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b Università degli Studi di Palermo. Corresponding author: viale delle Scienze, Ed. 13, 90128, Palermo, Italy
c International Fund for Agricultural Development, via Paolo di Dono 44, Rome, Italy

A R T I C L E  I N F O

Handling editor: Jason Michael Evans

JEL classification:
D01
Q12
Q25
Q54 
Keywords:
Climate change
Crop production
Sustainable land management
Malawi

A B S T R A C T

Many researchers have noted the limited adoption of farming management practices that should increase the 
resilience of smallholder farmers to weather shocks and mitigate their impact on the changing climate in sub- 
Saharan Africa. In this paper, we evaluate the dynamics of adopting “good agricultural practices” in Malawi, 
using data from a three-wave panel collected as part of an impact assessment of the Sustainable Agricultural 
Production Programme, funded by the International Fund for Agricultural Development. In addition to project 
impacts, we also evaluate additional mechanisms though which farmers may learn about the costs and benefits of 
different practices. We also evaluate the extent to which climatic conditions – such as being located in drought- 
prone or heavy rainfall areas – drive adoption decisions. Given the three waves of data, we first look at the range 
of adoption pathways observed, through the use of an adoption pathway trees. We identify six pathways, noting 
that adoption is not continuous for a large percentage of households. We then run a multinomial logit to assess 
the factors that increase the likelihood of falling into different adoption categories vis-a-vis remaining a never 
adopter. Results suggest that learning through information dissemination, such as through the SAPP project, and 
wider learning opportunities significantly increased the likelihood of pursuing different adoption pathways, 
while climatic conditions and learning through observing have limited impacts. On the other hand, for land- 
intensive management practices, being located in drought-prone areas or being located in areas prone to 
heavy rainfall increased the likelihood of pursuing different adoption pathways, as did greater ability to learn by 
observing. Learning by information sharing had limited impacts for land-intensive adoption pathway decisions. 
Overall, results suggest that information dissemination is important, though the mechanism differs by type of 
practice promoted. Flexibility in adoption status is an attribute of this system and there is a need to identify and 
promote practices that are both flexible and increase resilience to climate change.

1. Introduction

The 2021 IPCC report states that “Increasing weather and climate 
extreme events have exposed millions of people to acute food insecurity and 
reduced water security, with the largest impacts observed in many locations 
and/or communities in Africa, Asia, Central and South America, Small 
Islands and the Arctic” (IPCC, 2021). Rural small-scale producers in 
developing countries are among the most exposed to and most impacted 
by climatic change and by weather shocks such as floods and droughts. 

At the same time, the most recent report from the Climate Policy 
Initiative (CPI, 2022a) indicates that between 2017 and 2020, climate 
finance to agriculture, forestry, other land uses, and fisheries (AFOLU) 
dropped. The AFOLU sectors are dramatically underfunded and would 
require a nearly 26-fold increase in annual funding, i.e., USD 423 billion 
annually by 2030, to shift to a low-carbon and climate resilient trajec
tory (CPI, 2022b).

Within this global context, rural households in Malawi are particu
larly vulnerable to the impacts of climate change and the expenses 

☆ Giuseppe Maggio acknowledges financial support under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for 
tender No. 1409 published on September 14, 2022 by the Italian Ministry of University and Research (MUR), funded by the European Union – NextGenerationEU– 
Project Title REcovering the agrifood system from Shocks Induced by Labour Inputs, ENergy, Climate Extremes (RESILIENCE) - CUP B53D23026550001 - Grant 
Assignment Decree No. 1376 adopted on September 01, 2023 by the Italian Ministry of Ministry of University and Research (MUR).

* Corresponding author.
E-mail addresses: mccarthy@leadanalyticsinc.com (N. McCarthy), giuseppe.maggio12@unipa.it (G. Maggio), cavatassi@ifad.org (R. Cavatassi). 

Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

https://doi.org/10.1016/j.jenvman.2024.122636
Received 21 June 2024; Received in revised form 13 September 2024; Accepted 21 September 2024  

Journal of Environmental Management 370 (2024) 122636 

Available online 3 October 2024 
0301-4797/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:mccarthy@leadanalyticsinc.com
mailto:giuseppe.maggio12@unipa.it
mailto:cavatassi@ifad.org
www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2024.122636
https://doi.org/10.1016/j.jenvman.2024.122636
http://creativecommons.org/licenses/by/4.0/


associated with land degradation. A large part of that vulnerability is 
related to the heavy reliance of rural smallholders on rain-fed agricul
ture as their primary source of employment (Malawi National Statistical 
Office, 2020). Average maize yields are low and highly dependent on 
erratic rainfall. For instance, maize yields following the relatively 
normal 2012/2013 rainy season were 1804 kg/ha, but fell to just 1117 
kg/ha following the 2015/2016 rainy season that was characterized by 
wide-spread drought (McCarthy et al., 2018). More recently, at the 
country level, Malawi’s maize output dramatically declined from 4.6 
million metric tonnes in the 2020/21 farming season to 3.7 million 
metric tonnes in the 2021/22 season, due to a combination of climate 
related factors such as drought and tropical cyclones combined with 
inadequate supply of subsidized fertilizer (MAIWD, 2022).

Livelihood challenges in rural Malawi are further exacerbated by a 
growing population which is leading to shrinking farm sizes, currently 
corresponding to just 0.7 ha on average (Malawi National Statistical 
Office, 2020). Intensive farming and damaging practices are leading to 
degraded soils with nearly 40% of agricultural land too acidic for decent 
yields. The Land Degradation Neutrality objective set out by the Global 
mechanisms of the UNCCD in 2018 estimated that in the case of Malawi, 
the annual cost of land degradation is USD 320 million, equivalent to 7% 
of the country’s GDP (The Global Mechanism of the UNCCD, 2018).

With the key aim of increasing agricultural productivity given land 
constraints and climate change challenges, several efforts are being 
undertaken to help farmers adapt to climate change while improving 
land management and mitigating their impact. One such effort is the 
Sustainable Agricultural Production Programme (SAPP). The SAPP is a 
multi-year program implemented by the Ministry of Agriculture, Irri
gation and Water Development (MAIWD), with a budget of USD 51.71 
million financed by IFAD, the Government of Malawi and contributions 
from beneficiaries. The project became effective in October 2012 and 
has been extended to 2023. The project promoted several "good agri
cultural practices” (GAPs)1 to increase productivity and farm incomes, 
recognizing that different practices would be more suitable and attrac
tive in different settings. The project collected data on beneficiary and 
control households at baseline, midline and endline, which is the source 
of data used in this analysis.

Many projects like SAPP have been rolled out in sub-Saharan African 
countries over the past decades, promoting a range of practices that 
should reduce vulnerability to weather shocks while mitigating agri
cultural contribution to climate change (Amadu et al., 2020; Blanco and 
Lal, 2008; Makate, 2019). However, there is limited evidence of 
wide-scale adoption across sub-Saharan Africa (Cordingley et al., 2015; 
Macours, 2019; Shikuku et al., 2017; Takahashi et al., 2020). Various 
reasons for limited adoption have been put forth, such as: certain 
practices require knowledge, and sometimes adaptation to local con
texts, which increases the riskiness of adoption and dissuades adoption 
by households with limited risk-coping capacity (Beaman et al., 2021; 
Sitko et al., 2021); resource constraints such as very small landholdings 
dissuades adoption of land-intensive practices like bunds, trees and 
grasses and drainage channels; few working-age adults in the household 
dissuades adoption of labor intensive practices (Arslan et al., 2014; 
Asfaw et al., 2016; Adimassu et al., 2014; McCarthy et al., 2018; Ruz
zante et al., 2021); limited access to markets to source materials 
required for certain practices (Makate et al., 2019; Maggio and Sitko, 
2019; Kirui and Mirzabaev, 2015; Senyolo et al., 2018) and, the fact that 
at least some practices need to be adopted continually over a number of 
years to actually improve outcomes smallholders, tend to be unattrac
tive to poor households with immediate subsistence needs (Jayne et al., 
2019; McCarthy et al., 2011; Senyolo et al., 2018).

Given limited widespread adoption of GAPs despite significant re
sources devoted to spur adoption, in this paper, we focus on evaluating 

the factors associated not just with adoption, but on patterns of adoption 
and dis-adoption as well. The theoretical literature largely considers the 
decision to adopt or disadopt to be a discrete decision (Feder et al., 1985; 
Khanna, 2001; Moser and Barrett, 2006). However, conditions that can 
spur adoption and disadoption each growing season can lead to complex 
patterns of adoption over time. One key factor is weather shocks. If 
farmers anticipate different types of weather shocks, such as drought or 
floods, then disadoption in one period may be the best response to that 
information. As noted in the literature review below, disadoption is 
generally considered to be a “negative” outcome associated with 
resource constraints and high costs. However, having the flexibility to 
adopt and disadopt may itself be valuable (Chen et al., 2022; Mishra 
et al., 2020. This flexibility may well become more valuable as climate 
change leads to more frequent and severe weather extremes. At the same 
time, learning about the benefits to adoption across all possible weather 
scenarios also becomes more difficult. This paper addresses the research 
gaps on the factors behind different patterns of adoption and dis
adoption, with a particular emphasis on evaluating the role of different 
information distribution mechanisms and exposure to weather shocks 
on those decisions. The analysis of adoption pathways is our main 
contribution to an otherwise scant literature on patterns of adoption 
over time (though c.f. Arslan et al., 2014; Chen et al., 2022).

To perform the analysis, we use a three-year panel of observations 
comparing beneficiaries and a carefully selected control group, which 
enables us to delve more deeply into the main drivers of adoption as well 
as into other contextual factors that affect pathways and dynamics of 
adoption. We identify six adoption pathways followed from baseline to 
midline to endline. Following insights from the decision-making under 
risk and innovation diffusion literatures, we develop a conceptual model 
of the mechanisms that enable farmers to learn about alternative GAPs, 
the role of climate variables on the adoption pathway choice, as well as 
the role of other contextual factors such household resource constraints 
and access to markets.

The paper is structured as follows. In section 2, we briefly describe 
the project’s objectives and activities. Section 3 discusses the conceptual 
framework and related literature, focusing decision-making under risk 
and the diffusion and dynamics of adoption. In section 4, we outline our 
empirical strategy, while section 5 we present the results and discuss the 
findings. Section 6 concludes.

