 

Under most of the realizable conditions considered, the Sh/Shunif ratio is <1, decreases with 281 

increasing R, i.e. with increasing non-uniformity, and attains minimum values below 0.01. For 282 

example, for =0.5 and R=2.25 one has Sh/Shunif 0.012. Such extremely low values of Sh in non-283 
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uniform bundles are somewhat surprising, but are actually in agreement with the results of Lipscomb 284 

and co-workers (Bao and Lipscomb, 2002a, 2002b) for random arrays of fibers, exhibiting a 285 

comparable amount of non-uniformity. 286 

 287 

 288 

Figure 8: Sherwood number ratio Sh/Shunif as a function of the mean porosity  for different values of the 289 

porosity ratio R (square lattice, constant wall scalar flux). 290 

 291 

The results in this Section can be summarized by stating that introducing non-uniformity in the 292 

distribution of porosity over the cross section of a channel, while preserving the mean porosity, causes 293 

an increase of the overall permeability and a large decrease of the mass transfer coefficient (Sherwood 294 

number) with respect to the uniform porosity case. 295 

The above results were obtained under assumptions (i)-(v), and in particular for 296 

 fully developed flow and concentration fields; 297 

 no interaction between the “dense” and “loose” regions in terms of exchanged shear forces and 298 

diffusive mass fluxes,  299 

so that they strictly apply only to the limiting case of an infinitely long channel with “dense” and 300 

“loose” regions of infinite cross-sectional area (i.e., surface-to-volume ratio  0).  301 

Accounting for the finite size of the different regions (i.e., for the length scale of the non-302 

uniformity) and for entrance effects requires that the elementary one-dimensional approach of this 303 

Section has to be replaced by a more complete treatment, involving the use of Computational Fluid 304 

Dynamics. This will be done in the next Section. 305 
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 306 

3. CFD treatment - interacting regions, developing conditions 307 

3.1 Computational domain 308 

The aim of this Section is to investigate the influence of the extent and spatial scale of the non-309 

uniformity in the fiber distribution in a bundle and to clarify the influence of non-uniformity on 310 

entrance effects and development lengths. To this purpose, an “artificial” cross section geometry was 311 

built, composed of alternate square regions of higher and lower porosity, arranged in a checkerboard 312 

pattern. In each region, the fibers were assumed to be arranged in a square lattice. For symmetry 313 

reasons, it was sufficient to include in the computational domain only two low-porosity (“dense”) and 314 

two high-porosity (“loose”) square regions while imposing lateral periodicity at the opposite sides.  315 

An example of the resulting computational domain is shown in Figure 9.  316 

 317 

 318 

Figure 9: Cross section of a computational domain representing a fiber bundle divided into “dense” and 319 

“loose” regions arranged in a checkerboard pattern. In the example shown (“small” geometry with 320 

22 and 33 fibers), one has =0.5, l=0.69, d=0.31; the domain includes 26 fibers. 321 

 322 

In order to establish its geometry, the first step is to choose a mean porosity  and two small 323 

different integer numbers nd (for “dense”) and nl (for “loose”). The numbers of fibers in the “dense” 324 

and “loose” regions are Nd=2nd
2 and Nl=2nl

2, respectively, and the overall number of fibers in the 325 

computational domain (square of side length L) is Ntot=Nd+Nl.The two porosities l, d are obtained 326 

by considering the two identities 327 

L/2
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which yield 330 
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and thus the porosity ratio R=l/d.  333 

The pitches (center-center distances between adjacent fibers) are now obtained by imposing the 334 

conditions, valid in each unit cell: 335 
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which yield 338 
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Finally, the side length of each square region is L/2=nlPl=ndPd. 341 

In the example in Figure 9 (“small” geometry), the values 2 and 3 were chosen for nl and nd 342 

and the value 0.5 for the mean porosity . The above formulae yield l=9/130.6923…, 343 

d=4/130.3077…, R=(9/13)/(4/13)=2.25, Pl1.5977·d, Pd1.0651·d, L/23.1954·d, Nl=2(22)=8, 344 

Nd=2(33)=18. Thus, the whole computational domain includes Ntot=26 fibers. 345 

For a mean porosity  of 0.5, the choice nl=2 and nd=3 yield the simplest possible computational 346 

domain. The only couple of smaller numbers (nl=1, nd=2) would yield, based on Eqs. (19)-(20), l=4/5 347 
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and d=1/5; but this latter value is smaller than the minimum realizable porosity in a square lattice 348 

