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Statistics is coming home

Dear Participants,

we welcome you to the 29th International Workshop on Statistical
Modelling (IWSM) taking place in Göttingen, being both in the very
heart of Germany and the hometown of statistics. The 29th IWSM will
coincidentally be held in the 29th week of 2014 and – although you can
follow traces of Carl Friedrich Gauß at various places in Göttingen – not
every part of the workshop will be Gaussian since this is not a standard
normal conference.

The well-established key features of the workshop (no parallel sessions, a
limited number of distinguished invited talks, a focus on interdisciplinarity
and young contributing authors, a short course preceeding the conference,
a supplementing social program) can all be found in this year’s program
again. These elements keep the IWSM unique in the landscape of statis-
tical conferences. 145 participants from all over the world will have the
chance to attend the 56 contributed oral presentations and take their time
in the separate extended session to stroll around the 45 poster presenta-
tions. All abstracts are also provided as a PDF from the conference website.
We are glad that Antoine de Falguerolles from Toulouse, Alejandro Jara
from Santiago de Chile, Sophia Rabe-Hesketh from Berkeley, Gerhard Tutz
from Munich and Simon Wood from Bath have accepted the invitation to
give a one hour presentation in order to inform and entertain us more ex-
tensively. For the short course, Benjamin Hofner and Andreas Mayr from
Erlangen provided an introduction to “Boosting for statistical modelling”
to 25 participants.

Still, this is only the setup. The high standards of the conference and the
quality of all presentations – oral and poster – is ensured by the scientific
committee devoting a considerable amount of work to the review process of
submitted abstracts. They were also able to gather an international group
of renowned experts to give the keynote presentations. Thanks to this hard
work, the 29th week of 2014 will hopefully be, once again, very fruitful for
ongoing research, potential collaborations and statistical modelling itself.

However, the IWSM does not only bring together people from different
countries, but also from different ages and experience levels. As per tra-
dition, this is encouraged by awarding the best student paper, the best
student oral presentation and the best student poster at the conference
dinner Thursday night. Furthermore, two student travel grants have been
kindly provided by the Statistical Modelling Society.

Finally, we thank all authors who contributed to these proceedings for
participating in the workshop and for carefully preparing their manuscripts
and talks or posters. We hope that you can find inspiration in the home
of statistics and also enjoy the historic city, the university and the historic
observatory of Gauß himself at the welcome reception on Monday night.

Thomas Kneib, Fabian Sobotka, Jan Fahrenholz and Henriette Irmer
on behalf of the local organizing committee

Göttingen, May 2014
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“La statistique à Goettingue”: a tentative
tribute by an IWSM participant from
Toulouse

Antoine de Falguerolles1

1 Université de Toulouse (retired), France

E-mail for correspondence: antoine@falguerolles.net

Abstract: The historical background of the academic world in Göttingen in the
early 19th century and its main institutions are outlined. A tentative sample of
figures whose works contributed to the statistical reputation of Göttingen in the
period 1750-1900 is considered. A French perspective is adopted.

Keywords: History of statistics, rise of statistical modelling in Göttingen, sta-
tistical visualization, generalized linear models

1 Introduction

What does the name Göttingen suggest to a typical man (or women) in
the street in Toulouse? When asked, Barbara’s song comes first, Friedrich
Gauss is second, and David Hilbert is rarely mentioned. Barbara’s memo-
rable song does not fit the scientific scope of an International Workshop on
Statistical Modelling (IWSM) meeting. Bernard Bru, Anders Hald, Oscar
Sheynin, Stephen M. Stigler, . . . have done justice to the mathematicorum
principes Gauss and Hilbert (and to many more!). What more can be said
on “La statistique à Goettingue”?
German universities in general and Göttingen university in particular with
their curricula, libraries, and links with related Academies generated a gen-
uine interest in France after the Treaty of Basle (1795). Two former alumni
of Göttingen, the French born Charles de Villers and the Swiss born Philipp
Albert Stapfer, played an important role in this dissemination (Décultot,
2008). The contrast with the French situation was striking: the French
universities had been closed under the Revolution in 1793 and were to
be recreated by Napoléon as a centralised imperial university (1806, 1808).
The French interest in the German system lasted in learned circles notwith-
standing tumultuous relationships. A testimony of the scientific recognition

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



4 La statistique à Goettingue

of Göttingen university can be found in the journal kept by Maurice Janet,
a French visiting graduate student of Hilbert in 1912 (Mazliak, 2014).
What follows echoes my own personal perception of the rise of statistical
modelling which benefited from the academic climate in Göttingen. Sec-
tion 2 discusses the emergence of the word statistics which Göttingen seems
to be credited for. Section 3 describes some of the historical background
of the academic world in Göttingen and Section 4 its main institutions in
the early 19th century. Section 5 presents a tentative and biased sample
of figures who, before the First World War, contributed to the statistical
reputation of Göttingen. Excerpts of documents and reanalyses of data will
illustrate my oral presentation.

2 The emergence of the word statistics

In 1819, when elected to the French Academy, Pierre-Édouard Lémontey
(1762-1826) had to deliver an eulogy to his predecessor, the well known
Abbé André Morellet (1727-1819). In his speech, Lémontey asserted that
Morellet had contributed to a “singular novelty” of his epoch. The singu-
larity was the birth to two positive sciences, one allegedly established in
Germany under the name of Statistics (statistique) and the other in Eng-
land, also allegedly, under the name of political economy (économie poli-
tique). Lémontey further emphasised that Morellet had clearly established
their undisputable French origin! Ignoring the French pretence, Theodore
M. Porter (Porter, 1986), less committed to claiming credit pour la France,
appropriately recalls that

[it is] William Petty, who invented the phrase “Political arith-
metic” and is thought by many to have a hand in the composi-
tion of [John] Graunt’s [Observation upon the Bills of Mortality
of 1662] (p. 19)

and that

“Statistics” derives from a German term, Statistik, first used as
a substantive by the Göttingen professor Gottfried Achenwall
in 1749 (p. 23).

2.1 Earliest appearance?

In most papers or books on the history of statistics, and whatever the lan-
guage used, there is a section devoted to the first use of the words statistics
and statistician. This can be exemplified in French and Italian. Maurice
Block (Block, 1878), the Prussian-born French statistician, acknowledges
the priority of Gottfried Achenwall (1719-1772) but mentions (p. 6) that
Guéry (sic) had quoted in his “famous work” the use of both words (in latin)
as early as 1672 by Heleno Politano (http://archive.thulb.uni-jena.de
/hisbest/receive/HisBest_cbu_00020823). Note that an earlier-than-
Politano French use of the word statistique, widely accepted in France, is
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inaccurate (Pépin, 2005). The Italian Giovanni-Battista Salvioni (Salvioni,
1879) recognizes in Hermann Conring (1606-1681), from Helmstedt Univer-
sity, a forerunner of modern government statistics but also quotes Heleno
Politano.
Whatever the truth, statistics became rapidly a fashionable word although
its meaning remained unclear. There are numerous instances of bizantine
discussions on what statistics is about and how other fields are not statis-
tics. In the early 19th century, these mostly addressed the respective do-
mains of political economy, state administration, history and geography.
But there were also interesting intuitions: the naturalist Jean-Baptiste
Lamarck (1744-1829) coined the phrase Météorologie-statistique in an early
French statistical journal (Annales de Statistique, 1802).

2.2 And nowadays?

Is statistics a well defined domain? This is still a matter of taste and dis-
cussions. Afficionados of clustering, machine learning, data analysis, data
visualisation, big data, . . . are often uncompromising in their claim for
autonomy. Still, I assume that, for most participants of the IWSM, statis-
tics is the interplay of data and probabilistic models. Of course, data and
models are both constructions, the more abstruse being sometimes the data
rather than the model.

3 Setting historical and geopolitical backgrounds

Göttingen is seated in the German Federal state (Bundesland) of Lower
Saxony (Niedersachsen) and hosts an internationally renowned university.
This is the interesting result of a complicated evolutionary process, an
oversimplified slice of its trajectory being summarized below.

3.1 The Electorate: 1708-1706

The territories of the actual Land include historic sub-principalities of
the medieval Duchy of Brunswick-Lüneburg or, later, of the Electorate
of Hanover (formally the Electorate of Brunswick-Lüneburg) (1708). The
House of Hanover headed the Electorate. This house was a cadet branch of a
prominent and intricate family, the Guelphs (Welf), with a complicated his-
tory of divisions, acquisitions and mergers of principalities. In addition, in
1714, the Elector, Georg Ludwig (1660-1727), became king of Great Britain
and Ireland (with a claim on France) under the name of George I, so that
the Electorate and Great Britain and Ireland were ruled in personal union.

3.2 The Napoleonic interlude: 1807-1813

During this short interval, Napoléon created the Kingdom of Westphalia
(Königreich Westphalen) ruled by his younger brother Jérôme. The King-
dom was bilingual (Deutsch and Französisch) and replicated the French
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“model” (law, administration . . . ); its Capital was Cassel (now Kassel). A
tentative assessment of the impact of this Napoleonic enterprise is given in
Knopper (2008).
Göttingen became the seat of the préfecture (Präfektur) of the Leine De-
partment (Departement der Leine), named after the Leine river which flows
through it. In 1810, the Kingdom was remodelled and incorporated three
more departments, among them the Departement der Aller, with Hanover
as seat of the préfecture. The short lived Kingdom supported three uni-
versities: Halle, Göttigen and Marburg. In 1810, King Jérôme had closed
the Helmstedt University (another institution connected with the Guelph
family, the Braunschweig-Wolfenbüttel). Note that a similar situation had
occured in the Netherlands where Napoléon had closed the university of
Franeker in 1811.

3.3 The Kingdom of Hanover

In 1814 the Congress of Vienna elevated the Electorate to a kingdom, with
Hanover as its Capital. A Higher Vocational College/Polytechnic Institute
(Höhere Gewerbeschule/Polytechnische Schule) was founded in 1831 which
evolved into a reputed technical university recently renamed the Gottfried
Wilhelm Leibniz Universität Hannover. The joint ruling ended in 1837 with
the death of William IV Henry: the Guelphs did comply to the German
semi-Salic law (his brother Ernest Augustus (1771-1851) ascended to the
Hanover throne) and to the British male-preference (his niece Victoria
(1819-1901) to the throne of the United Kingdom of Great Britain and
Ireland).
In 1866 the Kingdom of Hanover was annexed by Prussia and became the
Prussian Province of Hanover. In 1871 it became part of the German Em-
pire along with Alsace and the Moselle region of the Lorraine (Reichsland
Elsaß-Lothringen) following the Franco-Prussian War.

4 Some academic institutions in Göttingen

The Napoleonic Almanach Royal de Wesphalie (Cassel: Imprimerie royale,
1812 and 1813) provides a detailed picture in French of the academic insti-
tutions in Göttingen. This is obviously biased information. But it can be
supplemented. For example, the Göttingen academic paradigm at the turn
of the 18th century has been thoroughly investigated in a recent Franco-
German book edited by Bödeker et al. (2010). My own view follows.

4.1 The Georgia Augusta

The university, founded in 1734-1737, was innovatively designed by Gerlach
Adolph Baron Münchhausen (1688 - 1770) to be in the spirit of the Enlight-
enment. It is named after George II Augustus (Georg August) the second
ruler in personal union of the kingdoms of Great Britain and Ireland, and
of the Electorate of Hanover.
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During the Napoleonic interlude, the Université de Gœttingen comprised
four Faculties (Theology, Law, Medicine and Philosophy). The latter con-
sisted of Philosophy per se, Mathematics in general, and in particular
. . . Astronomy, . . . , History and Statistics, . . . , Music. As expected Carl
Friedrich Gauss (1777-1855), professor of astronomy at Göttingen, held a
position of ordinary professor in the Faculty of Philosophy. He is designated
as le chevalier Gauss since he had been knighted to the Napoleonic Ordre
de la Couronne de Westphalie.

4.2 Göttingen Academy

The city also hosts the Göttingen Academy of Sciences and Humanities
(Akademie der Wissenschaften zu Göttingen), a learned society, founded
by George II Augustus in 1751 and still active.
During the Napoleonic interlude, the Société Royale des sciences, de l’his-
toire et de la littérature, à Goettingue used to meet once a month. The Soci-
ety, organised in four disciplinary classes, counted ordinary members (circa
20), honorary members (circa 10), foreign associate members (circa 90),
and corresponding associates (circa 200). The second class dealt with pure
(pures) and applied (mixtes) mathematics and astronomy; it counted
4 members: Messrs Mayer, Thibaut, Harding, and le chevalier Gauss.
The foreign associate members were mostly Europeans (with the exception
of Spanish or Portugese members). Among them:

• several leading astronomers: John Herschel (1792-1871) (the son of
Wilhelm Herschel, the Hanoverian-born British astronomer), Franz-
Xaver von Zach (1754-1832), Count (Pierre-Simon de) Laplace (1749-
1827), Jean-Baptiste Delambre (1749-1822), (Father) Giuseppe Piazzi
(1746-1826), (Father) Barnaba Oriani (1752-1832), Guillaume Olbers
(1758-1840).

• two prominent personal counselors to the Prussian King: Wilhelm
von Humboldt and his younger brother Alexander von Humboldt
(1769-1859).

• a leading French polymath who pioneered official statistics in France
(the so-called statistique des préfets): le comte Chaptal (1756-1832).

The corresponding associates were less recognized personalities, some of
them having a real connection with different conceptualisations of statis-
tics: Emmanuel Étienne Duvillard de Durand (1755-1832) (Swiss-born,
Paris), Gaspard Riche de Prony (1755-1839) (Paris), Denis-François Don-
nant (1769-18..) (Paris), Hendrik-Willem Tydeman (1778-1863) (Franeker),
Simon L’Huillier (1750-1840) (Geneva), . . .
In the Almanach, the long list of foreign or corresponding associates com-
prises names which are misspelt or enigmatic. Examples are Chapollion Fi-
geni (Jacques-Joseph Champollion-Figeac), elder brother of the decipherer
of the Rosetta Stone, and Stettio-Doria Proffalendi (Stylianos Dorias Pros-
alentis?) from Corfu Academy. (A Ionian Academy had been organised in
Corfu also occupied by Napoléon.) Their expertise in Greek had presumably
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motivated their nomination. Indeed, Philological studies had immensely de-
velopped in Göttingen under le chevalier Heyne (1729-1812), director of the
famous university library.

4.3 Observatory

The first astronomical observatory in Göttingen had been installed in 1750
and the astronomer Tobias Mayer hired in 1751. The construction of a
new observatory, decided by George III, was delayed by the French Revo-
lutionary Wars. Le chevalier Gauss became its director in 1807. Actually,
astronomers (and their active network) have a uncommon tradition for “Big
Data” and mathematical models. Statistical modelling owes them at least
L1, L2, minimax linear fits (Farebrother, 1999).

4.4 Miscellanea

A library, a museum, several institutes, seminars, . . . were attached to
the university. By 1800, the library counted more than 130,000 volumes
while university libraries in Europe or America had typically no more than
30,000. The Collection des modèles et machines (Göttingen collection of
Mathematical Models and Instruments) which is still maintained, was then
headed by Professor Mayer.

5 A tentative sample of early statistical modellers

Below is a contestable list of figures related to Göttingen, to topics ad-
dressed during past IWSMs, and to my own statistical interests.

5.1 Gottfried Leibniz

Gottfried Wilhelm (von) Leibniz (1646-1716), the famous polymath, is usu-
ally recognized for his contribution to the infinitesimal calculus (wether
independently of Isaac Newton or not, a debatable issue), to the field of
mechanical calculators (arithmometer), and to the binary number system
(see the logo of the eponymous university). Leibniz is also a fine historian.
In 1676, Leibniz entered into the service of the Gelph family. (In particular
he deconstructed the genealogy of the Gelph family.) Interested in actu-
arial matters, he also investigated the question of insurance and mortality
(Rorhbasser, 2007). The mathematical formulations attempted below are
tentative translations of verbal descriptions: The random life duration (T )
could have cumulative distribution function FT (t) = FT (1)+(1−FT (1)) t−1

θ−1

for 1 < t ≤ θ, where θ is the climateric year 9 × 9, hazard function 1
θ−t

and conditional expectation E[T |T > t0] = θ+t0
2 which Leibniz found in

excess. This is certainly better than the tentative “model” for life dura-
tion discussed in Ephraim Chambers’Cyclopædia (1728) and reproduced
by many (the Encyclopédie de Diderot et de d’Alembert: entry politique
arithmétique; Denis-François Donnant’s Théorie élémentaire de la Statis-
tique, 1805) where the hazard function could translate as 1

2t !