2. Brief overview of the SAPP project

The goal of the SAPP is to contribute to poverty reduction and 
improve food security among the rural population of Malawi. The SAPP 
pursued this goal by addressing key challenges related to three main 
spheres: 1) knowledge management and technical assistance; 2) low 
agricultural productivity – due to small landholdings, declining soil 
fertility and lack of crop diversification; and 3) poorly developed mar
kets for both input and outputs.

Our analysis focuses on project activities that directly addressed the 
second constraint, low agricultural productivity, through the promotion 
of GAPs. The GAPs promoted by the SAPP can be ascribed to two main 
types of practices: relatively labor-intensive and relatively land- 
intensive. Labor-intensive practices include pit planting, water infiltra
tion pits, organic manure, legume cover crops and compost. Land- 
intensive practices include grass strips, contour ridges, bench 
terracing, drainage channels, fertilizers trees, and swales (Cavatassi and 
Maggio, 2022).

The SAPP was implemented across 46 Extension Planning Areas 
(EPAs) in six districts in the Northern (Chitipa), Central (Lilongwe and 
Nkhotakota) and Southern (Blantyre, Chiradzulu and Balaka) regions of 
Malawi. The selection of the districts was based on four criteria. First, 
districts were selected according to their agricultural potential with 
respect to the practices promoted and how these may contribute to in
crease crop productivity, food security and income of farmers in their 
territories. Second, the SAPP aimed at targeting districts with relatively 

1 GAPs substantively overlap with other practice groupings such as “sus
tainable land management” and “climate smart agriculture”.
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high prevalence of poverty and food insecurity. At the time of the project 
design, the poverty rate in these districts ranged between 38 and 67 
percent, and those defined as ultra-poor varied between 11 and 33 
percent. The SAPP-targeted population is represented by smallholder 
food insecure households who own at least a small piece of land but are 
unable to produce a surplus to be marketed due to limited resources (e.g. 
a minimum of 0.2 ha, and a maximum 5 ha, of land). They are often net- 
buyers of food and represent about 80 percent of smallholders coun
trywide (Cavatassi and Maggio, 2022; MAIWD, 2016).

The SAPP included a budget for an impact assessment, and three 
waves of surveys were implemented corresponding to baseline (2014), 
midline (2018) and endline (2020), described more fully below. SAPP’s 
targeting criteria were fully integrated into the impact assessment, and 
fully utilized to select control districts and control households.

3. Conceptual framework and related literature

To develop the conceptual framework, we first review the theoretical 
literature on decision-making under risk in a static framework, and then 
consider additional factors that affect the dynamics of technology 
diffusion and adoption pathways.

3.1. Static model of risk-averse decisions under mean-variance 
approximation to expected utility

To capture factors affecting the adoption decision by risk-averse 
smallholders, we use the mean-variance approximation to expected 
utility of income. Though simple, the model captures the impact of ex
pected weather and weather variability on GAPs adoption.

Consider the optimization problem captured in equation (1). Income 
is equal to the value of output produced minus input costs, Y = pf(Xi,Gi;

W,Z) −
∑

ciXXi −
∑

ciGGi. We posit a composite output function, Q =

f(Xi,Gi;W,Z), which is multiplied by a composite price index, p. Outputs 
are a function of traditional inputs chosen, Xi (for example, labor and 
seeds) as well as any GAPs adopted, Gi, and random weather, W. Outputs 
are also a function of exogenous household, community and other 
location characteristics, Z, which affect total factor productivity. The 
costs to both traditional and GAPs inputs are given by ciX, ciG, respec
tively. Input costs can be comprised of a number of different cost cate
gories. Input costs include actual cost outlays as well as market-related 
transactions costs and opportunity costs of owned resources (land, 
labor). Importantly, GAPs costs can also include transactions costs of 
learning about GAPs benefits, and costs associated with learning how to 
implement GAPs under local conditions. We can then write the expected 
utility maximization equation as follows: 

EU(Y)= pf(Xi,Gi; Ŵ, Z) −
∑

ciXXi

−
∑

ciGGi−
1
2[pf(Xi; Ŵ,Z)]ϕRσ2

Q
(
σ2

W,Gi
)

(1) 

The first expression in equation (1) captures expected income, where Ŵ 
represents expected weather. The last expression in equation (1) cap
tures the costs of risk for risk-averse farmers. ϕR is relative risk aversion 
and σ2

Q is the output variance. In turn, output variance is a function of 
exogenously given weather variance, σ2

W, as well as GAPs adoption. 
Adoption of GAPs is posited to reduce the output variability caused by 
climate variability through absorbing impacts from weather shocks. For 
simplicity, we can let σ2

Q
(
σ2

W,Gi
)
= σ2

WG− γ
i , where γ is a parameter that 

translates higher GAPs adoption into lower variance. The optimal so
lutions for inputs are as follows: 

G*
i = g

(
Ŵ, σ2

W, γ,ϕR, ciX, ciG, Z
)

(2) 

X*
i = h

(
Ŵ, σ2

W, γ,ϕR, ciX, ciG,Z
)

(3) 

As captured in equations (2) and (3), maximization leads to optimal 

input choices that are functions of expected weather, weather vari
ability, the productivity of GAPs in reducing output variability, relative 
risk aversion, input costs and other relevant exogenous characteristics. 
With respect to GAPs, the impact of better expected weather conditions 
is ambiguous and depends on whether the marginal productivity of 
GAPs usage is increasing or decreasing in expected weather, since the 
marginal benefits to greater expected income will be offset by lower 
marginal benefits to reducing risk. Greater climate variability and 
greater risk aversion will likely increase GAPs usage.2 The greater 
marginal effectiveness of GAPs in reducing output variability will in
crease GAPs usage, while higher GAPs costs reduce usage. Finally, 
household and community characteristics that increase total factor 
productivity will increase GAPs usage.

3.2. Dynamics of adoption

The above model captures the incentives to adopt GAPs where 
farmers are risk averse and where those practices reduce crop produc
tion variability. However, it does not explicitly evaluate the costs asso
ciated with the adoption decision outside of costs captured in ciG. 
Additionally, the model assumes that farmers know the benefits to GAP 
adoption both on average yields and on yield variability. Yet, we know 
that there are additional costs associated with adoption, primarily 
related to forming expectations about the benefits to adoption and costs 
associated with greater uncertainty about these benefits. The first 
observation, then, is that more risk-averse farmers may not be more 
likely to adopt GAPs when they are uncertain about the impact of GAPs 
on expected yields and on yield variability, even if they would be more 
likely to adopt than wealthier farmers if they were certain about GAP 
benefits. Much of the literature on technology adoption details the types 
of mechanisms that may enable farmers to acquire the knowledge they 
need to increase certainty about average yield and yield variability 
benefits. A number of researchers point to landholding size as an 
important factor, since farmers with more land can “afford” to experi
ment with different practices on a smaller portion of their land to learn 
about the costs and benefits to different practices (Byerlee and de 
Polanco, 1986; de Janvry et al., 2017; Foster and Rosenzweig, 1995; 
Lahiri et al., 2018). For more complex practices, more experienced and 
more educated farmers are hypothesized to adopt earlier, as they more 
quickly understand how to apply the practice to achieve optimal benefits 
(Khanna, 2001). However, despite the theoretical arguments linking 
land size and education to GAPs adoption, a recent meta-analysis of 204 
empirical papers shows that the impacts of these two factors on natural 
resource management adoption are insignificant (Ruzzante et al., 2021).

Early models of technology diffusion posit that farmers can also learn 
about costs and benefits by observing the results obtained by early 
adopters, “learning by observing” (Griliches, 1957; Feder et al., 1985). 
More recent research also finds that “learning by observing” or “learning 
by sharing” information through farmer-to-farmer interactions can be 
important mechanisms for knowledge dissemination (Beaman and Dil
lon, 2018; Conley and Udry, 2010; Krishnan and Patnam, 2014; 
Maertens et al., 2021; Nie and Ragasa, 2018; Yamano et al., 2018). In
formation about benefits and costs can also be disseminated by exten
sion agents, radio and other media, and input vendors, though access to 
these sources is often relatively low, especially to extension agents 
(Beaman et al., 2018; Niu and Ragasa, 2018). Heterogeneity in 
agro-ecological characteristics also makes it difficult to learn by 

2 It is theoretically possible that households facing very high risks will reduce 
the use of all inputs vis-à-vis those facing more moderate risks. In other words, 
GAPs adoption can theoretically exhibit an inverse-U shaped relationship with 
weather variability and risk aversion, where GAPs adoption increases with 
climate risk up to a certain point, after which it declines. We tested this hy
pothesis, but did not find significant results on the squared terms, and so do not 
report those results here.
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observing from other farmers’ experiences (Munshi, 2004; Takahashi 
et al., 2020).3

In dynamic models of adoption, it is assumed that once a decision has 
been made, then farmers will continue to adopt thereafter, so-called 
“threshold” models (Khanna et al., 2000; Seo et al., 2008). Threshold 
models capture the transition from non-adoption to adoption, but they 
generally do not consider the conditions under which households may 
switch back and forth between adoption statuses. Yet, at least some 
observers have noted that farmers both adopt and dis-adopt technolo
gies. Arslan et al. (2017) document patterns of adoption and 
dis-adoption of GAPs in Zambia, although the dataset used covered only 
two time periods. Grabowski et al. (2016) document patterns of adop
tion and dis-adoption of minimum tillage, also in Zambia. However, 
neither of these studies evaluate factors affecting the 
adoption/dis-adoption pathway per se. Chen et al. (2022) develop a 
dynamic simulation model that captures different patterns of adoption 
that arise when input and output prices change and where there are costs 
to switching to adopting or to dis-adopting, where returns to adopting 
are uncertain, and where farmers are risk-averse. These features of the 
model result in different patterns of adoption over time including 
“transient” adoption, where farmers switch between adoption and 
dis-adoption as output, input and transactions costs fluctuate.

