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We compute the supersymmetry-breaking three-form fluxes generated by the addition of anti-D3 branes
at the tip of a Klebanov-Strassler throat. These fluxes give rise to nontrivial terms in the superpotential
when the throat is embedded in a flux compactification. We describe these terms both from a ten-
dimensional and from a four-dimensional perspective and show that, upon including Kähler-moduli
stabilization, the resulting potential admits de Sitter minima. Our proposed de Sitter construction does not
require additional supersymmetry-breaking (0,3) fluxes, and hence is more minimalist than the KKLT
proposal.
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I. INTRODUCTION

The accelerated expansion of our Universe points
toward the existence of a positive vacuum energy density,
whose value is about 120 orders of magnitudes smaller
than the value expected from field-theory estimates.
On the other hand, there are by now several arguments [1]
that stable de Sitter vacua cannot be constructed
in controlled low-energy effective theories that are con-
sistent with quantum gravity. This leaves only two open
possibilities: either the accelerated expansion of our
Universe comes from a time-dependent vacuum energy
density, or there is a problem with the no-de-Sitter
conjecture, which can be disproved by an explicit
construction.
Unfortunately, constructing metastable de Sitter vacua is

notoriously difficult in string theory. Despite its intricate
ingredients, shortcomings and potential instabilities, the
almost twenty-year-old construction of Kachru, Kallosh,
Linde and Trivedi (KKLT) [2] still stands out as one of the
very few generic proposals that has not been fully proven to
be unstable. It is a three-step construction that combines
fluxes, nonperturbative phenomena and anti-D3 branes in
a warped Calabi-Yau compactification with a deformed
conifold-type throat. In order to obtain a positive and
small cosmological constant, the fluxes required in the first
step need to break supersymmetry generating a very small

superpotential W0;KKLT. This has been criticized on two
counts: theory and practice. On the formal side, these
supersymmetry-breaking runaway solutions are not pro-
tected against corrections, and it was argued in [3] that
they are not a good ground onto which one can add the
nonperturbative ingredients necessary in the second step to
prevent the runaway and stabilize the volume moduli. On
the practical side, it is very hard to obtain explicit solutions
with a sufficiently small superpotential, although there
has been recent progress in engineering this type of flux
vacua [4–6].
The purpose of this paper is to take a step toward

bridging the conflict between the no-de-Sitter swampland
arguments [1] and what can be constructed explicitly and
controllably in string theory. We propose a new method to
construct de Sitter vacua, which has one less ingredient
than the KKLT construction, and hence is potentially
plagued by less problems. More precisely, we show that
one can construct de Sitter vacua with a small cosmological
constant without the need of a flux superpotentialW0;KKLT.
Note that this requires restricting to manifolds that can
support supersymmetric flux vacua. Manifolds admitting
supersymmetric flux vacua were conjectured to require a
“geometric modularity” property [7]. While many Calabi-
Yau manifolds seem to have the desired modularity
property and admit supersymmetric vacua [8], a few of
them were shown not to allow for such solutions (see [9]
and references therein).
Our key observation is that the anti-D3-branes necessary

to uplift the cosmological constant source fluxes that
generate precisely a small superpotential. Therefore, in
our “bare bones” de Sitter construction, only supersym-
metric fluxes are needed in the first step, thus avoiding the
problems mentioned above.
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II. FLUXES GENERATED BY D3 BRANES

A strongly warped region in a Calabi-Yau compactifi-
cation can be engineered as a Klebanov-Strassler (KS)
throat [10]. This is a cone over an S2 × S3 base (see Fig. 1).
The two-sphere of the base shrinks at the tip of the cone
while the three-sphere has always finite size, parametrized
by a modulus Z. The base can be also thought as a Uð1Þ
fibration over S2 × S2. The symmetries of the geometry
consist of two SUð2Þ factors acting on the base two-spheres
and a Z2 swapping them.
The most general deformation of the conifold metric

with fluxes preserving the SUð2Þ2 × Z2 symmetry can be
written in terms of eight functions of a radial coordinate
fΦiðrÞg [11]; this space of type-IIB supergravity solutions
includes the Klebanov-Strassler [10], Maldacena-
Nuñez [12], and baryonic branch solutions [13]. In this
paper, we are interested in the deformation of the KS
solution caused by the addition of N̄ anti-D3 branes at the
tip of the throat. In particular, we calculate how the anti-D3
branes affect the complexified three-form flux G3, whose
(p,q) components can be put in correspondence with
various quantities in the effective four-dimensional low-
energy theory describing the system.
Assuming that the backreaction of the anti-D3 branes on

the geometry is small and can be studied in perturbation
theory, the deformed geometry is given by