(~0.21). 349 

The same values of , l, d, Pl and Pd can be obtained multiplying nl, nd by the same integer 350 

number. This property can be exploited to build larger computational domains and was used in the 351 

present paper to investigate the influence of the spatial scale of the non-uniformity in the porosity 352 

distribution. For example, Figure 10 shows the case nl=4, nd=6 (“large” geometry), for which the 353 

side length of each region is double with respect to the example in Figure 9; of course, the cross 354 

sectional areas and the numbers of fibers (104) are four times larger. 355 

 356 

 357 

Figure 10: Cross section of a computational domain representing a fiber bundle divided into “dense” and 358 

“loose” regions arranged in a checkerboard pattern. In the example shown (“large” geometry), 359 

the domain includes 2(44)+2(66)=104 fibers. 360 

 361 

For a Schmidt number of 1, the extent of the computational domain along the axial direction z 362 

was set to ~900d, a length amply sufficient to achieve fully developed hydrodynamics and mass 363 

transfer thus elucidating entry effects. For Sc=500, on the basis of the Graetz-Leveque theory of 364 

entrance effects (Everts and Meyer, 2020), comparably developed conditions would be achieved only 365 

after a distance of the order of 500900d=450,000d from the inlet, which, however, is 366 

computationally prohibitive. Thus, the length of the computational domain was actually limited to 367 

36,000d (corresponding to a physical length of ~10 m for d=280·10-6 m), just sufficient to attain axial 368 

mass transfer development for a Reynolds number of 10 as will be shown below. 369 

 370 
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3.2 Definitions 371 

The axial interstitial velocity w is defined as the area average of the local velocity component 372 

w along the axial direction z, performed over the area occupied by the fluid. In particular, wd is the 373 

interstitial velocity obtained by averaging w over the “dense” region and, similarly, wl is the 374 

interstitial velocity obtained by averaging w over the “loose” region.  375 

The axial interstitial Reynolds number of the “dense” (subscript r=d) or “loose” regions 376 

(subscript r=l) Rer, based on the fiber diameter d, is defined as 377 

 Re r
r

w d


  (25) 378 

The axial interstitial Darcy hydraulic permeability Kr is defined as: 379 

 
d d

rr
r

r

w
K

p z

 
  (26) 380 

where r is the porosity of the “dense” (r=d) or “loose” (r=l) region; the only difference with respect 381 

to the implicit definition of permeability given in Section 2, Eqs. (1) and (2), is that now the possibility 382 

of different axial pressure gradients in the two regions is taken into account, as it is appropriate in the 383 

entrance (development) region of the channel. 384 

The Sherwood number in the “dense” or “loose” region is still defined by Eq. (11). 385 

 386 

3.3 Governing equations and boundary conditions 387 

The following steady-state continuity and momentum equations for the flow of a Newtonian 388 

incompressible fluid, along with the convection-diffusion equation governing the transport of a 389 

passive scalar (e.g. a solute concentration), were used: 390 

 0u   (27) 391 

 
2u u p u       (28) 392 

 
2u C D C    (29) 393 

in which u  is the local velocity, p is the local pressure,  and μ are the density and dynamic viscosity 394 

of the fluid, C and D are the local concentration and the kinematic diffusivity of the scalar in the fluid.  395 

The above equations were solved by using the finite volume code ANSYS-CFX 18® (ANSYS, 396 

2018). The fluid properties were set equal to those of water at 25°C. The study was conducted for 397 
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Schmidt numbers Sc=/(D) of 1, representative of heat transfer in gases and other common fluids, 398 

or 500, better representative of mass transfer of many species in water.  399 

Regarding hydrodynamics, the cylindrical surfaces representing the fibers’ walls were treated 400 

as no slip walls. At the inlet a uniform interstitial velocity was imposed, set to a value that guarantees 401 

a mean interstitial Reynolds number of 20 (averaging over “loose” and “dense” regions), while at the 402 

outlet the pressure was arbitrarily set to zero. 403 

Regarding mass transfer, in most cases a Neumann boundary condition was adopted, with an 404 

arbitrarily set value for the scalar flux. In some cases, Dirichlet boundary conditions were also tested, 405 

with the concentration at the walls set at an arbitrary uniform value. Without any loss of generality, 406 

the inlet concentration was arbitrarily set to zero. 407 

The fluid flow and concentration fields started from an initial guess of zero velocity and zero 408 

concentration. Periodic boundary conditions were imposed to all quantities at the opposite side 409 

surfaces of the fluid domain along the x and the y directions, respectively. Figure 11 shows the 410 

boundary conditions employed for a test case corresponding to the “large” domain in Figure 10. 411 