The GAPs promoted by SAPP are likely to exhibit different costs to 
adopt or dis-adopt. For instance, it is more costly to invest in soil and 
water conservation structures than to apply organic manure or mulch, 
and dis-adoption will be more costly as well. As developed more fully 
below, we hypothesize that GAPs that are land-intensive – fertilizer 
trees, grass strips, terraces, drainage channels – will in general be more 
costly to adopt and dis-adopt than labor-intensive practices. This 
distinction will enable us to test whether patterns of adoption are 
consistent with hypotheses from the research on the dynamics of 
adoption presented above.

To summarize hypotheses from the dynamics of adoption literature, 
continuous adoption is more likely where farmers feel more confident in 
their knowledge of the distribution of benefits from adoption, are less 
risk-averse to experimenting, and have larger landholdings on which to 
experiment. The ability to acquire knowledge by learning through 
observation of potential benefits will depend on the experience of other 
farmers in one’s network, and the extent to which land quality is rela
tively similar across plots managed by other farmers in one’s network. 
The ability to learn through information dissemination will be greater 
when access to external sources such as extension agents, and other 
sources of agricultural information is greater. Transient adoption is 
more likely when GAP adoption is essentially a yearly decision (with no 
or low fixed costs) and adoption costs and output prices are relatively 
volatile, and where costs of switching between adoption and dis- 
adoption is relatively low. Dis-adoption is more likely to occur when 
farmers initially adopt but do not realize expected benefits, when 
adoption costs trend higher, and where opportunity costs of taking land 
out of production increase (e.g. increase in number of household 
members).

4. Empirical strategy

4.1. Data

SAPP districts were chosen based on their potential for sustainable 
agriculture and high incidence of poverty and food insecurity (IFAD, 
2011). To select control districts, Chirwa et al. (2015) used information 

on “livelihood zones”, which are defined as “areas where households 
share similar options for obtaining food or income" (MVAC, 2005) to 
match control districts with treated districts that share the same or 
similar livelihood characteristics. Results from the Malawi Third Inte
grated Household Survey also indicate that the control districts were a 
decent match to the SAPP districts; for instance, poverty rates in SAPP 
districts ranged from 33% to 68%, while poverty in control districts 
ranged from 37% to 57% (Malawi National Statistical Office, 2020).

Households that were interviewed at baseline were tracked for the 
construction of the midline and endline datasets. The tracking protocol 
focused on a few key principles:

• No more than one household was tracked at midline for each baseline 
household, and no more than one household was tracked at endline 
for each midline household.

• No replacement was done for households that could not be 
interviewed.

• Minimum requirements to be interviewed were:
o At least one member aged 12+ at baseline be present at midline.
o Closest geographical location to baseline location, but still located 

within the set of SAPP districts. So, if all members of a specific 
household had moved to a non-SAPP district, then no interview 
took place for that household.

Of the 1800 baseline households, 1656 were located at midline, 
giving an 8% rate of attrition. Of those 1,656, 1535 were located at 
endline, giving a 3% rate of attrition. Overall, the attrition rate observed 
between the three waves is in line with other panel data collected in 
Malawi (c.f. Malawi National Statistical Office, 2020). Of the losses due 
to attrition, about half were due to households relocating outside the 
study area, while the other half simply could not be found and likely also 
relocated outside the study area. There were also 14 households that 
moved from treated to control districts or vice versa. Removing these 
households leads to a sample size of 1524. We also note that there was 
no statistical difference in rates of attrition between the treated and 
control households.

4.2. Endogenous variables and empirical strategy

The dataset contains data on a relatively large number of GAPs,28.4

Estimating the adoption pathways for all GAPs is simply not feasible. 
Instead, we aggregate across different practices. There are a number of 
ways the data can be aggregated, following different rationales. We have 
chosen to aggregate practices depending on whether they are relatively 
land or relatively labor intensive. The rationale behind this aggregation 
strategy is that the ability to adopt land- and labor-intensive practices is 
affected by different household constraints. In our dataset, only about a 
third of households hired any labor, and overall the proportion of hired 
to total labor days is just above 10%. Additionally, most households 
must augment farm income with off-farm income in order to meet basic 
needs. Thus, labor constraints can be binding. With respect to land 
constraints, we note that though 18% of households rented land in, the 
overall proportion of land rented in to total cultivated was just 7%. 
Furthermore, incentives to invest in GAPs on rented-in land are signif
icantly lower than for own land, since many GAPs will provide benefits 
for more than one season. The average landholding size is just over 1 ha. 
Thus, own land constraints can also be binding. Finally, conceptually, 
we expect different patterns of adoption for practices that are relatively 
less costly to adopt and dis-adopt versus those that are more costly. 
Given the characteristics of the practices, we hypothesize that labor- 
intensive practices tend to be less costly to adopt and dis-adopt than 
land-intensive practices.

An alternative aggregation method would be to distinguish between 
3 Another key aspect posited to affect adoption is the “divisibility” of the 

practice (Zilberman et al., 2014). For lumpy investments, such as much irri
gation equipment, purchase by smallholders will be limited. While important in 
certain contexts, the GAPs promoted under the SAPP project are largely 
divisible. 4 Descriptive statistics for the full list of GAPs are provided in Appendix 1.
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different outcomes, for instance, whether the primary benefit of a GAP is 
to increase soil fertility versus reduce soil erosion and manage water. In 
practice, many of the labor-intensive practices primarily have soil 
fertility benefits, while many of the land-intensive practices primarily 
have soil and water conservation benefits. As a robustness check, we run 
the analyses on practices aggregated based on this outcome distinction.

The labor-intensive practices we include are whether the household 
adopted pit planting, infiltration pits, legume cover crops, or applied 
organic manure or compost. Adoption rates for these GAPs ranged from 
2% to 28% at baseline. For land-intensive practices, we include adopting 
grass strips, contour ridges, bench terraces, drainage channels, swales, 
fallow, and fertilizer trees. Adoption rates for these GAPs ranged from 
2% to 18% at baseline. There are a number of other GAPs that we do not 
include in these categories, primarily those for which adoption was 
relatively high at baseline and with which many farmers were already 
familiar before the start of the project. These include intercropping with 
any crops, having any legume crops, and box ridges, where adoption 
rates at baseline ranged from 44% to 80%. Including these variables in 
the aggregated variable means they would dominate the aggregation 
measure. Since the goal of SAPP was to increase adoption of practices 
primarily through knowledge building, it makes sense to focus on those 
practices for which knowledge was limited at baseline.

We take a two-pronged approach to evaluating the dynamics of 
adoption. We first start with a descriptive analysis by evaluating adop
tion trees. The trees trace out the path of adoption and dis-adoption, 
capturing the proportion of households along each path at midline 
and then at endline. Second, we estimate a multinomial logit that cap
tures different adoption/dis-adoption patterns suggested by the adop
tion tree analysis. The use of a multinomial logit model is justified by the 
fact that it is particularly suited for situations where the dependent 
variable has more than two categories. In our case, while one category, i. 
e. never adopters, can be considered the worst outcome scenario, there is 
no inherent ranking between the remaining categories. Unlike binary 
probit models, which are limited to two outcome categories (e.g., 
adopter vs. non-adopter) and do not allow us to fully utilize the set of 
observations for each estimate, the multinomial logit model allows us to 
evaluate multiple adoption pathways simultaneously. This approach 
leverages the entire set of observations and allow us to conduct a more 
nuanced analysis of the factors driving farmers’ decisions.

We create six adoption path categories for each GAP category as 
described in Table 1 below:

We can write the equation for the optimal pathway for household i as 
follows: 

P*
ik = α + ∂1SAPPi + βŴŴi + βσ2

W
σ2

Wi
+ βTTCA + βCDCDi + βZZHH,C,Adm

i + ei

(6) 

P*
ik is the pathway taken by household i for GAP category k. P*

ik takes a 
value from 1 to 6, representing each of the potential adoption/dis- 
adoption pathways; SAPP is the treatment dummy; Ŵ includes the his

toric average of weather variables, σ2
W captures a measure of variance of 

weather variables; and, TCA is a vector of transactions costs associated 
with adoption and dis-adoption decisions. As discussed more fully 
below, we do not have direct measures of risk aversion. Instead, we will 
use a consumer durables index, CDi, to proxy for risk-aversion, recog
nizing that it also reflects cash and credit constraints. Variables in 
ZHH,C,Adm include all relevant household, community and administrative- 
level variables hypothesized to affect farm productivity and transactions 
costs and that were not influenced by SAPP. For household variables, we 
use baseline variables to ensure that their levels are not affected by 
treatment. We discuss specific exogenous variables used more fully 
below in section 4.3.

Since the project did not follow a random control design, we use 
propensity score matching to generate inverse probability weights to 
address any issues of selection bias (Gertler et al., 2016). In our case, we 
have good information on the project’s targeting criteria at both 
geographic and household levels that strengthens the rationale for using 
inverse probability weights. We also have a rich set of data that allows us 
to include relevant variables identified in the literature to affect the 
adoption decision. Finally, to ensure that the error term, ei, is distributed 
N
(
0, σ2

e
)
, all estimations’ error terms are clustered at the primary sam

pling unit level (the enumeration area in this case).

4.3. Exogenous variables – GAPs adoption

4.3.1. Climate and agro-ecological variables
For the climate variables, we use rainfall covering flowering season. 

For maize, the critical flowering stage typically occurs in the 5th-8th 
dekad after the onset of the rainy season (Evans and Cassel, 1996). 
Previous work has also established that flowering period measures of 
rainfall have greater predictive power than total season measures in 
regressions of maize yields and total value of production in Malawi 
(McCarthy et al., 2021). Rainfall data is from the African Rainfall 
Climatology 2 (ARC2) dataset produced by the National Oceanic and 
Atmospheric Administration (NOAA). Temperature spikes can have 
significant negative impacts on crop yields across the full season 
(Schlenker and Roberts, 2009; Steward et al., 2018). Because the im
pacts of temperature on yields is hypothesized to have a discreet 
threshold effect, we evaluated a number of thresholds established in the 
agronomic literature to affect maize production, and selected the 
threshold of 35 ◦C at noontime, as this is the point at maize growth start 
to decline according to the literature (see for instance Sinsawat et al., 
2004; Waqas et al., 2021). Historical data on maximum daily tempera
tures are obtained from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) ERA INTERIM reanalysis model dataset.