Φi ¼ ΦKS
i þ λϕi þOðλ2Þ; ð1Þ

where the analytical dependence of the fluctuations ϕi
has been computed in [14–16] and the small expansion
parameter is:

λ ¼ N̄
gsM2

; ð2Þ

whereM is the integral of the Ramond-Ramond F3-flux on
the S3. Usually, the number of anti-D3 branes is taken to be
N̄ ¼ 1, since configurations with multiple anti-D3 branes

have a tachyon [17], but we will keep track of it for
completeness.
In the KS solution, the complexified three-form flux,G3,

is (2,1) with respect to the choice of complex structure
picked by supersymmetry [18]. When the anti-D3 branes
are added at the tip of throat, the three-form flux also gets

corrections, G3 ¼ GKS
3 þGD3

3 and, at the same time, the
complex structure is rotated. This implies that in generalG3

is not of (2,1)-type anymore [and neither is imaginary-
self-dual (ISD)] but it develops all other components: for
example, the (0,3) component is

GD3
ð0;3Þ ¼

ffiffiffi
6

p

gsh3=4ðτÞ
∂τφðτÞ
sinh2ðτÞ Ω̄þOðλ2Þ;

φ ¼ gs sinhðτÞϕ7 þ cosh

�
τ

2

�
2

ϕ5 − sinh

�
τ

2

�
2

ϕ6; ð3Þ

where Ω is the (3,0) form defined by the KS complex
structure, hðτÞ is proportional to the warp factor and ϕ5;6;7

are functions of the radius, whose UV and IR expansions
are in [14], and whose full analytic expression can be
found in [15].1

Even though the solution is nonsupersymmetric, one can
analyse it using off-shell supersymmetry methods. Indeed,
the nonsupersymmetric back-reacted anti-D3-brane solu-
tion computed in [14–16] uses the Papadopulos-Tseytlin
ansatz which is based on the existence of an SU(3) structure
(or analogously a globally defined spinor). This is an
algebraic property required to use off-shell supersymmetric
methods, that the cone over S2 × S3 satisfies. On-shell
supersymmetry then requires this spinor to be covariantly
constant (with respect to some connection, which in the
supersymmetric Klebanov-Strassler solution is just the
Levi-Civita one, i.e., the manifold is Calabi-Yau). In
the nonsupersymmetric solution, there is no such simple
condition, and one has instead to solve the second order
equations. Nevertheless, the fact that there is an underlying
off-shell supersymmetry due to the globally defined
spinor, allows to attack this problem using off-shell
N ¼ 1 supersymmetry methods, in particular using the
flux-induced superpotential. For the complex structure (or
analogously, the globally defined spinor) of the Klebanov-
Strassler zeroth order solution, such superpotential is
nothing but the Gukov-Vafa-Witten (GVW) super-
potential [20], given in Planck units by:

WD3 ¼
Z

GD3
3 ∧ ΩKS; ð4Þ

where ΩKS is the holomorphic three-form of the unwarped
internal manifold of the KS solution.

FIG. 1. An artist’s impression of the KS geometry.

