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13 Abstract

14 Iris species can adopt different pollination strategies to attract their pollinators, generalized shelter-

15 mimicking, specialized deceptive sexual-mimicking or food-rewarding. As attractive stimuli, Iris 

16 flowers may use their colours, large-size, symmetry, and volatile organic compounds (VOCs). 

17 However, relatively few studies investigated Iris floral olfactory cues in the context of plant-

18 visitor/pollinator interactions. In the present study we combined the identification of the floral 

19 volatiles of the nectariferous I. planifolia with insects visiting its flowers to gather data on its biology. 

20 Floral volatiles were collected in the natural environment by dynamic headspace and analysed by gas 

21 chromatography-mass spectrometry (GC-MS). Insect visitors/pollinators were also recorded. The 

22 volatile bouquet was aromatic-dominated with 1,4 dimethoxybenzene as major compound. Among 

23 the insects visiting its flowers, bumble and honey bees were the most abundant followed by hover 

24 flies. Overall, our results suggest that I. planifolia advertises its food reward by an aromatic 

25 dominated volatile composition. 

26 Keywords: Iris planifolia; Iridaceae; Aromatic compounds; Dynamic headspace; GC-MS; Bumble 

27 bees; Honey bees; Hover flies; Pollination
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28 1. Introduction

29 Iris L., with about 250-300 species distributed in Eurasia, North America and North Africa, is the 

30 largest genus in the family Iridaceae (Goldblatt and Manning, 2008; Mavrodiev et al., 2014). 

31 Although some species are found in mesic or wet environments, most occur in desert, semi-desert, or 

32 dry, rocky and montane habitats (Wilson et al., 2016). Iris spp. were well known and cultivated, for 

33 their use as a perfume, throughout ancient Greece and Roman Empire (Crişan and Cantor, 2016). 

34 Cherokee Indians or other Native Americans used Iris plants for medicinal purposes (e.g. gastric 

35 problems, kidney and bladder disorders, among others) (Crişan and Cantor, 2016). Indeed, Iris plants 

36 have been extensively studied because the species are a rich source of specialised metabolites, such 

37 as flavonoids, isoflavonoids, benzoquinones, terpenoids and glycosides which have a wide range of 

38 biological activities, including anti-inflammatory, antioxidant, antimicrobial and anticancer with 

39 chemo-preventive properties (Al-Jaber, 2016; Crişan and Cantor, 2016). To date, Iris plants have a 

40 large economic value as flavoring in food products and soft drinks, ornamental purposes and uses in 

41 the cosmetic industry (Crişan and Cantor, 2016).

42  Iris flower is considered an inflorescence with three functionally separate pollination units 

43 (meranthia), acting as a single bilabiate gullet/tunnel flower (Goldblatt and Bernhardt, 1999). In each 

44 unit (meranthium), the petaloid-style branch and its associated stamen form the upper lip (roof), while 

45 the closely opposed large tepal, that works like a landing platform for insect visitors, forms the lower 

46 lip (perigon lobe/floor) (Goldblatt and Bernhardt, 1999; Westerkamp and Claßen-Bockhoff, 2007). 

47 Interestingly, in Iris spp. the lower lips are often embellished with various colour patches, lines, 

48 hairs/beards and ridges, among others, that may play an attractive role for the insects visiting the 

49 flowers (Guo, 2015; Morinaga and Sakai, 2006). Studies on Iris pollination showed that most species 

50 are pollinated by social and/or solitary bees belonging to Apidaea, Andrenidae, Halictidae and 

51 Colletidae (e.g., I. atropurpurea Baker, Sapir et al., 2005; Vereecken et al., 2013; Watts et al., 2013; 

52 I. bulleyana Dykes, Ye et al., 2017; I. lutescens Lam., Imbert et al., 2014a, Radović et al., 2017; I. 

53 paradoxa Steven, Vereecken et al., 2012; I. pumila L., Radović et al., 2017; I. tuberosa L., Pellegrino 
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54 et al., 2016). In Iris species the rewards may consist of pollen, nectar or oils (Pellegrino et al., 2015); 

55 although, such as in the nectarless Oncocyclus (Siems.) Baker section (I. atrofusca Baker, I. 

56 atropurpurea, I. bismarckiana Damman & Sprenger, among others) the flowers can provide 

57 protective shelters (non-nutritive form of reward) that are used by visitors/pollinators (Sapir et al., 

58 2005; Vereecken et al., 2012, 2013; Watts et al., 2013). 

59 As attractive stimuli, Iris flowers may use their colours (Imbert et al., 2014a, 2014b; Vereecken et 

60 al., 2012, 2013; Wang et al., 2013; Wang et al., 2016), large-sized flowers (Lavi and Sapir, 2015; 

61 Radović et al., 2017), floral symmetry (Radović et al., 2017), and a range of volatile organic 

62 compounds (VOCs) (Ohler et al., 2016; Pellegrino et al., 2015, 2016; Vereecken et al., 2012, 2013; 

63 Wang et al., 2013). However, while floral visual cues i.e. floral size, symmetry, colour and/or its 

64 polymorphism have been extensively studied in Iris spp. (Imbert et al., 2014a, 2014b; Lavi and Sapir, 

65 2015; Pellegrino et al., 2015, 2016; Radović et al., 2017; Souto-Vilarós, 2018; Vereecken et al., 2012, 

66 2013; Wang et al., 2013, 2016), relatively few studies (additionally or exclusively) investigated Iris 

67 floral olfactory cues i.e. floral VOCs in the context of plant-visitor/pollinator interactions (I. 

68 atropurpurea and I. paradoxa, Vereecken et al., 2012, 2013; I. lutescens, Wang et al., 2013, I. pallida 

69 Lam., Ohler et al., 2016; I. tuberosa, Pellegrino et al., 2016). 

70 Iris planifolia (Mill.) T. Durand & Schinz (Iridaceae), occurring mainly in the western Mediterranean 

71 and North Africa, is the only member of the subgenus Scorpiris Spach (section Juno Dykes) native 

72 to Europe (Boltenkov and Govaerts, 2017). Since this nectariferous species occurs at low/middle 

73 altitude in the Mediterranean region, where the winters are not severe, it may bloom at any time from 

74 November to February (Mathew, 1986). This species has been studied from a taxonomical (Boltenkov 

75 and Govaerts, 2017), molecular (Ikinci et al., 2011) and morphological (Guo, 2015; Ikinci et al., 2011) 

76 points of view.  The single chemical study on I. planifolia was performed by Chikhi et al., (2012). 

77 The authors used the essential oil to study some biological roles (i.e. antimicrobial and antioxidant 

78 activity) of whole I. planifolia plant volatiles, but there are no studies investigating the inflorescence-

79 specific volatile emissions of I. planifolia by using more biologically appropriate and non-invasive 
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80 methods, such as headspace. In the present study we combined the identification of the floral volatiles 

81 of the blue-violet I. planifolia with insects visiting its flowers to gather data on its biology. In detail, 

82 we (i) collected the inflorescences scent by dynamic headspace, (ii) analysed the samples by gas 

83 chromatography and mass spectrometry (GC-MS) and (iii) recorded first data on its insect 

84 visitors/pollinators. 