Because there is limited guidance on what specific climatic variables 
to use in the analysis, we explored the predictive power of a number of 
specifications on the probability of adopting GAPs at baseline. After a 
systematic evaluation of performance in terms of explanatory power and 
robustness, we have selected two measures to capture expected weather 
and climate variability. The first is an index that captures hot, dry and 
high drought risk conditions. We ran a principal components factor 
analysis on mean flowering period rainfall, the coefficient of variation of 
flowering season rainfall for realizations that were below mean rainfall, 
and the mean number of times noon-time temperatures exceeded 35 ◦C 
over the full season. The factor scores are positive on the coefficient of 
variation and temperature spikes, and negative on mean rainfall. We 
thus interpret this index to capture drought proneness, and hereafter 
refer to it as the Drought Prone index. We separately control for the 
likelihood of receiving excessive rainfall and flooding by constructing 
the proportion of years for which rainfall exceeded one standard devi
ation above the mean, and we refer to this variable as Heavy Rainfall 
Prone. The two climate variables capture different climatic conditions, 
and they are not significantly correlated (pairwise correlation of 
− 0.004). Finally, we note that the NOAA dataset contains observations 

Table 1 
Adoption path category Descriptions.

Category Description

Never Adopter Households that do not adopt any practices in the relevant GAP 
category in any of the three waves

Dis-adopter Households that had adopted at baseline, but dis-adopted at either 
midline and endline, or just at endline

Experimenter Households that had not adopted at baseline, adopted at midline, 
and dis-adopted again at endline

Adopter Households that had not adopted at baseline, but did adopt either 
at midline and endline, or just at endline

Flexible 
Adopter

Households that had adopted at baseline, dis-adopted at midline, 
and adopted again at endline

Always 
Adopter

Households that adopted the relevant GAP category in all three 
waves
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going back to 1983. We evaluated the performance of using different 
time spans on which to construct our climate variables, and determined 
that using the 10 years previous to baseline (2004–2013) performed 
slightly better than using the full series, though both perform similarly.

To control for agro-ecological conditions, we have matched house
hold data with data from FAO’s soil limitation maps, derived from the 
Global Agro-Ecological Zoning (GAEZ) program, which is a global scale 
raster dataset providing an assessment of combined soil qualities, in 
order to assess crop-specific edaphic suitability, with a 5 arc-minute 
resolution, or about 9 × 9km at the equator. From this data, we have 
created a dummy variable that takes a value of 1 if the household 
location is considered to suffer from soil and/or terrain limitations. In 
our sample, soil limitations affect 57% of households. The impact on 
adoption of GAPs is ambiguous. If the marginal benefits to adoption – in 
terms of higher and more stable yields – are relatively large under soil 
limitations, then this favors adoption vis-à-vis those with no soil limi
tation. We also include the altitude at the household’s location, as well 
as dummy variables to capture slope. The dummy variables take a value 
of 1 if the average slope in the household’s locale is categorized as flat or 
slightly sloped. Both altitude and slope are from SRTM30 dataset, pro
vided by the U.S. Geological Survey. Steeper land should increase 
adoption of GAPs, particularly those that reduce soil and water erosion; 
however, soil quality tends to vary more in areas with greater slopes at 
higher elevation, which may limit learning by observing (Li et al., 
2017a,b).

4.3.2. Transaction cost of adopting GAPS
Households with larger areas of land have greater capacity to 

experiment with different GAPs without threatening household subsis
tence requirements and hence lower costs of learning by doing, while 
larger households face lower opportunity costs of adopting new prac
tices, particularly land-intensive practices. At the household level, we 
also include the highest level of education attained by any adult in the 
household at baseline. Higher levels of education should reduce trans
actions costs of learning about the benefits and costs of new farming 
practices, though it may also be associated with greater off-farm income 
opportunities so that the hypothesized impact is ambiguous. We include 
a measure of agricultural assets, calculated using a principal compo
nents factor of agricultural implements.5 Greater agriculture-specific 
assets increase labor productivity and may lower costs GAPs adoption 
for some practice, and they may also lower costs of transient adoption.

We proxy accessibility to commercial input markets using the dis
tance to the nearest weekly market; better access should lower than costs 
of purchased inputs, increase access to information disseminated in the 
markets, and reduce costs of transient adoption by assuring more reli
able access to inputs over time. To gauge access to information 
dissemination we include whether the household is located in SAPP 
community (treated), and we also use administrative data from the 
Ministry of Agriculture on the number of farm families within each 
extension planning area (EPA) (a sub-district administrative level), 
which we have matched to our household data.6 Our assumption is that 
extension agents will reach more households in more densely populated 

EPAs where more families are located, reducing the transactions costs of 
obtaining information from extensionists. Finally, the community-level 
survey included questions on the share of households who had adop
ted any land-intensive GAP or any labor-intensive GAPS at baseline in 
any given community. Greater shares should lower costs of learning 
about GAP benefits. Conceptually, we expect that, starting from a low 
share, a higher adoption rate in any given community will have rela
tively large impacts on the ability to learn by observation, but that 
marginal impacts taper off as the share increases further. To capture 
these, we include dummies of the second and third terciles of adoption 
shares, with the lowest tercile being the omitted category.

4.3.3. Wealth and demographics
To proxy wealth levels, we use an index calculated using a principal 

components factor analysis of household durables and housing charac
teristics.7 The hypothesized impact of the wealth index is ambiguous. 
We presume that wealthier households are less risk-averse, so that any 
marginal benefits to risk reduction from the adoption of GAPs will be 
lower vis-à-vis more poor households. However, wealthier households 
are less likely to be resource constrained, and thus more likely to adopt 
GAP practices, particularly GAP practices that increase average land and 
labor productivity. And, if benefits are not known, wealthier households 
are more likely to engage in risky experimentation. Finally, we include a 
dummy for whether or not the household head is female, to capture 
lower access to resources such as credit and access to extension services.

5. Results and discussion

5.1. GAPs adoption tree

5.1.1. We identify six adoption pathways for both labor-intensive and land- 
intensive practices, showing that adoption is dynamic rather than linear and 
that a significant portion of households engage in transient adoption, with 
many adopting and then dis-adopting

Fig. 1a and b below present the adoption/dis-adoption trees for land- 
and labor-intensive GAPs, respectively. At the top of the tree, we have 
the number of households adopting and non-adopting at baseline. In the 
middle of the tree, we have the percent of households adopting and dis- 
adopting at midline, for each baseline adoption status. Finally, the 
bottom of the tree gives the percent of households falling into our six 
categories: Always Adopters, Dis-Adopters, Flexible Adopters, Adopters, 
Experimenters and Never Adopters. Here we focus our discussion on 
whether the adoption trees support our hypotheses on adoption 
pathways.8

5.1.2. Labor-intensive practices show higher rates of transient adoption and 
dis-adoption among non-adopters, while land-intensive practices are more 
likely to have flexible adoption among initial adopters

First, we hypothesize that transient adoption (flexible adoption, 
experimenter) and dis-adoption are more likely to occur for labor- 
intensive practices versus land-intensive practices. There is support for 
this hypothesis for those who start out as non-adopters, with 32% of 

5 The productive asset index is built using the first factor of a principal 
component analysis on a set of count variables capturing the number of oxcart, 
ploughs, hoes, sickles, axes, bush-knifes, and wheelbarrow owned by the 
households.

6 We do have household level information on whether a lead farmer or 
agricultural extension officer resides in the community but did not ultimately 
include these variables in the estimations. First, it appears that respondents may 
have considered lead farmers to be agricultural extension officers, and re
sponses also varied within the same community. Secondly, the effectiveness of 
lead farmers has been shown to be quite limited (c.f. Beaman et al., 2021). In 
our case, these variables were not significant in explaining GAPs adoption, and 
given potential measurement errors were dropped from the estimations.

7 The durable asset index is constructed using the first factor of a principal 
component analysis on a set of indicators capturing whether the household 
owns any radio, radiocassette, tv, refrigerators, bicycles, motorcycles, car 
trucks, cell phone, bed, tables, mattress, solar panel, water can, treadle pump, 
and sewing machine.

8 This is the first time in the literature that adoption pathways have been 
clearly discerned over a period of almost a decade. Understanding these path
ways over a stable sample is often constrained by attrition (i.e., households 
dropping out of the sample), as well as other factors that may impede follow-up, 
such as migration, lack of updated contact information, or households splitting 
or merging over time (see Falaris, 2003; Young et al., 2006; for discussions on 
attrition in longitudinal surveys).
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households following experimenter path for labor-intensive practices 
versus 19% for land-intensive practices. On the other hand, for those 
who start out as adopters, the pattern is reversed with 27% of house
holds following a flexible adoption path for land-intensive practices 
versus 13% for labor-intensive practices. With labor-intensive practices, 
adopters who dis-adopted at midline instead were more likely to 
continue as dis-adopters. Those who begin as adopters likely have more 
knowledge than non-adopters at baseline, and thus it may be that flex
ible adoption is responding to current period price fluctuations versus 
costs of learning and adapting, following Chen et al. (2021). This also 
implies that transition costs for both types of practices are not relatively 
very high.

5.1.3. Labor constraints are more binding than land constraints
Second, the evidence also suggests that the labor constraint may be 

more binding than the land constraint. A relatively greater share of 
households are adopters of land-intensive GAPs at baseline and endline 
vis-à-vis labor-intensive GAPs, and there are fewer never adopters of 
land-intensive GAPs. Further, dis-adoption rates are much higher, and 
adoption rates much lower, for labor-intensive versus land-intensive 
GAPs.

5.1.4. The delayed benefits of land-intensive GAPs likely contribute to lower 
dis-adoption rates

Third, it may take more time for the benefits of land-intensive GAPs 
to materialize, making it more difficult for the household to determine 
whether they should continue adopting such practices. This too should 
lead to less rapid dis-adoption for land-intensive GAPs as seen in the 
lower dis-adoption rates at endline.

