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Abstract. This paper proposes the use of smart 360-degree cameras for
activity monitoring. By exploiting the geometric properties of these cam-
eras and adopting off-the-shelf tracking algorithms adapted to equirect-
angular images, this paper shows how simple it becomes deploying a
camera network, and detecting the presence of pedestrians in predefined
regions of interest with minimal information on the camera, namely its
height. The paper further shows that smart 360-degree cameras can en-
hance motion understanding in the environment and proposes a simple
method to estimate the heatmap of the scene to highlight regions where
pedestrians are more often present. Quantitative and qualitative results
demonstrate the effectiveness of the proposed approach.
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1 Introduction

In recent years, there has been a growing interest in multi-camera systems for
activity monitoring. Such systems are often based on distributed smart cameras
able to sense the environment, detect pedestrians and objects of interest, and
recognize who is doing what.

3D spatial information is especially useful to monitor activities in large, com-
plex areas such as buildings, airports, malls, and crowded environments. To
acquire 3D spatial information and use it in multi-camera systems, geometric
camera calibration techniques are often used for estimating both intrinsic and
extrinsic parameters of the video cameras and the mutual camera positions.
While recent progress in the field can make the task at hand easier, still the
calibration procedure is time-consuming and requires precise information about
the environment, often acquired by imaging predefined patterns.

360-degree camera devices acquire panoramic images with a field of view of
360 and 180 degrees horizontally and vertically, respectively. In the resulting
spherical image (stored as equirectangular image), pixels are mapped onto a
sphere centered into the camera. It is worth stressing that 360-degree cameras
are not ceiling fisheye cameras, since sometimes the two are confused.
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Fig. 1. The image shows a simple scenario where persons move around the environment
(ideally a mall or a museum). On the ground, RoIs are marked in black. The goal is
to detect when persons are within the RoI given the output of a multi-object tracker.
On the left, the polar plot represents the ground plane, the locations of the targets
(see ID and colors), and the RoIs (rectangles). The plot is centered on the location of
the camera on the ground. Red rectangles are RoIs on which pedestrians have been
detected. The same areas are highlighted in red on the equirectangular image shown
on the right.

In this paper, we envision a multi-camera system where each smart camera
can independently and easily recover spatial information without complex cam-
era calibration procedures. In our system, each smart-camera is a 360-degree.
Recently, a new method has been proposed in [16] to estimate the distance of
the objects from a 360-degree camera given only its height and the coordinates,
in the equirectangular image, of the contact point of the target with the ground
plane. The method has been also used in [14] within a tracking technique to esti-
mate the targets’ locations onto the ground plane and enhance tracking. Inspired
by these former works, we propose:

– a simple method to find correspondences among spherical cameras, thus
enabling the deployment of 360-degree camera network;

– a novel method for activity monitoring that uses 360-degree cameras to de-
tect pedestrians within areas of interest with minimal effort;

– a novel method to discover the most visited areas in the scene.

The methods proposed in this paper contribute to show that the use of 360 de-
grees cameras can simplify activity monitoring by providing spatial information
with extremely simple computations and very few information about the envi-
ronment. Such computation can be easily done onboard of the smart camera by
exploiting the geometric properties of the cameras, and adopting an off-the-shelf
tracking algorithm adapted to equirectangular images.

To demonstrate our idea, we consider two simple scenarios. In the first, the
scene is monitored by two 360-degree cameras and a person is moving around.
This scenario is used to demonstrate how to recover correspondences on the
ground plane between the two camera predictions. In the second scenario, several
persons move in an environment (ideally a mall or a museum) monitored by
360-degree cameras. The goal is detecting when pedestrians are within regions
of interest (RoIs) given the output of a multi-object tracker. Figure 1 shows
a sample image. For the sake of clarity, RoIs are marked on the ground. Such
regions can correspond to areas close to shop windows in a mall or to museum
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cases. To clarify the task, on the left in Fig. 1 there is a polar plot of the locations
of the targets in the monitored area. Rectangles represent RoIs on the ground.
Each green circle is one meter apart and rectangles have been drawn considering
their (known) locations in the real world, in a reference system centered on
the location of the camera on the ground (the projection of the camera on
the ground plane). As shown in the figure, red rectangles correspond to RoIs
on which pedestrians have been detected on. On the right, the equirectangular
image with overlaid the output of the multi-object tracker shows the locations
of the pedestrians in the scene.