85

86 2. Results

87 2.1. Floral scent 

88 Twelve VOCs were identified in I. planifolia inflorescences: eleven aromatic compounds and one 

89 monoterpene (Table 1). The total absolute amount of VOCs emitted by I. planifolia, estimated by 

90 using anisole as internal standard (see section 5.2 for details), was about 2.0 µg/inflorescence/hour. 

91 The relative amount was reported as mean percentage of the integrated chromatogram peak areas. 

92 The aromatic-dominated volatile bouquet was composed of four aromatic aldehydes (12 %), three 

93 aromatic alcohols (10 %), two aromatic esters (5 %) and two aromatic ethers (72 %). The single 

94 exception was represented by the monoterpene alcohol linalool, which contributed to less than 0.5 %. 

95 Overall, the floral scent of I. planifolia was strongly dominated by 1,4-dimethoxybenzene (also 

96 known as hydroquinone dimethyl ether) with about 71 %. Two compounds: 2-phenylethanol and 2-

97 methoxybenzaldeyde were respectively found in relative amounts of 8 % and 6 %. Finally, five 

98 compounds ranged between 4 and 1% whereas four contributed with less than 1% (Table 1). 

99 2.2. Flower-visiting insects

100 Overall, in 8 hours of observation (8:00 - 16:00) we recorded 42 insects on I. planifolia inflorescences, 

101 with bees and flies landing on all the observed plants. Insect visitation mostly occurred between 11:00 

102 - 14:00. Bumble bees and honey bees (Apidae) were the most abundant visitors (32 registered visits) 

103 followed by hover flies (10 registered visits). Bombus ruderatus (Fabricius) (Apidae) (Fig. 1A, B) 

104 with 18 visits was the main insect visitor followed by Apis mellifera Linnaeus (Apidae) (Fig. 1C) 
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105 with 14 visits and by Episyrphus balteatus (De Geer) (Syrphidae) (Fig. 1D) with 10 visits. Since only 

106 bumble bees and honey bees entered inside the flower tunnels and carried the pollen on their body 

107 (mainly on their head and torax), they can be considered as potential pollinators. On the contrary, the 

108 syrphid fly E. balteatus never entered inside the flowers and thus was considered as visitor. 

109 Interestingly, E. balteatus spent most of its time eating the pollen grains left on the flowers by 

110 pollinators when they crawled out of the flower tunnels. 

111

112 3. Discussion

113 The floral scent of I. planifolia is characterized by VOCs that are reported (1) as floral volatiles of 

114 different angiosperm families (Knudsen et al., 2006) and (2) as semiochemicals mediating several 

115 plant-animal interactions (El Sayed, 2018). 

116 With the single exception represented by the monoterpene alcohol linalool (less than 0.5 %), the floral 

117 scent bouquet of I. planifolia has a strong aromatic chemical composition (Tab. 1) dominated with 

118 more than 70 % by the aromatic ether 1,4-dimethoxybenzene (hereafter 1,4‐DMB). This VOC was 

119 also found as major compound in the floral scents of Salix L. spp. (Salicaceae) pollinated during the 

120 daytime by mining bees and honey bees (Dötterl et al., 2005, 2014; Jürgens et al., 2014), and of 

121 Anacamptis coriophora (L.) R.M. Bateman, Pridgeon & M.W. Chase (Orchidaceae) pollinated by 

122 bumble and honey bees (Salzmann et al., 2007). 

123 Despite the similarity with the floral scents of plant species belonging to different families (Knudsen 

124 et al., 2006), the floral scent composition of I. planifolia differs from those found within the genus by 

125 other authors. For example, while 1,4‐DMB was the main VOC found in our dynamic headspace 

126 samples, it was detected in minor amounts in the essential oil of I. planifolia (0.5 %, Chikhi et al., 

127 2012) and in the static headspace samples of I. lutescens (less than 3.0 %, Wang et al., 2013). 

128 Furthermore, it was not found in solvent extracts of I. pallida (toluene samples by Ohler et al., 2016), 

129 I. atropurpurea, I. paradoxa and I. tuberosa (hexane samples by Pellegrino et al., 2016 and Vereecken 

130 et al., 2012, 2013).  In contrast, I. planifolia by Chikhi et al. (2012) was dominated by aliphatic 
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131 hydrocarbnons and fatty acids (e.g. n-alkanes and hexadecanoic acid); I. lutescens by monoterpenes 

132 (myrcene, (E)-ß-ocimene and limonene) (Wang et al., 2013); I. pallida by methyl anthranilate (Ohler 

133 et al., 2016) and I. atropurpurea, I. paradoxa and I. tuberosa by aliphatic hydrocarbons (n-alkanes 

134 and n-alkenes) (Pellegrino et al., 2016; Vereecken et al., 2012, 2013). As reported by other authors 

135 (e.g. El-Sajed et al., 2018; Jürgens et al., 2009; Knudsen and Gershenzon, 2006; Tholl et al., 2006), 

136 it is not surprising that the limited overlap in floral VOCs between Iris species could be due to the 

137 different volatile sampling methods (e.g., headspace vs hydrodistillation or solvent extractions), to 

138 the polarity and affinities of VOCs to the adsorbent fibers used (headspace methods), to the 

139 interspecific variation, and/or to the insect pollinators/pollination strategies of the investigated Iris, 

140 among others. Indeed, excluding 1,4‐DMB, we found only a few co-occurrences between our floral 

141 volatiles and those of other Iris species. Among these, benzyl tiglate also was detected also in I. 

142 planifolia by Chikhi et al. (2012); benzaldehyde, 2-(4-methoxyphenyl)ethanol and 4-

143 methoxybenzaldehyde in I. lutescens (Wang et al., 2013); linalool in I. planifolia (Chikhi et al., 2012) 

144 and in I. lutescens (Wang et al., 2013). 

145 Autonomous self-pollination has been described in some Iris species (e.g. Iris versicolor L.) (Kron 

146 et al., 1993) but not in others (e.g. Oncocyclus irises) (Watts et al., 2013; Sapir et al., 2005). To date, 

147 information on pollination biology of I. planifolia has been lacking; however, irises pollination data 

148 from the literature show that insects play an important role for the reproductive success in both self-

149 incompatible and self-compatible Iris species (Watts et al., 2013; Kron et al., 1993). Among I. 

150 planifolia visitors, Bombus ruderatus and Apis mellifera (Fig. 1A, B, C) were found as candidates 

151 that, forcing the tepal (lower lip) and the opposite style branch of the meranthium, entered inside the 

152 tunnel and passively collected pollen. We did not find any insects inside the flowers (sheltering) as 

153 in Iris atropurpurea and Iris paradoxa (Vereecken et al., 2012, 2013; Watts et al., 2013). Although 

154 more extensive field observations (e.g. data collection and night-sheltering) and experiments (e.g. 

155 seed- fruit-set) are needed to confirm the exclusive role of B. ruderatus and A. mellifera as pollinators 

156 of I. planifolia, our findings are consistent with previous studies of other Iris species pollinated by 



7

157 bumble bees and/or honey bees, among others (Goldblatt and Manning, 2006; Imbert et al., 2014a, 

158 2014b; Segal et al. 2006; Souto-Vilarós et al., 2018; Watts et al., 2013; Ye et al., 2017). In addition 

159 to the legitimate bee pollinators, the syrphid fly E. balteatus was observed eating the pollen grains 

160 lost by B. ruderatus and A. mellifera on the lower lip of the I. planifolia flowers. Since E. balteatus 

161 was not observed as pollen robber from the anthers of I. planifolia (it never entered into the 

162 gullet/tunnel flower) it is not likely to have has not detrimental effects for I. planifolia. Conversely, 

163 we speculate that its “cleaning service” could have a beneficial effect by restoring the original visual 

164 displays.