 412 

 413 

Figure 11: Computational domain (“large” geometry) and boundary conditions used in the simulations. For 414 

representation purposes, the domain is shown compressed many times along z. 415 

 416 

3.4 Domain discretization and computational methods 417 

The computational domain was discretized by hybrid grids made up of hexahedral and wedge 418 

volumes. The use of hybrid meshes was necessary because of the complexity of the geometries 419 

considered, which are difficult to be meshed by hexahedra only. However, all the grids used are 420 

mostly composed of hexahedral volumes, as summarized in Table 1. 421 

Inlet

Outlet
Fluid flow direction
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 422 

Table 1:  Summary of the grids employed. 423 

Geometry Number of finite volumes 
% of volume discretized 

 with hexahedra 

small ~6,300,000 99.5 

large ~28,500,000 99.3 

 424 

Figure 12 shows details of the mesh in a cross section of the “loose” and “dense” regions. 425 

 426 

     427 

 (a) (b) 428 

Figure 12: Details of the mesh over a cross section of the computational domain. (a) “loose” region (b); 429 

“dense” region. 430 

 431 

Along the axial direction z, the computational domains were discretized in all cases by 110 432 

finite volumes, which were selectively refined towards the inlet.  433 

A full grid-independence study was unfeasible for the present geometries due to the large 434 

number of fibers. Based on a previous grid-independence assessment for a unit cell including a single 435 

fiber (Cancilla et al., 2021), the present grid resolution (~2500 finite volumes per fiber in the cross 436 

sectional plane) implies a discrepancy of ~5% on the axial Darcy permeability and of less than 1% 437 

on the Sherwood number. Therefore, the present results can not be regarded as grid-independent, 438 

especially from the hydrodynamic point of view; however, they are acceptable as far as the difference 439 

in Darcy permeability and Sherwood number between regions at different porosity is the main point 440 

at issue. 441 

All simulations were run in double precision and were interrupted as the dimensionless 442 

residuals of all quantities decreased below 1012, which is a very tight convergence criterion. A two-443 

point upwind scheme was used for the discretization of the advection terms. A strongly coupled 444 

algorithm was adopted to solve for pressure and velocity. A different number of iterations, in the form 445 
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of false time steps, was used for the present steady state simulations depending on flow rate, system 446 

geometry and boundary conditions. 447 

 448 

3.5 CFD Results  449 

3.5.1 Hydrodynamics 450 

Figure 13 shows velocity contour plots at z/d900 (hydrodynamically fully developed 451 

conditions) for the two geometries simulated and a mean interstitial Reynolds number of 20. Note 452 

that the same scale is used for both maps. 453 

 454 

 455 

 (a) (b) 456 

Figure 13: Contour plots of the axial velocity over cross sections of the computational domains lying in the 457 

hydrodynamically fully developed region: (a) “small” geometry; (b) “large” geometry. 458 

 459 

In all cases, the “dense” regions are characterized by lower velocities while the peak values are 460 

reached in the “loose” regions, thus implying the flow rate redistribution between regions of different 461 

local porosity, as already observed by other authors (Bao and Lipscomb, 2002b; Sangani and Yao, 462 

1988). 463 

In the fully developed flow region, the “loose” to “dense” flow rate ratio attains a value of ~8.7 464 

for the “small” geometry and of ~11.6 for the “large” one. These values are much lower than that of 465 

34.33 predicted by Eq. (7) for the present porosities of ~0.69 and ~0.31, and the largest discrepancy 466 

is obtained with the “small” geometry. This discrepancy is due to the fact that Eq. (7) is for infinite 467 

(non-interacting) “dense” and “loose” regions, whereas the interaction between regions at different 468 

porosity, mainly by lateral diffusion of axial momentum (shear forces), is fully taken into account by 469 

the CFD simulations and tends to equalize the two flow rates. These results show that this interaction 470 
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is quite strong even for the “large” geometry (L12.78·d), and that a much larger scale of the non-471 

uniformity would be required for the flow rate ratio closely to approach that predicted by Eq. (7). 472 