Falguerolles 9

5.2 Tobias Mayer

Tobias Mayer (1723-1762) was a self-taught mathematician, cartographer,
and astronomer. His work on the oscillation of the moon was published in
1750, Kosmographische Nachrichten und Sammlungen auf das Jahr 1748
(p. 52-172). (http://www.e-rara.ch/doi/10.3931/e-rara-2770verb).
He provided an elegant solution to the estimation of coefficients in lin-
ear regression (E[Y ] = Xβ and V ar(Y ) = σ2I), namely the particular
construction of a matrix U such that U ′X is regular. (Note in passing that

matrices did not exist then.) Hence β̂M = (U ′X)−1U ′Y , E[β̂M ] = β, and

V ar(β̂M ) = σ2(U ′X)−1U ′U(X ′U)−1. Mayer’s solution (1750) amounts to
select an ad hoc partition of the observations in |β| clusters, the indicator
matrix of which is used to define X. In other words, by averaging the data
in each cluster, β is the solution of a set of |β| linear equations. (For some
connections with clustering methods, see Falguerolles, 2009.) In 1788, also
for computational simplification, Laplace restricted the coefficients in U to
+1, −1, 0.
Appointed to a Chair of economy and mathematics at the Georgia Augusta,
Tobias Mayer moved from Nuremberg to Göttingen in 1751. He became
superintendent of the observatory in 1754. The Mayer mentioned in the
Almanach is Tobias Mayer’s son: alumni of the Georgia Augusta, professor
in several German universities, Johann Tobias Mayer (1752-1830) obtained
a position in Göttingen in 1799.

5.3 Ludwig Schlözer

August Ludwig von Schlözer (1735-1809) was the successor of Achenwall in
Göttingen where he was promoted to a professorship in 1769. In the tradi-
tion of Cameralism, but also influenced by the ideas of Adam Smith (1723-
1790), the Scottish moral philosopher and pioneer of political economy,
his work was a solid attempt at conceptualization of statistics (Becker and
Clark, 2001, and Garner, 2010). His numerous books were well received and,
in particular, the Theorie der Statistik nebst Ideen über das Studium der
Politik überhaupt. (See http://ds.ub.uni-bielefeld.de/viewer/image/
1493486/1/.)
Two of the corresponding associates propagated Schlözer’s treaty outside
the German world. The French Denis-François Donnant rapidly translated
the book into French. His translation which includes a preliminary dis-
course, some additions and remarks is titled Introduction à la Science de la
statistique, suivie . . . (Paris: Imprimerie Impériale, 1805). Donnant is more
known for his translations (sometimes inventive) than for his own work. He
had already translated and published William Playfair’s Statistical Breviary
(London: Wallis, 1801) with an addition which, in turn, Playfair translated
and published (London: J. Whiting, 1805). The Dutch Hendrik-Willem Ty-
deman, then professor at Franeker university, also translated and published
Schlözer’s book: Theorie der Statistiek of Staats-Kunde, Groningen: Wijbe
Wouters and Amsterdam: J.F. Nieman, 1807 (see Stamhuis, 2010).
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5.4 Alexander von Humboldt

Alexander von Humboldt (1769-1859) was a Prussian geographer, natural-
ist and explorer. Educated in various German universities, he matriculated
at the Georgia Augusta in 1789. Between 1799 and 1804, Humboldt and
Aimé Bonpland (1773-1858), his French accomplice, travelled extensively
in Latin America measuring and collecting almost everything. During this
memorable expedition, Humboldt laid the foundation of physical geogra-
phy, botanical geography, and meteorology. The impressive volume of Hum-
boldt’s publications hid some novel statistical graphics. The influence of the
German August F. W. Crome (1753-1833), cameralist and statistician? Of
the Scottish William Playfair (1759-1823)? In particular, Humboldt’s Es-
sai sur la Géographie des Plantes ; acccompagnée d’un tableau physique
des régions équinoxiales (Paris: Levrault, 1805) is illustrated by the fa-
mous tableau physique showing the Chimborazo and the Cotopaxi volcanos
in Ecuador (then a Spanish colony), and several physical phenomena linked
to altitude. A useful website for seing Humboldt’s tableau (and an amazing
menagery of statistical graphics) is the Milestones project (Friendly and
Denis, 2001). Humboldt’s graphic was influential. For early followers, see
Palsky (2010). A French example, L’essai sur la statistique universelle du
globe terrestre (1815), is provided by Pierre-Bernard Barrau (1767-1843);
born in Toulouse, Barrau was an unsuccessful pioneer in agriculture insur-
ance and a naive statistical “believer”.

5.5 Wilhelm Lexis

Wilhelm Lexis (1837-1914) was an economist, a statistician and a demogra-
pher. His academic mobility is quite exemplary: universities of Strasbourg
(then Prussian), Dorpat (now Tartu), Freiburg im Breisgau, Breslau, and
finally Göttingen in 1887. If Lexis has given his name to two tools re-
flecting questions still addressed by statistical modellers, it is often duly
argued that he should not be credited for their invention but rather for
their development. Stigler’s law of eponymy again!
The Lexis ratio Q2 aims at quantifying the stability of k replicated series of
uncorrelated binary events (Xij) with common length (n0). The statistic
Q2 (or L2) compares two variance estimates for the rate observed in a

replication: X(1−X)
n0

and 1
k−1

∑k
i=1(Xi − X)2. A practical example taken

from Richard von Mises’s textbook (1957) is reanalysed by Gelman (2011)
who elicits the link between Lexis ratio and the chi-square test statistics
for overdispersion.
The Lexis diagram is a visualisation tool of individual lifetimes. Technically
it is a planar representation of three dimensional data, hence the connec-
tion with stereograms. Keiding (2000) has thoroughly investigated the rise
and the mathematical principles of theses graphics. The visualisation (Lexis
pencils) of a moderate number of individual time changes in a number of
categorical variables is considered in Francis and Fuller (1996); the analyt-
ical usefulness of this graphic is increased by zoomings and animations.
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5.6 Ladislaus von Bortkiewicz

Ladislaus von Bortkiewicz (1868-1931) studied and taught at the univer-
sities of Strasbourg and Göttingen. In particular he defended his doc-
toral thesis at the Georgia Augusta. His famous monograph on the law of
small numbers, (Das Gesetz der Kleinen Zahlen or 1898, Leipzig: Teubner),
is dedicated to his advisor Lexis. (See https://archive.org/details/

dasgesetzderklei00bortrich.) The book gives a talented presentation
of the Poisson distribution (standard errors of standard errors are pro-
vided!) illustrated by detailed analyses of data sets (in particular, the fa-
mous two-way table of Prussian Miltärpersonen deaths by horse-kicks!).
Undisputably his book is a forerunner to those of McCullagh and Nelder
(1982, 1989) and of Aitkin and al. (1989) which very much influenced the
creation of the IWSM. His examples and this workshop offers me a unique
occasion to reminisce with nostalgia the GLIM package and its flexibility
(Falguerolles and Francis, 1995).

Acknowledgments: I would like to thank François Bompaire, Brian Fran-
cis, Michael Friendly, Thomas Kneib, and Gilles Palsky for their encour-
agements and help in preparing this presentation. In the process, I had also
the pleasure to trace “cousin” Johann Peter Falguerolles from Bremen and
medical student in Erlangen (1785). All errors and approximations remain
mine.
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mand. L’exemple de l’université de Göttingen. In: L’Allemagne face
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Abstract: We discuss Bayesian nonparametric procedures for density estimation
and fully nonparametric regression for compositional data, that is, data supported
in a m–dimensional simplex ∆m. The procedures are based on modified classes of
multivariate Bernstein polynomials. We show that the modified classes retain the
well known approximation properties of the classical versions defined on [0, 1]m

and ∆m, m ≥ 1. Based on these classes, we define prior distributions on the
space of all probability measures defined on ∆m, P(∆m). We show that the
processes are well defined, have large support and the frequentist asymptotic
behaviour of the posterior distribution is appropriated. Finally, novel classes of
probability models for sets of predictor-dependent probability distributions are
proposed. Appealing theoretical properties such as support, continuity, marginal
distribution, correlation structure, and consistency of the posterior distribution
are studied.

Keywords: Simplex; Random Bernstein polynomials; Dependent Dirichlet pro-
cesses

1 Introduction

Models for probability distributions based on convex combinations of den-
sities from parametric families underly mainstream approaches to density
estimation, including kernel techniques, nonparametric maximum likeli-
hood and Bayesian nonparametric (BNP) approaches. From a BNP point
of view, the mixture model provides a convenient set up for density es-
timation in that a prior distribution on densities is induced by placing
a prior distribution on the mixing measure. On the real line, a mixture
of normal densities induced by a Dirichlet process (DP) is often used to
model smooth densities. Due to the flexibility and ease in computation,

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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these models are now routinely implemented in a wide variety of appli-
cations. While the normal kernel is a sensible choice on the real line,
its usefulness is rather limited when considering densities on convex and
compact subspaces, such as the closed unit interval or the m–dimensional
simplex ∆m = {(y1, . . . , ym) ∈ [0, 1]m :

∑m
i=1 yi ≤ 1}. Although methods

based on the normal kernel could be used to deal with data supported on
these spaces, by using transformations, the resulting model is susceptible
to boundary effects.
Motivated by its uniform approximation properties, frequentist and
Bayesian methods based on univariate Bernstein polynomials (BP) and
more general discrete mixtures of beta distributions have been proposed
for the estimation of probability distributions supported on bounded inter-
vals (see, e.g., Petrone 1999). Extensions based on multivariate BP (MBP)
defined on the unit hyper-cube have been considered in the statistical lit-
erature (see, e.g., Zheng et al., 2010). Multivariate extensions of Bernstein
polynomials defined on ∆m were considered by Tenbusch (1994), to pro-
pose and study a density estimator for the data supported on ∆2. Although
Tenbusch’s estimator is consistent and optimal at the interior points of the
simplex, it is not a valid density function for finite sample size.
We will discuss Bayesian nonparametric approaches for single density esti-
mation and for the estimation of collections of conditional densities based
on modified classes of MBP. The modified clases of MBP and its main prop-
erties are given in Section 2. The proposed models for probability measures
defined on ∆m are discussed in Section 3. Finally, proposed models for col-
lections of probability measures defined on ∆m are discussed in Section 4.
Sections 2 and 3 summarise the works by Barrientos et al. (2014) and
Barrientos and Jara (2014). Section 4 describes ongoing research on the
subject.

2 Multivariate Bernstein polynomials on ∆m

2.1 The original class

Tenbusch’s estimator arises by taking G to be the restriction of the empir-
ical CDF to ∆2, and it is based on the following class of MBP. For a given
bounded function G : ∆m −→ R, the associated MBP of degree k ∈ N on
∆m is defined by

Bk,G(y) =
∑
j∈J km

G

(
j1
k
, . . . ,

jm
k

)
k!

(
∏m
l=1 jl!) (k −

∑m
l=1 jl)!(

m∏
l=1

yjll

)(
1−

m∑
l=1

yl

)k−∑m
l=1 jl

,

where j = (j1, . . . , jm), and

J km =

{
(j1, . . . , jm) ∈ {0, . . . , k}m :

m∑
l=1

jl ≤ k

}
.
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It is not difficult to show, however, that if G is the restriction of the CDF
of a probability measure on ∆m, then Bk,G(·) is not the restriction of the
CDF of a probability measure defined on ∆m for a finite k; Bk,G(·) can be
expressed as a linear combination of CDF’s of probability measures defined
on ∆m, where the coefficients are nonnegative but do not add up to one.

2.2 The modified classes

To avoid the problem of Tenbusch’s estimator, Barrientos et al. (2014)
proposed a modified class of MBP, which is obtained by increasing the
size of the set J km and the domain of the function G. For a given function
G : Rm −→ R, the associated MBP of degree k ∈ N on ∆m is defined by

B1,k,G(y) =
∑
j∈Hkm

G

(
j1
k
, . . . ,

jm
k

)
k!

(
∏m
l=1 jl!) (k −

∑m
l=1 jl)!(

m∏
l=1

yjll

)(
1−

m∑
l=1

yl

)k−∑m
l=1 jl

, (1)

where Hkm = {(j1, . . . , jm) ∈ {0, . . . , k}m :
∑m
l=1 jl ≤ k +m− 1}.

Alternatively, Barrientos and Jara (2014) proposed another modified class
of MBP, which is given next. For a given function G : Rm −→ R, the
associated MBP of degree k ∈ K = {l ∈ N : l1/2 is an integer} on ∆m is
defined by

B2,k,G(y) =
∑
j∈Hkm

G

(
Tk(j1)√

k
, . . . ,

Tk(jm)√
k

)
C(j)k!

(
∏m
l=1 jl!) (k −

∑m
l=1 jl)!(

m∏
l=1

yjll

)(
1−

m∑
l=1

yl

)k−∑m
l=1 jl

, (2)

where

C(j) = k−m̃(j)/2
(

1− IQk
m̃(j)

(j)
)

+
m̃(j)!(

√
k − 1)!

(
√
k + m̃(j)− 1)!

IQk
m̃(j)

(j),

IA(·) is the indicator function for set A, m̃(j) =
∑m
i=1(1− I{0}(ji)),

Qkm̃(j) =

{
j ∈ Hkm :

m∑
i=1

Tk(ji) =
√
k + m̃(j)− 1

}
,

Tk(j) =
∑√k
i=1 i IA(k,i)(j) and A(k, i) = {(i− 1)

√
k + 1, . . . , i

√
k}.

2.3 Some properties of the modified classes

The modified classes B1,k,G and B2,k,G retain most of the appealing ap-
proximation properties of univariate BP and the standard class of MBP,
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Bk,G. Specifically, if G is a real-valued function defined on Rm and G|∆m

its restriction on ∆m, then the relations

lim
k→∞

B1,k,G(y) = G|∆d
(y),

and
lim
k→∞

B2,k,G(y) = G|∆d
(y),

hold at each point of continuity y of G|∆d
. Furthermore, these relations

hold uniformly on ∆d if G|∆d
is a continuous function.

It is also possible to show that if G is the restriction of the CDF of
a probability measure defined on ∆m, then B1,k,G(·) and B2,k,G(·) are
also restrictions of the CDF of probability measures defined on ∆m. Fur-
thermore, if G is the CDF of a probability measure defined on ∆̃m =
{y ∈ ∆m : yj > 0, j = 1, . . . ,m}, then B1,k,G(·) and B2,k,G(·) are restric-
tions of the CDF of probability measures with density functions given by
the following mixtures of Dirichlet distributions,

b1,k,G(y) =
∑

j∈H0
k,d

W1,k,j,G × d(y | α(k, j)), (3)

and

b2,k,G(y) =
∑

j∈H0
k,d

W2,k,j,G × d(y | α(k, j)), (4)

respectively, where j = (j1, . . . , jm),

H0
k,m =

{
(j1, . . . , jm) ∈ {1, . . . , k}m :

m∑
l=1

jl ≤ k +m− 1

}
,

W1,k,j,G = G

((
j1 − 1

k
,
j1
k

]
× . . .×

(
jm − 1

k
,
jm
k

])
,

W2,k,j,G = C(j)G

((
Tk(j1)− 1√

k
,
Tk(j1)√

k

]
× . . .×

(
Tk(jm)− 1√

k
,
Tk(jm)√

k

])
,

d(· | (α1, . . . , αm)) denotes the density function of a m–dimensional Dirich-
let distribution with parameters (α1, . . . , αm), and

α (k, j) =

(
j, k +m−

m∑
l=1

jl

)
.

It is easy to see that b1,k,G(·) and b2,k,G(·) are polynomial functions of y.
These classes can approximate any element in the set of absolutely contin-
uous probability measures defined on ∆m and with α-Hölder continuous
density function, α ∈ (0, 1]. As a matter of fact, if G is an absolutely con-
tinuous probability measure defined on ∆m, w.r.t. Lebesgue measure, with
α–Hölder continuous density function g, then

‖b̃1,k,G − g‖∞ = O
(
k−α/2

)
,
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and
‖b̃2,k,G − g‖∞ = O

(
k−α/2

)
.

3 Random MBP for density estimation

3.1 The probability models

We induce probability models for densities defined on ∆m by considering a
random k and G in expressions (3) and (4), respectively. Indeed, we define
P (∆m)-valued stochastic processes by considering discrete stick-breaking
process for G and appropriate priors for the polynomial degrees.
A random probability measure H1 on (∆m,B(∆m)) is said to be a stick-
breaking MBP1 process with parameters(

λ1, {Hv,1
i }i≥1, {Hθ,1

i }i≥1

)
,

written

H1 | λ1, {Hv,1
i }i≥1, {Hθ,1

i }i≥1 ∼ SBMBP1
(
λ1, {Hv,1

i }i≥1, {Hθ,1
i }i≥1

)
,

if there exists an appropriate probability space such that:

(1.i) vi ∈ [0, 1], i ≥ 1, are independent random variables with distribution
Hv,1i , and such that

∞∑
i=1

log
[
1− EHv,1i (vi)

]
= −∞,

(1.ii) θi ∈ ∆̃m, i ≥ 1, are independent random vectors with distribution

Hθ,1i .

(1.iii) k ∈ N is a discrete random variable with distribution indexed by a
finite-dimensional parameter λ1.