At first glance, it may seem somewhat contradictory that the labor 
constraint may be more binding than the land constraint in the Malawi 
context, given that most households have small cropland holdings but 
are not unduly small in terms of household members. It is likely related 
to the fact that many households in Malawi must augment their crop 
incomes with off-farm income sources leading to relatively high op
portunity costs of labor. Other research has documented substantial 

demand for labor-saving technologies by smallholders, even where land 
sizes are relatively small (Ricker-Gilbert et al., 2014; Sitko et al., 2021; 
Gono and Takane, 2018).

5.2. Propensity score matching

Table 2 reports the summary statistics of the explanatory variables, 
before and after the propensity score matching (PSM). As the summaries 
displayed in Table 2 suggest, treated households differed from control 
households on a number of characteristics, particularly on the drought- 

Fig. 1a. Dynamic of adoption of Land-Intensive GAP from Baseline to Endline.

Fig. 1b. Dynamic of adoption of Labor-Intensive GAP from Baseline to Endline.

Table 2 
Summaries of matching variables before and after matching.

Variables Before Matching After Matching

Treated Control t-test Treated 
Control

t-test

Own Land, Rainy 
Season

0.957 1.204 − 2.81 0.957 0.888 1.09

HH Size 4.911 5.093 − 1.44 4.911 4.965 − 0.47
Ag. Assets 0.069 0.080 − 3.57 0.069 0.071 − 0.73
Consumer Durables 

Index
0.124 0.154 − 3.86 0.124 0.124 − 0.06

Dummy, Female 
Head

0.299 0.262 1.42 0.299 0.284 0.61

Max. Years Education 7.593 8.006 − 2.25 7.593 7.202 2.27
Drought-Prone 0.129 − 0.270 8.84 0.129 0.068 1.39
Heavy Rainfall-Prone 0.186 0.160 10.05 0.186 0.191 − 2.32
Soil Limitation 0.498 0.687 − 6.75 0.498 0.522 − 0.88
Dummy, Slope Flat or 

Slight
0.678 0.463 7.70 0.678 0.687 − 0.35

Distance, Weekly 
Market

5.820 7.006 − 3.33 5.820 4.907 3.07

# Farm Families 
(10K)

2.314 1.720 9.51 2.314 2.232 1.25

% Comm. Adopt 
Labor GAPS

0.296 0.287 1.09 0.296 0.292 0.46

% Comm. Adopt Land 
GAPS

0.302 0.258 4.63 0.302 0.313 − 1.15

Altitude (ln) 6.811 6.822 − 0.55 6.811 6.709 5.48
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prone index, heavy rainfall-prone, soil limitations and the number of 
farm families within the extension planning area. In particular, treated 
households were more exposed to extreme weather events, more likely 
to have soil limitations but also more likely to have more farm families 
within their extension planning area. Treated households were also 
more likely to have fewer assets. After matching, differences are 
generally not significant, and bias is significantly lower for all but alti
tude. Overall, mean bias declines from 26.1 before matching to 7.4 after 
matching, while median bias declines from 20.3 to 5.0.

5.3. GAPS multinomial logit results

Tables 3 and 4 present the results from the weighted multinomial 
logit estimations with clustered standard errors for select variables. In 
particular, we do not report results for whether the household head is 
female, maximum education in the household and the consumer dura
bles index, as these are generally not significant; full results are reported 
in Appendix 2. The dependent variables are the categories of adoption of 

labor- and land-intensive practices, respectively. In both cases, the 
omitted category is never adopters, so the coefficients are interpreted 
with respect to the never adopters.9

5.3.1. Labor-intensive adoption

5.3.1.1. SAPP beneficiaries are more likely to adopt labor-intensive prac
tices suggesting effectiveness in information dissemination. As Table 3
shows, beneficiaries of SAPP are more likely to be adopters and always 
adopters of labor-intensive practices versus being never adopters. In 
terms of magnitude, the impacts are large; households are nearly three 

Table 3 
Determinants of Labor-intensive adoption pathways (marginal effects of selected 
indicators).

Variables Adopters Flexible 
Adopters

Experi- 
menters

Dis- 
adopters

Always 
Adopters

Treated 1.050c 0.577 − 0.235 0.328 0.705a

(0.25) (0.37) (0.31) (0.25) (0.38)
Agro-Climate
Drought-Prone − 0.181 − 0.151 0.02 − 0.042 0.143

(0.15) (0.26) (0.21) (0.16) (0.25)
Heavy 

Rainfall- 
Prone

− 0.509a 0.466 − 0.357 − 0.024 0.046
(0.28) (0.40) (0.30) (0.33) (0.34)

Soil 
Limitations

− 0.386 − 0.143 − 0.484 0.005 − 0.27
(0.33) (0.43) (0.31) (0.25) (0.46)

Slope, flat or 
slight

0.231 0.426 0.279 0.229 0.198
(0.25) (0.40) (0.30) (0.26) (0.41)

Altitude 0.966b 2.167c 0.974b 1.227c 0.998a

(0.38) (0.75) (0.44) (0.39) (0.53)
Innovation Costs
Own Land, 

Rainy 
Season

0.209a 0.079 0.167 0.084 0.12
(0.12) (0.15) (0.14) (0.12) (0.14)

HH Size − 0.019 − 0.058 − 0.124a − 0.032 − 0.052
(0.05) (0.08) (0.07) (0.05) (0.07)

Ag. Assets 0.671b 0.578 0.551a 0.674a 1.141c

(0.28) (0.38) (0.31) (0.41) (0.37)
Distance, 

Weekly 
Market

0.002 0.034 0.016 0.030b 0.036
(0.02) (0.03) (0.02) (0.02) (0.03)

# Farm 
Families

0.232a 0.561c 0.402c 0.536c 0.717c

(0.13) (0.20) (0.15) (0.11) (0.17)
% Comm. 

Adopt, Mod.
0.265 0.79 0.657a 0.27 0.939b

(0.33) (0.48) (0.34) (0.33) (0.45)
% Comm. 

Adopt, High
0.223 0.895a 0.441 0.117 0.935b

(0.31) (0.51) (0.35) (0.29) (0.39)
Constant − 7.772c − 19.738c − 7.163b − 10.583c − 10.857c

(2.71) (5.73) (3.15) (2.80) (3.77)
Log- 

Likelihood
− 3857.11

Pearson’s Chi 
Square

​ ​ 61.71 ​ ​

p-value 0.015
Observations 1205

Notes: the table displays the result from the coefficients of a weighted multi
nomial logit on the five adoption pathway categories of labor-intensive practices 
at household level, where Never Adopt is the baseline category. The pathways 
are defined by the adoption status of the respondent household captured in the 
three waves under study (2014, 2018, 2020). Full table of results are found in 
Table A1 in Appendix 1. Significance: Standard errors, in parentheses, are 
clustered at community level.

a p < 0.1.
b p < 0.05.
c p < 0.01.

Table 4 
Determinants of Land-intensive adoption pathways (marginal effects of selected 
indicators).

Variables Adopters Flexible 
Adopters

Experi- 
menters

Dis- 
adopters

Always 
Adopters

Treated 0.112 0.34 0.13 0.001 0.358
(0.278) − 0.393 − 0.267 − 0.256 − 0.35

Agro-Climate
Drought-Prone 0.402b 0.585c 0.022 0.025 0.604c

(0.177) (0.191) (0.171) (0.181) (0.184)
Heavy Rainfall- 

Prone
0.754c 0.085 0.087 − 0.016 0.314
(0.289) (0.408) (0.295) (0.283) (0.366)

Soil Limitations 0.148 0.264 0.460a 0.336 0.109
(0.300) (0.302) (0.270) (0.284) (0.328)

Slope, flat or 
slight

0.057 − 0.731a 0.19 − 0.267 − 0.482
(0.295) (0.389) (0.294) (0.296) (0.346)

Altitude 0.784b 1.351c 0.126 0.192 0.973b

(0.352) (0.412) (0.296) (0.348) (0.408)
Innovation Costs
Own Land, 

Rainy Season
− 0.022 − 0.071 − 0.212 0.125 − 0.067
(0.102) (0.150) (0.206) (0.098) (0.094)

HH Size − 0.088 − 0.094 − 0.086 − 0.120a − 0.066
(0.065) (0.088) (0.058) (0.067) (0.064)

Ag. Assets 0.552a 1.132b 0.463 1.167c 1.316c

(0.334) (0.466) (0.373) (0.364) (0.434)
Distance, 

Weekly 
Market

− 0.058c − 0.067b − 0.001 − 0.026 − 0.029
(0.022) (0.028) (0.025) (0.024) (0.029)

# Farm 
Families

0.454c 0.193 0.018 0.169 0.301
(0.157) (0.181) (0.127) (0.151) (0.203)

% Comm. 
Adopt, Mod.

0.878b 0.993b 0.303 0.542 1.443c

(0.376) (0.447) (0.380) (0.334) (0.450)
% Comm. 

Adopt, High
0.186 0.568 0.532b − 0.022 1.005b

(0.295) (0.408) (0.260) (0.310) (0.409)
Constant − 6.289b − 9.620c − 1.236 − 1.584 − 8.214c

(2.739) (3.701) (2.281) (2.724) (3.141)
Log-Likelihood − 3847.22
Pearson’s Chi 

Square
​ ​ 65.68 ​ ​

p-value 0.006
Observations 1205

Notes: the table displays the result from the coefficients of a weighted multi
nomial logit on the five adoption pathway categories of labor-intensive practices 
at household level, where Never Adopt is the baseline category. The pathways 
are defined by the adoption status of the respondent household captured in the 
three waves under study (2014, 2018, 2020). Full table of results are found in 
Table A2 in Appendix 1. Significance: Standard errors, in parentheses, are 
clustered at community level.

a p < 0.1.
b p < 0.05.
c p < 0.01.

9 We have also computed the marginal effects of the explanatory variables on 
the probability of falling into a specific category versus any other category. 
Results are similar but with fewer significant variables. Thus, the explanatory 
variables are better able to distinguish between different categories of adoption 
versus never adoption, but are less able to discriminate amongst the different 
adoption categories. The latter is consistent with a dynamic adoption process 
for those who adopt.
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times more likely to have adopted labor-intensive practices versus never 
adopters. This suggests that the project was successful at disseminating 
practically useful information on labor-intensive GAPs and facilitating 
learning from neighbors and demonstration plots.