The better to highlight the influence of the length scale of the non-uniformity, Figure 14 reports 473 

the fully developed longitudinal Darcy permeability K (normalized by d2) as a function of the scale L 474 

(normalized by d). Dashed lines represent the asymptotic values of the axial fully developed Darcy 475 

permeabilities predicted for infinite regular square lattices (red for the “dense” porosity of ~0.31, blue 476 

for the “loose” porosity of ~0.69, black for the mean porosity of 0.5). Symbols and solid lines 477 

represent the fully developed axial Darcy permeabilities Kd and Kl computed by the present CFD 478 

simulations for the “small” and “large” geometries, corresponding to L/d=6.39 and 12.78, 479 

respectively.  480 

In non-uniform array of fibers, the “dense” and “loose” fully developed permeabilities depart 481 

from the value for =0.5, approaching the values for uniform bundles of the corresponding porosity, 482 

the more as the length scale of the non-uniformity increases. In particular, in the “small” geometry, 483 

simulations predict K/d2=1.18×10-2 and 4.62×10-2, respectively for the “dense” and the “loose” 484 

regions, while for the “large” geometry these values become 1.13×10-2 and 6.10×10-2. 485 

 486 

 487 
Figure 14: Fully developed axial Darcy permeability K (normalized by d2) as a function of the length scale 488 

of the non-uniformity (normalized by d). 489 

 490 

In order to show the influence of non-uniformity on hydrodynamic entrance effects, Figure 15 491 

reports the Darcy permeability K, normalized by its fully developed value K, as a function of the 492 

dimensionless distance from the inlet, z/d, for the “dense” (0.31, graph a) and “loose” (0.69, 493 

graph b) regions of both geometries (small and large domains) and as the “grand” average between 494 
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“dense” and “loose” regions (graph c). In each plot, K/K profiles are compared with that predicted 495 

for an infinite uniform square array of fibers of the corresponding porosity. 496 

 497 

  498 

 (a) (b) 499 

 500 

 (c) 501 

Figure 15: Darcy permeability K as a function of the dimensionless axial coordinate z/d for both the 502 

geometries investigated (“small”, i.e. 2×2&3×3 fibers, and “large”, or 4×4&6×6 fibers), along 503 

with the results for infinite square lattices of uniform porosity. The permeability is made 504 

dimensionless as K/K∞. Porosity: (a) =0.31; (b) =0.69; (c) =0.50. 505 

 506 

In the uniform-porosity cases, the permeability increases monotonically tending to its 507 

asymptotic value (of course, this behaviour is opposite to that of the friction coefficient, which 508 
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diverges for z0). The dimensionless hydrodynamic development length zh,dev/d, as identified, for 509 

example, by the condition |K-K|/K<0.01 (1% criterion), decreases from ~23 to ~14 and ~10 as the 510 

porosity increases from 0.31 to 0.5 and 0.69.  511 

In the non-uniform porosity geometries, K/K exhibits a quite different behaviour, attaining a 512 

maximum before relaxing towards its asymptotic (fully developed) value. By the 1% criterion, the 513 

development length is not much different from that for a uniform geometry, and is not even always 514 

larger; for example, for the “dense” region of the “small” geometry one has zh,dev/d19 against the 515 

value zh,dev/d23 holding for a uniform bundle of the same porosity =0.31, see Figure 15(b). 516 

However, if a tighter convergence of K to its asymptotic value K is imposed to define zh,dev, then it 517 

becomes significantly larger in non-uniform geometries than in uniform ones; for example, the 518 

condition |K-K|/K<0.001 (1‰ criterion) is attained (from below) for zh,dev/d35 in a uniform array 519 

with =0.50, but is attained (from above) only for zh,dev/d60-70, i.e. about twice farther downstream, 520 

in both the “small” and the “large” non-uniform geometries when the mean permeability is 521 

considered, see Figure 15(c). 522 

 523 

3.5.2 Mass transfer 524 

The bulk concentrations in the “dense” and “loose” regions (Cb,d and Cb,l, respectively) vary 525 