1Detailed information on the calculations of this section can be
found in Secs. 2 and 3 of [19], noting that S ¼ 1

ð2πÞ2α0 Z.
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Given that the anti-D3-brane generates a (0,3) compo-
nent of flux, it thus gives rise to a superpotential. Using (3),
the integral can be performed explicitly, giving an on-shell
value2

WD3 ¼ −0.87iλMZKS þOðλ2Þ; ð5Þ

where ZKS is the value of the conifold modulus for the
KS solution. The anti-D3-brane not only generates this
flux component, but also imaginary-antiself-dual (IASD)
pieces. These generate F-terms for the axio-dilaton and
conifold moduli, given by

DτW ¼ −
igs
2

Z
G�D3

3 ∧ ΩKS; DZW ¼
Z

GD3
3 ∧ χKS;

ð6Þ

where χKS is a (2,1)-form (whose first-order expression in λ
can be found in [21]). Such integrals can be numerically

evaluated using the explicit form of GD3
− given in [22]:

DZW ¼ −1.5iλM þOðλ2Þ;
DτW ¼ 0.6λgsMZKS þOðλ2Þ: ð7Þ

This on-shell superpotential and F-terms, computed using
the ten-dimensional solution, will be used in Sec. IV to
compute an effective potential for the Kähler modulus in a
KKLT-like construction.

III. 4D SUPERGRAVITY DESCRIPTION

Before adding the D3 branes at the tip of the throat, the
superpotential and Kähler potential describing the conifold-
modulus dynamics in a warped compactification have been
computed in [23,24]3:

W ¼ M
2πi

�
Z log

Λ3
UV

Z
þ Z þ wZ

�
þ i

K
gs
Z;

K ¼ −3 log
�
ρþ ρ̄ −

ξ

3
jZj2=3

�
þ logð2γ4Þ; ð8Þ

where γ2 ¼ 16
ffiffiffi
2

p
π7kΩk2,4 ξ ¼ 9c0gsM2 and c0 ≈ 1.18 is a

numerical factor coming from the warping [25]. Notice
that the Kähler potential for the Z modulus is known in a

small-field expansion, and only the Z2=3 term was worked-
out explicitly. To avoid cumbersome expressions in
what follows, we use the log form of the Kähler potential
above (8), but it is understood that in the final results only
the leading term in Z2=3 is kept.
The supersymmetric Minkowksi vacuum is given by:

∂ZWjZKS
¼ 0 ⇒ ZKS ¼ Λ3

UVe
−2πK
gsM: ð9Þ

Since the KS scalar potential and superpotential have to be
zero on-shell in a supersymmetric Minkowski vacuum, this
fixes the constant wZ in (8):

Won-shell ¼ 0 ⇒ wZ ¼ −Λ3
UVe

−2πK
gsM: ð10Þ

We can promote this to an off-shell superpotential for the
axion-dilaton as well, given by

WKS ¼
M
2πi

�
Z

�
log

Λ3
UV

Z
þ 1

�
− Λ3

UVe
2πiτK
M

�
þ KτZ: ð11Þ

This satisfies the supersymmetry condition in the axion-
dilaton direction DτWjZKS

¼ ∂τWjZKS
¼ 0.

We now add anti-D3 branes, whose backreaction can be
captured in the language of the four-dimensional effective
theory by:

(i) an uplift term in the scalar potential, breaking
supersymmetry and shifting the conifold modulus
vev from ZKS to Z0 (to be computed below).

(ii) A (0,3) flux giving rise to an additional super-
potential WD3, whose dependence on the conifold
and dilaton-axion moduli will be determined by
requiring consistency with the ten-dimensional com-
putation (5) and (7).

To compute the former, it is useful to describe the
antibrane uplift potential in a manifestly supersymmetric
way (more precisely in a nonlinearly supersymmetric way)
introducing a nilpotent chiral multiplet X [26,27], with the
following Kähler potential and superpotential [24]:

K ¼ −3 log
�
ρþ ρ̄ −

jXj2
3

−
ξ

3
jZj23

�
− log

�
Imτ

γ4

�
;

W ¼ WKS þ
1

M

ffiffiffiffiffiffiffiffiffi
c00N̄
π

r
Z2=3τX þ Ae−aρ þWD3; ð12Þ

where c00 ≈ 1.75 is a numerical factor related to the anti D3
brane energy [28] and we have also included the non-
perturbative contribution to the superpotential coming from
gaugino condensation or D3-brane instantons. The usual
N ¼ 1 four-dimensional scalar potential

V ¼ eKfGab̄DaWDb̄W̄ − 3jWj2g ð13Þ

2Here by on-shell we mean that this is the value on the nose,
where the complex structure moduli are fixed to those of the
zeroth order Klebanov-Strassler solution.