(1.iv) the density function of H1, w.r.t. Lebesgue measure, is given by the
following mixture of Dirichlet densities,

h1(y) =
∑

j∈H0
k,m

w1,k,j,G × d(y | α(k, j)), (5)

where

w1,k,j,G =

({ ∞∑
l1=1

vl1
∏
l2<l1

[1− vl2 ]

}
I(θl1)A1

j,k

)
,

with

A1
j,k =

(
j1 − 1

k
,
j1
k

]
× . . .×

(
jm − 1

k
,
jm
k

]
.
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In a similar way, a random probability measure H2 on (∆m,B(∆m)) is said
to be a stick-breaking MBP2 process with parameters(

λ2, {Hv,2
i }i≥1, {Hθ,2

i }i≥1

)
,

written

H2 | λ2, {Hv,2
i }i≥1, {Hθ,2

i }i≥1 ∼ SBMBP2
(
λ2, {Hv,2

i }i≥1, {Hθ,2
i }i≥1

)
,

if there exists an appropriate probability space such that:

(2.i) vi ∈ [0, 1], i ≥ 1, are independent random variables with distribution
Hv,2i , such that

∞∑
i=1

log
[
1− EHvi (vi)

]
= −∞,

(2.ii) θi ∈ ∆̃m, i ≥ 1, are independent random vectors with distribution

Hθ,2i .

(2.iii) k ∈ K = {l ∈ N : l1/2 is an integer} is a discrete random variable
with distribution indexed by a finite-dimensional parameter λ2.

(2.iv) the density function of H2, w.r.t. Lebesgue measure, is given by the
following mixture of Dirichlet densities,

h2(y) =
∑

j∈H0
k,m

w2,k,j,G × d(y | α(k, j)), (6)

where

w2,k,j,G = C(j)

({ ∞∑
l1=1

vl1
∏
l2<l1

[1− vl2 ]

}
I(θl1)A2

j,k

)
,

with

A2
j,k =

(
Tk(j1)− 1√

k
,
Tk(j1)√

k

]
× . . .×

(
Tk(jm)− 1√

k
,
Tk(jm)√

k

]
.

Let T1 and T2 be the mappings induced by expression (5) and (6), respec-
tively, which send the elements of the original probability space to their
associated probability measures. Also, let D (∆m) ⊂ P (∆m) be the space
of all probability measures defined on ∆m, absolutely continuous w.r.t.
Lebesgue and with continuous density. It is possible to show that T1 and
T2 are Borel measurable from the original probability space to P (∆m) un-
der the weak star topology and that is Borel measurable from the original
probability space to D (∆m) under the topology induced by the L1-norm
and the L∞-norm.
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3.2 The support and frequentist asymptotic behaviour
properties

Large support is an important and basic property that any Bayesian non-
parametric model should ideally possess. In fact, assigning positive mass
to neighborhoods of any probability distribution is a minimum require-
ment (and almost a “necessary” property) for a model to be considered
“nonparametric”. This property is also important because it is typically a
required condition for frequentist consistency of the posterior distribution.
Even though the trajectories of a SBMBP1 or a SBMBP2 are only contin-
uous distributions, its topological support, which is the smallest closed set
of probability one, can be very large. As a matter of fact, it is possible to
show that if the random polynomials degree k has full support, and that
for every i ≥ 1, Hv,1

i , Hθ,1
i , Hv,2

i and Hθ,2
i have positive density functions

w.r.t. Lebesgue measure, then P (∆m) is the support of H1 and H2 under
weak star topology and D (∆m) is the support of H1 and H1 under under
the topology induced by the L∞-norm. Under similar assumptions, it is also
possible to show that every element of D (∆m) is in the Kullback-Leibler
support of the H1 and H2.
Now suppose that we observed a simple random sample of size n from a
“true” probability distribution defined on (∆m,B(∆m)), P , that is

y1, . . . ,yn | P
i.i.d.∼ P.

A direct consequence of the support properties of the SBMBP1 and
SBMBP2 is that the posterior measures of any weak neighborhood of P
converges to one as the sample size goes to infinity, where posterior distri-
butions arise by considering the i.i.d. sampling scheme and either SBMBP1
or SBMBP2 as a prior distribution for the sampling model.
Under more specific conditions on the definition of the SBMBPs, stronger
consistency results can be shown. Specifically, if the induced prior distri-
bution on the degree of the MBP has a particular tail behaviour, then for
every P ∈ D (∆m) the posterior measure of every L1-norm neighborhood
of it, converges to one as the sample size goes to infinity.
Finally, if stronger assumptions are made on the “true” probability model
and the definition of the SBMBPs, it is possible to characterise the poste-
rior concentration rate. As a matter of fact, it is possible to show that under
certain prior specification, the concentration rate of the posterior distribu-
tion based on the SBMBP1 prior is slower than n−α/(2α+m), the optimal
rate of convergence for multivariate α-smooth densities. However, it is also
possible to show that if the “true” density belongs to a Holder class with α-
regularity, of at most α = 1, then convergence of the posterior distribution
based on the SBMBP2 prior is at most (log n)4α+m/(4α+2m)/nα/(2α+m).
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4 Random MBP for fully nonparametric regression

4.1 The inferential problem

Consider regression data {(xi, yi)}ni=1, where xi ∈ X ⊂ Rp is a set of predic-
tors, and yi ∈ ∆m is the vector response variables. Rather than assuming
an unknown functional form for the mean function or another functional, as
is usually done in nonparametric regression, under the framework of fully
nonparametric regression the problem is cast as inference for a family of
conditional distributions

{Fx : x ∈ X ⊂ Rp} ,

where yi | xi
ind.∼ Fxi . Therefore, from a Bayesian point of view, the defi-

nition of a fully nonparametric regression model requires of the definition
of a probability model for the set of predictor-dependent continuous prob-
ability distributions F = {Fx : x ∈ X}, allowing the complete shape of the
elements of F to change flexibly with the values of x.
The problem of defining priors over related random probability distribu-
tions has received increasing attention over the past few years. To date,
much effort has focused on constructions that generalize the widely used
class of Dirichlet process priors for the analysis of data supported on the
real line. Models based on MBP for data supported on ∆m are discussed
in the next section.

4.2 The models

To introduce dependence in the continuous random probability measures
discussed in Section 3, we replace the stick-breaking mixing distribution in
the definition of the processes by dependent stick-breaking process, which
is defined by using transformed stochastic processes indexed by predictors
x ∈ X . Set D̃ (∆m)

X ⊂ D (∆m)
X

, where

D̃ (∆d)
X

=
{
{Px : x ∈ X} ∈ D (∆m)

X
: (y,x) −→ px(y) is continuous

}
,

with px denoting the density of Px ∈ D (∆m) w.r.t. Lebesgue measure. Let
V = {vx : x ∈ X} be a set of known bijective continuous functions, such
that for every x ∈ X , vx : R −→ [0, 1], and such that for every a ∈ R,
vx(a) is a continuous functions of x.
Let H1 = {H1,x : x ∈ X} be a P (∆m)-valued stochastic process such that:

(3.i) η1, η2, . . ., are independent and identically distributed real-valued
stochastic processes of the form ηi : X −→ R, i ≥ 1, with law in-
dexed by a finite-dimensional parameter Ψ1.

(3.ii) θi ∈ ∆̃m, i ≥ 1, are independent random vectors with distribution
G1,0.
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(3.iii) k ∈ N is a discrete random variable with distribution indexed by a
finite-dimensional parameter λ1.

(3.iv) For every x ∈ X , the density function of H1,x, w.r.t. Lebesgue mea-
sure, is given by a dependent mixture of Dirichlet densities,

h1,x(y) =
∑

j∈H0
k,m

w1,k,j,Gx × d(y | α(k, j)), (7)

where

w1,k,j,Gx =

({ ∞∑
l1=1

vx {ηl1(x)}
∏
l2<l1

[1− vx {ηl2(x)}]

}
I(θl1)A1

j,k

)
.

The process H1 defined by (3.i)–(3.iv) is referred to as ‘single-atoms’ de-
pendent MBP1 with parameters (λ1,Ψ1,V, G1,0), and written

H1 ∼ θDMBP1(λ1,Ψ1,V, G1,0).

In a similar manner, let H2 = {H2,x : x ∈ X} be a P (∆m)-valued stochas-
tic process such that:

(4.i) η1, η2, . . ., are independent and identically distributed real-valued
stochastic processes of the form ηi : X −→ R, i ≥ 1, with law in-
dexed by a finite-dimensional parameter Ψ2.

(4.ii) θi ∈ ∆̃m, i ≥ 1, are independent random vectors with distribution
G2,0.

(4.iii) k ∈ K = {l ∈ N : l1/2 is an integer} is a discrete random variable
with distribution indexed by a finite-dimensional parameter λ2.

(4.iv) For every x ∈ X , the density function of H2,x, w.r.t. Lebesgue mea-
sure, is given by a dependent mixture of Dirichlet densities,

h2,x(y) =
∑

j∈H0
k,m

w2,k,j,Gx × d(y | α(k, j)), (8)

where

w2,k,j,Gx = C(j)

({ ∞∑
l1=1

vx {ηl1(x)}
∏
l2<l1

[1− vx {ηl2(x)}]

}
I(θl1)A2

j,k

)
.

The process H2 defined by (4.i)–(4.iv) is referred to as ‘single-atoms’ de-
pendent MBP2 with parameters (λ2,Ψ2,V, G2,0), and written

H2 ∼ θDMBP2(λ2,Ψ2,V, G2,0).

Notice that the trajectories of both θDMBP1 and θDMBP2 are a.s. a den-
sity w.r.t. Lebesgue measure since, for every x ∈ X ,

∞∑
i=1

log [1− E (vx {ηi(x)})] = −∞.
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4.3 Continuity properties and the association structure

Assume that in the definition of θDMBP1 and θDMBP2, for every j ∈ N,
the stochastic process ηj is a.s. continuous. Then, for every {xj}∞1 ⊂ X ,
such that limj→+∞ xj −→ x0 ∈ X ,

lim
j→+∞

sup
B∈B(∆m)

|H1,xj (B)−H1,x0(B)| = 0, a.s.,

and
lim

j→+∞
sup

B∈B(∆m)

|H2,xj (B)−H2,x0
(B)| = 0, a.s.,

for every x0 ∈ X , that is, H1,xj converges a.s. to H1,x0
and H2,xj converges

a.s. to H2,x0
, in total variation norm, as xj −→ x0.

If the θDMBP1 and θDMBP2 are defined such that, for every {xj}∞1 ⊂ X ,

such that limj→+∞ xj −→ x0 ∈ X , we have ηi(xj)
L−→ ηi(x0), as j −→

+∞, then, for all y ∈ ∆m,

lim
j→+∞

ρ
[
H1,xj (By), H1,x0(By)

]
= 1,

and
lim

j→+∞
ρ
[
H2,xj (By), H2,x0(By)

]
= 1,

where ρ(A,B) denotes the Pearson correlation between A and B, and By =
[0, y1] × . . . × [0, ym]. Furthermore, the θDMBP1 and θDMBP2 can be
specified such that

lim
j→+∞

Cov
[
H1,x1j

(By), H1,x2j
(By)

]
= 0,

and
lim

j→+∞
Cov

[
H2,x1j

(By), H2,x2j
(By)

]
= 0,

when ||x1j − x2j || −→ ∞.
Now, assume that for every {(x1j ,x2j)}∞1 ⊂ X 2, such that limj→+∞(x1j ,x2j) =
(x1,x2) ∈ X 2, the θDMBP1 and θDMBP2 are defined such that

(ηi(x1j), ηi(x2j))
L−→ (ηi(x1), ηi(x2)),

as j −→ +∞. Then, for every y ∈ ∆m,

lim
j→∞

ρ
[
H1,x1j

)(By), H1,x2j
(By)

]
= ρ [H1,x1

(By), H1,x2
(By)] ,

and

lim
j→∞

ρ
[
H2,x1j )(By), H2,x2j (By)

]
= ρ [H2,x1(By), H2,x2(By)] .
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4.4 The support properties

If for every x1, . . . ,xn ∈ Xn, n ≥ 1, the joint distribution of

(ηi(x1), . . . , ηi(xn))

has full support on Rn, and, k and Gi,0 have full support, then P (∆m)
X

and D (∆m)
X

are the support of the θDMBP1 and θDMBP2 under the
weak product topology and the L∞ product topology, respectively. If, in
addition, X is a compact set, and θDMBP1 and θDMBP2 are defined such
that for any ε > 0 and [0, 1]–valued continuous function f defined on X ,
we have that

P

{
sup
x∈X
|vx(ηi(x))− f(x)| < ε

}
> 0,

then D̃ (∆m)
X

is the support of θDMBP1 and θDMBP2 under the L∞
topology, and

P

{
sup
x∈X

∫
∆m

qx(y) log

(
qx(y)

h1,x(y)

)
dy > ε

}
> 0,

and

P

{
sup
x∈X

∫
∆m

qx(y) log

(
qx(y)

h2,x(y)

)
dy > ε

}
> 0,

for every ε > 0 and every {Qx : x ∈ X} ∈ D̃(∆m), with density functions
{qx : x ∈ X}.

4.5 The frequentist asymptotic behaviour

It is possible to show that the posterior distribution associated with the
random joint distribution induced by θDMBP1 and θDMBP2, m1(y,x) =
q(x)h1,x(y) and m2(y,x) = q(x)h2,x(y), respectively, where q is the den-
sity generating the predictors, is weakly consistent at any joint distribu-
tion of the form m0(y,x) = q(x)q0(y | x), where {q0(· | x) : x ∈ X} ∈
D̃ (∆m)

X
.

Now, if X = [0, 1]p, and the θDMBP1 and θDMBP2 are defined such that:

(5.i) θ1, θ2, . . ., have full support on ∆̃m.

(5.ii) ηj(x) = η0(A
1/2
j x) for each x ∈ X , where η0 is a base Gaussian

process with covariance kernel c0(x,x′) = τ2 exp{−‖x − x′‖2}, and
that there exits κ, κ0 > 0 and a sequence δn = O((log n)2/n5/2)
such that P{Aj < δn} ≤ exp{−n−κ0j(κ0+2)/κ log j} for each j ≥ 1.
In addition, assume that there exists a sequence rn ↑ ∞ such that
rpnn

κ(log n)p+1 = o(n) and P{An > rn} ≤ exp{−n}.

(5.iii) for every vx ∈ V, vx ≡ Φ, where Φ is the CDF of a standard normal
distribution.
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(5.iv) k has full support.

(5.v) there exists a sequence kn ∈ N such that log((kn + m − 1)!(kn −
1)!−1) � O(n) and P{k(ω) > kn} � O(exp{−n}), where � stands
for inequality up to a constant multiple or if the constant multiple is
irrelevant to the given situation.

Then the posterior distribution associated with the random joint distribu-
tion induced by the θDMBP1 and θDMBP2 models m1(y,x) and m2(y,x),
respectively, is L1-consistent at any joint distribution of the formm0(y,x) =

q(x)q0(y | x), where {q0(· | x) : x ∈ X} ∈ D̃ (∆m)
X

.

5 Concluding remarks

We have proposed novel classes of probability models for single probabil-
ity distributions and sets of predictor-dependent probability distributions
for data supported on ∆m. The proposal corresponds to extensions of the
Dirichlet-Bernstein and dependent stick-breaking-Bernstein priors.
The proposed classes have appealing theoretical properties such as full
support, continuity, known marginal distribution, well behaved correlation
function, and its posterior distribution is consistent. The proposed models
can be fit using standard MCMC algorithms for Dirichlet process based
models.

Acknowledgments: The first author was supported by Fondecyt 1141193
grant. The second author was supported by Fondecyt 3130400 grant.

References

Barrientos, A. F. and Jara, A. (2014). Posterior convergence rate of a class
of Dirichlet process mixture models for compositional data. Technical
report, Department of Statistics, Pontificia Universidad Católica de
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Abstract: In longitudinal data, maximum likelihood estimators of mixed-effects
model parameters are consistent if missingness depends only on the covariates.
Missingness can also depend on observed outcomes, under correct specification
of the covariance structure, but this result is useful only under monotone miss-
ingness. When missingness depends on unobserved outcomes or on the random
effects, it is said to be not missing at random (NMAR). For such NMAR miss-
ingness, joint modeling of the outcomes and missingness has been advocated,
but these approaches are known to rely on unverifiable assumptions. In this talk,
I will consider methods that ignore NMAR missingness but are consistent for
(some of) the parameters of interest. An example of such ”protective” estimators
are conditional maximum likelihood estimators, also known as fixed-effects esti-
mators. For binary data, fixed-effects approaches can be used to obtain consistent
estimators of regression coefficients under a wide range of NMAR mechanisms
(Skrondal and Rabe-Hesketh, 2014, Biometrika 101, 175-188). Other protective
estimators for binary and continuous outcomes will also be discussed in this talk.
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Abstract: Modeling categorical data with many categories in the predictor or
response is a challenge because many parameters are needed to specify the link
between predictors and responses. An attractive way to reduce the complexity
of the estimation problem is regularization by structured penalties. Penaliza-
tion has been well investigated for metric predictors but categorical data call for
penalty terms that are tailored to the categorical nature of the involved variables.
In particular one should distinguish between ordered and un-ordered categorical
predictors and allow for appropriate clustering of categories. In addition to tai-
lored penalty terms for cross sectional data we consider regularized estimators for
repeated measurements. The considered fixed effects models allow to model the
heterogeneity of the population and represent an alternative to the widely used
random effects models. As an alternative to penalization tree-based estimators
are considered to obtain clusters of categories in high dimensional problems.
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1 Introduction

With the introduction of the lasso (Tibshirani, 1996) regularization meth-
ods for regression and classification have become a topic of intensive re-
search. Regularization methods aim at a sparse representation of the link
between predictors and responses. Only those components should be in-
cluded in the model that are really needed to model the effect of explana-
tory variables on an outcome variable. In particular categorical variables
are a challenge to sparsity because typically one needs at least one param-
eter for each category. As a consequence, if the number of categories in a
predictor is large maximum likelihood estimates tend to fail, they are not
unique or deteriorate. If the outcome variable is categorical the problems
increase because for each predictor variable one needs a parameter linked
to the categories of the outcome variable.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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Another feature of categorical data is that other structures than for metric
data are of interest. While regularization for metric predictors often means
variable selection and therefore identification of parameters that should
be set to zero, for a categorical predictor one also wants to know which
categories have to be distinguished when modelling the effect on an outcome
variable. Therefore one wants to identify clusters of categories that share
the same effect. Clustering is not restricted to predictor variables, it also is
a challenge in categorical outcomes and in the modelling of subject-specific
effects.
In the following we will consider methods of feature extraction for discrete
structures. One method is regularization or constrained estimation by use
of penalty terms in the tradition of the lasso. We will also consider tree-
based methods, which have advantages in the case of very large numbers of
categories. Boosting, which is usually an efficient tool to extract information
in regression problems (Friedman et al, 2000), will be neglected because it
is less appropriate for discrete structures.