In Sec. 2, we present related work about activity monitoring techniques based
on pedestrians’ trajectories. In Sec. 3, we provide details about the geometry of
the 360-degree cameras and the relation between equirectangular image pixel
coordinates and the ground-plane. In Sec. 4 we present our novel methods while
in Sec 5 we report some implementation details. Finally, in Sec. 6 we report
experimental results, and in Sec. 7 we discuss conclusions and future work.

2 Related Work

One of the fundamental issue in real-world surveillance is that of optimal camera
placement. Furthermore, to get 3D spatial information, camera calibration needs
to be performed. Somehow, we are far from systems that can be easily installed
or moved because a change in a camera position may require recalibration of the
set of deployed cameras.

In [13], coordination between multiple cameras is done through a self-calibration
technique using feature correspondences to determine the camera geometry. In
particular, planar geometric constraints to moving objects in the scene are used
in order to align the scene’s ground plane across multiple views. The homogra-
phy matrix is used to recover the 3D position of the ground plane and the cam-
era positions. This enables them to recover a homography matrix which maps
the images to an overhead view. In this paper, we propose the use of smart
360-degree cameras that, in our opinion, represents a step forward towards the
building of easily deployable surveillance systems. In our approach, we only need
the camera height to find the location on the ground of the pedestrians. Corre-
spondences among 360-degrees cameras (with overlapping field-of-view) can be
achieved easily by aligning detections on the ground-plane.

In this paper, we also show how to use 360-degree cameras for simple activity
monitoring tasks that are complex to solve with standard cameras. There are
several works on vision-based activity monitoring. A simple one is in [10], where
activity monitoring is achieved by considering two cameras. First, cameras are
calibrated to determine intrinsic and extrinsic parameters by the method in [15].
The calibration involves selecting parallel lines and other features in the ground
plane of the image. The result of the calibration is the homography transforma-
tion matrix between images coordinates and world coordinates for the camera,
as well as the intrinsic and extrinsic (position and orientation) parameters of the
camera. The method performs pedestrian tracking and then classifies human
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motion into classes such as Walking, Stopped, Running, Loitering, Falling and
Moving into an area of interest. This transition from image to world coordinates
is accomplished by transforming all points measured in the image through the
estimated homography matrix. Similarly to [10], we also perform tracking and
use the pedestrian location on the ground to detect the kind of activities. In par-
ticular, we focus on the standing within areas of interests. In contrast to [10] we
do not perform calibration to recover intrinsic and extrinsic camera parameters.
Under this point of view, our system is simpler and easy to deploy.

Some earlier works [6, 21, 20, 5] proposed approaches to monitoring activities
by using ceiling mounted omnidirectional cameras [5], in particular catadioptric
devices [17], that are made of a convex mirror and a camera, pointing up to the
mirror. These devices are difficult to calibrate, as the shape of the mirror must
be known to compensate the angle-based distortion. We stress here that these
devices are different than 360-degree cameras. In [6], a MRF is used to model the
background and, hence, detect the foreground. Thus, trajectories on the image
plane are recovered by tracking algorithms. No spatial information is recovered
and activity is monitored in terms of seconds a person is standing or is walking.
In [21], motion detection and people tracking take advantage from motion history
images, CamShift and optical flow. A fall detection method for elderly care
is also proposed by using a calibrated one-to-one correspondence between the
ground locations and the omnidirectional vision sensor images. In [20, 19], the
catadioptric sensor is calibrated and used to track moving objects and adjust
pan, tilt and zoom parameters of another PTZ camera.

There are many other works focusing on vision-based activity recognition [22,
1, 2, 7, 9, 12]. However, the kind of task these methods consider may largely differ
from the one we aim to solve. For the sake of demonstrating that smart 360-
degree cameras can enhance activity monitoring we consider the task of detecting
if a person is inside/outside an area of interest. We also show that it is easy to
analyze the scene and detect the most visited regions.