along the axial direction z according to the following balance equations 526 
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in which Qd and Ql are the flow rates in the two regions, Nd and Nl are the numbers of fibers (so that 529 

dNr is the fiber perimeter in the generic region “r”, i.e. either “d” or “l”), jd and jl are the mean scalar 530 

fluxes at the fibers’ walls (imposed to be uniform and equal to j in the present simulations), L/2 is the 531 

side length of each sub-region (so that 4L/2=2L is its boundary perimeter) and jdl is the average 532 

scalar flux from the “dense” region at higher concentration to the “loose” region at lower 533 

concentration. Note that jdl includes an advective contribution (which tends to zero for increasing z, 534 

when cross flows vanish and the fluid’s motion becomes parallel) and a diffusive contribution (which 535 

depends only on the concentration difference between “dense” and “loose” regions). 536 

For distances z from the inlet larger than a certain mass transfer development length zdev,C, the 537 

flow rates Qd and Ql, the flux jdl and the difference Cd-Cl all become constant. This is clearly shown 538 
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by the behaviour of the “dense” and “loose” bulk concentrations for a Schmidt number of 1, reported 539 

in Figure 16. Larger length scales L yield larger asymptotic differences between “dense” and “loose” 540 

bulk concentrations, clearly due to the weaker coupling between adjacent regions at different porosity. 541 

The value of zdev,C depends on its exact definition, on the Schmidt number and on the length 542 

scale L of the non-uniformity. For Sc=1, it is ~200d for the “large” geometry and ~100d for the 543 

“small” one when defined as the length beyond which the difference in concentration between regions 544 

attains within 1% its asymptotic value. Thus, it is larger than the 1% hydrodynamic development 545 

length defined above.  546 

 547 

 548 

Figure 16: Bulk concentration in the “dense” and the “loose” regions of the bundle as a function of the 549 

dimensionless axial coordinate z/d at Sc=1 for the two geometries simulated. 550 

 551 

Figure 17 reports concentration contour plots at z/d900 (well into the fully developed scalar 552 

transfer region) for the two geometries investigated and a Schmidt number of 1. The quantity shown 553 

is the difference C-Cb between the local concentration C and the overall bulk concentration Cb 554 

computed over the whole cross section, which includes both the “dense” and the “loose” regions.  555 

The “dense” regions, where the fluid flows with the lower velocities, are characterized by higher 556 

concentrations and vice versa. Unlike in Figure 13, maps are reported with different scales because 557 

the concentration variance is much larger in the larger geometry.  558 
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The “small” geometry (a) shows maxima of C-Cb of ~4·10-2 mol/m3 in the “dense” regions and 559 

minima of ~-1·10-2 mol/m3 in the “loose” regions, while the “large” geometry (b) exhibits maxima of 560 

C-Cb of ~1.6·10-1 mol/m3 in the “dense” regions and minima of ~4·10-2 mol/m3 in the “loose” regions, 561 

with a range ~4 times wider than the “small” one. 562 

 563 

 564 

 (a) (b) 565 

Figure 17: False color maps of the difference between local and bulk concentration over a cross section of 566 

the computational domain for the (a) “small” and (b) “large” geometries at Sc=1. 567 

 568 

Axial profiles of the “dense” and “loose” bulk concentrations for Sc=500 are reported in Figure 569 

18. As remarked above, for this value of Sc, a very long computational domain, ~36,000d in extent, 570 

was adopted since the concentration development length is proportionally larger. The price of some 571 

loss of accuracy was paid since the number of finite volumes along the flow direction z was kept fixed 572 

at 110 as in the case Sc=1 in order to limit the computational effort. 573 

As in the previous case Sc=1, larger length scales yield larger differences between the bulk 574 

concentrations of “dense” and “loose” regions. The 1% development length zdev,C is much larger than 575 

in the Sc=1 case (~20,000d for both geometries), due to the larger Schmidt number. Note that the 576 

graphs in Figure 16 and Figure 18 exhibit the same general trend but are not in similarity; the reason 577 

is that, of the two terms at the right hand side of Eqs. (30) and (31), the first expresses the “adiabatic” 578 

increase in concentration due to scalar influx from the fibers and is independent of the Schmidt 579 

number, while the second expresses the scalar flux from “dense” to “loose” regions (which, in the 580 

hydrodynamically fully developed region, is purely diffusive) and thus depend on Sc.  581 