2 Penalized Regression

In generalized linear models (GLMs) the conditional response µ = E(y|x)
is specified by

µ = h(η) or g(µ) = η

where h(.) denotes the response function and g(.) = h(.)−1 the link func-
tion. The linear predictor is determined by the predictors x in the form
η = xTβ. In addition, y|x follows a simple exponential distribution (Mc-
Cullagh & Nelder, 1989).
Regularization methods that use penalty terms are obtained by maximizing
the penalized log-likelihood

lp(β) = l(β)− λJ(β),

where l(β) is the usual log-likelihood of the GLM, λ is a tuning parameter,
and J(β) is a functional that penalizes the size and structure of the pa-
rameters. A classical penalty is the ridge penalty

∑
j β

2
j , which goes back

to Hoerl and Kennard (1970). It shrinks estimates toward zero and is able
to stabilize estimates but unable to detect structures in the predictor. In
the following alternative penalty terms are considered that enforce the de-
tection of interesting structures in discrete data.

3 Selection and Clustering for Categorical Predictors

Let categorical predictors Cj , j = 1, . . . , p, have values Cj ∈ {0, . . . , kj}.
They can be included into the model by using dummy variables defined by
xjr = 1 if Cj = r and xjr = 0 otherwise, yielding the linear predictor

η =

p∑
j=1

kj∑
r=1

xjrβjr + zTγ =

p∑
j=1

xTj βj + zTγ,
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where z is a vector of additional variables with weight vector γ and βTj =
(βj1, . . . , βjkj ) collects all parameters linked to variable Cj . The predictor
Cj adds kj parameters, the total number of parameters contributed by the
categorical predictors is k1 + · · ·+kp, which can be very large, in particular,
if several categorical predictors are included.
In selection problems for categorical predictors it should be distinguished
between two problems:

• Which categorical predictors should be included in the model?

• Which categories within one categorical predictor should be distin-
guished?

For the first problem, namely variable selection, Yuan & Lin (2006) pro-
posed the group lasso, which uses the penalty

J(β) =

p∑
j=1

√
kj ||βj ||2, (1)

where ||βj ||2 = (β2
j1 + · · ·+β2

jkj
)1/2 is the L2-norm of the parameters of the

jth group. The penalty encourages sparsity in the sense that either β̂j = 0
or βjr 6= 0 for r = 1, . . . , kj . Thus, it aims at variable selection in contrast
to parameter selection. Meier et al. (2008) showed that under sparsity the
resulting estimates are consistent even when the number of predictors is
larger than the sample size. The penalty selects predictors but typically,
if a predictor is in the model, all the parameter estimates differ and no
clustering is obtained.
A penalty that enforces the building of clusters of categories that share the
same effect is

J(β) =

p∑
j=1

∑
r<s

w(j)
rs |βjr − βjs|, (2)

where the sum is over all categories r, s ≥ 0 and implicitly the reference

category zero has been chosen by setting βj0 = 0. The w
(j)
rs are additional,

appropriately chosen weights. By using the L1-penalized differences be-
tween all pairs of parameters that are linked to one categorical predictor
the penalty tends to form clusters of categories that have the same effect.
Since the parameter for the reference category (βj0 = 0) is included in the
sum the penalty also enforces variable selection. In the extreme case, for
λ→∞, all parameter estimates become zero and the categorical predictors
are excluded.
The penalties (1) and (2) can be recommended for nominal predictors only.
For ordinal categorical predictors they ignore the information contained in
the ordering of categories. With the focus on selection the group lasso
penalty should be replaced by

J(β) =

p∑
j=1

√
kj ||Djβj ||2,
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where Dj is a matrix that generates differences of fixed order from the
parameters linked to the jth predictor. In the simplest case of order one
differences one obtains Djβj =

∑
r |βjr − βj,r−1|. The penalty enforces

selection of whole groups of parameters and simultaneously smoothes over
the ordered categories.
If the objective is the identification of clusters of categories it is natural
to assume for ordered predictors that clusters of categories refer to ad-
jacent categories. Thus the penalty should enforce the fusion of adjacent
categories, which is obtained by using

J(β) =

p∑
j=1

kj∑
r=1

w(j)
r |βjr − βj,r−1|

with corresponding weights w
(j)
r . The effect of the penalty is that one ob-

tains step functions for the ordered predictor, categories that have the same
effect are fused. For nominal categorical predictors the fusion type penal-
ties were considered by Bondell & Reich (2009). Gertheiss & Tutz (2010)
and Tutz & Gertheiss (2014) considered clustering of categories for nominal
and ordinal predictors.
As an illustrative example we consider the Munich rent data. The data
set consists of 2053 housholds with the response variable being monthly
rent per square meter in Euro. Available predictors are the urban district
(nominal factor), the year of construction, the number of rooms, the quality
of residential area (ordinal factors), floor space (metric) and five additional
binary variables, hot water supply available, central heating available, tiled
bathroom (yes/no), for details, see Gertheiss & Tutz (2010). For illustration
we show the coefficient paths for the two predictors urban district and year
of construction.
It should be noted that the given penalty terms can be seen as basic compo-
nents to obtain sparsity in terms of variables and clusters. In applications
they can apply to main effects but also to interaction terms. Moreover,
it is often useful to combine several penalties including simple smoothing
penalties as the ridge or extended ridge penalties. An exemplary complex
modeling problem that calls for combinations of penalties is discrete sur-
vival. With discrete time T ∈ {1, . . . ,K} the hazard is defined by the
conditional probability λ(r|x) = P (T = r|T ≥ r) and models have the
form g(λ(r|x)) = β0r +

∑
j xjβjr, where βjr are time-varying coefficients.

Estimation of discrete survival can be obtained by considering the condi-
tional survival of a given time, that is, the event T > r|T ≥ r as a binary
event. Then discrete time is an ordered categorical predictor and the time-
varying effects can be seen as an interaction between the x-predictors and
time. A useful penalty for this modelling problem is

J(β) =
∑
r

(β0r − β0,r−1)2 +

p∑
j=1

∑
r

|βjr − βj,r−1|.

The first term is a generalized ridge penalty that smoothes the baseline
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FIGURE 1. Paths of dummy coefficients for urban district and year of construc-
tion (rent data).

hazard, the second term reduces the number of parameters to be estimated
by assuming that the time-varying effect of covariates are constant over
adjacent categories.

4 Categorical Responses

For categorical responses variable regularization to obtain sparsity has to
be adapted to the multivariate nature of the response. The classical model
for response categories Y ∈ {1, . . . ,K} is the multinomial model, which
can be seen as a multivariate GLM. In its generic form it specifies

πr = P (Y = r|x) =
exp(βr0 + xTβr)∑k
s=1 exp(βs0 + xTβs)

=
exp(ηr)∑k
s=1 exp(ηs)

, (3)

where βTr = (βr1, . . . , βrp). Since parameters β10, . . . , βK0, β1, . . . ,βK are
not identifiable, additional constraints are needed. Typically, one of the
response categories is chosen as reference category, for example, by setting
βK0 = 0, βK = 0.
In the multinomial logit model the effect of covariates is specified by the
linear predictors ηr, r = 1, . . . ,K−1,, which correspond to the log odds
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between category r and the reference category k. We will consider a more
general version of the model that allows for category-specific variables. For
example, when the response is the choice of the transportation mode, the
potential attributes are price and duration, which vary across the alterna-
tives and therefore are category-specific. Then, in addition to the global
predictors x, a set of category-specific predictors w1, . . . ,wk is available,
where wr contains the attributes of category r. The set of linear predictors
generalizes to

ηir = βr0 + xTβr + (wir −wiK)Tα, r = 1, . . . ,K − 1. (4)

The second term specifies the effect of the global variables, and the third
term specifies the effect of the difference wir −wiK on the choice between
category r and the reference category. In the choice of the transport mode
it can be the difference in price that has an effect on the choice.
If one uses the simple lasso, which penalizes all parameters by a sum over
|βrj | (Friedman et al, 2010) one does not obtain variable selection but
parameter selection because if one of the parameters βrj is not deleted
the whole variable xj is still in the model. To select variables one has to
group all the parameters that correspond to one variable and penalize them
simultaneously. This is obtained by the categorically structured (CATS)
penalty

J(θ) = ψ

p∑
j=1

φj ||β.j || + (1− ψ)

L∑
l=1

ϕl |αl|, (5)

where βT.j = (β1j , . . . , βK−1,j) collects all parameters linked to predictor
xj , ψ is an additional tuning parameter that balances the penalty on the
global and the category-specific variables. The parameters φj and ϕl are
weights that assign different amounts of penalization to different parameter
groups. Typically they are chosen by φj =

√
K − 1 and ϕl = 1.

The penalty enforces variable selection, that is, all the parameters in β.j
are simultaneously shrunk toward zero. It is strongly related to the clas-
sical group lasso (Yuan & Lin, 2006). However, in the group lasso the
grouping refers to the parameters that are linked to a categorical predictor
within a univariate regression model whereas in the present model grouping
arises from the multivariate response structure. Preliminary versions of the
penalty have been considered by Tutz (2012), Tutz et al. (2012) and Simon
et al. (2013).

5 Subject-Specific Models

In this section models for repeated measurements are considered. For re-
peated measurements penalty methods provide an alternative to random
effects models with good performance in terms of estimation accurracy.
Repeated measurements can be represented by (yij ,xij), i = 1, . . . , n,
j = 1, . . . , ni, where yij denotes the response of unit i at measurement oc-
casion j, and xij is a vector of covariates that potentially varies across mea-
surements. A common approach to model heterogeneity across units is by
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FIGURE 2. Coefficient paths for the beta blocker data. The very right end of
the figure relates to ML estimates; that is, to λ = 0. The left end relates to the
minimal value of λ giving maximal penalization; in this case λ = 4.

random effects models. In generalized linear mixed effects model (GLMM),
the structural assumption specifies that the conditional means, µij =
E(yij |bi,xij , zij), have the form

g(µij) = xTijβ + zTijbi (6)

where g is a monotonic and continuously differentiable link function, xTijβ is

a linear parametric term with parameter vector βT = (β0, β1, . . . , βp) that
includes an intercept, and zij is a covariate vector associated with random
effects. The second term contains the random effects that model the hetero-
geneity of the units. For the random effects, one assumes a distributional
form, typically a normal distribution, bi ∼ N(0,Q).
The focus of the random effects models is on the fixed effects; the distribu-
tion of the random effects is mainly used to account for the heterogeneity of
the units. Although it is the most popular model that accounts for hetero-
geneity, it has several drawbacks. The assumption of a specific distribution
for the random effects may affect the inference. In particular, if the distri-
butional assumption is far from the data generating distribution, inference
can be strongly biased. Moreover, assuming a continuous distribution pre-
vents that the effects of units can be the same. Therefore, by assumption,
no clustering of units is available. One further aspect is that it is assumed
that the random effects and the covariates observed per second level unit
are independent; a criticism that has a long tradition, in particular in the
econometric literature. For an overview on the choice between fixed and
random effects models, see, Townsend et al (2013).
As an alternative we consider the fixed effect or subject-specific model

g(µij) = xTijβ + zTijβi (7)
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The model specifies that each unit has its own coefficient βi, i = 1, . . . , n.
The problem with these models is that the large number of parameters can
render the estimates unstable and encourage overfitting. Typically, there
is not enough information available to distinguish among all the units;
but under the assumption that observations form clusters with respect to
their effect on the response, the number of parameters can be reduced
and estimates are available. The tool to obtain sparsity of subject-specific
parameters and clusters is the use of the penalty

J(β,β1, . . . ,βn) =
∑
r>m

||βr − βm||. (8)

If λ = 0, one obtains the unpenalized estimates of β1, . . . ,βn and each unit
has its own parameter. If λ → ∞, the penalty enforces that the estimates
of all subject-specific parameters are the same. It has been demonstrated
in Tutz & Oelker (2014) that the method outperforms the random effects
model, in particular if correlation between the random intercept and the
random effect, the so-called level 2 endogeneity, is present. The model is also
compared to alternative approaches as the discrete mixture model (Aitkin,
1999).
As an example we consider the modeling of the effect of beta blockers on
the mortality after myocardial infarction, see also Aitkin (1999). In a 22-
center clinical trial, for each center, the number of deceased/successfully
treated patients in control/test groups was observed. The binary response
(1 = deceased/0 = not deceased) suggests a mixed logit model of the form

logit P (yij = 1) = β0 + βi0 + βT ·Treatmentij , i = 1, . . . , 22 Centers, (9)

where Treatmentij codes the treatment in hospital i for patient j. If βi0
is replaced by a random effect bi with normal distribution, implicitly the
hospitals are considered as a random sample and all the effects of hospitals
are assumed to differ. In contrast, the fixed effect model with regularization
assumes that some of the hospitals have the same effect. Figure 2 shows the
coefficient built-ups against regularization, where the vertical line refers to
the cross-validated choice of the tuning parameter. It is seen that there seem
to be essentially five clusters of hospitals which share the same strength.

6 Tree-Based Approaches

Penalization is a useful tool to identify relevant categorical predictors and
clusters of categories but becomes computationally demanding if the num-
ber of categories is very large. In this case approximations or alternative
procedures have to be used. One alternative that is considered in the fol-
lowing is based on trees. The big advantage of classical trees or recursive
partitioning procedures as CART (Breiman et al, 1984) and C4.5 (Quinlan,
1993) is that they automatically find interactions. The concept of interac-
tions is at the core of recursive partitioning. But the focus on interactions
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can also turn into a disadvantage because common trees do not allow for
a linear or smooth component in the predictor. Below the root node most
nodes represent interactions with the effect that main effects and poten-
tially linear or additive effects of covariates are neglected. That means for
categorical predictors that typically interactions are fitted but no clustering
of main effect is detected. A version of trees that is able to detect clusters
are structured trees, which fit the predictor

η = tr(C) + zTγ,

where tr(C) is the tree component of the predictor and zTγ is the familiar
linear term containing further variables. For simplicity we start with one
categorical predictor C ∈ {1, . . . , k} in the tree component. When a tree is
built, successively a node A, that is, a subset of the predictor space, is split
into subsets with the split determined by only one variable. For a nominal
categorical variable C ∈ {1, . . . , k}, the partition has the formA∩S, A∩S̄,
where S is a non-empty subset S ⊂ {1, . . . , k} and S̄ = {1, . . . , k} \ S is
the complement. Thus, after several splits the predictor tr(C) represents a
clustering of the categories {1, . . . , k}, and the tree term can be represented
by

tr(C) = α11S1(C) + · · ·+ αm1Sm(C),

where S1, . . . , Sm is a partition of {1, . . . , k}, and 1S(.) denotes the indi-
cator function, 1S(C) = 1 if C ∈ S, 1S(C) = 0, otherwise. For an ordinal
categorical variable C ∈ {1, . . . , k} the partition into two subsets has the
form A ∩ {C ≤ c}, A ∩ {C > c}, based on the threshold c on variable
C. Thus during the building of a tree clusters of adjacent categories are
formed.
In the case of more than one categorical predictor trees form clusters that
combine the predictors. Thus the subsets do not refer to a single variable.
A structured tree, which is proposed here forces the tree to form clusters
only for one variable. Then, with p predictors C1, . . . , Cp, Cj ∈ {1, . . . , kj},
the tree component has the form

tr(C1, . . . , Cp) = tr(C1) + · · ·+ tr(Cp),

where tr(Cr) is the tree for the rth variable, that means it represents clus-
ters of the rth variable with the cluster form determined by the scale level
of the corresponding variable. A traditional tree hardly finds clusters for
single components. It typically produces clusters that combine several vari-
ables, in particular, mixing nominal and ordinal predictors.
For an ordinal categorical predictor clusters of adjacent categories can be
found by fitting a model with predictor

η = αlI(C ≤ c) + αrI(C > c) + zTγ,

where I(.) denotes the indicator function. By use of the split-point c the
model splits the predictor space into two regions, C ≤ c and C > c yielding
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two clusters of adjacent categories. An equivalent representation of the
predictor, which is more familiar from the fitting of linear terms, is

η = β0 + αI(z > c) + zTγ.

with the transformation of parameters given by β0 = αl and α = αr − αl.
For a nominal predictor C ∈ {1, . . . , k} splitting is much harder because
one has to consider all possible partitions that contain two subsets. That
means one has 2k−1−1 candidates for splitting. But it has been shown that
for regular trees it is not necessary to consider all possible partitions. One
simply orders the predictor categories by increasing mean of the outcome
and then splits the predictor as if it were an ordered predictor. It has been
shown that this gives the optimal split in terms of various split measures,
see Breiman et al (1984), Ripley (1996).
The fitting of a structured tree is a forward strategy that includes estima-
tion and selection steps. The basic form is the following.