3 Equirectangular Images and their Geometry

According to the geometrical observations in the work [16], given an equirectan-
gular image, namely the projection of a spherical image acquired by a 360-degree
camera, and given the camera height, it is possible to estimate the distance of all
the points of the ground plane from their pixel coordinates. For tracking appli-
cations, when a target is detected on the image plane, its ground touching point
is approximated by the middle point of the lower side of its bounding box. It is
then possible to estimate the polar coordinates of the target on the ground in a
reference system centered onto the projection of the camera on the ground. In
polar coordinates, a target is represented by its distance from the camera and
an angle. In this section we provide details on the adopted reference systems.

360-degree cameras are made of at least two lens and can acquire panoramic
images with a field of view of 360 degrees horizontally and 180 degrees vertically.
Thus, at each shot, it can entirely sense the surrounding environment.
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Fig. 2. The figure shows an equirectangular image. The 360-degree camera used to
acquire this image is made of two lenses. The left and right image sides have been
acquired by one of the two lenses; the central image part has been acquired by the
other lens. Thus, the equirectangular image shows how the spherical one is projected.
The middle line represents the equator of the spherical image, while the most up and
lowest rows are the sphere poles.

In 360-degree cameras, pixels are mapped onto a sphere centered into the
camera. Equirectangular and cubic projections are often adopted to make use of
these images [8]. In particular, equirectangular images project the whole sphere
onto a single image. As shown in Fig. 2, in these images, the central row repre-
sents the sphere equator, while the uppermost and lowermost rows correspond
to the sphere poles. In general, rows of an equirectangular image correspond to
the intersections between the sphere and the planes parallel to the horizontal
camera plane [16], and columns are the intersections between the sphere and a
vertical plane, including the pole axis, rotated by an angle around the polar axis.

Pixel coordinates (xr, yr) of the equirectangular image represent the normal-
ized values of polar and azimuth angles of the corresponding point on the sphere
surface. The angles can be recovered from the pixel coordinates by a simple re-
scaling and shifting such that the polar angle ϕ ranges in [−90◦, 90◦], while the
azimuth angle θ ranges in [−180◦, 180◦]. Of course, by this projection, the radial
coordinate of the spherical coordinate system cannot be preserved.

3.1 From equirectangular image to ground-plane coordinates

Fig. 3, on the left, shows the ground plane of the monitored scene and the adopted
coordinate reference system. The coordinate reference system is centered on the

Fig. 3. The image on the left shows the real-world reference system centered on the
projection of the camera on the ground. Each circle is one meter apart. The plot
represents the overhead view of the ground-plane. On the right, the image shows the
locations of the RoIs represented by pairs of points (1 and 2 for each RoI). All points
not within a Roi is classified as “no RoI”.
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Fig. 4. The image on the left is an equirectangular image overlaid with the tracking
output and the equator line. The height of the image is H. For identity 6 (in magenta
and to the right of the image), the location of the feet (xf , yf ) in pixel coordinates
is approximated as the middle point of the lower side of the bounding-box enclosing
the subject on the image. The angle α is measured as the angular distance from the
Equator line (Eq. 2). On the right, in the real world, the distance d on the ground-plane
of the subject to the camera can be estimated by Eq. 1 by knowing the camera height
hc and the angle α.

projection of the camera on the ground (C). All circles in the plot are 1 meter
apart. Given a point T on the ground plane, we can either consider its Cartesian
coordinates as well as its polar coordinates. In the figure, point T has polar
coordinates (3, 45) namely the distance on the ground from the camera is 3
meters and the polar angle is 45 degrees.