165 Generalist bees, such as Bombus spp. and Apis mellifera, have a broad pollen/nectar diet and collect 

166 pollen from different species with variable floral cues (Dobson, 2006; Dötterl and Vereecken, 2010). 

167 Consequently, generalist bees might benefit by relying on floral VOCs related to a broad spectrum of 

168 potential host flowers (Dötterl and Vereecken, 2010). In food-rewarding plants, the aromatic 

169 compounds as alcohols, aldehydes, esters, and ethers alone or in combination with some monoterpene 

170 alcohols (e.g. linalool) are often reported as floral VOCs that attract nectar/pollen feeders, such as 

171 bees, butterflies, months and flies (Dobson 2006; Dötterl and Vereecken 2010; Jürgens et al., 2009; 

172 Primante and Dötterl, 2010). Although in our study we did not perform electroantennographic or 

173 behavioral experiments, data form from the literature provide evidence that 1,4-DMB (Jürgens et al., 

174 2014; Salzman et al., 2007), benzaldehyde (Theis, 2006), 4-methoxybenzaldehyde (= p-

175 anisaldehyde), phenylacetaldehyde (Dötterl and Vereecken 2010; Knauer and Schiestl, 2015; Theis, 

176 2006), 2-phenylethanol, benzyl alcohol and linalool (Dötterl and Vereecken 2010; Theis, 2006) are 

177 VOCs perceived and attractive for Bombus spp. and/or Apis mellifera. In addition, 2-phenylethanol 

178 is known as attractant for syrphid flies (Zhu and Park, 2005) and potentially also for E. balteatus 

179 (Primante and Dötterl, 2010); whereas linalool was recently reported as electrophysiologically-active 

180 for Syrphidae (Braunschmid et al., 2017).

181 Iris spp. use floral visual and olfactory cues for attracting their pollinators (e.g. Pellegrino et al., 2016; 

182 Vereecken et al., 2012, 2013; Wang et al., 2013).  It is interesting to note that bumble bees’ UV-blue 
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183 photoreceptors can perceive the predominant blue-violet I. planifolia floral colour (human 

184 perception) (Arnold et al., 2010) as attractive and innate signals of rewarding flowers (Knauer and 

185 Schiestl, 2015; Kunze and Gumbert, 2001; Raine and Chittka, 2007). Furthermore, since syrphid flies 

186 prefer yellow over other colours, the yellow or orange pubescent median ridge in the lower lips of I. 

187 planifolia meranthia can be attractive for E. balteatus, despite it mainly uses olfactory cues to find a 

188 pollen/nectar host-plants (Primante and Dötterl, 2010).

189

190 4. Conclusions

191 In agreement with Vereecken et al. (2015), in this study we adopted an accepted and modern 

192 methodology (dynamic headspace) that allows the collection and analysis of floral scents from the 

193 prospective of plant-visitor/pollinator interactions (El-Sajed et al., 2018; Zito et al., 2015). To our 

194 surprise, this is the first study that investigated the floral volatiles in the genus Iris by using a dynamic 

195 headspace method. Furthermore, it is the first report on visitor/pollinators of I. planifolia. Our results 

196 suggest that the floral volatiles of the nectariferous I. planifolia may play a synergistic role when also 

197 visual cues occur. This hypothesis is supported by other studies that reported how social bees (e.g. 

198 bumble bees and honey bees) elicited the strongest behavioural responses when floral visual and 

199 olfactory cues co-occur (Chittka and Raine, 2006; Dötterl et al., 2014; Junker and Parachnowitsch, 

200 2015).

201 Interestingly, sexual mimicry has evolved from generalized food deception, shelter pollination, or 

202 food reward systems (Johnson and Schiestl, 2016). By floral visual and olfactory cuesIris spp. can 

203 adopt different pollination strategies to attract their pollinators i.e. from generalized shelter-

204 mimicking species or specialized sexual-mimicking deceptive species (Pellegrino et al., 2015, 2016; 

205 Vereecken et al., 2012, 2013) to food-rewarding species (present study). Although more Despite 

206 further data are needed to confirm the pollination strategies adopted in other un-investigated Iris 

207 species among the sections, our results suggest that I. planifolia advertises the food reward by its 

208 aromatic dominated volatile composition probably in synergy with its visual cues. Further studies are 



9

209 needed to better understand the interplay between floral olfactory and visual cues for attracting I. 

210 planifolia visitors and pollinators.

211

212 5. Experimental

213 5.1. Study species

214 Iris planifolia (Mill.) T. Durand & Schinz (Iridaceae) [subg. Scorpiris Spach; section Juno Dykes], 

215 described as Xiphium planifolium in 1768 by Philip Miller, is a perennial bulbous herb about 10-25 

216 cm high (Mathew, 1986). It is naturally occurring in Spain, Portugal, Sardinia, Sicily, Crete, Greece, 

217 Libya, Tunisia, Algeria and Morocco (Barker and Govaerts, 2018). As described by Mathew (1986), 

218 the stems are very short, more or less subterranean and hidden by the leaf bases. The lanceolate and 

219 often undulate-falcate leaves (4-7) are bright shiny green above and glaucous beneath. Each plant, 

220 blooming from November to February, has 1-3 inflorescences (6-12 cm across) pale to deep blue or 

221 violet-blue and rarely white. The lower lips of the three meranthia of its inflorescence are widely 

222 reflexed, blue, veined and dotted in dark violet with a yellow or orange pubescent median ridge. The 

223 anthers are whitish or purplish whereas style branches flattened and petaloid are bilobed at the apex. 

224 To date, no information is available on the pollination ecology of I. planifolia; the plant produces 

225 nectar (supplementary material in Herrera et al., 2012) as pollinators reward. The seeds, ovoid and 

226 rugose are dark reddish-brown. In its natural habitat, the species usually grows on sloping rocky 

227 ground on limestone formations where the soil is the typical Mediterranean reddish clay (Mathew, 

228 1986). 

229 In the present study, all the field activities were performed in November 2017, wet season in Sicily, 

230 in a natural site located in San Martino delle Scale - Sicily (38°5'18.29"N, 13°15'23.48"E).

