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Background: The stratification of the general population according to health 
needs allows to provide better-tailored services. A simple score called Multisource 
Comorbidity Score (MCS) has been developed and validated for predicting several 
outcomes. The aim of this study was to evaluate whether the ability of MCS in 
predicting 1-year mortality improves by incorporating socioeconomic data (as 
measured by a deprivation index).

Methods: Beneficiaries of the Italian National Health Service who in the index year 
(2018) were aged 50–85 years and were resident in the Sicily region for at least 
2 years were identified. For each individual, the MCS was calculated according 
to his/her clinical profile, and the deprivation index of the census unit level of 
the individual’s residence was collected. Frailty models were fitted to assess 
the relationship between the indexes (MCS and deprivation index) and 1-year 
mortality. Akaike information criterion and Bayesian information criterion statistics 
were used to compare the goodness of fit of the model that included only MCS 
and the model that also contained the deprivation index. The models were further 
compared by means of the area under the receiver operating characteristic curve 
(AUC).

Results: The final cohort included 1,062,221 individuals, with a mortality rate 
of 15.6 deaths per 1,000 person-years. Both MCS and deprivation index were 
positively associated with mortality.

The goodness of fit statistics of the two models were very similar. For MCS only 
and MCS plus deprivation index models, Akaike information criterion were 17,013 
and 17,038, respectively, whereas Bayesian information criterion were 16,997 and 
17,000, respectively. The AUC values were 0.78 for both models.

Conclusion: The present study shows that socioeconomic features as measured 
by the deprivation index did not improve the capability of MCS in predicting 
1-year risk of death. Future studies are needed to investigate other sources of 
data to enhance the risk stratification of populations.
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Introduction

The increasing life expectancy is doubtless one of the highest 
attainments of the 21st century. On the other hand, aging population 
has led to a rising number of people affected by comorbidities and 
consequently a huge demand for healthcare services (1). With the aim 
of providing better-tailored services and managing expenditure for 
health assistance, healthcare systems, especially those with universal 
health coverage, are investigating ways to improve risk stratification 
of citizens covered by the system (2). The rationale is that by profiling 
beneficiaries of the health system, namely, by classifying individuals 
according to their health needs, policymakers can better allocate 
resources and reduce avoidable events. In addition, identifying the 
number of individuals who need tailored services should improve 
appropriate and timely healthcare for frail citizens and improve 
their prognosis.

A way to identify frail individuals who require tailored 
services is through the concept of multimorbidity (3). Although 
the measurement of multimorbidity is highly variable and there is 
no universally agreed definition (4), numerous scores have been 
developed (5). Models are usually based on the individual count 
of chronic conditions from which every beneficiary of the health 
system suffers, in identifying those independently associated with 
the risk of certain adverse outcomes (e.g., mortality, healthcare 
use, and costs), and in weighing them according to the strength of 
the association between each of them with the outcomes of 
interest. However, as socioeconomic position is known to 
be associated with the development of a range of physical illnesses 
(6) and mortality (7), chronic conditions should be considered 
together with other potential predictors of adverse outcomes. 
Nevertheless, risk stratification tools usually do not account for 
socioeconomic conditions (5), which raises the question of 
whether the prediction of an individual’s outcomes can 
be improved by jointly accounting for socioeconomic conditions 
and multimorbidity status.

With this premise, a real-world investigation has been carried out 
to answer the following two questions: (i) does a model that considers 
the relationship between multimorbidity and clinical outcomes 
improve by incorporating socioeconomic position? and (ii) does 
social and material deprivation modify the relationship between 
multimorbidity and clinical outcomes?

Materials and methods

Setting

This study included data from healthcare utilization databases 
of Sicily, a region of Italy that accounts for approximately 8% of the 
country’s population (almost 5 million individuals). In Italy, the 
whole population is covered by the National Health Service (NHS), 
and an automated system of databases exists in each region aimed 
at collecting a variety of information, including demographic and 
administrative data of residents, admissions in public and private 
hospitals (primary diagnosis, coexisting conditions and 
procedures), and outpatient drug prescriptions. As for many other 
international settings, socioeconomic features are not collected in 
these databases.