5.3.1.2. Climate and agro-ecological factors are not strong determinants of 
labor-intensive adoption. Altitude significantly increases adoption probabil
ity and flexibility. The climate and agro-ecological variables have 
limited impact on adoption patterns for labor-intensive practices, with 
only a negative impact on adoption in areas prone to heavy rainfall. 
Instead, the probability of falling into all five adoption pathways is 
greater at higher altitudes. This is consistent with results found in Smith 
et al. (2016), who find larger soil fertility benefits on maize yields at 
higher altitudes, in part due to higher rainfall at higher altitudes. 
Moreover, the coefficient on flexible adoption is statistically signifi
cantly greater vis-à-vis other adoption pathways, indicating that the 
ability to adjust to current conditions – such as forecast of drought – is 
particularly valuable at higher altitudes.

5.3.1.3. Extension networks and agricultural assets increase adoption of 
labor-intensive practices. Greater access to extension agents reduce trans
action costs of adoption, while neighbors’ adoption has minimal impact on 
learning costs. The land and labor constraints, proxied by own rainy 
season landholdings and household size, do not have strong impacts on 
the labor-intensive adoption pathways chosen. However, agricultural 
assets do increase the probability of being an adopter, experimenter, dis- 
adopter and always adopter. The number of farm families within an 
extension planning area also favors all adoption pathways vis-à-vis 
never adopters, consistent with lower transactions costs of learning 
about labor-intensive practices. The coefficients on flexible adoption 
and experimenters are statistically larger than the coefficient on 
adopters, indicating that greater opportunities to connect with extension 
agents lowers costs of transient adoption. The proportion of community 
members who had adopted labor-intensive practices at baseline has 
limited impacts on adoption pathways chosen, outside of a strong 
impact distinguishing always adopters from never adopters. This sug
gests that neighbors’ adoption patterns of labor-intensive practices do 
not significantly reduce transactions costs of learning about these 
practices and/or adapting to local conditions, and also that they do not 
necessarily lower the transactions costs of transient adoption.

5.3.1.4. Climate variability has limited impacts on the adoption of labor- 
intensive practices. Information dissemination is key for labor-intensive 
adoption, with higher altitudes and larger farm networks aiding adoption, 
while market distance and climate variability have little impact. To sum
marize in terms of our hypotheses, greater climate variability has limited 
impacts on the adoption of labor-intensive practices indicating either 
that these practices do not lower production loss risk or beneficiaries do 
not perceive them as such. Results suggest that the marginal benefit to 
adoption is greater at higher altitudes, but not necessarily on cropped 
land with soil limitations or of varying degree of slope. In terms of 
learning by experimenting, the coefficient on own land is only signifi
cant for adopters. In terms of learning by observing, the evidence sug
gests limited learning through the experience of neighbors’ adoption 
decisions. Instead, being a SAPP beneficiary and being located where the 
network of farm families within and EPA is greater significantly in
creases pursing different adoption pathways versus never adopting. 
These results suggest that information dissemination through various 
pathways is particularly important to promote the adoption of labor- 
intensive practices. Being at higher altitudes and having larger farm 
family networks also favor dynamic paths of adoption. However, dis
tance to market and climate variability have no significant impacts, 
whereas we hypothesized that both of these would decrease costs of 
transient adoption and increase the benefits from flexibility.

5.3.2. Land-intensive adoption

5.3.2.1. SAPP was not a strong determinant of land-intensive adoption. 
Agro-ecological factors like drought, rainfall, and altitude are strong pre
dictors of adoption pathways. Table 4 presents the estimates obtained 
when running a multinomial logit on the categories of land-intensive 
adoption. In terms of treatment, SAPP had no significant impact on 
promoting any adoption pathway, indicating that information sharing 
and providing learning opportunities about land-intensive practices was 
less successful than for labor-intensive practices. Instead, the agro- 
ecological and climate conditions are stronger predictors of adoption 
pathways. Land-intensive practices are more likely to be adopted, flex
ibly adopted and always adopted in drought-prone areas, while those in 
areas more prone to heavy rainfall were more likely to be adopters. 
Altitude also favors adoption, flexible adoption and always adopt, which 
is consistent with greater threats of soil erosion at higher altitudes, and 
the fact that threats increase with weather events such as heavy rainfall 
and flooding (Li et al., 2017a,b).

5.3.2.2. Agricultural assets, proximity to market and to neighbors, drive 
land-intensive adoption paths. Similar to labor-intensive practices, 
household land and labor constraints have limited impacts on dis
tinguishing any adoption pathway from never-adopters. The agricul
tural asset index is again a significant predictor of pursuing different 
adoption pathways, particularly for flexible adoption, dis-adoption and 
always adopt. Shorter distances to market increase the probability of 
both adoption and flexible adoption. The number of farm families in
creases the probability of adoption only, while the percentage of 
neighbors adopting land practices at baseline, both at moderate and 
high levels, increase the probability of adopting, flexible adoption, 
experimentation, and always adoption. This suggests that neighbors 
experiences with land-intensive practices provides greater opportunity 
to learn by observing than labor-intensive practices; and, that costs of 
transitioning in and out of adoption of land-based practices are also 
relatively lower when one can observe other farmers following a similar 
dynamic adoption pathway.

5.3.2.3. Being in drought-prone areas all adoption pathways for land 
practices are likely, while in heavy rainfall regions the most frequent is the 
adopter pathway. Higher altitudes support adoption and neighbors plays a 
key role. To summarize, for land-intensive practices, those located in 
drought prone regions are more likely to follow all adoption pathways 
versus never-adopters, while those located in areas prone to heavy 
rainfall are more likely to follow the adopter pathway. This suggests that 
land-intensive practices do lower production risks. Similar to labor- 
intensive practices, being located at higher altitudes also favors pursu
ing adoption pathways. With respect to learning by experimenting, the 
coefficient on own land is never significant, indicating that larger land 
sizes do not alone spur adoption or experimentation, though we note 
that land sizes are indeed quite small to start with. With respect to 
learning by observing, the percentage share of neighbors adopting is a 
strong predictor of pursuing adoption pathways. On the other hand, 
being a SAPP beneficiary has no statistically significant impact, while 
the number of farm families is only significant when distinguishing 
adopters from never adopters. These results suggest that learning by 
observing is particularly important for land-intensive practices. Flexible 
adopters are more likely to be located in drought-prone areas and closer 
to weekly markets, both consistent with our hypotheses. Flexible 
adopters are also more likely to be located at higher altitudes and in 
communities with moderate levels of adoption at baseline, and own 
more agricultural assets.

5.4. Heterogeneity: weather shocks

We next evaluated the extent to which treated households were more 
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likely to follow certain adoption pathways if they were also more 
vulnerable to extreme weather events. To do so, we evaluate the mar
ginal impacts of drought- and heavy rainfall-prone climate conditions 
when treated = 1 (beneficiaries) and treated = 0 (controls) for each of 
the six adoption pathways. Results are presented in Tables 5a, 5b, 6a and 
6b. The first column contains the pathway and treatment status over 
which the margins are evaluated, the second column gives the marginal 
effect, the third column gives the p-value for the marginal effect, the 
fourth column gives the contrast between the marginal effects evaluated 
at 1 and 0, and the fifth column gives the p-value for the contrast. For 
labor practices, beneficiary households that are more exposed to 
droughts are more likely to be flexible adopters and experimenters than 
control households, as captured in Table 5a. This is consistent with the 

learning from project activities and also with greater relative benefits to 
transient adoption in drought-prone locations. However, beneficiaries in 
areas subject to heavy rainfall events were less likely to adopt labor- 
intensive GAPs than control households, as captured in Table 5b.

Table 6a presents results for the marginal impacts of drought on 
land-intensive GAP adoption pathways. The only significant impact 
shows that beneficiary households were less likely to be experimenters 
in drought-prone locations vis-à-vis control households. Marginal im
pacts of being located in heavy rainfall-prone areas, captured in 
Table 6b, suggest that beneficiaries were actually more likely to never 
adopt and to dis-adopt, and less likely to be always adopters. It may be 
that the project promoted other mechanisms to manage heavy rainfall, 
though we could not identify what those might be. Overall, results 
suggest that the project was not able to spur additional adoption in areas 
more exposed to extreme weather conditions, which are likely to 
become more frequent and intense due to climate change (Huber and 

Table 5 
The role of Climate Conditions on Adoption Pathway of Labor-intensive Prac
tices Evaluated by Treatment Status.

5a: Drought-Prone

Margin Effects of 
Drought-Prone at:

dy/dx p-value 
for dy/ 
dx

Contrast 
dy/dx

p-value for 
Contrast

Never Adopt, 
Control

0.031 ​ 0.466 ​ ​ ​

Never Adopt, 
Treated

− 0.012 ​ 0.605 − 0.044 ​ 0.375

Adopt, Control − 0.017 ​ 0.260 ​ ​ ​
Adopt, Treated − 0.045 a 0.090 − 0.029 ​ 0.340
Flexible Adopt, 

Control
− 0.019 b 0.039 ​ ​ ​

Flexible Adopt, 
Treated

0.017 a 0.067 0.036 c 0.005

Experimenter, 
Control

− 0.037 ​ 0.214 ​ ​ ​

Experimenter, 
Treated

0.046 c 0.002 0.083 b 0.011

Dis-adopt, Control 0.013 ​ 0.637 ​ ​ ​
Dis-adopt, Treated − 0.019 ​ 0.481 − 0.032 ​ 0.382
Always Adopt, 

Control
0.029 ​ 0.398 ​ ​ ​

Always Adopt, 
Treated.

0.014 ​ 0.500 − 0.014 ​ 0.696

5b: High Rainfall-Prone

Margin Effects of 
Heavy Rainfall- 
Prone at:

dy/dx p-value 
for dy/ 
dx

Contrast 
dy/dx

p-value for 
Contrast

Never Adopt, 
Control

0.167 ​ 0.784 ​ ​ ​

Never Adopt, 
Treated

0.434 ​ 0.430 0.266 ​ 0.749

Adopt, Control − 0.315 ​ 0.213 ​ ​ ​
Adopt, Treated − 1.129 c 0.003 − 0.814 a 0.076
Flexible Adopt, 

Control
0.093 ​ 0.622 ​ ​ ​

Flexible Adopt, 
Treated

0.525 a 0.059 0.432 ​ 0.173

Experimenter, 
Control

− 0.441 ​ 0.283 ​ ​ ​

Experimenter, 
Treated

− 0.181 ​ 0.601 0.260 ​ 0.624

Dis-adopt, Control 0.250 ​ 0.730 ​ ​ ​
Dis-adopt, Treated 0.168 ​ 0.721 − 0.081 ​ 0.925
Always Adopt, 

Control
0.245 ​ 0.521 ​ ​ ​

Always Adopt, 
Treated.