Assuming the horizontal camera plane is parallel to the ground-plane (i.e.,
the camera roll angle is equal to 0), the only information needed to associate
equirectangular image pixel coordinates to a ground-plane point in the real world
is the camera height hc. As reported in [16] and shown in Fig. 4, given a point
on the ground, the distance d from the camera can be estimated as:

d = hc cotα (1)

where α is the angle between the ground plane and the line through the camera
center and the point on the ground. Fig. 4 aims at representing the angle α given
the target bounding-box. Let us consider the subject at the extreme right (in
magenta color). The point on the ground in pixel coordinates is approximated
by the middle point P of the lower side of the bounding-box. Let us assume that
the height of the equirectangular image is H and that P = (xf , yf ). Thus, by
applying the equation

α =
H
2 − yf

H
2

· 90◦ (2)

we can recover the angle α. The coordinate xf is normalized and used to find the
azimuth angle θ. Therefore we can transform each point on the ground from the
equirectangular pixel coordinates (xf , yf ) to the corresponding polar coordinates
in real-world (d, θ).
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4 Activity Monitoring in 360-degree camera network

Activity monitoring is a wide field in computer vision. Many tasks require that
the location on the ground plane of the targets is known and camera calibration
techniques to estimate intrinsic and extrinsic camera parameters are applied.

As already explained in Sec. 3, location on the ground plane can be recovered
by each 360-degree camera independently. Here we show that, when the exact
relative camera pose (horizontal orientation and relative position) is unknown,
correspondences between the reference systems of the cameras can be found by
a simple alignment technique. We also focus on two applications. In the first
one, we aim at detecting whether a target stands within an apriori known area
of interest. The second application refers to the detection of the areas mostly
frequented in the monitored environment.

4.1 Correspondences between the camera reference systems

We consider a system of two 360-degree cameras. Fig. 6 shows the trajectory
on the ground-plane of the same pedestrian as estimated independently by the
two cameras. Despite the ground plane is the same, the points are represented in
different coordinate systems. Hence, we need to find the geometrical transforma-
tion that allows changing the coordinate reference system. The problem can also
be seen as a point clouds alignment problem and is solved by working in Carte-
sian coordinates and establishing the correspondences between points (x1, y1)
and (x2, y2) in the two reference systems respectively. The correspondence is
modeled as a roto-translation transformation:[

x1
y1

]
=

[
cosψ −sinψ
sinψ cosψ

]
·
[
x2
y2

]
+

[
δx
δy

]
(3)

where ψ is the rotation angle while [δx, δy] represent the translation coefficients.
In our method, we simply use the trajectories estimated independently by

each camera on the ground-plane by using a pedestrian tracker adapted to
equirectangular images. Thus, we consider those frames where the person is
detected in both the cameras and estimate the geometrical transformation that
aligns the points. Such estimation can be done by minimizing the mean square
error using the least-squares (LS) method. The method works if the horizontal
camera plane is parallel to the ground-plane. When this assumption does not
hold, the roll angle of each camera must be known, and equirectangular images
need to be corrected to account for it.

4.2 Detecting activities within areas of interests

One challenging task in vision-based activity monitoring is the detection of
pedestrians moving into areas of interest. It is an important task in several appli-
cations such as: surveillance (pedestrians enter a restricted access area), cultural
heritage (visitors are too close to an art opera) or retail applications (customers
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are more interested to a shop rather than another). In all these fields, areas of
interest are generally apriori known and defined. The complex task is to recover,
from the visual information, the pedestrians’ locations on the ground to estimate
their position with respect to the area of interest (inside or outside). Here, we
show that the task becomes extremely simple when 360-degree cameras are used.

In our application, RoIs are modeled by means of their actual real-world
coordinates. In Fig. 3, on the right, three regions of interest are considered. Our
method does require two points on the ground to describe each RoI.

To detect if a pedestrian is within an area of interest, we model his/her loca-
tion on the ground by means of the middle point of the lower side of the bound-
ing box estimated on the equirectangular image. Then, by means of equations 1
and 2 we estimate the location on the ground plane in real world coordinates and
compare it with the RoI position in the scene. No further processing is required.

4.3 Detecting areas of interest in the scene

When areas of interest are not provided, or it is of interest to detect what part
of the scene has been the most or the least frequented by the pedestrians, it is
useful to build a discretized heatmap of the environment. In our approach, it
is possible to collect accurate measurements of the pedestrian locations on the
ground-plane and the estimation of the heatmap is straightforward.