Cohort selection

Individuals who in the index year (2018) were aged 50–85 years 
and were resident in Sicily for at least 2 years (i.e., who were recorded 
as beneficiaries of the Regional Health Service before 2016) were 
identified. Among these, those for whom it was possible to link census 
data (see below) formed the study population. The individuals 
included in the study cohort accumulated person-years of follow-up 
from January 1st, 2018 until the earliest date between death (outcome 
of interest), emigration or January 1st, 2019.

Multisource comorbidity score

The Multisource comorbidity score (MCS) was developed and 
validated in Italy for predicting several outcomes (mortality, hospital 
admissions and healthcare costs) (8). For each individual in the study 
cohort, the 34 diseases/conditions contributing to MCS were traced 
from footprints left by NHS beneficiaries through diagnostic codes in 
hospital records and drugs dispensed in community pharmacies. A 
weight was assigned for each disease/condition according to the 
strength of the corresponding condition in predicting 1-year mortality. 
MCS was then calculated as the sum of the weights of the diseases/
conditions identified for each individual. Further information can 
be found in the original paper (8). MCS showed better discriminatory 
power than other commonly used prognostic scores [i.e., Charlson 
comorbidity index, Elixhauser index and Chronic Disease Score 
(9–11)].

The individual record reporting the MCS value of each cohort 
member, jointly with his/her sex, year of birth, and coordinates of 
residence place, were obtained for the current application.

Deprivation index

The Deprivation Index (DI) was developed from the Italian census 
data1 by considering five socioeconomic traits such as low level of 
education, unemployment, non-home ownership, single-parent 
family, and overcrowding (12, 13). A positive association with 
mortality was reported for the DI. Details on methods to calculate the 
DI, comprehensive of recent updating introduced for overcoming 
certain limitations of the original version, are reported in 
the Appendix.

DI calculated according to the last available year of the Italian 
census (2011) was considered for the current application. With the 
aim of accounting for excessive heterogeneity of the index, it was 
categorized by assigning increasing values of 1, 2, 3, and 4. With the 
aim of overcoming the known limitations in the use of quantile 
categories (14), we  used the method of Jenks natural breaks 
optimization, which identifies break points that maximize the 
differences between classes (15).

Data on DI was collected at the census unit level. Census units are 
the smallest administrative areas that divide the Italian territory and 
cover an average of 150 inhabitants each.

1 https://www.istat.it/en/
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Data analysis

With the aim of investigating the association between MCS profile 
and DI, the age above which half of the beneficiaries suffered from at 
least one comorbidity (MCS median age) and the across-age average 
percentage of people with at least one comorbidity (percentage of 
comorbid population) were calculated according to DI categories (16).

As MCS was available at an individual level, whereas DI data was 
available at the census unit level, the population under analysis 
presented a clear hierarchical structure with individuals (level 1) 
nested within the census unit (level 2) (17). In the framework of 
survival analysis, models including random effects are denoted as 
frailty models (18). For assessing whether frailty models better fit than 
conventional Cox proportional hazards model with fixed effects, 
we used the likelihood ratio test (19). Because the null hypothesis of 
equivalence between models was rejected (with a p-value of 0.010), 
the hierarchical structure of data was not ignored in our application. 
Therefore, random intercept models were fitted assuming that the 
distribution of the frailty term followed a gamma distribution. With 
this approach, all individuals in the same census unit had an increase/
decrease in the hazard of death.

With the aim of assessing whether DI may improve the 
prediction of mortality based on the MCS-based model, both 
Akaike and Bayesian information criterion statistics (AIC and BIC 
respectively) were used to compare the goodness of fit of models 
including MCS only and MCS jointly with DI terms. AIC and BIC, 
based on log-likelihood and the number of parameters, can be used 
to compare the goodness of fit by taking into account the model’s 
complexity. The best model is the one with the lowest values of AIC 
and BIC. In addition, the discriminatory power of the two models 
was compared through the corresponding receiver operating 
characteristic (ROC) curves and the area under the ROC curve 
(AUC) (20).