231 5.2. Floral scent sampling

232 Floral scent was collected, on a sunny day in November 2017, from plants growing in their natural 

233 habitat (38°5'18.29"N, 13°15'23.48"E - San Martino delle Scale - Sicily). All samples from 
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234 inflorescences (N= 7) were collected using a dynamic headspace method (pull system) (Tholl et al., 

235 2006). For each sampling, one inflorescence per plant was enclosed in an oven bag (size: 15 × 12 cm, 

236 CUKI® Cofresco S.p.A.) and the emitted volatiles were collected for 6 hours (9:00 - 15:00) by an 

237 adsorbent tube using a vacuum pump (G12/01 EB, Rietschle Thomas, Puchheim, Germany), with a 

238 flow rate of 200 ml/min. The adsorbent tube (shortened glass Pasteur pipette) was filled with 20 mg 

239 Tenax-TA (mesh 60-80) and 20 mg Carbotrap B (mesh 20-40) both Supelco (Bellefonte, PA, USA). 

240 The adsorbent materials were fixed in the tubes using glass wool (Sigma Aldrich). At the same time, 

241 by using the same approach described before, headspace samples from leaf (N= 3) and an empty oven 

242 bag (N= 1), were used as negative controls. Volatiles trapped in the tubes were eluted within a few 

243 minutes after collection with 200 μl of acetone (Sigma Aldrich, > 99 %). All samples were stored in 

244 screw cap vials at -20 °C until chemical analyses. The peak areas on the chromatograms were 

245 integrated to obtain the total ion current, which was used to determine the relative amount (%) of each 

246 peak.  To quantify the absolute amount of scent emitted from an inflorescence, one μg of anisole 

247 (Sigma-Aldrich, Anisole ReagentPlus®, 99 %) was added to each sample as internal standard. 

248 Subsequently to calculate the absolute amounts of the VOCs in each sample, peak areas on the 

249 chromatograms were integrated to obtain the total ion current signal and compared to that of the 

250 internal standard.

251 5.3. Chemical analysis

252 All samples were analyzed by GC-MS on a single quadrupole Shimadzu GC-MS-QP2010 Plus 

253 equipped with an AOC-20i autoinjector (Shimadzu, Kyoto, Japan) and a Supelcowax 10 capillary 

254 column (30 m long, 0.25 mm i.d., 0.25 μm film thickness). One μl of each sample was injected at 250 

255 °C in the splitless mode, and the column flow (carrier gas: helium) was set at 1 ml/min. The GC oven 

256 temperature was held for 5 min at 40 °C, then increased by 2°C/min to 250 °C, held for 15 min and 

257 finally raised to 270 °C at 10 °C/min. The MS interface worked at 280 °C, and the ion source at 250 
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258 °C. Mass spectra were taken at 70 eV (in EI mode) from m/z 30 to 500. The GC/MS data were 

259 analyzed using the GCMSolution package, Version 2.72. 

260 Identification of compounds was carried out using the mass spectral libraries FFNSC 2, W9N11, 

261 ESSENTIAL OILS (available in MassFinder 3), and Adams (2007). These identifications were also 

262 compared by mass spectra and Kovats retention indices found in NIST11, SciFinder and Pherobase 

263 (El-Sayed, 2018) database. Many of the compounds were confirmed by comparison of mass spectra 

264 and retention times with authentic standard components (Sigma Aldrich) provided by Prof. Dr. Stefan 

265 Dötterl (Plant Ecology Lab - University of Salzburg). Kovats retention indices were calculated using 

266 a series of n-alkanes (C8 - C30). Compounds found in the flowers were compared with those found in 

267 the negative controls (empty oven bag and green leaves) to discriminate contaminations from air 

268 ambient and to identify those exclusively emitted by flowers.

269 5.4. Flower-visiting insects

270 Insects visiting I. planifolia inflorescences were recorded during the day and in the same site of the 

271 headspace collections. The sampling of flower-visiting insects was limited to ten inflorescences in 

272 order to minimize the potential negative impact on the local entomofauna and on pollination 

273 processes. Observations were performed simultaneously by two researchers staying near the plants 

274 for 8 hours (08:00 - 16:00). The limited number of hours of observation was linked to good weather 

275 condition (sunny day) occurring in the flowering period of I. planifolia in Sicily (rainy season). 

276 Insects visiting I. planifolia were recorded when they landed on a meranthium. Only a few insect 

277 visitors belonging to different morphospecies were captured by entomological hand nets or plastic 

278 bags (10 x 7 cm), otherwise they were annotated and photographed with a digital camera (NIKON 

279 D3100). Since not all insect individuals were captured, we cannot exclude that the same specimen 

280 after leaving, came back to revisit the inflorescence again. The data of insects visiting the ten different 

281 I. planifolia inflorescences were polled together. The flower visitors that landed, entered inside the 

282 meranthium and came out it with pollen on their body were recorded as potential pollinators. On the 
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283 contrary, the insects that after their landing on the inflorescences never entered inside the meranthium 

284 were recorded as visitors. Insect specimens, identified at specific taxonomic level, are stored in an 

285 entomological box and kept in the Entomological collection of the Department of Biological, 

286 Chemical and Pharmaceutical Sciences and Technologies of the University of Palermo. 
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443 Table 1. Relative and total absolute amounts of floral scent detected in Iris planifolia. Compounds 
444 belonging to the same chemical class and functional group (Knudsen et al., 2006) are arranged 
445 according to Kovats retention indices (KRI) of the Supelcowax 10 column. Odour characteristic: 
446 olfactory descriptions according to Acree and Arn (2004) and El-Sayed (2018). * = identification 
447 verified by authentic standard.

Compound KRI Relative amount (%)
Mean ± SE (N= 7)

Occurrence of 
samples (%) Odour characteristic

Aromatic alcohols

Benzyl alcohol* 1856 0.3 ± 0.1 100 Sweet, floral, fruity

2-Phenylethanol* 1886 8.4 ± 3.6 100 Honey, spicy, rose, lilac, 
sweet, yeast, floral, 
herbal

2-(4-Methoxyphenyl)ethanol 2303 1.4 ± 0.2 100 -

Aromatic aldehydes

Benzaldehyde* 1503 3.7 ± 1.3 100 Almond, burnt sugar, 
woody

Phenylacetaldehyde* 1620 2.0 ± 1.6 57 Honey, sweet, rose, 
green, grassy, floral

2-Methoxybenzaldehyde 1936 6.2 ± 1.4 100 -

4-Methoxybenzaldehyde* 2004 0.4 ± 0.2 71 Mint, sweet

Aromatic esters

Methyl benzoate* 1599 1.9 ± 0.5 86 Prune, lettuce, herbal, 
sweet, floral, 
watermelon

Benzyl tiglate* 2080 3.1 ± 1.0 86 Earthy, mushroom

Aromatic ethers

1,4-Dimethoxybenzene* 1716 71.5 ± 4.9 100 Sweet, floral, herbal

1,2,4-Trimethoxybenzene* 2068 0.8 ± 0.3 86 -

Monoterpene alcohols

Linalool* 1536 0.4 ± 0.1 100 Muscat, sweet, green, 
floral, lemon, parsley, 
lavender, fruity

Total absolute amount: 2.0 ± 0.6 µg/inflorescence/hour
Total number of compounds: 12

448
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449 Figure 1

450

451
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452 Figure legend.

453 Fig. 1. Bombus ruderatus inside (A) and on (B) the meranthium of Iris planifolia (photos by 
454 Francesca Tavella). Apis mellifera outgoing from the tunnel of the meranthium (C) and Episyrphus 
455 balteatus eating the pollen grains left by pollinators (D) (photos by Pietro Zito).