Structured Tree

Step 1 (Initialization)

(a) Estimation: Fit the candidate GLMs with predictors

η = β0 + αijI(Ci > cij) + zTγ, i = 1, . . . , p, j = 1, . . . , ki

(b) Selection

Select the model that has the best fit. Let c∗i1,j1 denote the best
split, which is found for variable Ci1 . That means that c∗i1,j1 is
from the set of possible splits for Ci1 .

Step 2 (Iteration)

For l = 1, 2, . . . ,

(a) Estimation: Fit the candidate models with predictors

η = β0 +

l∑
s=1

αis,jsI(Cis > c∗is,js) + αijI(Ci > cij) + zTγ,

for all i and all values cij ∈ Ci that have not been selected in
previous steps.

(b) Selection

Select the model that has the best fit yielding the new cut point
c∗il+1,jl+1

that is found for variable Cil+1
.

In the sequence of selected cut-points c∗i1,j1 , c
∗
i2,j2

, . . . and corresponding
estimates α̂i1,j1 , α̂i2,j2 , . . . the first index refers to the variable and the
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FIGURE 3. Results for the ordinal predictor year of construction for the anal-
ysis of the Munich rent standard data. Upper panel: resulting tree for year of
construction, lower panel: paths of coefficients against all splits.

second to the split for this variable. As always in forward procedures one
has to specify a stopping criterion, which can be cross-validation or in
our case of fitting trees test statistics that evaluate if a further split is
warranted.
For illustration we consider again the Munich rent data, where one has
one nominal predictor (urban district), three ordinal predictors (year of
construction in decades, number of rooms, quality of residential area), one
metric variable (floor space) and five binary variables. In the additive part
of the structured tree we model the effect of the metric predictor by cubic
regression splines and include the binary variables in a linear form. The
fusion of categories obtained by the tree is illustrated for the predictor year
of construction. Figure 3 shows the resulting tree and the coefficient paths
over the splits for the predictor decade of construction. The upper panel
shows the successive splits against the number of splits in this predictor.
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FIGURE 4. Resulting function of the smooth estimation of predictor floor space
of the Munich rent data in the additive part of the structured tree.

The lower panel shows the coefficients plotted against the splits in all of
the predictors. It is seen, in particular from the first steps, that estimates
can change when other variables are included. But after about 14 splits
the estimates are very stable. Model selection by p-values with significance
level 0.05 yields seven clusters marked by the dashed lines in both panels.
Similar pictures are obtained for the other categorical predictors. For the
metric predictor floor space one obtains a decreasing function, pictured in
Figure 4, which means that the net rent per square meter decreases with
growing floor space.
It should be noted that the structured tree is not a tree in the sense of
traditional recursive partitioning, where models are fitted recursively to
sub samples defined by nodes. In structured trees one obtains for each of
the categorical predictors that are used in the tree component a separate
tree. The obtained trees show which categories have to be distinguished
given the other predictors are included in the model. Only because of this
feature they are competitors to regularization approaches that are able to
handle a large number of categories and predictors. Related approaches,
but not for categorical predictors, are the so-called partially linear trees,
see Chen et al (2007), Dusseldorp et al (2010).
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Abstract: Regression models built using random effects and penalized reduced
rank spline smoothers are popular, with the link between smoothers and random
effects providing a reliable computational and inferential framework for their
practical use. Indeed for exponential family responses it is possible to produce
computational methods approaching the routine reliability of methods for gener-
alized linear models. This talk will discuss the extent to which a similar framework
can be produced for more general models built in terms of smooth functions, when
these result in non-exponential family likelihoods.
The generic framework explored is that of quadratically penalized likelihood max-
imization, with smoothing parameters and other variance components estimated
by Laplace Approximate Marginal Likelihood (LA-ML) optimization. The idea is
that models can be built in terms of mixtures of any reduced rank quadratically
penalized basis expansions (including simple Gaussian random effects, Gaussian
Markov random fields, one dimensional splines, thin plate splines, tensor prod-
uct splines, etc.). Reliable and efficient computational methods are developed for
this setting, based on recognition of the need to deal stably with some difficult
log determinant calculations and the need for stable computation as smoothing
parameters tend to infinity. The basic computational approach is to optimize the
LA-ML w.r.t. smoothing parameters by Newton’s method, with each Newton
step requiring a penalized likelihood maximization and implicit differentiation
step to find the model coefficients and their derivatives w.r.t. the smoothing pa-
rameters. Interval estimates can be based on a standard Bayesian view of the
smoothing process, while AIC based model selection is also possible based on
suitably corrected versions of AIC.
The framework is implemented in R packages mgcv 1.8-0, and includes Tweedie,
negative binomial, beta, scaled t and ordered categorical models as special cases,
as well as additive Cox proportional hazard models, GAMLSS models such as
zero inflated Poisson and Gaussian location scale models, and multivariate Gaus-
sian Additive models. Examples such as adaptive signal regression for ordered
categorical responses will be presented.
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1 Backgound

Generalized additive models (GAMs) based on reduced rank spline smooths
are popular in part because of the rich variety of model terms that can be
represented this way (e.g. figure 1) and in part because of the reliable
statistical and computational framework available for their use.
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FIGURE 1. Some of the rich variety of smooth model components that can be
represented using relatively low rank basis expansions with quadratic penalties.
From top left: Adaptive P-spline, thin plate regression spline, tensor product
interaction smooth, Gaussian Markov random field, soap film smoother and spline
on the sphere.

GAMs were originally defined for exponential family responses, and this
remains the setting for which the most reliable and general smoothing pa-
rameter estimation methods are available. However many further general-
izations have been proposed beyond exponential family, and it would be
convenient to have generally applicable and efficient smoothing parameter
selection methods which would cover these too.
Generically we would like methods for dealing with the situation in which
a likelihood depends on covariates via smooth functions of the covariates,
represented using quadratically penalized basis expansions, so that estima-
tion is via the penalized likelihood maximization problem of maximising

L(β) = l(β)− 1

2

∑
j

λjβ
TSjβ.

w.r.t. β, where β is the vector of basis coefficients and other model param-
eters, while the λj are smoothing parameters, and the Sj are (fixed known)
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penalty coefficient matrices.

2 Model estimation
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FIGURE 2. Illustration of marginal likelihood based smoothing parameter esti-
mation. Marginal likelihood selects smoothing parameters to maximize the aver-
age likelihood of random draws from the prior on the function space. In all panels
the grey curves are random draws from the prior, black dots are data to fit, and
black curves are those with high likelihood, according to a threshold, all curves
are centred on the best fit line through the data. Left: the smoothing parameter
is too low, corresponding to high prior variance, the curves from the prior are
so variable that all have very low likelihood. Middle the smoothing parameter
is about right, with this degree of variability some draws (e.g. the black curves)
are close enough to the truth to have high likelihood. Right: the smoothing pa-
rameter is too high, so that the curves are tightly bunched with none being close
enough to the data to have high likelihood.

One way to estimate the smoothing parameters is to view the smoothness
penalties as being induced by improper Gaussian priors on the model co-
efficients, β and then integrating β out of the joint density of the data and
β to obtain a marginal likelihood for the smoothing parameters, which can
be maximized to find them. Figure 2 illustrates that this is not as artificial
as it might at first appear.
In practice the required integral is intractable, but a Laplace approximation
is possible. If β̂ is the maximizer of L and H is the negative Hessian
of L w.r.t. the model coefficients then a Laplace approximate Marginal
Likelihood (REML) score is

V(λ) = L(β̂) +
1

2
log |Sλ|+ −

1

2
log |H|+ Mp

2
log(2π).

where Sλ =
∑
j λjS

j (and | · |+ denotes a generalized determinant - the
product of the non-zero eigenvalues of a matrix).
Model fitting is then most reliably undertaken by Newton optimization
of V, with each trial log λ Newton proposal requiring an inner Newton
iteration to find β̂ and evaluate V. The outer Newton iteration requires
first and second derivatives of V w.r.t. logλ to be computed, and these
in turn require implicit differentiation to be applied in order to obtain
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derivatives of the β̂ w.r.t. logλ. With careful structuring this optimization
can be made quite efficient, with the whole process being accomplished in
of the order of 10 outer iterations each of leading order cost O(Mnp2),
where M is the number of smoothing parameters, n the number of data
and p the number of model coefficients. However the process has one major
potential source of instability.
Log determinant terms such as log |Sλ|+ can not be reliably computed nu-
merically for general Sλ, in particular when λj become widely disparate
in magnitude. In such cases naive determinant computations based on
Choleski, QR or symmetric eigen decompositions can fail to bear any re-
lation to the correct log determinant value as a result of finite precision
arithmetic issues. The solution is to split Sλ by diagonal block where pos-
sible, and to employ similarity transform methods on overlapping blocks
to ensure that large elements in one block do not incorrectly contam-
inate computations in another. In practice this means some initial re-
parameterization of smooths is necessary before fitting, with adaptive or-
thogonal re-parameterization considered at each step of the outer Newton
method, to ensure stable computation of V and its derivatives.

3 Further Inference

Once fitting is accomplished, the Bayesian model underpinning the Marginal
Likelihood can be re-used to obtain an approximate posterior for β,

β|y ∼ N(β̂,H−1).

The resulting confidence intervals have good frequentist properties (Ny-
chka, 1988), but note that the approach is really Bayesian here, rather than
being a frequentist random effect analysis: the modeller almost never ex-
pects the smooth functions of a model to be re-sampled from the prior with
each re-sampling of the data. Approximate p-values for testing smooths or
random effects for equality to zero can also be computed using the methods
of Wood (2013). AIC model comparison is also possible, fixing the prob-
lems identified in Greven and Kneib (2010) via a first order correction for
smoothing parameter uncertainty in the computation of the AIC penalty.

4 Software and a simple example

The new methods have been implemented in R package mgcv version 1.8-0.
Particular examples implemented are beta, ordered categorical, Tweedie,
negative binomial simple zero inflated Poisson and scaled t regressions. The
Cox Proportional Hazards model, multivariate Gaussian additive models,
Gaussian location scale models and 2 stage zero inflated Poisson models
have also been implemented. All can be used with function gam in mgcv,
with the last 3 models mentioned requiring multiple formulae specifying
the multiple linear predictors used.
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FIGURE 3. Scale location model fit to the motorcycle crash data as a simple
example of the new method operation.

For example the following code fits a Gaussian scale-location model to the
classic motorcycle crash test data, using an adaptive P-spline to smooth
the mean and a thin plate regression spline for the standard deviation.

library(MASS)

library(mgcv)

m <- gam(list(accel~s(times,k=30,bs="ad"),~s(times)),

data=mcycle,family=gaulss)

The resulting model fit is shown in figure 3

Acknowledgments: Part of the work reported here is collaborative with
Benjamin Säfken and Natalya Pya. The work is funded by the UK EPSRC.
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She’ll be coming ’round the mountain:
Simple models of complex spatial behaviour
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Abstract: Classical models in spatial statistics assume that the correlation be-
tween two points depends only on the distance between them. In practice, how-
ever, the shortest distance may not be an appropriate measure of the separation
of two points. Real life is not stationary! For example, when modelling fish near
the shore, correlation should not take the shortest path going across land, but
should travel along the shoreline. Similar problems occur in ecology, where animal
movement depends on the terrain or the existence of animal corridors.
In this talk, I will show that this type of expert knowledge can be combined
with stochastic partial differential equation (SPDE) models to generate easy-to-
use, computationally efficient non-stationary models. These models can be easily
constructed and interpreted by non-experts. The title makes more sense after
looking at figure 1.

Keywords: GMRF; Non-stationary; SPDE; Spline; Ecology.

1 Introduction

The motivation for this work came from wanting to model complex spatial
domains, but the approach turned out to be more general.
Let us first think about smoothing and inference on complex domains. As
a general example, we consider modelling a species that can only thrive in
an aquatic environment, like fish lice. In this case, it would be natural to
remove the part of our domain that was land, by cutting a hole, because
we do not want our inference to be correlated across land. Or, in the case
of a spline, we do not want to smooth across land. This turns out to be a
hard problem to solve. For an enlightening summary of difficulties involved
in smoothing problems on complex domains, we refer you to section 2 in
Ramsay (2002).
Returning to the inference view, we will consider the Stochastic Partial Dif-
ferential Equation (SPDE) approach introduced by Lindgren et al. (2011).

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



52 Around the Mountain

The SPDE approach considers the spatial Gaussian field (GF) as a solu-
tion to an SPDE, and approximates it by a Gaussian Markov random field
(GMRF) which has good sparseness properties. One of the main benefits
of this formulation is that we can leverage the knowledge and intuition in
the fields of physics, numerics, and PDE analysis, which is how we came
up with the ideas presented in this talk.
One feature of the SPDE approach is that you have to provide bound-
ary conditions to the SPDE. In the case where the boundary condition
is known (e.g. by some physical phenomena like a no-slip condition), the
SPDE approach is already able to incorporate this easily. We will consider
the harder problem, where the boundary conditions are unspecified.
No-one knows how to deal with unspecified boundary conditions in a good
way, so we fudge it. Typically, by increasing the domain to contain points
we don’t care about, in such a way that the new boundary is far away from
our original domain. Then we require the normal derivative to be zero at
the new boundary. This becomes problematic when you want to cut a hole
in your domain. Then it may not be possible to introduce these artificial
points, and the approximation becomes dependent on the boundary as-
sumptions. A comparison on how to handle boundary conditions can be
found in section 5.2 in Wood et. al. (2008), where they comment on the
work of Ramsay (2002).
The method presented here does not assign boundary conditions to the
boundary of the hole that you cut out of the domain. Instead, we solve a
different SPDE inside the subregion representing the hole. This approach
differs substantially from the solutions presented by Ramsay and by Wood.

2 The purpose of this model

The purpose of our work on the Difficult Terrain models is to

• Model a GF with Matérn correlation with a varying correlation range,
making the model non-stationary,

• Give computationally feasible algorithms for a large number of nodes /
spatial points (in 2014 we estimate this to be 106 nodes).

We expect this to provide ways to

• Handle complex domains in both smoothing and spatial inference,
without parametrizing the boundary,

• Cut holes out of the domain by letting the local range there be es-
sentially zero,

• Generalize the current smoothing techniques by being able to infer
from the data how the holes in the domain are to be handled (e.g.
removed, ignored, shrunk, or a mix of these),

• Pose scientific questions to the data, on the form ”is there any differ-
ence between the spatial behaviour in these two areas?”
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For a proof of concept, we refer the reader to the figures. See figure 1 for
a demonstration of how the correlation curves behave when you use this
method to include the non-stationarity caused by an island at sea. See
figure 2 for an example of how this is used to get non-stationary behaviour
close to a non-trivial shoreline. See figure 3 for an example of how this can
be used to model several narrow passes.
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FIGURE 1. Level curves for correlation (80% to 2.5%), near an isolated island
(or, if you will, a mountain that you have to ”go around”). The left plot shows
stationary behaviour away from the island. The right plot shows the non-station-
ary correction; the red dot is not correlated with the point on the other side of
the island. The Difficult Terrain weights are h = 1 as default, and h = 20 inside
the circle.
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FIGURE 2. Level curves for correlation (80% to 2.5%), near a shoreline. Weights
are h = 1 below the boundary, and h = 20 above the boundary.

3 The Difficult Terrain models

First, we will give some background on the SPDE approach, then we will
present the Difficult Terrain approach, and lastly, we will discuss its inter-
pretations.
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FIGURE 3. Level curves for correlation (80% to 2.5%), as you pass through three
corridors. Weights are h = 1 as default, and h = 20 inside the six rectangles.

3.1 Stationary GF as a solution to an SPDE

A stationary (and isotropic) GF with Matérn correlation function can be
expressed as the solution to

u(s)−∇h−2∇u(s) = h−1τW(s), (1)

where u(s), s ∈ Ω ⊆ R2 is the GF, h and τ are constants. Also, ∇ =(
∂
∂x ,

∂
∂y

)
, and W(s) denotes white noise. For proofs, and to see how this

can be approximated with a GMRF, see Lindgren et al. (2011), and note
that we have taken their equation (2), but re-parametrized it and fixed
α = 2. With our parametrization, the correlation range and the variance
of the field are

ρ ∝ h−1,

σ2 ∝ τ2.