With the aim of evaluating whether DI modified the relationship 
between MCS and mortality, three analyses were performed. First, 
frailty models were fitted to estimate the hazard ratios and 95% 
confidence intervals of death associated with MCS by stratifying for 
the DI categories. Heterogeneity between DI categories (i.e., the DI 
effect modifying capability) was tested by Cochran’s Q test and 

measured with the I2 statistic (21). Second, a frailty model was fitted 
by including MCS, DI, and the interaction term between MCS and 
DI. Third, the ROC curves and corresponding AUCs of MCS were 
calculated within each category of the DI.

Statistical analyses were performed within the R 
software environment.

Results

Study cohort and scores

Among the 1,617,002 eligible cohort members, the availability of 
census data was obtained for 1,062,221 of them (65.7%), the latter 
being included in the study cohort. There was no evidence that 
included individuals were selected with respect to eligible ones 
according to selected features (Supplementary Table S1) and mortality 
rates (being the latter values of 15.6 and 15.8 per 1,000 person-years 
among citizens included and excluded from the study cohort, 
respectively).

Overall, 78 and 1% of citizens had the lowest (0) and the highest 
(4) MCS value, respectively, while 6% of cohort members belonged to 
the worst DI category (Figure 1). The mortality risk was positively 
associated with both indexes. Indeed, the mortality rate ranged 
between 7 and 194 per 1,000 person-years along categories of MCS, 
and from 14 to 18 per 1,000 person-years for DI.

There was a positive association between DI and MCS. As shown 
in Figure 2, MCS median age decreases as raising DI, whereas the 
opposite occurred for the percentage of comorbid population.

The added value of the deprivation index

The model including only MCS showed very similar goodness-
of-fit statistics as the model including both MCS and DI terms (being 
the corresponding AIC and BIC statistics 17,013 and 17,038, and 
16,997 and 17,000). The estimates of the risk of death according to the 
two models are shown in Tables 1, 2. Similarly, the discriminant power 
of models including MCS only and both MCS and DI terms was 

FIGURE 1

Distributions of the multisource comorbidity score and the deprivation index among National Health Service beneficiaries, and 1-year mortality rates 
observed in each category of the scores. Multisource Comorbidity Score was categorized according to the classes defined in the original manuscript 
(8): 0 (score 0–4), 1 (5–9), 2 (10–14), 3 (15–19), and 4 (≥20).
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TABLE 1 Hazard Ratio (HR) and 95% confidence interval (CI), for all-cause 
death associated with Multisource Comorbidity Score.

HR (95% CI)

Multisource Comorbidity Score 1.116 (1.114–1.117)

Akaike information criterion: 17,013; Bayesian information criterion: 16,997.

TABLE 2 Hazard Ratio (HR) and 95% confidence interval (CI), for all-cause 
death associated with Multisource Comorbidity Score and Deprivation 
index.

HR (95% CI)

Multisource comorbidity score 1.116 (1.114–1.117)

Deprivation index

1 1.000 (Ref.)

2 1.081 (1.038–1.125)

3 1.119 (1.069–1.171)

4 1.154 (1.076–1.239)

Akaike information criterion: 17,038; Bayesian information criterion: 17,000.

practically the same, having AUC values of 0.78 for both models 
(Figure 3). The 95% confidence intervals were not reported because, 
owing to the very large sample size, they coincided with the 
AUC values.

MCS and mortality among categories of 
the deprivation index

The association estimates between MCS and mortality according 
to the DI are shown in Figure  4. According to the summarized 
estimates, each additional point of MCS was associated with a 12% 
increased mortality risk (95% CI 8–16%). There was no evidence that 
the association between MCS and mortality differed between strata of 
the DI (I2 = 0%, p-value = 0.999). This was confirmed by including the 
interaction term between MCS and DI in a frailty model (p-
value = 0.130). AUC values associated with the discriminant power of 
MCS were 0.78, 0.78, 0.77, and 0.76 from the first to the last DI 
category (Figure 5).