As shown in Fig. 5, it is sufficient to divide the ground plane into circular
bins. In particular, we divided it into N circular sectors, with a fixed step angle
(in the image on the left, 45 degrees, namely N = 8). Then each circular sector is
divided intoM+1 circular bins. Such circular bins can be easily re-projected onto
the equirectangular image. Based on the equirectangular projection properties,
circles in the real world are mapped into lines, and circular sectors are mapped
into vertical stripes (see the image on the right in Fig. 5). Thus, each circular bin
is a rectangle in the equirectangular image. When the distance from the camera
increases, the height of the rectangles decreases, and, on the equirectangular
image, the bins are not uniformly distributed in the vertical direction.

The heatmap can be easily computed by incrementing the circular bins each
time a pedestrian is located inside the cell represented by the bin itself. The
computation can be carried on both in polar and in pixel coordinates given a
precomputed grid on the equirectangular image. Once the heatmap is computed,
it is possible to recover the most trampled area in the scene.

5 Implementation Details

All proposed methods rely on the output of a multi-object tracking algorithm.
Any MOT method can be adapted to the tracking in equirectangular images,
provided that circularity of the image is taken into account. Despite tracking is
not the focus of this paper, here we describe the strategy adopted to get the
pedestrians’ bounding-boxes.
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Fig. 5. On the left, the image shows how the ground plane is partitioned in circular
bins to accumulate information about the most visited sites in the scene. The image on
the right shows how the binarization of the polar space is remapped onto the equirect-
angular image.

Tracking on the ground plane by 360-degree cameras has already been pro-
posed in [14]. The work describes a simple MOT strategy, based on the tracking-
by-detection paradigm, that uses Faster-RCNN [18] to locate persons on the im-
age plane. To account for the image circularity, the image is expanded at both
the sides and duplicated detected bounding-boxes are removed.

The target’s location on the ground is used in [14] to enhance the association
between new detections and predicted target locations. The latter are computed
by using the Kalman filter while data association is solved by the Munkres
algorithm. The data association matrix combines the distance among targets in
the real world and appearance features extracted from a ResNet-50 [11] model.
Furthermore, thresholds are used to decide when to add a new identity to the
target pool and when to kill an identity by removing it from the same pool.

In this paper, we implemented our own version of the work in [14] with
some small changes. First, we detect pedestrians by YOLOv5 [4], which provides
better detection and has a lower missing rate. Considering that the detections are
provided at a good rate also in case of severe partial occlusions, we avoided using
the Kalman filter. We simplified the data association strategy by considering an
approach similar to that used in SORT [3]. First, we associate the most recently
detected targets, and later the ones missing from the scene for more time. We also
store the appearance features of the last 20 frames and use them to compute the
association matrix. Since in crowded environments occlusions are more frequent,
we found it preferable to compute smaller tracks than to risk higher identity
switch rates, and therefore we decreased the threshold to kill missing identities.
Then, we applied a post-processing step to rejoin the tracks based on similarity
in position and appearance.

6 Experiments

There are not many publicly available dataset of videos acquired by 360-degree
cameras, and none of the public ones is multi-camera nor focuses on activity
monitoring. Therefore, we collected and manually annotated videos to demon-
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Table 1. Camera Correspondences Evaluation

Method ψ (deg) δx(m) δ(m)y rmse (m)

LS-M 2.29 2.90 0.16 0.20
true values 2.00 3.00 0.00 –

strate the effectiveness of the proposed methods as described in the following.

6.1 Finding correspondences between camera reference systems

We acquired two videos by using two 360-degree cameras. In this scenario, only
two persons were moving around the scene. We used the trajectories estimated
from the two camera videos of one person to estimate the roto-translation matrix,
and tested the correspondences on the trajectories of the second person. Each
trajectory includes around 1800 points.

Table 1 reports the estimated values of the rotation angle ψ, and the trans-
lation coefficients (in meters) obtained from the training trajectories, and the
root mean squared error on the test trajectories. We also report the manually
estimated values.