3.2 The Difficult Terrain non-stationarity

Introduce non-stationarity by letting h = h(s), so that

u(s)−∇h(s)−2∇u(s) = h(s)−1τW(s). (2)

Let us immediately restrict ourselves to locally constant h;

h(s) = hi on Ωi,

where our domain Ω is the disjoint union of these Ωi. Now, we note that
inside the subdomain Ωi we are solving equation (1), for a GF with range
proportional to h−1

i , and constant variance.
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3.3 Difficult Terrain interpretation

How to interpret this locally constant correlation range? Let us consider a
scaling of distances, as in figure 4. E.g. a distance in Ω3 where h3(s) = 2
is twice as demanding/difficult/resource intensive as the similar distance
in the subdomain where h(s) = 1. And so, the correlation range will be
halved in Ω3.
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FIGURE 4. This figure shows five yardsticks of equal length, placed in a domain
where distances are scaled by 1/h. The yardstick at (2, 2) is hard to spot as its
weighted length is 0.05.

3.4 Generalization

There is one obvious generalization worth mentioning, namely letting h(s)
and τ = τ(s) vary throughout the domain. This only requires minimal
changes to the FEM algorithm, if any at all. So why not? The problem,
ladies and gentlemen, is how to parametrize these functions in a simple and
intuitive way. In a way that can be understood by non-experts; in a way
that you feel comfortable putting priors on the hyper-parameters.

4 Computationally feasible inference

Now we will outline how to implement inference in a fast way. We want to
consider problems with many nodes, so speed is an issue!
The SPDE approach, enables us to use GMRFs as approximations to GFs,
by solving the SPDE with a FEM algorithm. GMRFs give huge compu-
tational benefits though sparse matrix computations, by representing the
field as

u ∼ N (0, Q−1),

where Q is a sparse (symmetric positive definite) matrix.
The precision matrix Q needs to be computed for each value of the hyper-
parameters that are to be explored during inference. To compute the GM-
RFs in the figures we have used precision matrices of size 160 000 times
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160 000. Performing inference with these, even though they are very sparse,
would be hard with Markov Chain Monte Carlo (MCMC) algorithms. In-
stead, we propose to use the Integrated Nested Laplace Approximation
(INLA) algorithm.
The INLA algorithm calculates the posterior for the hyper-parameters
without sampling. It is therefore significantly faster than MCMC algo-
rithms, and has different convergence/approximation properties. For more
details see Rue et al. (2009).

5 Future work

There are several parts that remain to be done. We plan to integrate this
into the R-INLA package (see www.r-inla.org), to facilitate fast computa-
tions and widespread use. We need to find relevant data sets to illustrate
how this method can be useful. We would also like to compare results with
the mentioned spline smoothing techniques.

Acknowledgments: Special thanks to my supervisors Daniel Simpson
and H̊avard Rue.
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Abstract: In survival analysis estimation of time-varying effects has become a
standard procedure, for example by extending the standard Cox PH model. Mod-
eling so-called exposure-lag-response associations is less common and advanced
methods have been introduced just recently in the context of distributed-lag mod-
els known from time-series analysis. We propose a new approach, using piece-wise
exponential models to estimate a wide variety of effects, including potentially
smooth, potentially time-varying effects as well as cumulative effects with leads
and lags, taking advantage of the advanced inference methods known for gener-
alized additive models. Our research has been motivated by a multi-center study
that included over ten thousand patients with the goal of analyzing the effect of
parenteral nutrition on short term survival of critically ill patients in intensive
care units.

Keywords: exposure-lag-response associations; survival analysis; piece-wise ex-
ponential models; time-varying effects; cumulative effects; linear functionals.

1 Exposure-lag-response associations

The effect of prescribed calories and proteins on survival of critically ill
patients has been a topic of discussion with controversial results (Heyland
et al., 2011). We analyze data from a multi-center study of critically ill
patients in intensive care units (ICU). For each patient a twelve day proto-
col has been conducted, recording their caloric intake alongside their goal
calories. Let calitν denote the amount of calories received at study day
tν , tν = 1, . . . 12 and pcali the amount of prescribed calories for patient
i, i = 1, . . . n. Then the caloric adequacy at day tν for patient i is denoted
as νitν = calitν/pcali. One essential question is the association between
caloric adequacy and short term survival after ICU admission. The effect is

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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possibly time-varying and lagged such that nutrition on study-day tν is only
effective in a predetermined time-window [tν + tlag, tν + tlead], where tlag
and tlead are tuning parameters (see Figure 1 for three possible definitions
of leads and lags). In addition, we want the effect to be possibly cumulative,
in the sense that the effect on the hazard in interval j(t) is affected by the
sum of multiple past days of nutrition (depending on the definition of leads
and lags). This defines the class of so called exposure-lag-response associ-
ations (Thomas, 1988), which have been revised and extended recently in
the context of distributed-lag models (Gasparrini, 2013).
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FIGURE 1. Three different lag and lead schemes for the possible effect of nu-
trition at time tν on survival in interval j. Row-wise: Which of the study days
1-12 are in effect in interval j. Column-wise: In which intervals is nutrition of
study-day tν possibly effective.

2 Model

We use the framework of piece-wise exponential models (PEM) to model
the hazard rate λ(t,x,ν) for death at time t > 4 given confounder vector
x, nutrition variable vector ν and given survival to t > 4. For fixed time
intervals defined by cut-points κ = (κ0, κ1, . . . , κI = tmax), where tmax is
the maximal follow-up time, the hazard rate for patient i at time t, κj−1 <
t ≤ κj in the j-th interval is given by

λ(t,xi,νi) = exp

g0(j(t)) +

P∑
p=1

f(xip, t) +

Q∑
q=1

∑
tν∈T (j(t))

g(νiq(tν), j(t), tν)


where g0(j(t)) represents the baseline hazard rate in interval j(t), f(x.p, t),
p = 1, . . . , P , are (potentially time-varying, potentially smooth) effects of
confounders x.p and g(νiq(tν), j, tν) is the partial effect of nutrition variable
ν.q at time tν on the hazard in interval j(t).
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All time-dependent effects are assumed to be piece-wise constant in the
intervals such that e.g. g0(t) = g0(j(t)) for all t ∈ (κj−1, κj ]. We consider
time in days. The interval borders κ = (4, 5, . . . , 12, 15, 20, . . . , 55,∞) were
chosen based on the shape of a nonparametric estimate of the marginal
hazard rate. The likelihood for a PEM is proportional to that of a Poisson
model with (1) one observation for each interval for each subject, yielding
around 105 pseudo-observations in total, (2) offsets oij = max(0,min(κj −
κj−1, ti−κj−1)), where ti is the observed time under risk for subject i and
(3) responses yij equal to the event indicators δij , with δij = 0 if subject i
survived interval j and δij = 1 if not.
This allows us to use well established smoothing methods to estimate var-
ious kinds of smooth and smoothly time-varying effects by means of gen-
eralized additive models. To estimate the nutrition effect we use P-Spline
tensor product smooths with B-Spline bases spanned over the dimensions
of time j(t) and nutrition-time tν . For combinations of j(t) and tν out-
side the valid Lag/Lead window (see Figure 1) the respective entries in the
model matrix are set to zero.

3 Effect of hypocaloric nutrition in critical care

We apply our approach to a multi-center study on the 60 day survival
of patients from 352 Intensive Care Units (ICU) across 33 countries. The
main interest was in the effect of nutrition as described in section 1. As
confounders we used Year of ICU admission, Admission Category and ini-
tial Diagnosis, Age, Apache II Score and a set of variables describing the
patients status during the first 4 days (since we started analysis at day 5).
To account for patients who partially or fully switched to oral intake as
compared to enteral or parenteral nutrition, we discretized the caloric ad-
equacy νitν into intervals 0− 30%, 30− 70%, > 70% and assigned patients
with additional oral intake to the next higher category. With the category
0 − 30% as reference category, we included two linear functional terms in
our model for the remaining categories, such that the estimated contribu-
tion of the nutrition variable q ∈ {30 − 70%, > 70%} to the log-hazard of
patient i in interval j(t) can be rewritten as

∑
tν∈T (j(t))

ĝ(νi,q(tν), j(t), tν) =

qν∑
`=1

fw(Li, `, j(t)) · f̂q(`, j(t))

where qν = d1 · d2, d1,d2 number of marginal B-Spline bases on which
f̂q had been estimated. f̂q is the estimated effect of nutrition variable
q ∈ {30 − 70%, > 70%}. Li are known weights for each combination of
j(t) and tν defined by the discretized version of the nutrition νitν and the
Lag/Lead specification. Finally fw is a known function that maps weights

Li of interval j(t) and nutrition at time tν to the according effect of f̂q.

The tensor product smooth f̂q is difficult to interpret on its own because
we also need to incorporate weights Li and sum up over all effects for
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nutrition days effective in interval j(t). Therefore we present the estimated
effect of nutritional adequacy as cumulative effects at each interval j(t) for
three fictitious patients (see Figure 2). The results have to be interpreted
as compared to a patient with hypocaloric nutrition throughout the 12 day
nutrition protocol. It appears that in the first couple of days nutrition of
> 70% is especially advantageous compared to hypocaloric nutrition.
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FIGURE 2. The cumulative effect of caloric adequacy on log hazard-rate for three
patients with caloric adequacy of 30 − 70% or > 70% throughout the nutrition
period and a typical patient, that received 0−30% in the first five days, 30−70%
on days 6-7 and > 70% afterwards. Effects have to be interpreted in comparison
to a fictitious patient who received < 30% of prescribed calories throughout.

Summarizing, our approach makes it possible to analyze complex exposure-
lag-response structures and is a valuable contribution to the discussion on
the effect of nutrition on survival of critically ill patients.
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Abstract: We propose the Functional Linear Array Model (FLAM) which is
a model class containing scalar-on-function, function-on-scalar and function-on-
function regression models. Mean, median, quantile as well as generalized addi-
tive regression models for functional and scalar responses are contained as special
cases in this general framework. Estimation is conducted using a boosting algo-
rithm, which allows for numerous covariates and automatic, data-driven model
selection. Our motivating application is an experiment on viscosity of resin mea-
sured over time for different experimental settings. We fit a function-on-scalar
regression model in order to determine the factors that affect the hardening pro-
cess. An implementation of our methods is provided in the R add-on package
FDboost.

Keywords: boosting; functional data analysis; structured additive regression.

1 Introduction

In an experiment the viscosity of resin was measured over time under dif-
ferent experimental settings to determine the factors affecting the curing
process (Wolfgang Raffelt, Technical University of Munich, Institute for
Carbon Composites). The ideal viscosity-curve should have low values in
the beginning and then increase quickly. That corresponds to high fluidity
during filling of the mold and a rapid hardening. As experimental factors
temperature of resin, temperature of curing agent, temperature of tools, ro-
tational speed and mass flow were investigated. For the five binary factors a
fractional factorial design with 16 factor combinations was conducted with
4 replications per experimental setting, resulting in 64 observed curves. Due
to technical reasons the measuring method has to be changed in a certain

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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range of viscosity. The first measuring method gives observations every two
seconds, the second every ten, inducing missing values in the curves with
the earlier change time. After the change of method some curves show large
amounts of measurement error (Figure 1).
For the modeling, all main effects and interactions of first order are of
interest, resulting in 15 effects. All in all it is necessary to estimate a robust
(median) regression model for functional response, incorporating model
selection and missing values.
We introduce the Functional Linear Array Model (FLAM), a very gen-
eral framework for functional regression models with functional or scalar
response. Among the most general competing frameworks for functional re-
gression models are a Bayesian wavelet based approach (Meyer et al. 2013)
and an approach based on additive mixed models (Scheipl et al. 2014).
Neither framework discusses a unified model class for scalar and functional
responses and both are limited to model the expectation of the conditional
distribution. Our unified approach is the first to cover functional regression
models for both scalar and functional response in one framework and to go
beyond modeling the conditional mean.
In the following we will present the FLAM and its estimation by boosting,
followed by the analysis of the viscosity data.

2 The functional linear array model

We consider data (Y,X), where the response Y is from the space of square
integrable functions over a real interval T , which consists of a single point
for the special case of a scalar response. The covariates X ∈ X are from
a product space of suitable spaces. The spaces for the single variables in
X are assumed to be the real numbers or the space of square integrable
functions. As generic model we set up the following additive regression
model:

ξ(Y |X = x) = h(x) =
∑

j
hj(x), (1)

where ξ is some transformation function, for instance the expectation, the
median or some quantile and h(x) is the linear predictor which is the sum
of partial effects hj(x). Each effect hj(x) is a real valued function over T
and is represented using a tensor product basis

hj(x)(t) = (bj(x)T ⊗ bY (t)T)θj , (2)

where ⊗ is the Kronecker product, bj : X → RKj is a vector of basis
functions depending on one or several covariates, bY : T → RKY is a vec-
tor of basis functions over the domain of the response and θj ∈ RKjKY
is the vector of coefficients. In the case of scalar-on-function regression,
bY (t) ≡ 1 with KY = 1. Regularization of the effects is achieved by
penalization. A suitable penalty matrix can be constructed as PjY =
λj(Pj ⊗ IKY ) + λY (IKj ⊗ PY ), where Pj is an appropriate penalty ma-
trix for bj(x), PY is an appropriate penalty matrix for bY (t) and λj ,
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λY ≥ 0 are the corresponding smoothing parameters. The penalty term
has a quadratic form, resulting in a Ridge-type penalty. As we represent
all effects as Kronecker product of two bases and use a Ridge-type penalty,
the model is a special case of a generalized linear array model (Currie et
al. 2006). Thus we denote model (1) as Functional Linear Array Model
(FLAM). The array model framework allows us to estimate the model very
efficiently by taking advantage of the special Kronecker structure in the
design matrix. Some choices for the bases and their penalty matrices are
given later in Section 5 for the case of function-on-scalar regression. The
model class, however, is much more flexible allowing, e.g., for effects of
functional covariates, interactions of scalar and functional covariates and
group specific effects.

3 Estimation

The basic idea for the estimation of a FLAM (1) is the use of an adequate
loss function that represents the estimation problem. The choice of the loss
function depends on the transformation function ξ and on the conditional
distribution of the response. For continuous response a typical choice is
the squared error loss, yielding mean regression for a normally distributed
response. The more robust absolute error loss yields median regression and
more generally the check function can be used to obtain quantile regres-
sion. If the conditional distribution of the response is assumed to be of
the exponential family, the loss function is the corresponding negative log-
likelihood. To measure the loss of a functional response, a loss function is
needed that is defined for a whole trajectory. We obtain such a loss function
by integration of the loss over the domain of the response:

` ((Y,X), h) =

∫
T
ρ((Y,X), h)(t)dt, (3)

where ρ is a loss function, e.g. the L2-loss ρL2
((Y,X), h) = 1

2 (Y − h(X))2.

4 Boosting

We use a component-wise boosting algorithm to fit the FLAM (1) based
on the loss function (3). Boosting is an ensemble method that pursues a
divide-and-conquer strategy for optimizing an expected loss criterion. The
estimator is updated step-by-step to minimize the loss criterion along the
steepest gradient descent. The model is represented as the sum of simple
(penalized) regression models, the so called base-learners, that fit the neg-
ative gradient in each step. The base-learners specify the type of covariate
effects. The loss criterion determines which characteristic of the response
variable’s conditional distribution is the goal of optimization (Bühlmann
and Hothorn 2007). The aim of boosting is to find the solution of the op-
timization problem

h∗ = argmin
h

E ` ((Y,X), h) . (4)
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In practical problems the integral is approximated by the weighted sum
over the observed points and the expectation has to be replaced by the
observed mean, yielding optimization of the empirical risk.
We adapt and extend the boosting algorithm developed by Hothorn et al.
(2013) for the estimation of models with tensor product bases as base-
learners.

5 Application to viscosity data

As discussed in the introduction we need a robust (median) regression
model with model selection that can deal with missing values. Median re-
gression is obtained by using the absolute loss, variable selection is inherent
to boosting as it selects base-learners step-by-step and missing values are
treated by setting the corresponding weights to zero.
In order to fit the model we need base-learners for an effect of the form
xβ(t), where x is dummy-coded and β(t) is the smooth effect over time.
This is obtained by setting bj(x)T = (1 x) and bY (t) to the vector of
cubic B-Splines basis functions evaluated at t. The smooth intercept is
represented by setting b1(x)T = (1). After fitting the model, the intercept-
part is subtracted from each coefficient function and added to the global
intercept. The penalty matrix for the linear term Pj is set to 0 and as the
penalty matrix PY a squared second order difference matrix is used.
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FIGURE 1. Viscosity measures over time with temperature of tools (T C) and
temperature of resin (T A) coded in colors and missing values represented as
dotted lines (left panel). The estimated coefficients for the model with T C, T A
and their interaction (right panel).