456

457 Graphical abstract Legend.

458 Iris planifolia (Iridaceae) advertises its food reward by an aromatic dominated floral volatile 
459 composition.

460



Highlights

 Aromatic compounds dominate the floral scent bouquet.
 1,4-dimethoxybenzene is the major compound.
 The floral scent advertises a food-rewarding species.
 Bumble and honey bees are pollinators whereas a syrphid fly is visitor.
 Floral olfactory cues probably act in synergy with visual ones to attract bees and flies.
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13 Abstract

14 Iris species can adopt different pollination strategies to attract their pollinators, generalized shelter-

15 mimicking, specialized deceptive sexual-mimicking or food-rewarding. As attractive stimuli, Iris 

16 flowers may use their colours, large-size, symmetry, and volatile organic compounds (VOCs). 

17 However, relatively few studies investigated Iris floral olfactory cues in the context of plant-

18 visitor/pollinator interactions. In the present study we combined the identification of the floral 

19 volatiles of the nectariferous I. planifolia with insects visiting its flowers to gather data on its biology. 

20 Floral volatiles were collected in the natural environment by dynamic headspace and analysed by gas 

21 chromatography-mass spectrometry (GC-MS). Insect visitors/pollinators were also recorded. The 

22 volatile bouquet was aromatic-dominated with 1,4 dimethoxybenzene as major compound. Among 

23 the insects visiting its flowers, bumble and honey bees were the most abundant followed by hover 

24 flies. Overall, our results suggest that I. planifolia advertises its food reward by an aromatic 

25 dominated volatile composition. 

26 Keywords: Iris planifolia; Iridaceae; Aromatic compounds; Dynamic headspace; GC-MS; Bumble 

27 bees; Honey bees; Hover flies; Pollination
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28 1. Introduction

29 Iris L., with about 250-300 species distributed in Eurasia, North America and North Africa, is the 

30 largest genus in the family Iridaceae (Goldblatt and Manning, 2008; Mavrodiev et al., 2014). 

31 Although some species are found in mesic or wet environments, most occur in desert, semi-desert, or 

32 dry, rocky and montane habitats (Wilson et al., 2016). Iris spp. were well known and cultivated, for 

33 their use as a perfume, throughout ancient Greece and Roman Empire (Crişan and Cantor, 2016). 

34 Cherokee Indians or other Native Americans used Iris plants for medicinal purposes (e.g. gastric 

35 problems, kidney and bladder disorders, among others) (Crişan and Cantor, 2016). Indeed, Iris plants 

36 have been extensively studied because the species are a rich source of specialised metabolites, such 

37 as flavonoids, isoflavonoids, benzoquinones, terpenoids and glycosides which have a wide range of 

38 biological activities, including anti-inflammatory, antioxidant, antimicrobial and anticancer with 

39 chemo-preventive properties (Al-Jaber, 2016; Crişan and Cantor, 2016). To date, Iris plants have a 

40 large economic value as flavoring in food products and soft drinks, ornamental purposes and uses in 

41 the cosmetic industry (Crişan and Cantor, 2016).

42  Iris flower is considered an inflorescence with three functionally separate pollination units 

43 (meranthia), acting as a single bilabiate gullet/tunnel flower (Goldblatt and Bernhardt, 1999). In each 

44 unit (meranthium), the petaloid-style branch and its associated stamen form the upper lip (roof), while 

45 the closely opposed large tepal, that works like a landing platform for insect visitors, forms the lower 

46 lip (perigon lobe/floor) (Goldblatt and Bernhardt, 1999; Westerkamp and Claßen-Bockhoff, 2007). 

47 Interestingly, in Iris spp. the lower lips are often embellished with various colour patches, lines, 

48 hairs/beards and ridges, among others, that may play an attractive role for the insects visiting the 

49 flowers (Guo, 2015; Morinaga and Sakai, 2006). Studies on Iris pollination showed that most species 

50 are pollinated by social and/or solitary bees belonging to Apidaea, Andrenidae, Halictidae and 

51 Colletidae (e.g., I. atropurpurea Baker, Sapir et al., 2005; Vereecken et al., 2013; Watts et al., 2013; 

52 I. bulleyana Dykes, Ye et al., 2017; I. lutescens Lam., Imbert et al., 2014a, Radović et al., 2017; I. 

53 paradoxa Steven, Vereecken et al., 2012; I. pumila L., Radović et al., 2017; I. tuberosa L., Pellegrino 
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54 et al., 2016). In Iris species the rewards may consist of pollen, nectar or oils (Pellegrino et al., 2015); 

55 although, such as in the nectarless Oncocyclus (Siems.) Baker section (I. atrofusca Baker, I. 

56 atropurpurea, I. bismarckiana Damman & Sprenger, among others) the flowers can provide 

57 protective shelters (non-nutritive form of reward) that are used by visitors/pollinators (Sapir et al., 

58 2005; Vereecken et al., 2012, 2013; Watts et al., 2013). 

59 As attractive stimuli, Iris flowers may use their colours (Imbert et al., 2014a, 2014b; Vereecken et 

60 al., 2012, 2013; Wang et al., 2013; Wang et al., 2016), large-sized flowers (Lavi and Sapir, 2015; 

61 Radović et al., 2017), floral symmetry (Radović et al., 2017), and a range of volatile organic 

62 compounds (VOCs) (Ohler et al., 2016; Pellegrino et al., 2015, 2016; Vereecken et al., 2012, 2013; 

63 Wang et al., 2013). However, while floral visual cues i.e. floral size, symmetry, colour and/or its 

64 polymorphism have been extensively studied in Iris spp. (Imbert et al., 2014a, 2014b; Lavi and Sapir, 

65 2015; Pellegrino et al., 2015, 2016; Radović et al., 2017; Souto-Vilarós, 2018; Vereecken et al., 2012, 

66 2013; Wang et al., 2013, 2016), relatively few studies (additionally or exclusively) investigated Iris 

67 floral olfactory cues i.e. floral VOCs in the context of plant-visitor/pollinator interactions (I. 

68 atropurpurea and I. paradoxa, Vereecken et al., 2012, 2013; I. lutescens, Wang et al., 2013, I. pallida 

69 Lam., Ohler et al., 2016; I. tuberosa, Pellegrino et al., 2016). 

70 Iris planifolia (Mill.) T. Durand & Schinz (Iridaceae), occurring mainly in the western Mediterranean 

71 and North Africa, is the only member of the subgenus Scorpiris Spach (section Juno Dykes) native 

72 to Europe (Boltenkov and Govaerts, 2017). Since this nectariferous species occurs at low/middle 

73 altitude in the Mediterranean region, where the winters are not severe, it may bloom at any time from 

74 November to February (Mathew, 1986). This species has been studied from a taxonomical (Boltenkov 

75 and Govaerts, 2017), molecular (Ikinci et al., 2011) and morphological (Guo, 2015; Ikinci et al., 2011) 

76 points of view.  The single chemical study on I. planifolia was performed by Chikhi et al., (2012). 

77 The authors used the essential oil to study some biological roles (i.e. antimicrobial and antioxidant 

78 activity) of whole I. planifolia plant volatiles, but there are no studies investigating the inflorescence-

79 specific volatile emissions of I. planifolia by using more biologically appropriate and non-invasive 
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80 methods, such as headspace. In the present study we combined the identification of the floral volatiles 

81 of the blue-violet I. planifolia with insects visiting its flowers to gather data on its biology. In detail, 

82 we (i) collected the inflorescences scent by dynamic headspace, (ii) analysed the samples by gas 

83 chromatography and mass spectrometry (GC-MS) and (iii) recorded first data on its insect 

84 visitors/pollinators. 