0.183 ​ 0.663 − 0.063 ​ 0.912

Notes: The table reports the marginal effects for categories of labor-intensive 
adoption. The upper panel, 5a, gives results for the marginal effects of being 
located drought-prone areas for treated and controls, while 5b provides infor
mation the same information but for heavy rainfall-prone areas. Significance.

a p < 0.1.
b p < 0.05.
c p < 0.01.

Table 6 
The role of Climate Conditions on Adoption Pathway of Land-intensive Practices 
Evaluated by Treatment Status.

6a: Drought-Prone

Margin Effects of 
Drought-Prone at:

dy/dx p-value 
for dy/ 
dx

Contrast 
dy/dx

p-value for 
Contrast

Never Adopt, 
Control

− 0.045 ** 0.022 ​ ​ ​

Never Adopt, 
Treated

− 0.008 ​ 0.635 0.037 ​ 0.160

Adopt, Control − 0.005 ​ 0.907 ​ ​ ​
Adopt, Treated 0.052 ** 0.047 0.056 ​ 0.195
Flexible Adopt, 

Control
0.018 ​ 0.362 ​ ​ ​

Flexible Adopt, 
Treated

0.030 ​ 0.144 0.012 ​ 0.652

Experimenter, 
Control

− 0.003 ​ 0.898 ​ ​ ​

Experimenter, 
Treated

− 0.057 *** 0.004 − 0.053 * 0.085

Dis-adopt, Control − 0.022 ​ 0.286 ​ ​ ​
Dis-adopt, Treated − 0.037 ** 0.016 − 0.015 ​ 0.522
Always Adopt, 

Control
0.056 * 0.063 ​ ​ ​

Always Adopt, 
Treated.

0.020 ​ 0.442 − 0.036 ​ 0.325

6b: High Rainfall-Prone

Margin Effects of 
High Rainfall- 
Prone at:

dy/dx p-value 
for dy/ 
dx

Contrast 
dy/dx

p-value 
for 
Contrast

Never Adopt, 
Control

− 0.802 *** 0.007 ​ ​ ​

Never Adopt, 
Treated

0.420 ​ 0.260 1.222 *** 0.009

Adopt, Control 1.283 *** 0.008 ​ ​ ​
Adopt, Treated 1.140 ** 0.027 − 0.144 ​ 0.836
Flexible Adopt, 

Control
0.037 ​ 0.906 ​ ​ ​

Flexible Adopt, 
Treated

− 0.615 ​ 0.231 − 0.652 ​ 0.266

Experimenter, 
Control

− 0.259 ​ 0.427 ​ ​ ​

Experimenter, 
Treated

− 0.378 ​ 0.373 − 0.120 ​ 0.816

Dis-adopt, Control − 0.867 *** 0.001 ​ ​ ​
Dis-adopt, Treated 0.277 ​ 0.472 1.144 ** 0.011
Always Adopt, 

Control
0.608 ​ 0.211 ​ ​ ​

Always Adopt, 
Treated.

− 0.843 * 0.062 − 1.451 ** 0.024

Notes: The table reports the marginal effects for categories of labor-intensive 
adoption. The upper panel, 6a, gives results for the marginal effects of being 
located drought-prone areas for treated and controls, while 6b provides infor
mation the same information but for heavy rainfall-prone areas.
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Gulledge, 2011).

5.5. Robustness checks

A first test consists in redefining the categorical adoption pathways 
around their potential outcomes, rather than the main constraints to 
adoption. In particular, while all labor-intensive practices are related to 
soil fertility management, land-intensive practices include soil fertility 
trees. We create a soil fertility category that includes all labor-intensive 
practices plus fertility trees, and a soil and water conservation category 
includes all of the land-intensive practices except fertility trees. Results 
are reported in Tables A3 and A4 in Appendix 2, and are substantially 
similar to results found in Tables 3 and 4 As a second test, we merge 
together experimenters with dis-adopters, and flexible adopters with 
adopters, thus passing from six to four adoption categories. Tables A5 
and A6 in Appendix 3 report the results for the labor-intensive and land- 
intensive categories, which remain consistent results found in Tables 3 
and 4

6. Concluding comments

This paper aims at contributing to the understanding of factors 
associated with the dynamics of adoptions decisions given households 
constraints, agro-ecological characteristics and climatic patterns. To this 
purpose we used a unique three-period panel dataset constructed to 
evaluate the impacts of a project promoting sustainable agricultural 
development through “good agricultural practices” in Malawi. Noting 
that many previous projects had limited success in promoting similar 
practices, we focused on the determinants of adoption pathways docu
mented over the three survey waves. To conduct a more systematic 
analysis of the dynamic of adoption we used adoption pathway trees 
differentiating types of adoption pathways based on the intensity of 
labor or land required. The pathway trees are presented in Fig. 1a and b 
and clearly highlight how and to what extent the adoption decision is 
dynamic for both labor and land practices, given that overall only a 
relatively small percentage of the total sample never adopt (23% for 
land and 35% for labor). The decision tree also suggests that households 
are more likely to be constrained by labor than by land, since labor- 
intensive practices have a higher percent of never adopters and lower 
percent of always adopters compared to land-intensive practices.

Results from the multinomial logit estimations suggest that there are 
some general factors influencing both types of adoption pathways – 
labor or land intensive - but also significant differences in the factors 
that drive the two types of adoption pathways. For instance, climate and 
agro-ecological characteristics do not have a significant impact on dis
tinguishing different adoption pathways from never adoption for labor- 
intensive, outside of altitude. Instead, information dissemination and 
wider learning opportunities – either through the SAPP project or 
through greater availability of extension – have significant impacts on 
adoption, including flexible adoption and experimentation. Learning by 
observing neighbors did not increase the likelihood of pursuing an 
adoption pathway vis-à-vis never adopters. On the other hand, with 
respect to land-intensive adoption, being located in drought-prone and 
heavy rainfall-prone areas significantly increased the probability of 
being an adopter, and always adopter. On the other hand, access to in
formation and learning opportunities had limited impacts; the SAPP 
project did not significantly influence adoption decision, whereas the 
number of farm families only increased the probability of being an 
adopter. Instead learning by observing, proxied by proportion of 
households in the community adopting land-intensive practices at 
baseline, was significantly increased the likelihood of all adoption 
pathways vis-à-vis never adoption. For land-intensive practices, then, 
learning by observing was more effective than learning by experiment
ing or learning through information dissemination. For both labor- and 
land-intensive practices, higher altitudes and more agricultural assets 
favored both adoption and transient adoption. And, for land-intensive 

practices, being located in a drought prone area, being located closer 
to market and where there are greater opportunities to learn all favored 
flexible adoption, consistent with higher marginal benefits and lower 
marginal costs of transitioning in and out of adoption as hypothesized.

Overall, our results suggest that households need flexibility in their 
choices, both when they are labor-as well as when they are land- 
constrained. It is also clear that access to information is critical to the 
adoption decision, though learning about different GAPs may be more 
successful through different learning mechanisms. It would appear that 
the SAPP project was relatively more successful at spurring labor- 
intensive adoption through information dissemination, but less able to 
generate significant amount of learning by observation to spur adoption 
of land-intensive practices.

The fact that adoption of GAPs is dynamic has implications both for 
the types of GAPs promoted and how they are promoted but also on 
designing projects that support adoption while recognizing that flexi
bility in adoption status is of value to smallholders. Additionally, our 
results suggest that taking a snapshot of adoption at one period of time 
may portray a too pessimistic picture of adoption and lead to the wrong 
conclusions. This is highlighted by the decision tree; at baseline, 54% 
and 56% did not adopt land- and labor-intensive practices, respectively; 
but, only 23% never adopted any land-intensive practices and only 35% 
never adopted any labor-intensive practices at endline.

The literature cited above notes that for many land-intensive prac
tices, benefits do not accrue until at least three years or more of 
continuous adoption. For instance, the SAPP project did promote con
servation agriculture (minimum soil disturbance, permanent ground 
cover and crop rotation), which many proponents argue must be 
continuously adopted for at least 3–5 years to reap the full benefits 
(Giller et al., 2009). In 2020, less than 1% of households practiced 
minimum soil disturbance, and no one practiced all three. Fortunately, 
SAPP promoted a range of other practices as well.

Our results also highlight the important role played by information 
and its diffusion in spurring the adoption decision, thus, contributing to 
a growing but still limited literature on effective information dissemi
nation strategies. In particular, our results suggest that labor-intensive 
practices may well be amenable to less costly dissemination strategies 
through agricultural extension-based digital media campaigns to help 
increase the “availability” of extensionists. Land-intensive practices, 
however, require greater visual transmission of knowledge and a clear 
pathways and timeline for benefits to accrue compared to the in
vestments made and the constraints faced.

The results of the analysis presented in this paper offer a strong 
support to more effective project design and investment strategies that 
promote suitable good agricultural practices (GAPs), considering land, 
resource, and labor constraints, as well as areas affected by weather 
shocks and climate variability. Specifically, analysis suggest that 
tailored support is crucial for drought- and rainfall-prone areas where 
land-intensive practices are more likely to succeed with better access to 
extension services and learning by observing. Investments and policies 
should, thus, focus on providing targeted support mechanisms, such as 
incentives for land-intensive practices and enhancing demonstration 
opportunities and extension agent presence. The same applies in higher 
altitudes where land intensive adoption is more likely. For labor- 
intensive practices, which are more flexible, easier access to micro
credit or rotating grants could facilitate transient adoption and 
adaptation.