 582 
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 583 

Figure 18: Bulk concentrations in the “dense” and the “loose” regions of the bundle as a function of the 584 

dimensionless axial coordinate z/d at Sc=500 for the two geometries simulated. 585 

 586 

Concentration maps for this case are similar to those in Figure 17 and are not reported here for 587 

brevity. 588 

A second possible definition of the mass transfer development length, say, zdev,Sh, can be based 589 

on the behavior of the Sherwood number. For example, Figure 19 reports Sherwood numbers as 590 

functions of the dimensionless axial coordinate z/d for Re=10 and Sc=1.  591 

In particular, Figure 19(a) shows the separate values of Sh in the “dense” (=0.31) and “loose” 592 

(=0.69) regions in the “large” (44&66) geometry along with the corresponding mean Sh. The 593 

dashed line represents the Sherwood number for an infinite regular square array at the same Sc and 594 

the same mean porosity =0.5. A first striking feature of this graph is that the Sherwood number is 595 

much lower than that predicted for a regular fiber array in both the “dense” and the “loose” regions. 596 

A second noteworthy feature is that the mean Sh is lower than those separately computed for both 597 

regions. A third, somewhat expected, characteristic of the plot is that fully developed Sh values are 598 

attained far downstream than in a regular array. In particular, zdev,Sh (defined, for example, as the value 599 

of z at which the Sherwood number approaches its asymptotic value within 1%) is ~2-3d for the 600 

regular array but ~100-200d for the non-uniform geometry, with larger values in the “loose” regions. 601 

In terms of the dimensionless variable z*=z/(dPe)=1/Gz (Gz being the Graetz number), Sh attains its 602 
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fully developed value to within 1% at z*0.10-0.15 for the regular array and z*5-10 for the non-603 

uniform configuration. 604 

Figure 19(b) compares axial profiles of the mean Sh for the “small” (22&33) and “large” 605 

(44&66) geometries. As in the previous graph, the dashed line represents the Sherwood number in 606 

an infinite square array at =0.5. The 1%-fully developed Sherwood number is attained at zdev,Sh≈200d 607 

in the “large” geometry and zdev,Sh≈100d in the “small” geometry, consistently with the values of the 608 

development length derived above from concentration profiles for this Schmidt number. 609 

 610 

 611 
 (a) (b) 612 

Figure 19: Sherwood numbers as functions of the dimensionless axial coordinate z/d for Re=10 and  613 

Sc = 1. (a) Separate Sh in the “dense” (=0.31) and “loose” (=0.69) regions and mean Sh for the 614 

“large” (44&66) geometry; (b) mean Sh for the “small” (22&33) and “large” (44&66) 615 

geometries. The dashed line reported in both graphs represents the Sherwood number for an 616 

infinite regular square array at the mean porosity =0.5. 617 

 618 

Figure 20 reports Sherwood numbers as functions of the dimensionless axial coordinate z/d for 619 

Re=10 and Sc = 500. As in Figure 19, graph (a) shows the separate values of Sh in the “dense” 620 

(=0.31) and “loose” (=0.69) regions in the “large” (44&66) geometry along with the 621 

corresponding mean Sh, while graph (b) compares the mean Sh for the “small” (22&33) and 622 

“large” (44&66) geometries; the dashed line represents the Sherwood number for an infinite 623 

regular square array at the mean porosity =0.5 and the present Schmidt number of 500.  624 

In comparison with the results for Sc=1 in Figure 19, the main difference is that all mass 625 

transfer development lengths are now ~200 times larger, i.e. between 20,000 and 40,000 (an increase 626 

lower than the 500-fold increase in the Schmidt number), so that the length of the computational 627 
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domain (~36,000d) is barely sufficient to allow fully developed conditions to be achieved. Minor 628 

differences regard the shape of the Sh-z curves, which are now more complex than in the case Sc=1, 629 

probably due to the larger relative magnitude of advective scalar fluxes, associated with flow 630 

redistribution between regions at different porosity, with respect to diffusive scalar fluxes. 631 

Asymptotic Sh values, on the other hand, are the same as those predicted for Sc=1, consistently with 632 

the fact that in parallel flow the Sherwood number does not depend on the Schmidt number. As in the 633 

case Sc=1, the asymptotic overall, or mean, Sherwood number is smaller than either the “dense” or 634 