85

86 2. Results

87 2.1. Floral scent 

88 Twelve VOCs were identified in I. planifolia inflorescences: eleven aromatic compounds and one 

89 monoterpene (Table 1). The total absolute amount of VOCs emitted by I. planifolia, estimated by 

90 using anisole as internal standard (see section 5.2 for details), was about 2.0 µg/inflorescence/hour. 

91 The relative amount was reported as mean percentage of the integrated chromatogram peak areas. 

92 The aromatic-dominated volatile bouquet was composed of four aromatic aldehydes (12 %), three 

93 aromatic alcohols (10 %), two aromatic esters (5 %) and two aromatic ethers (72 %). The single 

94 exception was represented by the monoterpene alcohol linalool, which contributed to less than 0.5 %. 

95 Overall, the floral scent of I. planifolia was strongly dominated by 1,4-dimethoxybenzene (also 

96 known as hydroquinone dimethyl ether) with about 71 %. Two compounds: 2-phenylethanol and 2-

97 methoxybenzaldeyde were respectively found in relative amounts of 8 % and 6 %. Finally, five 

98 compounds ranged between 4 and 1% whereas four contributed with less than 1% (Table 1). 

99 2.2. Flower-visiting insects

100 Overall, in 8 hours of observation (8:00 - 16:00) we recorded 42 insects on I. planifolia inflorescences, 

101 with bees and flies landing on all the observed plants. Insect visitation mostly occurred between 11:00 

102 - 14:00. Bumble bees and honey bees (Apidae) were the most abundant visitors (32 registered visits) 

103 followed by hover flies (10 registered visits). Bombus ruderatus (Fabricius) (Apidae) (Fig. 1A, B) 

104 with 18 visits was the main insect visitor followed by Apis mellifera Linnaeus (Apidae) (Fig. 1C) 

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236



5

105 with 14 visits and by Episyrphus balteatus (De Geer) (Syrphidae) (Fig. 1D) with 10 visits. Since only 

106 bumble bees and honey bees entered inside the flower tunnels and carried the pollen on their body 

107 (mainly on their head and torax), they can be considered as potential pollinators. On the contrary, the 

108 syrphid fly E. balteatus never entered inside the flowers and thus was considered as visitor. 

109 Interestingly, E. balteatus spent most of its time eating the pollen grains left on the flowers by 

110 pollinators when they crawled out of the flower tunnels. 

111

112 3. Discussion

113 The floral scent of I. planifolia is characterized by VOCs that are reported (1) as floral volatiles of 

114 different angiosperm families (Knudsen et al., 2006) and (2) as semiochemicals mediating several 

115 plant-animal interactions (El Sayed, 2018). 

116 With the single exception represented by the monoterpene alcohol linalool (less than 0.5 %), the floral 

117 scent bouquet of I. planifolia has a strong aromatic chemical composition (Tab. 1) dominated with 

118 more than 70 % by the aromatic ether 1,4-dimethoxybenzene (hereafter 1,4‐DMB). This VOC was 

119 also found as major compound in the floral scents of Salix L. spp. (Salicaceae) pollinated during the 

120 daytime by mining bees and honey bees (Dötterl et al., 2005, 2014; Jürgens et al., 2014), and of 

121 Anacamptis coriophora (L.) R.M. Bateman, Pridgeon & M.W. Chase (Orchidaceae) pollinated by 

122 bumble and honey bees (Salzmann et al., 2007). 

123 Despite the similarity with the floral scents of plant species belonging to different families (Knudsen 

124 et al., 2006), the floral scent composition of I. planifolia differs from those found within the genus by 

125 other authors. For example, while 1,4‐DMB was the main VOC found in our dynamic headspace 

126 samples, it was detected in minor amounts in the essential oil of I. planifolia (0.5 %, Chikhi et al., 

127 2012) and in the static headspace samples of I. lutescens (less than 3.0 %, Wang et al., 2013). 

128 Furthermore, it was not found in solvent extracts of I. pallida (toluene samples by Ohler et al., 2016), 

129 I. atropurpurea, I. paradoxa and I. tuberosa (hexane samples by Pellegrino et al., 2016 and Vereecken 

130 et al., 2012, 2013).  In contrast, I. planifolia by Chikhi et al. (2012) was dominated by aliphatic 
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131 hydrocarbons and fatty acids (e.g. n-alkanes and hexadecanoic acid); I. lutescens by monoterpenes 

132 (myrcene, (E)-ß-ocimene and limonene) (Wang et al., 2013); I. pallida by methyl anthranilate (Ohler 

133 et al., 2016) and I. atropurpurea, I. paradoxa and I. tuberosa by aliphatic hydrocarbons (n-alkanes 

134 and n-alkenes) (Pellegrino et al., 2016; Vereecken et al., 2012, 2013). As reported by other authors 

135 (e.g. El-Sajed et al., 2018; Jürgens et al., 2009; Knudsen and Gershenzon, 2006; Tholl et al., 2006), 

136 it is not surprising that the limited overlap in floral VOCs between Iris species could be due to the 

137 different volatile sampling methods (e.g., headspace vs hydrodistillation or solvent extractions), to 

138 the polarity and affinities of VOCs to the adsorbent fibers used (headspace methods), to the 

139 interspecific variation, and/or to the insect pollinators/pollination strategies of the investigated Iris, 

140 among others. Indeed, excluding 1,4‐DMB, we found only a few co-occurrences between our floral 

141 volatiles and those of other Iris species. Among these, benzyl tiglate also was detected in I. planifolia 

142 by Chikhi et al. (2012); benzaldehyde, 2-(4-methoxyphenyl)ethanol and 4-methoxybenzaldehyde in 

143 I. lutescens (Wang et al., 2013); linalool in I. planifolia (Chikhi et al., 2012) and in I. lutescens (Wang 

144 et al., 2013). 

145 Autonomous self-pollination has been described in some Iris species (e.g. Iris versicolor L.) (Kron 

146 et al., 1993) but not in others (e.g. Oncocyclus irises) (Watts et al., 2013; Sapir et al., 2005). To date, 

147 information on pollination biology of I. planifolia has been lacking; however, irises pollination data 

148 from the literature show that insects play an important role for the reproductive success in both self-

149 incompatible and self-compatible Iris species (Watts et al., 2013; Kron et al., 1993). Among I. 

150 planifolia visitors, Bombus ruderatus and Apis mellifera (Fig. 1A, B, C) were found as candidates 

151 that, forcing the tepal (lower lip) and the opposite style branch of the meranthium, entered inside the 

152 tunnel and passively collected pollen. We did not find any insects inside the flowers (sheltering) as 

153 in Iris atropurpurea and Iris paradoxa (Vereecken et al., 2012, 2013; Watts et al., 2013). Although 

154 more extensive field observations (e.g. data collection and night-sheltering) and experiments (e.g. 