3Here we assume that all the other complex structure moduli
have been stabilized at a higher scale in a supersymmetric way
and only consider the conifold modulus.

4We normalize the holomorphic three-form of the warped
geometry such that the integral of the unwarped Klebanov-
Strassler three-form ΩKS over the S3 at the bottom of the throat is
equal to Z. This gives kΩk2 ¼ 3=π4.
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can then be written in the convenient form

V ¼ γ4gs
r2

�
9

ξ
jZj4=3j∂ZWj2 þ j∂XWj2 þ 4

g2sr
jDτWj2

þρþ ρ̄

3

����∂ρWeff −
3

ρþ ρ̄
Weff

����
2

−
3

ρþ ρ̄
jWeff j2

	
; ð14Þ

where

Weff ¼
M
2πi



Z − Λ3

UVe
−2πK
gsM

�
þ Ae−aρ þWD3; ð15Þ

and r≡ ρþ ρ̄ − ξ
3
jZj2=3 and where we used the on-shell

axion-dilaton value Imτ ¼ g−1s .
In deriving (14) we used the following relations

Gzj̄
∂j̄K ¼ Giz̄

∂iK ¼ O
�
Z4=3Z̄1=3

ρþ ρ̄

�
ð16Þ

and omitted subleading terms. From now on we will also
not take into account the jDτWj2 term as it scales like
OðjZj2=r3Þ and hence is subleading as well.
In the absence of the nonperturbative term (setting

A ¼ 0), the second line in (14) is zero and the scalar
potential becomes

V ¼ γ4jZj4=3
c0ðρþ ρ̄Þ2

����� 1

2πi
log

Λ3
UV

Z
þ iK
gsM

����
2

þ c0c00

π
λ

	
; ð17Þ

where we used that in the strongly warped regime
r ≈ ρþ ρ̄. Equation (17) is the KSþ uplift scalar potential,
which as a function of the conifold modulus Z has a
minimum at

Z0 ¼ Λ3
UVe

−2πK
gsMe

−3
4



1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−64πc0c00N̄

9gsM2

q �

≃
�
1 −

8πc0c00

3
λ

�
ZKS ≡ ZKS þ δZ; ð18Þ

where we expanded to the first order in the D3 uplift
parameter λ, defined in (2), in order to compare to the 10d
computation.
The on-shell value of the superpotential is then computed

to first order

WðZ0Þ ≃WKSðZKSÞ þ ∂ZWKSðZKSÞδZ þWD̄3

¼ WD3 ¼ −0.87iλMZKS; ð19Þ

where in the first line we used (9) and (10) and in the
second line we inserted the 10d input (5).

The F-term of the conifold modulus can similarly be
evaluated

DZWðZ0Þ ¼ ∂ZWðZ0Þ þKZWðZ0Þ

≃ ∂
2
ZWKSðZKSÞδZ þKZWD3 ≃

4c0c00

3i
λM

≃ −2.75iλM; ð20Þ

where in deriving the result, we anticipated, using the
explicit form of the Kähler potential in (12), that the
term KZWD3 ∼OðZ2=3

0 Þ and is therefore subleading.
This F-term has the same parametric dependence as its
10d counterpart (7), with a different numerical coefficient.
Finally, the F-term of the axion-dilaton is

DτWðZ0Þ ≃ ∂Z∂τWðZKSÞδZ þ ∂τWD3 þKτWD3

¼ −
8πc0c00K

3
λZKS þ

0.435
M

ZKS þ ∂τWD3: ð21Þ

In order to obtain the correct parametric dependence of the
ten-dimensional result (7) we impose