“loose” Sh, and decreases as the length scale of the non-uniformity increases. 635 

 636 

  637 
 (a) (b) 638 

Figure 20: Sherwood numbers as functions of the dimensionless axial coordinate z/d for Re=10 and  639 

Sc = 500. (a) Separate Sh in the “dense” (=0.31) and “loose” (=0.69) regions and mean Sh for 640 

the “large” (44&66) geometry; (b) mean Sh for the “small” (22&33) and “large” (44&66) 641 

geometries. The dashed line reported in both graphs represents the Sherwood number for an 642 

infinite regular square array at the mean porosity =0.5.  643 

 644 

Conclusions 645 

The effects of a non-uniform porosity distribution on low-Reynolds number hydrodynamics 646 

and mass transfer in a bundle of parallel fibers were investigated. To this purpose, a straight channel 647 

in axial flow, made up of regions filled with regular arrays of identical cylindrical fibers of two 648 

different porosities, was studied as the model system.  649 

In a first stage, all interactions between “dense” and “loose” regions were neglected and fully 650 

developed flow and concentration fields were assumed. Consistently with the model’s assumptions, 651 

previously obtained computational results for the Darcy permeability and the shell-side Sherwood 652 

number (based on the fiber diameter) in regular fiber arrays were assumed to hold in each region.  653 
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Elementary computations, repeated for different values of the mean porosity  and of the ratio 654 

R of “loose” to “dense” porosity, showed that, within the non-uniform bundle, “loose” regions always 655 

exhibit, as expected, a larger Darcy permeability then “dense” regions. The behavior of the “loose” 656 

to “dense” Sherwood number ratio is more complex since its dependence upon the porosity in a 657 

regular fiber array is non-monotonic and exhibits a maximum at some intermediate porosity which, 658 

for square arrays and uniform wall mass flux conditions, is ~0.6.  659 

More interesting is the behavior of overall Darcy permeability and Sherwood number, 660 

computed for the bundle as a whole: the non-uniformity causes in all cases a significant increase of 661 

the overall permeability and, almost in all cases, a very large decrease of the overall Sherwood number 662 

with respect to a uniform bundle of the same mean porosity, the only exception being the case of a 663 

slight non-uniformity (e.g., ratio of “loose” to “dense” porosities < 1.25) in conjunction with an 664 

unrealistically large mean porosity (e.g. >0.9). This behavior, although somewhat surprising, is 665 

consistent with previous findings by Lipscomb and co-workers (Bao and Lipscomb, 2002a) for 666 

random fiber arrays, exhibiting a similar non-uniformity in the distribution of the porosity. It can be 667 

intuitively explained by considering that most of the flow is diverted through the “loose” regions, 668 

characterized by few fibers, while very little fluid flows through the “dense” regions, where most 669 

fibers reside, causing poor overall mass transfer.  670 

In a second stage, the model channel was assumed to be made of alternately “dense” and “loose” 671 

regions, disposed in a checkerboard arrangement and each filled with a regular array of fibers (for 672 

symmetry reasons, it was sufficient to consider a square cross section including only two “dense” and 673 

two “loose” sub-regions). Fully three-dimensional CFD simulations were conducted by assuming 674 

uniform velocity and concentration at the inlet (simultaneously developing flow and concentration 675 

fields). The simulated length of the channel was large enough for fully developed flow and mass 676 

transfer to be attained. Two different sizes of the “loose” and “dense” regions were considered, so 677 

that they included either 22 and 33 or 44 and 66 fibers, respectively. This approach allowed the 678 

effects of the hydrodynamic interaction and mass transfer between regions at different porosity to be 679 

assessed, also as a function of the length scale of the non-uniformity, and made the prediction of entry 680 

effects possible. 681 

In regard to hydrodynamics, the simulations showed that the flow rate distribution between 682 

regions is somewhat intermediate between the uniform one expected in a regular array and the 683 

strongly non-uniform one predicted for non-interacting regions, the flow non-uniformity increasing 684 

(approaching that predicted for non-interacting regions) with the length scale of the geometrical non-685 

uniformity. The hydrodynamic entry length is 2-3 times larger than that predicted for a uniform 686 

bundle (which is close to that expected in a circular pipe), but this increase seems to depend little on 687 
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the geometrical length scale of the non-uniformity.  688 