155 seed- fruit-set) are needed to confirm the exclusive role of B. ruderatus and A. mellifera as pollinators 

156 of I. planifolia, our findings are consistent with previous studies of other Iris species pollinated by 
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157 bumble bees and/or honey bees, among others (Goldblatt and Manning, 2006; Imbert et al., 2014a, 

158 2014b; Segal et al. 2006; Souto-Vilarós et al., 2018; Watts et al., 2013; Ye et al., 2017). In addition 

159 to the legitimate bee pollinators, the syrphid fly E. balteatus was observed eating the pollen grains 

160 lost by B. ruderatus and A. mellifera on the lower lip of the I. planifolia flowers. Since E. balteatus 

161 was not observed as pollen robber from the anthers of I. planifolia (it never entered into the 

162 gullet/tunnel flower) it is not likely to have detrimental effects for I. planifolia. Conversely, we 

163 speculate that its “cleaning service” could have a beneficial effect by restoring the original visual 

164 displays.

165 Generalist bees, such as Bombus spp. and Apis mellifera, have a broad pollen/nectar diet and collect 

166 pollen from different species with variable floral cues (Dobson, 2006; Dötterl and Vereecken, 2010). 

167 Consequently, generalist bees might benefit by relying on floral VOCs related to a broad spectrum of 

168 potential host flowers (Dötterl and Vereecken, 2010). In food-rewarding plants, the aromatic 

169 compounds as alcohols, aldehydes, esters, and ethers alone or in combination with some monoterpene 

170 alcohols (e.g. linalool) are often reported as floral VOCs that attract nectar/pollen feeders, such as 

171 bees, butterflies, months and flies (Dobson 2006; Dötterl and Vereecken 2010; Jürgens et al., 2009; 

172 Primante and Dötterl, 2010). Although in our study we did not perform electroantennographic or 

173 behavioral experiments, data from the literature provide evidence that 1,4-DMB (Jürgens et al., 2014; 

174 Salzman et al., 2007), benzaldehyde (Theis, 2006), 4-methoxybenzaldehyde (= p-anisaldehyde), 

175 phenylacetaldehyde (Dötterl and Vereecken 2010; Knauer and Schiestl, 2015; Theis, 2006), 2-

176 phenylethanol, benzyl alcohol and linalool (Dötterl and Vereecken 2010; Theis, 2006) are VOCs 

177 perceived and attractive for Bombus spp. and/or Apis mellifera. In addition, 2-phenylethanol is known 

178 as attractant for syrphid flies (Zhu and Park, 2005) and potentially also for E. balteatus (Primante and 

179 Dötterl, 2010); whereas linalool was recently reported as electrophysiologically-active for Syrphidae 

180 (Braunschmid et al., 2017).

181 Iris spp. use floral visual and olfactory cues for attracting their pollinators (e.g. Pellegrino et al., 2016; 

182 Vereecken et al., 2012, 2013; Wang et al., 2013).  It is interesting to note that bumble bees’ UV-blue 
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183 photoreceptors can perceive the predominant blue-violet I. planifolia floral colour (human 

184 perception) (Arnold et al., 2010) as attractive and innate signals of rewarding flowers (Knauer and 

185 Schiestl, 2015; Kunze and Gumbert, 2001; Raine and Chittka, 2007). Furthermore, since syrphid flies 

186 prefer yellow over other colours, the yellow or orange pubescent median ridge in the lower lips of I. 

187 planifolia meranthia can be attractive for E. balteatus, despite it mainly uses olfactory cues to find a 

188 pollen/nectar host-plants (Primante and Dötterl, 2010).

189

190 4. Conclusions

191 In agreement with Vereecken et al. (2015), in this study we adopted an accepted and modern 

192 methodology (dynamic headspace) that allows the collection and analysis of floral scents from the 

193 prospective of plant-visitor/pollinator interactions (El-Sajed et al., 2018; Zito et al., 2015). To our 

194 surprise, this is the first study that investigated the floral volatiles in the genus Iris by using a dynamic 

195 headspace method. Furthermore, it is the first report on visitor/pollinators of I. planifolia. Our results 

196 suggest that the floral volatiles of the nectariferous I. planifolia may play a synergistic role when also 

197 visual cues occur. This hypothesis is supported by other studies that reported how social bees (e.g. 

198 bumble bees and honey bees) elicited the strongest behavioural responses when floral visual and 

199 olfactory cues co-occur (Chittka and Raine, 2006; Dötterl et al., 2014; Junker and Parachnowitsch, 

200 2015).

201 Interestingly, sexual mimicry has evolved from generalized food deception, shelter pollination, or 

202 food reward systems (Johnson and Schiestl, 2016). By floral visual and olfactory cuesIris spp. can 

203 adopt different pollination strategies to attract their pollinators i.e. from generalized shelter-

204 mimicking species or specialized sexual-mimicking deceptive species (Pellegrino et al., 2015, 2016; 

205 Vereecken et al., 2012, 2013) to food-rewarding species (present study). Although more data are 

206 needed to confirm the pollination strategies adopted in other un-investigated Iris species among the 

207 sections, our results suggest that I. planifolia advertises the food reward by its aromatic dominated 

208 volatile composition probably in synergy with its visual cues. Further studies are needed to better 
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209 understand the interplay between floral olfactory and visual cues for attracting I. planifolia visitors 

210 and pollinators.

211

212 5. Experimental

213 5.1. Study species

214 Iris planifolia (Mill.) T. Durand & Schinz (Iridaceae) [subg. Scorpiris Spach; section Juno Dykes], 

215 described as Xiphium planifolium in 1768 by Philip Miller, is a perennial bulbous herb about 10-25 

216 cm high (Mathew, 1986). It is naturally occurring in Spain, Portugal, Sardinia, Sicily, Crete, Greece, 

217 Libya, Tunisia, Algeria and Morocco (Barker and Govaerts, 2018). As described by Mathew (1986), 

218 the stems are very short, more or less subterranean and hidden by the leaf bases. The lanceolate and 

219 often undulate-falcate leaves (4-7) are bright shiny green above and glaucous beneath. Each plant, 

220 blooming from November to February, has 1-3 inflorescences (6-12 cm across) pale to deep blue or 

221 violet-blue and rarely white. The lower lips of the three meranthia of its inflorescence are widely 

222 reflexed, blue, veined and dotted in dark violet with a yellow or orange pubescent median ridge. The 

223 anthers are whitish or purplish whereas style branches flattened and petaloid are bilobed at the apex. 

224 To date, no information is available on the pollination ecology of I. planifolia; the plant produces 

225 nectar (supplementary material in Herrera et al., 2012) as pollinators reward. The seeds, ovoid and 

226 rugose are dark reddish-brown. In its natural habitat, the species usually grows on sloping rocky 

227 ground on limestone formations where the soil is the typical Mediterranean reddish clay (Mathew, 

228 1986). 

229 In the present study, all the field activities were performed in November 2017, wet season in Sicily, 

230 in a natural site located in San Martino delle Scale - Sicily (38°5'18.29"N, 13°15'23.48"E).