The optimal stopping iteration is determined by 10-fold bootstrapping over
curves. In the resulting model all main effects and some of the interaction
effects are selected. But most base-learners contribute very small effects to
the prediction of the viscosity. To obtain a parsimonious model we conduct
stability selection (Shah and Samworth 2013) with a per-family-error-rate
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of 2 and an expected number of terms in the model of 5. Using 100 subsam-
ples, the effects for temperate of tools (T C), temperature of resin (T A)
and their interaction are selected into the model, yielding

med (log(visi(t))) = β0(t) + T AiβA(t) + T CiβC(t) + T ACiβAC(t),

where T A and T C are coded as -1 for the lower and 1 for the higher level
and the interaction T AC is 1 if both temperatures are in the higher level
and -1 otherwise.
The estimated coefficients can be seen in Figure 1 in the right panel. Tem-
perature of tools has a very strong influence. From about 40 seconds on the
resin in the setting with the higher tool-temperature is curing faster. For
temperature of resin the effect is similar but much smaller. If temperature
of tools is in its higher level the viscosity curves have the desired shape
(low in the beginning, increasing rapidly); the effect is more pronounced if
temperature of resin is in the higher level as well. That means for practi-
cal purposes that it is most important to control the temperature of tools.
Temperature of resin has some impact as well, but the other factors do not
have to be controlled precisely. All analyses are fully reproducible as data
and code are part of the R add-on package FDboost (Brockhaus, 2014).

6 Conclusions

We provide a model class for both functional and scalar response, contain-
ing mean, median and quantile regression as special cases. The FLAM has
a modular structure: the transformation function allows to choose which
feature of the conditional distribution of the response to model and the
additive predictor allows the specification of a variety of covariate effects.
We take advantage of the Kronecker product structure of the design matrix
to achieve computational efficiency using linear array models. The estima-
tion is done by boosting as it is well suited to the modular structure of the
model class.
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1 Institut National d’Études Démographiques, Paris, France

E-mail for correspondence: carlo-giovanni.camarda@ined.fr

Abstract: Regular revisions of the classification of diseases and the consequent
disruptions of mortality series are known issues in long-term cause of death anal-
yses. Given basic assumptions and medical knowledge on eventual exchanges
among causes of death, reconstruction of coherent mortality series by cause of
death can be viewed as a constrained optimization problem. A combination of
a penalized likelihood approach with either a quadratic programming solver or
an asymmetric penalty allows to estimate exchanges among causes of death that
smoothly vary over age-groups. The approach is illustrated using Russian data
on digestive diseases.

Keywords: Quadratic programming; asymmetric penalty; smoothing; classifica-
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1 Introduction

Mortality data are commonly collected by year, age, sex and cause of death
(COD). Whereas years, ages and sex are well defined, classification of CODs
changes regularly over time to reflect progress in medical knowledge. Be-
cause of these periodic revisions, mortality time series by COD shows dis-
ruptions which are not due to variability in mortality trends. We seek
a method that is able to redistribute counts in an earlier period among
causes from the newer classification allowing the construction of coherent
long-term series.
The conventional method uses medical knowledge to identify closed groups
and eventual exchanges among old and new CODs within these groups.
Moreover it assumes that proportions among new COD for the whole age
range are equal in most cases in the years before and after the revision.
Aiming for reasonable trends for each COD, this approach redistribute
death counts in an heuristic way and it sometimes requires subjective ad-
justments.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
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FIGURE 1. Deaths by digestive diseases. Russia, ages 50-54, 1956-1965.

In this paper we embed the whole system in a least-squares problem with
asymmetric constraints, retaining the assumption on proportions and the
knowledge of possible COD exchanges. Moreover we generalize the method
allowing exchanges between old and new CODs which smoothly vary by
age. The proposed model can be thus tackled either with a smooth quadratic
programming or an asymmetric penalization approach.

2 Example

Figure 1 illustrates mortality series for digestive diseases for a specific age-
group (50-54) for Russia from 1956 to 1965. Disruptions in 1965 due to a
change in COD classification are evident. The complete dataset includes
all age-groups from 20-24 to 85+ years old (Meslé et al. 2003).
An additional input is the Boolean matrix T which identifies possible ex-
changes between old and new CODs. In our example:

T =


a b c d e f g

A 0 1 1 1 0 0 1
B 0 0 0 0 1 0 0
C 1 0 0 1 1 1 1

 .

3 Model

Data are two sets of three-dimensional arrays (age, year, CODs) of death
counts, one for each classification period. Estimation will be only based on
data from the last (first) year of the old (new) classification: D = (dik)
and Y = (yil), where i = 1, . . . ,m indexes the age-groups and CODs are
labeled by k or l according to the classification period. Redistribution of
counts during the whole old period will be automatically done fixing the
estimated exchanges between CODs.
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For ease of presentation we will first present the model for one age groups.
We assume equal proportions by new CODs in the period of change (e.g. 1964
and 1965) and compute the expected deaths by new CODs:

d̃ = (d̃l) =
yl∑
yl

∑
dk

Given the potential exchanges described in T , we can express the expected
deaths as

d̃ = X̆ p̆ ,

where p̆ = (p̆kl) are the proportions of deaths belonging to COD k that get

redistributed into COD l and X̆ is the associated design matrix.
We aim to redistribute all death counts and a set of equality constraints can
describe this hypothesis. Nevertheless we can incorporate into the system
these constraints reducing the number of unknowns. In formula:

d̃a
d̃b
d̃c
d̃d

d̃e−dB
d̃f

d̃g−dA−dC

 = r = X p =


dC 0 0 0 0 0 0
0 dA 0 0 0 0 0
0 0 dA 0 0 0 0
0 0 0 dA dC 0 0
0 0 0 0 0 dC 0
0 0 0 0 0 0 dC
−dC −dA −dA −dA −dC −dC −dC



pCa
pAb
pAc
pAd
pCd
pCe
pCf

 .

4 A quadratic programming approach

Estimating proportions the vector p is bounded between 0 and 1. We can
thus view the whole system as a quadratic programming problem:

minimize
p

f(p) =
1

2
pT(XTX)p+ rTXp s.t. Bp ≥ b (1)

where

B =

[
I|p|
−I|p|

]
, bT = vec(1|p| [0,−1]) .

I|p| is the identity matrix of dimension equal the length of p.
Noteworthy that both design matrix and response vector are uniquely de-
fined by T and they are presented here only for the Russian data. More
complex and larger exchanges among CODs are possible.
The dual method of Goldfarb and Idnani (1983) implemented in the R-
routine solve.QP was used to solve the quadratic programming problem
iterating Cholesky and QR factorizations and procedures.

4.1 Smooth proportions over age

We generalize the approach above allowing series of pkl to smoothly varies
over age-groups. We thus consider the complete matrix D and compute the
matrix of expected deaths D̃, always assuming equal proportions by new
CODs in the two years of transition for each age-group.
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Two-dimensional response, model matrix and vector of unknown propor-
tions are augmented versions over i of the uni-dimensional structures pre-
sented above. In particular, each element of the previous X is replaced by
a diagonal matrix over age-groups of the associated vector of deaths, e.g.
diag(d1k, d2k, . . .) instead of the simple dk.
We enforce smoothness of the series of coefficients by penalizing the mini-
mization problem in (1):

minimize
p

f(p) =
1

2
pT(XTX + P )p+ rTXp s.t. Bp ≥ b (2)

where p ∈ Rm |p| and inequality matrix and vector are consequently ex-
panded. The penalty P measures roughness of neighboring coefficients and
is given by:

P = I|p| ⊗ λ∆T∆ .

Symbol⊗ denotes the Kronecker product of two matrices and ∆ ∈ R(m−2)×m

computes the second order of the coefficients pkl (Eilers and Marx, 1996).
We assume isotropic penalization of the series of proportions, i.e. a single
λ for all pkl over i. This smoothing parameter was chosen based on visual
inspection.

5 An alternative: asymmetric penalty

A way for bypassing the implementation of quadratic programming systems
is to introduce an asymmetric penalty that shrinks the coefficients within
certain bounds.
Following Eilers (2005), we iteratively solve the following system:

(XTX + P + Pb)p̃ = XTr .

The additional penalty term is given by

Pb = κ diag(v0) + κ diag(v1)

where

v0
j =

{
1 if p̃j < 0

0 if p̃j > 0
and v1

j =

{
1 if p̃j > 1

0 if p̃j 6 1
.

This means that the second penalty only has the effect where proportions
lie outsize the [0, 1] interval. The parameter κ is rather large (here 108)
meaning that where the penalty is in effect, it really has a very strong
influence.
Differences between smooth quadratic programming approach and asym-
metric penalization are indistinguishable, therefore we will only present the
outcomes from the former approach.
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6 Application

Figure 2 presents the estimated smooth proportions of deaths redistributed
from old to new CODs in the years of classification revision. We also plot
the estimations when equal proportions are assumed by age as well as an
independent fit for each age.
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FIGURE 2. Estimated p = (pikl) over ages: proportions of deaths belonging to
COD k that get redistributed into COD l. Digestive diseases in Russia 1956-1965.

The estimated smooth proportions are then used to redistribute deaths in
the old period by new COD and reconstruct mortality series over both
periods. Figure 3 (left panel) shows that these series no longer present
disruptions and typical age-patterns are well described, too (see a specific
COD on the right panel of Figure 3).

7 Concluding remarks

In this paper we present two interchangeable approaches for reconstructing
coherent mortality series by cause of death. Starting from basic assumptions
on eventual exchanges among causes of death between two revisions, we
describe the problem as a least-squares system with inequality constrains.
Either smooth quadratic programming or asymmetric penalization allows
us to estimate the proportions assuming smoothness over age-groups.
Alternative approaches are also available for coping with the presented
issue. We plan to model the logit of p adding a small ridge penalty.
Often assuming equal proportions of counts by COD in the years of change
may well be too strong. We plan to extend the model assuming a smooth
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FIGURE 3. Left: Deaths counts for all ages. Digestive diseases in Russia, ages
20-85, 1956-1965. Right: age-patterns for all years of a specific COD.

change of the proportions over the new period and back-forecasting these
proportions in the last year of the old classification. Furthermore, the pro-
posed methods are expendable in other contexts in which time-series are
disrupted for recognized reasons, e.g. series with historic border changes.
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Abstract: The investigation of sibilant assimilation is an integral part of speech
production research. Apart from their functional character, data in this field often
have a crossed correlation structure (speaker by target word) and measurements
are commonly observed irregularly or even sparsely over time. We extend the
linear mixed model to correlated functional data which are observed irregularly or
even sparsely. Estimation is based on dimension reduction via functional principal
component analysis, whereby the random effects are expanded in truncated bases
of eigenfunctions of the estimated respective auto-covariances. We propose two
ways of estimating the weights of the basis expansions. The first is straightforward
and computationally efficient. The second allows for statistical inference such as
the construction of point-wise confident bands for the mean function.
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1 Introduction

Advancements in technology allow today’s scientists to collect an increas-
ing amount of data consisting of functional observations rather than single
data points. Most methods in functional data analysis assume that obser-
vations are a) independent and/or b) observed at a large number of the
same equidistant measurement points.
Speech production research is only one of numerous fields in which the data
often do not meet these strong requirements. The sibilant assimilation data
we present in this work have a crossed correlation structure due to repeated
observations for speakers and for target words and measurement points dif-
fer between the observed curves.
We propose a model that extends conventional regression approaches by

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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accounting for both a) correlation between functional data (fd) and for b)
irregular spacing of – possible few – measurement points. The model is a
functional analogue to the linear mixed model (lmm), frequently used to
analyze scalar correlated data. Random effects are replaced by functional
random effects.
Dimension reduction becomes indispensable when dealing with fd. We use
functional principal component analysis (fpca) to extract the main modes of
variation in the data. Functional random intercepts are expanded in bases
of eigenfunctions of the estimated respective auto-covariance functions. For
the estimation of the basis weights, we propose to either compute them di-
rectly as best linear unbiased predictors (BLUPs) of the resulting lmm or
to embed our model in a more general framework of Scheipl et al. (2014).
The first approach is straightforward and computationally more efficient, it
does not require additional estimation steps. The latter has the advantage
that all model components are estimated in one framework and it allows
for statistical inference.
Our approach extends two existing fpca procedures. It is a generalization
of the PACE algorithm of Yao et al. (2005) who allow for irregular spacing
and sparseness of measurement points but assume that the functions are
uncorrelated. And it extends the longitudinal functional principal compo-
nent analysis of Greven et al. (2010) to irregularly or sparsely observed
measurements and to more complex correlation structures.

2 The Sibilant Assimilation Data

In order to investigate German sibilant assimilation, Pouplier and Hoole
recorded acoustic data of 9 speakers. For each speaker, 5 repetitions of
the same 16 target words were recorded. Each repetition was summa-
rized in a functional index over time, varying between +1 and -1. We
focus on the assimilation of the two sibilants s (index value 1) and sch
(or

∫
, index value -1). Half of the target words contain the sequence

/s#
∫

/, such as KuerbisSchale, the other half contain the sequence /
∫

#s/,
e.g. GulaschSymbol. The resulting acoustic data are depicted in Figure 1.
In the left, one can see the data for order /s#

∫
/ and in the right, data for

order /
∫

#s/ are shown.
A special focus lies on the asymmetry arising from the order of the sibilants.
We investigate under which conditions (order, stress of syllables, vowel con-
text) sibilants assimilate and if assimilation is symmetric with respect to
the orders /s#

∫
/ and /

∫
#s/. Moreover, we study the effect of stress, vowel

context and possible interactions with sibilant order.
Due to differing reading length, the time scale is standardized to a [0,1]
interval, resulting in irregular spacing of the measurements. Correlation
in the data arises from repeated measurements of speakers and of target
words. In a preprocessing step, we mirror the curves of order /

∫
#s/ along

the time axis such that all curves have an index dynamic ranging from +1
to -1. This allows us to incorporate the index values of the two sibilant
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orders in one single statistical model.
Data of this kind have frequently been analyzed by taking the index val-
ues at the 25%, 50%, and 75% points of the time interval followed by the
application of multivariate methods. However, it is obvious that a lot of
information is lost by this approach. Moreover, the lack of ideal reference
curves makes the interpretation more difficult.
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FIGURE 1. Sibilant assimilation data. Shown are the index curves over time
colored by word. Curves belonging to one word are the same color. Left: Curves
of order /s#

∫
/. Right: Curves of order /

∫
#s/.

3 The Functional Linear Mixed Model for our Data

We account for correlation between measurements of each speaker and of
each target word, by applying a functional linear mixed model (flmm) with
a crossed design of the form

Yijh(t) = µ(t, xij) +Bi(t) + Cj(t) + Eijh(t) + εijh(t), (1)

with Yijh(t) denoting the index value of the hth repetition of speaker i
and target word j at time t ∈ [0, 1]. µ(t, xij) is a smooth mean function
depending on known covariates xij (stress and vowel context). It can in-
clude interaction terms. Correlation between measurements of the same
speaker is captured by the speaker-specific functional random intercept
Bi(t). Analogously, the functional random intercept Cj(t) accounts for tar-
get word-specific deviations of the mean. Eijh(t) comprises interactions be-
tween speakers and target words as well as smooth random curve-specific
deviations and εijh(t) is white noise measurement error with variance σ2(t).
We assume that Bi(t), Cj(t), Eijh(t) and εijh(t) are independent for all
curves. Note that the irregular spacing of the data comes into play in the
estimation.

4 Estimation of the FLMM

We estimate the proposed model based on dimension reduction via fpca. In
a first step, the mean function µ(t, xij) is estimated under the working inde-
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pendence assumption, Yijh(t) = µ(t, xij) + εijh(t), using penalized splines.

Subsequently, index values are centered, Ỹijh(t) = Yijh(t) − µ̂(t, xij), and
their cross products are used for the estimation of the auto-covariances of
the functional random intercepts based on the variance decomposition

Cov{Ỹijh(t), Ỹi′j′h′(t
′)} = Cov{Bi(t), Bi′(t′)}δii′ + Cov{Cj(t), Cj′(t′)}δjj′

+
[
Cov{Eijh(t), Ei′j′h′(t

′)}+ σ2(t)δtt′
]
δii′δjj′δhh′ ,

with δxx′ denoting the Kronecker delta. Assuming smoothness of the auto-
covariances, we use bivariate penalized splines implemented in the
R-package mgcv (Wood, 2006) to estimate the auto-covariances from the
above additive model. Strength is borrowed across curves. We expand the
functional random intercepts in truncated bases of eigenfunctions of the
auto-covariances (evaluated on a regular grid). We propose two alternatives
for the estimation of the basis weights:

a) The weights are directly obtained as BLUPs of the resulting lmm

Yijh(t) = µ̂ijh(t, xij) +

NB∑
k=1

ξBikφ̂
B
k (t) +

NC∑
k=1

ξCjkφ̂
C
k (t) +

NE∑
k=1

ξEijhkφ̂
E
k (t),

where ξBi , ξ
C
j , and ξEijh are uncorrelated random weights and φBk (t),

φCk (t), and φEk (t) denote the eigenfunctions. Truncation levelsNB , NC ,
and NE are chosen by a pre-specified proportion of explained vari-
ance.

b) We incorporate the estimated eigenfunctions and eigenvalues in a
framework for additive regression models for correlated functional
responses of Scheipl et al. (2014) who use tensor product representa-
tion for each model term. Estimation is conducted via mixed model
representation using again the mgcv package. Although an additional
estimation step is necessary, it has the advantage that the mean func-
tion µ(t, xij) is re-computed in the same framework allowing for sta-
tistical inference and the construction of point-wise confident bands.