Comparing the estimated values to the true ones, there is an error lower than
half degree in the estimated angle ψ and of few centimeters in the translation co-
efficients (10 and 16 in the two directions respectively). The rmse is of around 20
cm. From the analysis of the results we concluded that the parameter estimation
is affected by the precision by which feet are approximated on the ground. The
approximation in turn depends on the quality of the detection (which may not
be accurate, especially in case of partial occlusions). Moreover, while a camera
can get a frontal view of a person, the other camera can get a side view. In these
cases, the estimated feet location on the ground may refer to different 3D points.
Another issue we noticed is that the horizontal plane of one of the two cameras
was not perfectly parallel to the ground plane. This explains the measured error
on the translation coefficients and is also visible in Fig. 6. The figure shows the
test trajectory of the pedestrian in the reference system of camera 1 and camera
2. On the right, the figure shows the aligned trajectories. As shown in the figure,
the error becomes more evident 3-4 meters far from the camera.

Fig. 6. On the left, the trajectories of the test person in the reference systems of camera
1 and 2 respectively. On the right, the trajectory detected by camera 2 is re-projected
in the reference system of camera 1 by the estimated roto-translation matrix.
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Table 2. Confusion matrix: actual
(rows) vs. predicted classes (columns).

Class no RoI RoI 1 RoI 2 RoI 3

no RoI 0.982 0.007 0.005 0.005
RoI 1 0.182 0.810 0.008 0
RoI 2 0.185 0 0.815 0
RoI 3 0.226 0 0.001 0.773

Table 3. Precision, recall and F1-Score
for each class.

Class Precision Recall F1-Score

no RoI 0.913 0.982 0.947
RoI 1 0.940 0.810 0.870
RoI 2 0.955 0.815 0.879
RoI 3 0.959 0.773 0.856

6.2 Activity Detection within RoI

To assess the ability of our approach in detecting activities within RoIs, we
collected and manually annotated two videos of persons moving in the scene.
The first video counts 2400 frames, with 13 persons entering/exiting the scene.
The second video counts 2436 and 7 persons moving around. Fig. 1 represents
one sample image from the first video. We marked on the ground of the scene
three RoIs to facilitate manual annotation of the data. Only the identity of each
person and the RoI on which the person is on have been manually annotated.
The person is considered inside an RoI when he/she stands inside the rectangular
area or on the RoI boundaries with both feet. The person is outside the RoI
when one of the feet is outside the RoI. Fig. 7 shows samples of images and
corresponding annotations. Overall, the videos used to test our technique are
very challenging due to the frequent occlusions and changes of directions of the
pedestrians. The subjects involved in the experiments did not know anything
about the method we wanted to test. It has been explained to them that the
rectangles on the ground were marking the area close to shop windows and asked
them to simulate a visit to a mall.

To assess the capability of our method to infer the presence of a person within
an RoI, we treat it as a multi-class classification problem.

At each frame and to each target, we assign a label indicating that the person
is not inside an RoI or is inside one of the three RoIs. Thus, there are overall 4
classes. We compare the estimates of our method against the ground-truth and
computed the confusion matrix, shown in Table 2, and metrics such as precision,
recall, and F1-score, reported in Table 3.

Of course, persons stand inside the RoIs for a time that is lower with respect
to the time they spend outside and far from the RoIs (in areas where confusion
among the two kinds of classes is not possible). Thus, recall of the class “no RoI”

Fig. 7. The figure shows samples and corresponding annotation label. When feet are
visible within the RoI or on its boundary, the assigned label is inside the RoI, otherwise
the subject is considered outside of the RoI (class “no RoI”).
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Fig. 8. The top row of the image shows samples on which our method fails to predict
the correct class. The bottom row shows success cases of our approach.

is especially high. As shown in Table 2, there is very little confusion among the
RoI classes. Only between adjacent RoIs there might be some confusion, when
a person moves fast from an RoI to the adjacent one. As expected, most of the
confusion is between the class “no RoI” and the RoI classes. The confusion is
especially related to the exact time when a person enters the RoI. In some cases,
our method detects earlier when a person is entering the scene, in other cases
the method needs to wait for a few frames before estimating that a person is
outside the area of interest. The main reason why this happens is that the feet of
the pedestrians are approximated as the middle point of the bounding-boxes and
there is not a precise feet localization. Also, the trackers may provide incorrect
bounding-boxes during occlusions.