Also in regard to mass transfer, the CFD results for interacting regions and developing flow 689 

were consistent with those obtained for the hydrodynamic quantities, i.e. they were intermediate 690 

between those expected in a uniform bundle and those predicted by the simpler model assuming non-691 

interacting regions and fully developed conditions. For “dense” and “loose” porosities of 0.69 and 692 

0.31 (mean value =0.5, ratio R2.25,), the asymptotic (fully developed) overall Sherwood number 693 

was ~25 times smaller than in a uniform array at =0.5 for the smaller length scale (22 and 33 694 

fibers), and ~100 times smaller for the larger one (44 and 66 fibers). This latter result is close to 695 

that obtained for non-interacting regions. The mass transfer development length was ~100 times 696 

larger than in a regular array (i.e., around a single fiber) for a Schmidt number of 1 and ~40 times 697 

larger for a Schmidt number of 500 (representative of many solutes in water). In this latter case, for 698 

a Reynolds number of 10 the mass transfer development length was of the order of 4·104 fiber 699 

diameters, thus largely exceeding the physical length of any realistic device employing hollow fibers. 700 

Also this large increase of the development length associated with bundle non-uniformity is consistent 701 

with the findings of Lipscomb and co-workers for random fiber arrays (Bao et al., 1999). 702 

All the quantitative assessments in this paper were based on the assumption of square arrays of 703 

fibers. This configuration was chosen because it lends itself much more easily to build the “artificial”, 704 

non-uniform, checkerboard geometry investigated in the second part of the study. However, the 705 

qualitative results and their order of magnitude are not expected to change significantly if more 706 

realistic hexagonal lattices or random fiber distributions are considered. 707 

Similarly, through most of the paper the scalar transfer between the fibers and the working fluid 708 

is understood to be mass transfer, i.e. to regard a solute, and is described in terms of Schmidt and 709 

Sherwood numbers. However, the phenomenon studied can also be interpreted as a heat transfer 710 

problem, and the above numbers can be interpreted as Prandtl and Nusselt numbers, thus making the 711 

conclusions applicable (for example) to mini-heat exchangers and similar heat transfer devices. 712 
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Nomenclature 721 

A total cross sectional area of a porous channel (m2) 722 

C concentration (mol m-3) 723 

D scalar diffusivity (m2 s-1) 724 

d outer diameter of a fiber (m) 725 

Gz Graetz number based on fiber diameter, dPe/z (-) 726 

j mass flux at the wall (mol m-2 s-1) 727 

K axial Darcy permeability based on interstitial velocity (m2) 728 

L length along x and y directions (m) 729 

N number of fibers (-) 730 

n number of fibers on each side (-) 731 

P pitch (center-center distance between adjacent fibers) (m) 732 

p pressure (Pa) 733 

Pe Péclet number, Re·Sc (-) 734 

Q flow rate (m3 s-1) 735 

Rε porosity ratio, l/d (-) 736 

Re Reynolds number based on interstitial velocity and fiber diameter (-) 737 

Sc Schmidt number (-) 738 

Sh Sherwood number (-) 739 

u  local velocity (m s-1) 740 

w local velocity component along the axial direction z (m·s-1) 741 

x, y Cartesian coordinates in cross section orthogonal to the fibers (m) 742 

z Cartesian coordinate along the axial direction (m) 743 

z* dimensionless axial coordinate, z/(dPe) (m) 744 

zdev,C mass transfer development length based on concentration profiles (m) 745 

zdev,Sh mass transfer development length based on Sherwood number profiles (m) 746 

zh,dev hydraulic development length (m) 747 

 748 

Greek symbols 749 

ε generic or mean porosity (-) 750 

μ dynamic viscosity (Pa s) 751 

ρ density (kg m-3) 752 

 753 

 754 
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Subscripts 755 

b bulk (mass flow averaged) 756 

c critical 757 

d “dense” (low porosity) 758 

dl from “dense” to “loose” regions 759 

l “loose” (high-porosity) 760 

min minimum 761 

r region (i.e. “dense” or “loose”) 762 

tot total 763 

unif uniform 764 

w wall 765 

ε porosity 766 

0 inlet section 767 

 fully developed value 768 

 769 

Averages 770 

  line average on fiber-fluid interface 771 

  surface average on fluid cross sectional area (interstitial mean value) 772 
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