Discussion

The present study shows that socioeconomic features (as measured 
by the DI) neither improved the capability of MCS in predicting 
1-year risk of death nor modified the relationship between 
multimorbidity and clinical outcomes.

Several aspects of the present study deserve to be mentioned to 
better understand the public health implications. First, consistently 
with published evidence in this field (22–25), it results that the higher 
the small-area social deprivation, the greater healthcare needs in that 
area. Second, our findings are also consistent with previous 
observations that mortality is higher among individuals who live in 
areas on social deprivation (26, 27). Third, as the predictive capability 
of the model including only MCS did not improve by adding the 
average social deprivation, comorbidity almost completely absorbed 

FIGURE 2

Multisource comorbidity score (MCS) median age and the percentage of the comorbid population among categories of the deprivation index.

FIGURE 3

Receiver operating characteristic (ROC) curves comparing the 
discriminant power of the multisource comorbidity score (MCS) only 
and the MCS plus deprivation index (DI) models in predicting 1-year 
survival among National Health Service beneficiaries.
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the effect of deprivation on mortality. Because comorbidity may 
be believed as a mediator of the relationship between socioeconomic 
position and mortality (28), the finding is not surprising. Finally, the 
predictive capability of the MCS did not change between areas with 
different categories of deprivation. This is consistent with previous 
reports from Italy showing that comorbidity scores predicted 
mortality, and other adverse outcomes, homogeneously among the 
Italian regions (despite the notable socio-economic heterogeneity 

among the regions) (8) and among individual income (29). Taken 
together, these findings suggest that MCS can capture the health needs 
of a population covered by universal health coverage irrespective of 
the socioeconomic profile.

The study’s strengths include the very large population and the use 
of a validated index of comorbidity (8, 16) and deprivation (12, 13). 
Nevertheless, some limitations should be  declared. First, as 
socioeconomic data at an individual level was not available, data 
collected from the national census at the census tract level were used. 
Although census tract levels include few individuals (on average 150 
inhabitants), social and material deprivation could vary among 
individuals in the same administrative area. In addition, although the 
contribution of the contextual deprivation was confirmed by others 
(30), future research should investigate the specific role of individual 
deprivation on healthcare needs. Second, it was possible to link the 
census data information for 66% of the target population. Although 
there was no evidence that included cohort members differed with 
respect to eligible ones, selection bias cannot be wholly excluded, even 
its effect on our findings should be likely modest. Third, because the 
last Italian census was made in 2011, available deprivation data lagged 
seven-eight years behind multimorbidity information (available for 
the years 2018–2019). However, because socioeconomic features are 
not expected to vary quickly, their asynchrony with morbidity data 
likely generates not overly relevant uncertainty. Finally, the 
generalizability of our findings to other Italian regions requires 
caution. Because between-region heterogeneity of socioeconomic 
profile is expected to be  high, the added value of the DI should 
be better investigated including other Italian regions with different 
socioeconomic patterns.

In conclusion, MCS represents a useful tool that policymakers can 
use to stratify NHS beneficiaries according to the risk of several 
outcomes (mortality, hospital admissions and healthcare costs). 
Socioeconomic data, as measured by the DI, did not improve the risk 
prediction of MCS, nor modify the effect of MCS on mortality. Future 

FIGURE 4

Hazard ratios for mortality associated with multisource comorbidity score (MCS) among categories of the deprivation index and a summarized 
estimate. Hazard ratios measuring the increased mortality risk associated with each additional point of MCS.

FIGURE 5

Receiver operating characteristic (ROC) curves comparing the 
discriminant power of multisource comorbidity score (MCS) in 
predicting 1-year survival among the categories of the deprivation 
index.
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studies are needed to investigate other sources of data to enhance the 
population risk stratification.
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