As shown in Table 3, all metrics for the RoI classes are comparable, which
indicates that the performance of the method is independent of the location of
the RoI with respect to the camera. Of course, RoI must be at a reasonable
distance from the camera. In our experiments, the RoIs were at no more than 2,
3, and 4 meters of distance (see Fig. 3). In other experiments we have seen that
our method works fine at distances lower than 6 meters. Beyond this distance,
the method may be inaccurate mostly because the pedestrian detector is not
able to accurately locate people on the equirectangular image.

Overall, these experiments show the viability of the approach. Some cases of
success and failures of the method are shown in Fig. 8. As the images confirm,
some failure cases are ascribable to inaccurate detection or occlusions.

6.3 Detecting Areas of Interest

The same two videos used to test the activity detection within RoIs were used
to estimate an heatmap of the environment. We also estimate heatmaps on the
CVIP360 dataset [16] including 11 indoor videos, and 6 outdoor videos.

To detect areas of interest, we used the location of the pedestrians on the
ground and computed the discretized heatmap presented in Sec. 4.3. This is
somewhat the inverse problem where, given the pedestrians’ locations, we aim
at discovering the most visited areas in the scene.

Fig. 9 shows the map of the room and the heatmap estimated from the
tracking results on the two collected videos. In the map, circles are 0.5m apart.
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Since persons walk but also stands at specific points in the scene, it is possible
to visually discover areas (in red) that have been more frequented. Comparing
the polar coordinates of these regions with those in Fig. 3, it is possible to state
that these regions correspond to our RoIs.

The CVIP360 dataset includes the manual annotations of the bounding boxes
of the people in the equirectangular image, which we used to estimate the pedes-
trians’ location on the ground. We computed two cumulative heat-maps, shown
in Fig. 10, one for the videos taken outdoor and the other for the videos taken
indoor. The maps show the density of the most trampled areas on the ground
plane. Circles are 1m apart. Note that the heatmaps have N × (M + 1) bins,
where N is the number of circular sectors (8 in our experiments) and M is the
number of circular crowns, which depends on the maximum annotated distance
on the ground plane (M = 6 for the indoor videos, M = 10 for the outdoor
ones) and on the quantization step (1 meter, in our experiments). With respect
to the map in Fig. 9, no evident areas of interest is highlighted. In fact, the
CVIP360 dataset is meant for tracking purposes, and pedestrians continuously
move around the scene. This is very evident in the heatmaps where circular
bins have comparable values. Thus this experiment confirm the viability of the
proposed approach.

7 Conclusions and Future Work

This paper shows how smart 360-degree cameras can enhance multi-camera
surveillance systems in several respects. Firstly, with one 360-degree camera
at the center of the scene, it is possible to sense the surrounding environment.
This choice limits blind spots, common in standard multi-camera systems. Sec-
ondly, smart 360-degree cameras and, more in general, equirectangular image
processing do not need complex calibration techniques to recover the locations
of the objects on the ground plane. The only information required is the camera
height. This simplifies the deployment of the cameras, which does not require
specialized technical skills. Thirdly, as shown in this paper, smart 360-degree
cameras enhance and simplify some activity monitoring tasks, such as detecting

Fig. 9. On the left, the planimetry of the room where we conducted our experiments.
RoIs are colored in red. The optical axis of the camera was parallel to the longer side
and the front lens pointed to the right. On the right, the estimated heatmap with circles
0.5 meter apart. Red and orange areas are related to the RoIs, and the entrance.
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Fig. 10. The two cumulative heatmaps of the indoor(left) and outdoor(right) videos
of the CVIP360 dataset. Circles are spaced 1 meter apart. Color notation is the same
of Fig. 9. No evident areas of interest emerge.

the standing within areas of interest. The computation required to estimate the
relative location of pedestrian and regions of interest are so simple that can be
carried on the devices without increasing the computational complexity of the
algorithms on the smart camera. Finally, this paper shows that projections on
the ground plane of the targets’ locations in different 360-degree cameras are
related by simple roto-translation transformation that can be easily estimated
by state-of-the-art techniques.

There are also some limitations to consider that will be the core of future
investigations. When mounting the camera, there might be some small roll angle
to account for when estimating correspondences between the camera ground-
plane projections. We will study how to include the automatic estimation of this
parameter to find better correspondences between the camera reference systems.