With respect to limitations of the analysis, though we were able to 
use a three-period panel dataset to perform our analysis, which is a step 
in the right direction, one would optimally like to have access on 
adoption decisions over more time periods. In Malawi, there is one main 
growing season, which means data covering more than three years. In 
other contexts, there are more growing seasons within the year, which 
may make data collection less costly. Alternatively, for project impact 
assessments, short surveys on adoption on a yearly basis would help 
augment information gathered in the baseline, midline and endline 

N. McCarthy et al.                                                                                                                                                                                                                              Journal of Environmental Management 370 (2024) 122636 

11 



surveys. We have also aggregated different adoption decisions into land 
and labor intensive categories, and though results are similar if aggre
gating by benefits (soil fertility, soil and water conservation), this choice 
is mainly driven by limited adoption of a wide range of more specifically 
defined practices. Further research is needed to better conceptually 
ground the choice of aggregation in specific contexts. Finally, more 
evidence is needed to understand the value of flexibility in adoption 
choices over time and the implications for project development, 
particularly given the likely increase in the frequency and severity of 
weather extremes.
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Peru, Côte d’Ivoire and Vietnam. J. Dev. Econ. 70 (1), 133–157.

Feder, G., Just, R.E., Zilberman, D., 1985. Adoption of agricultural innovations in 
developing countries: a survey. Econ. Dev. Cult. Change 33 (2), 255–298.

Foster, A.D., Rosenzweig, M.R., 1995. Learning by doing and learning from others: 
human capital and technical change in agriculture. J. Polit. Econ. 103 (6), 
1176–1209.

Giller, K.E., Witter, E., Corbeels, M., Tittonell, P., 2009. Conservation agriculture and 
smallholder farming in Africa: the heretics view. Field Crop Research 114 (1), 23–34.

Grabowski, P.P., Kerr, J.M., Haggblade, S., Kabwe, S., 2016. Determinants of adoption 
and disadoption of minimum tillage by cotton farmers in eastern Zambia. Agric. 
Ecosyst. Environ. 231, 54–67.

Gertler, Paul J., Martinez, Sebastian, Premand, Patrick, Rawlings, Laura B., 
Vermeersch, Christel M.J., 2016. Impact evaluation in practice. Impact Evaluation in 
Practice, second ed. Inter-American Development Bank and World Bank, 
Washington, DC. Second Edition. 

Global Mechanism of the UNCCD, 2018. Country profile of Malawi. Investing in land 
degradation neutrality: making the case. An Overview of Indicators and Assessments. 
Bonn, Germany 1–34.

Griliches, Z., 1957. Hybrid corn: an exploration in the economics of technological 
change. Econometrica. J. Econom. Soc. 501–522.

Gono, H., Takane, T., 2018. Is Africa advancing food security? Insights from rural 
households in Malawi. Tropical Agriculture and Development 62 (1), 24–34.

Huber, D.G., Gulledge, J., 2011. Extreme weather and climate change: understanding the 
link, managing the risk. Arlington: Pew Center on Global Climate Change 1–13.

IFAD, 2011. Sustainable Agriculture Production Programme. Programme Design Report. 
IFAD, Rome, Italy. 

IPCC, 2021. Technical summary. In: Climate Change 2021: the Physical Science Basis. 
Contribution of Working Group I to the Sixth Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA, pp. 33–144. https://doi.org/ 
10.1017/9781009157896.002.

Jayne, T.S., Snapp, S., Place, F., Sitko, N., 2019. Sustainable agricultural intensification 
in an era of rural transformation in Africa. Global Food Secur. 20, 105–113.

Khanna, M., 2001. Non-mandatory approaches to environmental protection. J. Econ. 
Surv. 15 (3), 291–324.

Khanna, M., Isik, M., Winter-Nelson, A., 2000. Investment in site-specific crop 
management under uncertainty: implications for nitrogen pollution control and 
environmental policy. Agric. Econ. 24 (1), 9–12.

Kirui, O., Mirzabaev, A., 2015. Drivers of land degradation and adoption of multiple 
sustainable land management practices in Eastern Africa. Paper Presented at the 
International Conference of Agricultural Economists. August 8-14, 2015, No. 1008- 
2016-80052. 

Krishnan, P., Patnam, M., 2014. Neighbors and extension agents in Ethiopia: who matters 
more for technology adoption? Am. J. Agric. Econ. 96 (1), 308–327.

Lahiri, R., Ding, J., Chinzara, Z., 2018. Technology adoption, adaptation and growth. 
Econ. Modell. 70, 469–483.

Li, G., Messina, J.P., Peter, B.G., Snapp, S.S., 2017a. Mapping land suitability for 
agriculture in Malawi. Land Degrad. Dev. 28 (7), 2001–2016.

N. McCarthy et al.                                                                                                                                                                                                                              Journal of Environmental Management 370 (2024) 122636 

12 

https://doi.org/10.1016/j.jenvman.2024.122636
https://doi.org/10.1016/j.jenvman.2024.122636
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref1
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref1
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref1
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref2
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref2
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref2
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref3
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref3
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref3
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref4
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref4
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref4
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref5
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref5
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref5
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref6
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref6
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref7
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref7
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref8
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref8
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref9
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref9
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref10
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref10
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref11
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref11
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref11
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref12
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref12
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref12
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref13
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref13
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref13
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref14
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref14
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref15
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref15
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref15
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref15
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref16
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref16
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref17
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref17
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref18
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref18
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref19
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref19
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref20
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref20
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref21
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref21
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref22
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref22
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref22
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref23
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref23
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref24
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref24
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref24
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref25
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref25
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref25
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref25
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref26
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref26
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref26
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref27
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref27
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref28
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref28
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref29
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref29
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref30
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref30
https://doi.org/10.1017/9781009157896.002
https://doi.org/10.1017/9781009157896.002
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref32
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref32
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref33
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref33
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref34
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref34
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref34
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref35
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref35
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref35
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref35
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref36
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref36
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref37
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref37
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref38
http://refhub.elsevier.com/S0301-4797(24)02622-7/sref38


Li, J., Peng, S., Li, Z., 2017b. Detecting and attributing vegetation changes on China’s 
Loess Plateau. Agric. For. Meteorol. 247, 260–270.

Macours, K., 2019. Farmers’ demand and the traits and diffusion of agricultural 
innovations in developing countries. Annual Review of Resource Economics 11, 
483–499.

Maertens, A., Michelson, H., Nourani, V., 2021. How do farmers learn from extension 
services? Evidence from Malawi. Am. J. Agric. Econ. 103 (2), 569–595.

MAIWD, 2016. Agriculture Sector Performance Report 2015/2016 Fiscal Year. Ministry 
of Agriculture, Irrigation, and Water Development. Final Report from the Joint 
Sector Review. Lilongwe, Malawi. 

MAIWD, 2022. The agriculture production estimate survey. Lilongwe, Malawi: Ministry 
of Agriculture, Irrigation and Water Development 1–73.

Maggio, G., Sitko, N., 2019. Knowing is half the battle: seasonal forecasts, adaptive 
cropping systems, and the mediating role of private markets in Zambia. Food Pol. 89, 
101781.

Makate, C., 2019. Effective scaling of climate smart agriculture innovations in African 
smallholder agriculture: a review of approaches, policy and institutional strategy 
needs. Environ. Sci. Pol. 96, 37–51.

Makate, C., Makate, M., Mango, N., Siziba, S., 2019. Increasing resilience of smallholder 
farmers to climate change through multiple adoption of proven climate-smart 
agriculture innovations. Lessons from Southern Africa. J. Environ. Manag. 231, 
858–868.

Malawi National Statistical Office, 2020. Fifth Integrated Household Survey 2019-2020 
and Integrated Household Panel Survey 2019. Lilongwe, Malawi: NSO.

McCarthy, N., Lipper, L., Branca, G., 2011. Climate-Smart Agriculture: Smallholder 
Adoption and Implications for Climate Change Adaption and Mitigation. FAO, Rome. 

McCarthy, N., Kilic, T., De La Fuente, A., Brubaker, J.M., 2018. Shelter from the storm? 
household-level impacts of, and responses to, the 2015 floods in Malawi. Economics 
of Disasters and Climate Change 2 (3), 237–258.

McCarthy, N., Kilic, T., Brubaker, J., Murray, S., de la Fuente, A., 2021. Droughts and 
floods in Malawi: impacts on crop production and the performance of sustainable 
land management practices under weather extremes. Environ. Dev. Econ. 26 (5–6), 
432–449, 237-258. 

MVAC, 2005. Malawi baseline livelihood profiles version 1. Malawi vulnerability 
assessment committee. Lilongwe, Malawi: Malawi Vulnerability Assessment 
Committee 1–65.

Munshi, K., 2004. Social learning in a heterogeneous population: technology diffusion in 
the Indian Green Revolution. J. Dev. Econ. 73 (1), 185–213.

Niu, C., Ragasa, C., 2018. Selective attention and information loss in the lab-to-farm 
knowledge chain: the case of Malawian agricultural extension programs. Agric. Syst. 
165, 147–163.

Ricker-Gilbert, J., Jumbe, C., Chamberlin, J., 2014. How does population density 
influence agricultural intensification and productivity? Evidence from Malawi. Food 
Pol. 48, 114–128.

Ruzzante, S., Labarta, R., Bilton, A., 2021. Adoption of agricultural technology in the 
developing world: a meta-analysis of the empirical literature. World Dev. 146, 
105599.

Schlenker, W., Roberts, M.J., 2009. Nonlinear temperature effects indicate severe 
damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 106 
(37), 15594–15598.

Seo, K.W., Wilson, C.R., Han, S.C., Waliser, D.E., 2008. Gravity Recovery and Climate 
Experiment (GRACE) alias error from ocean tides. J. Geophys. Res. Solid Earth 113 
(B3).

Senyolo, M.P., Long, T.B., Blok, V., Omta, O., 2018. How the characteristics of 
innovations impact their adoption: an exploration of climate-smart agricultural 
innovations in South Africa. J. Clean. Prod. 172, 3825–3840.

Shikuku, K.M., Winowiecki, L., Twyman, J., Eitzinger, A., Perez, J.G., Mwongera, C., 
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