231 5.2. Floral scent sampling

232 Floral scent was collected, on a sunny day in November 2017, from plants growing in their natural 

233 habitat (38°5'18.29"N, 13°15'23.48"E - San Martino delle Scale - Sicily). All samples from 
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234 inflorescences (N= 7) were collected using a dynamic headspace method (pull system) (Tholl et al., 

235 2006). For each sampling, one inflorescence per plant was enclosed in an oven bag (size: 15 × 12 cm, 

236 CUKI® Cofresco S.p.A.) and the emitted volatiles were collected for 6 hours (9:00 - 15:00) by an 

237 adsorbent tube using a vacuum pump (G12/01 EB, Rietschle Thomas, Puchheim, Germany), with a 

238 flow rate of 200 ml/min. The adsorbent tube (shortened glass Pasteur pipette) was filled with 20 mg 

239 Tenax-TA (mesh 60-80) and 20 mg Carbotrap B (mesh 20-40) both Supelco (Bellefonte, PA, USA). 

240 The adsorbent materials were fixed in the tubes using glass wool (Sigma Aldrich). At the same time, 

241 by using the same approach described before, headspace samples from leaf (N= 3) and an empty oven 

242 bag (N= 1), were used as negative controls. Volatiles trapped in the tubes were eluted within a few 

243 minutes after collection with 200 μl of acetone (Sigma Aldrich, > 99 %). All samples were stored in 

244 screw cap vials at -20 °C until chemical analyses. The peak areas on the chromatograms were 

245 integrated to obtain the total ion current, which was used to determine the relative amount (%) of each 

246 peak. To quantify the absolute amount of scent emitted from an inflorescence, one μg of anisole 

247 (Sigma-Aldrich, Anisole ReagentPlus®, 99 %) was added to each sample as internal standard. 

248 Subsequently to calculate the absolute amounts of the VOCs in each sample, peak areas on the 

249 chromatograms were integrated to obtain the total ion current signal and compared to that of the 

250 internal standard.

251 5.3. Chemical analysis

252 All samples were analyzed by GC-MS on a single quadrupole Shimadzu GC-MS-QP2010 Plus 

253 equipped with an AOC-20i autoinjector (Shimadzu, Kyoto, Japan) and a Supelcowax 10 capillary 

254 column (30 m long, 0.25 mm i.d., 0.25 μm film thickness). One μl of each sample was injected at 250 

255 °C in the splitless mode, and the column flow (carrier gas: helium) was set at 1 ml/min. The GC oven 

256 temperature was held for 5 min at 40 °C, then increased by 2°C/min to 250 °C, held for 15 min and 

257 finally raised to 270 °C at 10 °C/min. The MS interface worked at 280 °C, and the ion source at 250 
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258 °C. Mass spectra were taken at 70 eV (in EI mode) from m/z 30 to 500. The GC/MS data were 

259 analyzed using the GCMSolution package, Version 2.72. 

260 Identification of compounds was carried out using the mass spectral libraries FFNSC 2, W9N11, 

261 ESSENTIAL OILS (available in MassFinder 3), and Adams (2007). These identifications were also 

262 compared by mass spectra and Kovats retention indices found in NIST11, SciFinder and Pherobase 

263 (El-Sayed, 2018) database. Many of the compounds were confirmed by comparison of mass spectra 

264 and retention times with authentic standard components (Sigma Aldrich) provided by Prof. Dr. Stefan 

265 Dötterl (Plant Ecology Lab - University of Salzburg). Kovats retention indices were calculated using 

266 a series of n-alkanes (C8 - C30). Compounds found in the flowers were compared with those found in 

267 the negative controls (empty oven bag and green leaves) to discriminate contaminations from air 

268 ambient and to identify those exclusively emitted by flowers.

269 5.4. Flower-visiting insects

270 Insects visiting I. planifolia inflorescences were recorded during the day and in the same site of the 

271 headspace collections. The sampling of flower-visiting insects was limited to ten inflorescences in 

272 order to minimize the potential negative impact on the local entomofauna and on pollination 

273 processes. Observations were performed simultaneously by two researchers staying near the plants 

274 for 8 hours (08:00 - 16:00). The limited number of hours of observation was linked to good weather 

275 condition (sunny day) occurring in the flowering period of I. planifolia in Sicily (rainy season). 

276 Insects visiting I. planifolia were recorded when they landed on a meranthium. Only a few insect 

277 visitors belonging to different morphospecies were captured by entomological hand nets or plastic 

278 bags (10 x 7 cm), otherwise they were annotated and photographed with a digital camera (NIKON 

279 D3100). Since not all insect individuals were captured, we cannot exclude that the same specimen 

280 after leaving, came back to revisit the inflorescence again. The data of insects visiting the ten different 

281 I. planifolia inflorescences were polled together. The flower visitors that landed, entered inside the 

282 meranthium and came out it with pollen on their body were recorded as potential pollinators. On the 
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283 contrary, the insects that after their landing on the inflorescences never entered inside the meranthium 

284 were recorded as visitors. Insect specimens, identified at specific taxonomic level, are stored in an 

285 entomological box and kept in the Entomological collection of the Department of Biological, 

286 Chemical and Pharmaceutical Sciences and Technologies of the University of Palermo. 
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443 Table 1. Relative and total absolute amounts of floral scent detected in Iris planifolia. Compounds 
444 belonging to the same chemical class and functional group (Knudsen et al., 2006) are arranged 
445 according to Kovats retention indices (KRI) of the Supelcowax 10 column. Odour characteristic: 
446 olfactory descriptions according to Acree and Arn (2004) and El-Sayed (2018). * = identification 
447 verified by authentic standard.

Compound KRI Relative amount (%)
Mean ± SE (N= 7)

Occurrence of 
samples (%) Odour characteristic

Aromatic alcohols

Benzyl alcohol* 1856 0.3 ± 0.1 100 Sweet, floral, fruity

2-Phenylethanol* 1886 8.4 ± 3.6 100 Honey, spicy, rose, lilac, 
sweet, yeast, floral, 
herbal

2-(4-Methoxyphenyl)ethanol 2303 1.4 ± 0.2 100 -

Aromatic aldehydes

Benzaldehyde* 1503 3.7 ± 1.3 100 Almond, burnt sugar, 
woody

Phenylacetaldehyde* 1620 2.0 ± 1.6 57 Honey, sweet, rose, 
green, grassy, floral

2-Methoxybenzaldehyde 1936 6.2 ± 1.4 100 -

4-Methoxybenzaldehyde* 2004 0.4 ± 0.2 71 Mint, sweet

Aromatic esters

Methyl benzoate* 1599 1.9 ± 0.5 86 Prune, lettuce, herbal, 
sweet, floral, 
watermelon

Benzyl tiglate* 2080 3.1 ± 1.0 86 Earthy, mushroom

Aromatic ethers

1,4-Dimethoxybenzene* 1716 71.5 ± 4.9 100 Sweet, floral, herbal

1,2,4-Trimethoxybenzene* 2068 0.8 ± 0.3 86 -

Monoterpene alcohols

Linalool* 1536 0.4 ± 0.1 100 Muscat, sweet, green, 
floral, lemon, parsley, 
lavender, fruity

Total absolute amount: 2.0 ± 0.6 µg/inflorescence/hour
Total number of compounds: 12
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452 Figure legend.

453 Fig. 1. Bombus ruderatus inside (A) and on (B) the meranthium of Iris planifolia (photos by 
454 Francesca Tavella). Apis mellifera outgoing from the tunnel of the meranthium (C) and Episyrphus 
455 balteatus eating the pollen grains left by pollinators (D) (photos by Pietro Zito).

456

457 Graphical abstract Legend.

458 Iris planifolia (Iridaceae) advertises its food reward by an aromatic dominated floral volatile 
459 composition.
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