360-degree cameras have a blind spot exactly at their bottom. Furthermore,
distortion near the poles is so large that traditional pedestrian detectors are
unable to deal with it. Specialized detectors are needed to deal with such cases.
Our experiments have shown that the method is very sensitive to the accuracy by
which feet are detected, especially moving far from the camera. On one hand, it
requires improving feet localization on the image. On the other hand, it requires
a better strategy to deal with partial occlusions that make it impossible to
estimate the location on the ground plane.

Despite these limitations, 360◦ cameras are very appealing for practical multi-
camera system applications and their use could spread quickly in the near future.
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7. Climent-Pérez, P., Spinsante, S., Mihailidis, A., Florez-Revuelta, F.: A review on
video-based active and assisted living technologies for automated lifelogging. Ex-
pert Systems with Applications 139, 112847 (2020)

8. Corbillon, X., Simon, G., Devlic, A., Chakareski, J.: Viewport-adaptive navigable
360-degree video delivery. In: 2017 IEEE international conference on communica-
tions (ICC). pp. 1–7. IEEE (2017)

9. Demiröz, B.E., Ari, I., Eroğlu, O., Salah, A.A., Akarun, L.: Feature-based tracking
on a multi-omnidirectional camera dataset. In: 2012 5th International Symposium
on Communications, Control and Signal Processing. pp. 1–5. IEEE (2012)

10. Fiore, L., Fehr, D., Bodor, R., Drenner, A., Somasundaram, G., Papanikolopoulos,
N.: Multi-camera human activity monitoring. Journal of Intelligent and Robotic
Systems 52(1), 5–43 (2008)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

12. Kobilarov, M., Sukhatme, G., Hyams, J., Batavia, P.: People tracking and following
with mobile robot using an omnidirectional camera and a laser. In: Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA
2006. pp. 557–562. IEEE (2006)

13. Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams:
Establishing a common coordinate frame. IEEE Transactions on pattern analysis
and machine intelligence 22(8), 758–767 (2000)

14. Lo Presti, L., Mazzola, G., Averna, G., Ardizzone, E., La Cascia, M.: Depth-aware
multi-object tracking in spherical videos. In: International Conference on Image
Analysis and Processing. pp. 362–374. Springer (2022)

15. Masoud, O., Papanikolopoulos, N.P.: Using geometric primitives to calibrate traffic
scenes. Transportation Research Part C: Emerging Technologies 15(6), 361–379
(2007)

16. Mazzola, G., Lo Presti, L., Ardizzone, E., La Cascia, M.: A dataset of annotated
omnidirectional videos for distancing applications. Journal of Imaging 7(8), 158
(2021)

17. Nayar, S.K.: Catadioptric omnidirectional camera. In: Proceedings of IEEE com-
puter society conference on computer vision and pattern recognition. pp. 482–488.
IEEE (1997)



16 L. Lo Presti, G. Mazzola et al.

18. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems 28 (2015)

19. Scotti, G., Marcenaro, L., Coelho, C., Selvaggi, F., Regazzoni, C.: A novel
dual camera intelligent sensor for high definition 360 degrees surveil-
lance. Intelligent Distributed Surveilliance Systems pp. 26–30 (2004).
https://doi.org/10.1049/ic:20040093

20. Scotti, G., Marcenaro, L., Coelho, C., Selvaggi, F., Regazzoni, C.: Dual camera
intelligent sensor for high definition 360 degrees surveillance. IEE Proceedings-
Vision, Image and Signal Processing 152(2), 250–257 (2005)

21. Wang, M.L., Huang, C.C., Lin, H.Y.: An intelligent surveillance system based on
an omnidirectional vision sensor. In: 2006 IEEE Conference on Cybernetics and
Intelligent Systems. pp. 1–6. IEEE (2006)

22. Zhou, Z., Chen, X., Chung, Y.C., He, Z., Han, T.X., Keller, J.M.: Activity analy-
sis, summarization, and visualization for indoor human activity monitoring. IEEE
transactions on circuits and systems for video technology 18(11), 1489–1498 (2008)