∂τWD3 ¼
8πc0c00K

3
λZKS ≃ −KðZ0 − ZKSÞ; ð22Þ

and thus

DτWðZ0Þ ¼ 0.435gsMλZKS: ð23Þ

The off-shell value of WD3 should therefore be considered
as an expansion

WD3ðτÞ ¼ WD3ðτ0Þ þ ∂τWD3ðτ0Þðτ − τ0Þ þ � � � ; ð24Þ

where we have determined the first two coefficientsWD3ðτ0Þ
and ∂τWD3ðτ0Þ by consistency with the 10d results.
Let us stress that we do not expect exact numerical

agreement between the ten and four-dimensional results,
but we do get the same parametric dependence. One of the
reasons that the numerical factors might not exactly match
is that the four-dimensional theory misses the effects of
massive but light modes of the compactification [23].
Before closing this section, note that the complete scalar

potential (14) has an approximately decoupled structure

V ¼ VKSþuplift þ VKKLT; ð25Þ

where

VKKLT ¼ γ4gs
r2

�
ρþ ρ̄

3

����∂ρWeff −
3Weff

ρþ ρ̄

����
2

−
3jWeff j2
ρþ ρ̄

	
ð26Þ

BENA, DUDAS, GRAÑA, LO MONACO, and TOULIKAS PHYS. REV. D 108, L021901 (2023)

L021901-4



and VKSþuplift is given in (17). Furthermore, the KKLT small
superpotential constant W0 is given in our construction
by the on-shell value of the ρ-independent term in (15)

W0;KKLT ¼ M
2πi

ðZ0 − Λ3
UVe

−2πK
gsMÞ þWD3

≃ −i
�
0.87 −

4

3
c0c00

�
λMZKS: ð27Þ

IV. BARE-BONES DE SITTER

In this section, we show that for certain choices of the
parameters, the potential:

V ¼ eKðGij̄DiWDjW − 3jWj2Þ ð28Þ

leads to de Sitter vacua. The potential is computed using
the 10d input DiW, W ¼ WD3 þ Ae−aρ and Kähler poten-
tial as in (12).
In Fig. 2 we plot the potential for a particular choice of

parameters. This choice is not unique: we have performed a
partial scan of the parameters and we are able to find several
other de Sitter vacua.
For our de Sitter minimum the hierarchy between the

bottom of the KS throat and the UV scale is of order
2πK
gsM

≈ 8. For other de Sitter constructions without a large
warping, see [29].
In the future, it would be important (but rather nontrivial)

to check if the existence of this minimum survives higher
order corrections in λ and Z, as well as quantum corrections.

V. CONCLUSIONS

A nonvanishing on-shell Gukov-Vafa-Witten superpoten-
tial is crucial in aKKLT-like constructionofdeSitter vacua. In
this paper, we have shown that a small GVW superpotential,
dubbed WD3 above, is generated by D3 branes at the tip of
a KS throat. This superpotential, together with the anti D3-
brane-generated F-terms provide all that is needed to obtain a
compactification with a positive cosmological constant.
As we explained above, our proposal for constructing

de Sitter solutions is more bare-bones and hence more robust
than the KKLT one, because it has one less ingredient. Of
course, as in all phenomenological constructions, addingmore
ingredients gives one more freedom to tune the resulting
physical parameters. Hence, one can argue that our proposal,
though more robust, is less accommodating that the KKLT
constructionforobtainingaparametricallysmallcosmological
constant. However, the aim of our paper is not phenomeno-
logical, bur rather to understand which ingredients are abso-
lutely necessary to construct de Sitter, andwhich are optional,
with an ultimate purpose of achieving a robust construction
that may provide a way to escape the no-go arguments of [1].
We believe our result represents a step in that direction.
Another interesting result of the calculation presented in

this paper is the parametric agreement between the first-
principle, ten-dimensional computation of the effective
potential (in Sec. II) and the four-dimensional-supergravity
computation (in Sec. III). To our knowledge, this is the first
confirmation of the validity of the off-shell four-dimen-
sional warped effective action [25] and the analysis of [28].
Last, but not least, our proposal does not avoid some of

the known constraints on KKLT-like models. It would be
interesting to explore whether the problems underlined
in [30] also apply to our model. Furthermore, the minimum
we found requires the contribution to the D3 tadpole of the
fluxes in the KS throat to be of orderKM ≈ 2 × 104. In [31]
it was conjectured that such throats cannot be embedded in
a flux compactification with stabilized moduli. It would be
interesting to use our procedure to search for vacua where
this tadpole contribution is smaller.
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FIG. 2. The potential for the choice of parameters a ¼ π
3
, gs ¼ 1

2
,

A ¼ 3 × 103, K ¼ 134, M ¼ 200. This gives Z0 ≈ 10−4.
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