5 The General Functional Linear Mixed Model

For notational simplicity, we have so far focused on the model we apply to
our data (1). This model can be generalized as follows

Yi(t) = µ(t, xi) + z>i U(t) + Ei(t) + εi(t), (2)

were Yi(t) is the functional response observed at arguments t in some set
T , a closed interval in R. Time intervals are a special case of T , but the
functions can also vary subject to distances or other arguments.
µ(t, xi) is a fixed main effect surface dependent on a vector of known covari-
ates xi. The random intercepts in model (1) are replaced by a vector-valued
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random process U(t). zi is a covariate vector. Ei(t) is a curve-specific de-
viation in form of a vector-valued smooth residual curve, and εi(t) is white
noise measurement error with variance σ2(t) which captures random uncor-
related variation within each curve. Estimation can be directly generalized
for model (2).

6 Results

We analyzed the sibilant assimilation data with the proposed flmm with a
crossed design structure (1). Estimation of the basis weights in the frame-
work of additive regression models yields estimates and point-wise confident
bands for the global mean function and for covariate effects. Our results
suggest that sibilant assimilation of s and

∫
is not symmetric. The effect

of the sibilant order (dummy coded: 0:/s#
∫

/, 1:/
∫

#s/) with point-wise
confident bands is shown on the left in Figure 2.
We also find that the covariate stress interacts with order whereas the in-
teraction between vowel context and order is not significant as assessed by
the point-wise confident bands. Moreover, our model allows a variance de-
composition into speaker-, target word-, and curve-specific variability and
gives an estimate for the measurement error.
We find that the covariates describe the target words so well that no word-
specific functional random intercept is needed. The estimated eigenfunc-
tions give us the main directions of variability. In Figure 2 on the right,
we exemplarily display the estimated mean and the effect of adding and
subtracting a suitable multiple of the first estimated principal component
(PC) for the speaker-specific functional random intercept. This principal
component shows how well speakers differentiate between the two sibi-
lants. Speakers with negative weights distinguish better between s and

∫
than speakers with positive weights. The basis weights can be used for ad-
ditional analyses. Finally, predictions of the functional random intercept
curves show us how speaker- and curve-specific deviations look like.

7 Conclusion

We extend the linear mixed model to correlated and irregularly or sparsely
sampled functional data. Functional random effects are expanded in par-
simonious bases of eigenfunctions which are estimated from the data. We
propose two ways of estimating the basis weights. We demonstrate the prac-
tical relevance by applying our approach to data from speech production
research in order to answer questions concerning the asymmetry of sibilant
assimilation.

Acknowledgments: Special thanks to Fabian Scheipl and Simon Wood.
Sonja Greven and Jona Cederbaum were funded by Emmy Noether grant
GR 3793/1-1 from the German Research Foundation.
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FIGURE 2. Left: Effect of sibilant order with point-wise confident bands. Right:
Mean function and the effect of adding (+) and subtracting (-) a suitable mul-
tiple of the first estimated principal component for the speaker-specific random
intercept.
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1 Introduction

In evaluation of compound effects during drug development, various end-
points are often simultaneously evaluated as there is no one specific stan-
dard endpoint that genuinely points to the compound effect. Subsequently,
the resulting dataset is of multivariate form and analysis of such data should
account for the possible correlation between different end-points. The modi-
fied HET-CAMV T experiment (Van Goethem, 2006; De Smedt, 2007) pro-
vides a prime example of such a dataset. The experiment examines the
viability of using a chicken egg to evaluate the injection-site-reaction prop-
erties of a given compound. A typical feature of these data is simultaneous
right truncation and interval censoring. A two part model is employed:
a logistic regression model for the probability of an event being observed
during the experiment and a parametric Weibull model for the exact event
time conditional on event occurrence. A combined frailty model (Molen-
berghs, 2007) is considered for the dependence in the univariate case while
a correlated shared normal frailty is used to extend the analysis to the
multivariate case.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Data and Methods

2.1 The Data

The original dataset consisted of 14 endpoints classified under three major
outcomes: Hemorrhage (H1-H4), Lysis (L5 - L8) and Coagulation(C9-C14).
Each of the 14 endpoints measures time to occurrence of an irritation indi-
cator on a fertilized egg after treatment with a compound formulation. A
total of 390 eggs in batches of 3 were considered. The set-up is such that the
eggs are checked for the event of interest 5 minutes after treatment, then
after 15, 30 45 and 60 minutes. After this the experiment is terminated
and it is unknown whether the event will eventually occur or not. Due to
very small proportions of events, endpoints L6 and L8 were not considered
further in this paper. Two covariates, compound concentration (0 to 10
mg/ml) and vehicle (Captisol c© - 1 or Dextrose - 0) are also recorded. The
objective is to identify the compound formulation’s potential to cause in-
jection site reaction and determine whether the vehicle used in compound
administration has an influence.

2.2 Methodology

Note that for each egg ID i, the event of interest is either observed within
the observation interval, [0, τi] with probability P (δi = 1) = πi or fails to
be observed with probability P (δi = 0) = 1 − πi. Furthermore, the exact
time to observed events is only known to lie in the interval (ti1, ti2) while
the unobserved event-times are truncated at time τi. Therefore, the data
is respectively interval censored and right-truncated. The contributions to
the likelihood are therefore as follows:

1. If the event occurs, it occurs in the interval [ti1, ti2] and the likelihood
is given by

Li = P (Ti ∈ [ti1, ti2]|δi = 1, Xi, θ) = πi
S(ti1|Xi, θi)− S(ti2|Xi, θi)

1− S(τ |Xi, θi)
(1)

2. If the event does not occur before the end of the study, ti = τ , the
likelihood contribution is

Li = P (δi = 0) = 1− πi. (2)

The general likelihood contribution for any given egg is therefore given as

Li(θi, π|X, δi, ti1, ti2) = (1−πi)1−δi(πi)
δi

(
S(ti1|Xi, θi)− S(ti2|Xi, θi)

1− S(τi|X, θi)

)δi
(3)

where θi is the vector of parameters in the survival function; Both πi and
θi can be modelled as functions of covariates X , i.e. πi = πi(X) and
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θi = θi(X), although the two sets of covariates need not be the same. The
Survival function S(.), can further be modeled with univariate, shared, or
combined frailty (Molenberghs, 2007) terms. That is,

S(tik|Xik, θi, Zik) = e−ZikH0(tik,θ)e
β′Xik+uk

(4)

where Zik and uk represent the univariate and clustering/shared frailty
terms respectively. Here, i = 1, 2, 3 while k = 1, ..., 130. Omission of Zik or
uk in eq. 4 respectively results in a shared or univariate frailty model.
Furthermore, Zik is assumed to follow a non-negative distribution e.g.
gamma(α, α) or log-normal while uk ∼ N(0, σ2) is assumed to follow a
normal distribution. The Weibull function is used to model the baseline
hazard H0(tik) although other parametric shapes can be considered.
For multivariate extension, we consider that each event time, Tir : r =
1, 2, ...,m can separately be modeled using equation 4. However, we restrict
ourselves to the shared frailty models. Assuming that conditional on the
random effects, the event times are independent, the joint likelihood of the
m outcomes is then the product of individual likelihoods in eq (3). That is

Li(θi1, . . . , θim;πi1, . . . , πim|Xi; δi1, . . . , δim; t1i1, . . . ti2;u1, . . . , um)

= (1− πi1)1−δi1(πi1)δi1
(
S(t1i1|Xi,θ1i,u1)−S(t1i2|Xi,θ1i,u1)

1−S(τ1i|Xi,θ1i,u1)

)δ1i
· · ·

· · · ×(1− πmi)1−δmi(πmi)
δmi
(
S(tmi1|Xi,θmi)−S(tmi2|Xi,θmi,um)

1−S(τmi|X,θmi,um)

)δmi (5)

where the random effects are assumed to follow a multivariate normal dis-
tribution,

 u1

...
um

 ∼MVN


 0

...
0

 ,

 σ2
1 · · · ρ1,mσ1σm
...

. . .
...

ρ1,mσmσ1 · · · σ2
m


 (6)

Extending this approach to the combined model is straiht forward. The
dependence between any two event-time components is however assumed
to be only through the correlated normal random effects. Model fitting is
done using the pairwise pseudo-likelihood method of Fieuws and Verbeke
(2006).

3 Results

The outcomes were first analyzed univariately with the best model selected
based on the AIC. The univariate (heterogeneity) gamma frailty model was
found to fit best for outcome H1. For outcomes C11, C12, C13 and C14, the
combined model was found to fit best while for the rest of the outcomes,
the shared frailty model had the lowest AIC. Based on plots of observed
(red continuous line) and predicted (blue dotted line) cumulative incidence
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FIGURE 1. Cumulative incident rate for outcome H1

curves, the model showed a good predictive ability as illustrated in Figure
1 below for outcome H1 (first instance of diffuse bleeding).
To demonstrate our results for the multivariate extension, four randomly
chosen outcomes: H2 (first punctual bleeding), L5 (first lysis effect in small
blood vessels), C9 (first effect in small blood vessels-decreased blood flow)
and C14 (general decrease to complete blockage in blood flow) were consid-
ered. Tables 1 and 2 below compare the results obtained on the univariate
outcomes model and the multivariate respectively. The upper panel of each
table represents the logistic/occurrence model part while the lower repre-
sents the event-time model. From both tables, the odds of an egg experi-
encing an event within the observation window increases with compound
concentration. The Vehicle Captisol c© tends to have low initial event rate
compared to Dextrose although not significant for most outcomes.

TABLE 1. Parameter (Std. errors) for univariate shared frailty model

H2 L5 C9 C14

Intercept -2.320 (0.453) † -1.433 (0.483) † -0.774 (0.509) -1.643 (0.336) †

Conc. 0.228 (0.037) † 1.226 (0.333) † 1.777 (0.731) † 0.732 (0.079) †

Vehicle 0.151 (0.467) -0.608 (0.501) 0.951 (0.548) -1.178 (0.376) †

λ 0.061 (0.078) 0.180 (0.202) 0.207 (0.141) 0.002 (0.002)

γ 2.561 (0.563) † 2.899 (0.337) † 3.284 (0.364) † 2.883 (0.283) †

Conc. 0.073 (0.211) 0.275 (0.148) 1.163 (0.341) † 0.548 (0.143) †

Vehicle -3.134 (1.291) † -2.205 (1.236) -0.413 (0.889) -1.567 (1.195)
V ehicle× Conc. 0.433 (0.231) 0.031 (0.157) -0.674 (0.357) -0.128 (0.170)
σ2 1.860 2.826 3.264 1.131



Chebon et al. 85

TABLE 2. Parameter estimates(Std. errors) for multivariate shared frailty model

H2 L5 C9 C14

Intercept -2.320 (0.367) † -1.433 (0.344)† -0.774 (0.357) -1.643 (0.388) †

Conc. 0.228 (0.035) † 1.226 (0.129)† 1.777 (0.316) † 0.732 (0.125) †

Vehicle 0.151 (0.368) † -0.608 (0.386)† 0.951 (0.391)† -1.178 (0.438) †

λ 0.077 (0.094) 0.191 (0.159) 0.182 (0.160) 0.002 (0.0.001)

γ 2.561 (0.507) † 2.903 (0.260)† 2.487 (0.225)† 3.314 (0.364)†

Conc. 0.032 (0.208) 0.266 (0.152) 1.202 (0.344)† 0.598 (0.123)†

Vehicle -3.270 (1.393) † -2.169 (0.935) -0.260 (0.916) -1.213(1.001)
Vehilce × Conc. 0.458 (0.236) 0.027 (0.165) -0.720 (0.339) -0.176 (0.145)
σ2 1.975 2.811 3.173 1.728

Table 3 presents the resulting correlation matrix based on the pairwise fit-
ting approach. The outcomes exhibit moderate correlation although corre-
lation across most coagulation outcomes tended to be higher (results omit-
ted).

TABLE 3. Correlation Matrix

H2 L5 C9 C13

H2 1
L5 0.56 1
C9 0.60 0.54 1

C13 0.39 0.52 0.55 1

4 Conclusions

Although fitted under a pseudo-likelihood approach multivariate parameter
estimates are very close to the univariate estimates. The model predictive
performance is sound as indicated by plots. There is a significant increase
in the probability of event occurrence with compound concentration based
on the logistic model. The same is reflected in the event-time model though
not significant in most cases. The initial low event rates in Captisol c© could
be attributed to a likely complex formed between the vehicle and the com-
pound as noted by Hermans(2009).
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Abstract: Centring is a familiar device much used in the analysis of fixed effects
models, but rarely seen in the context of mixed models, since the distribution of
the random effects usually brings about the required centring. However there are
mixed models, notably in the analysis of longitudinal data, where the distribution
of the random effects does not bring about the necessary centring. In such models
we use a conditional argument to centre the distribution of the random effects
directly: the resulting estimates are of necessity unbiased. In general, we define
a new class of mixed models, centred mixed models. We give some examples of
models in this class and discuss efficient estimation of the fixed and random
effects, and the variance parameters. We illustrate our method with the analysis
of some Canadian weather data.

Keywords: Bias; Centring; Longitudinal data; Mixed models; Smoothing.

1 Introduction

We consider balanced longitudinal data Y = [y1 : . . . : yn] = (yi,j), m× n,
with m observations on each of n subjects at times t = (t1, . . . , tm)T. One
such data set is illustrated in the left panel of Figure 1, which shows the
daily average temperature (taken over the period 1960-1994) in 35 Cana-
dian cities; the mean temperature over the 35 cities is also shown. These
data are available in CanadianWeather in the library fda in R (R Core
Team, 2013). These data are balanced, and simple data analysis shows
that both population mean and subject (city) effects are curved. Ruppert
et al. (2003, ch 9) described these curves with truncated lines as follows:

yi,j = β0+β1ti+

K∑
k=1

uk(ti−τk)++b0,j+b1,jti+

K̆∑
k=1

vk,j(ti− τ̆k)++εi,j . (1)

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
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Here x+ = max {0, x}, and τ = {τ1, . . . , τK} and τ̆ = {τ̆1, . . . , τ̆K̆} are

sets of K and K̆ equally spaced internal knots in t; usually, we take K̆ <
K. Ruppert et al. (2003, p192) expressed the model as a mixed model,
but did not “explore the use of standard software for fitting”. Durban
et al. (2005) showed that the model could be fitted in a straightforward
fashion with the lme function in R, thus making the model widely available.
However, Djeundje and Currie (2010) and Heckman et al. (2013) showed, by
considering balanced data, that (1) could lead to seriously biased estimates
of both the population and subject curves. In this paper, we propose a
modification to the distribution of the random effects of the original mixed
model of Ruppert et al. (2003) which corrects for the bias.
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FIGURE 1. Left: temperature in 35 Canadian cities (grey), mean (black); right:
observed, biased and centred estimates (forward bases) of population mean with
K = 39 and K̃ = 19.

The plan of the paper is as follows: in section 2 we describe our main idea,
centred random effects, with reference to three examples, and present the
results of the analysis of the Canadian weather data; in section 3 we define
a new class of mixed models, centred mixed models, and describe efficient
estimation in this class; in section 4 we draw some conclusions and indicate
the direction of future work.

2 Examples

2.1 One-way layout

The usual model for the balanced one-way layout with m observations on
each of n subjects is

yi,j = µ+ uj + εi,j , i = 1, . . . ,m, j = 1, . . . , n, εi,j ∼ N (0, σ2
e). (2)

The parameters in (2) are not identifiable so some condition is required to
ensure that µ estimates the population mean. In the fixed effects model the
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constraint
∑
uj = 0 ensures that µ̂ does indeed estimate the population

mean. In the mixed model we suppose the uj ∼ N (0, σ2
u) and, as is well

known, this implies that the BLUP of the uj satisfies
∑
ũj = 0; in other

words, correct identification of population mean and subject effects is im-
plicit in the distribution of the random effects, and no explicit constraints
are required.
We can write model (2) in matrix/vector form as

y | u = µ1N + (In ⊗ 1m)u+ ε, u ∼ N (0, σ2
uIn), ε ∼ N (0, σ2

eIN ) (3)

where Is is an identity matrix of size s, 1s is a vector of 1’s of length
s, N = mn and ⊗ denotes the Kronecker product. We ask the following
question: what is the appropriate way to place explicit constraints on the
random effects u to ensure that

∑
ũj = 0? We observe that

u | (
∑
uj = 0) ∼ N

(
0, σ2

u(In − 1
n1n1T

n)
)

= N
(
0, σ2

uHn

)
, (4)

say, and propose that the distribution of u in (3) be replaced by the condi-
tional distribution in (4). The matrix Hn is a familiar device and is known
as the centring matrix, since Hnw returns (w1 − w̄, . . . , wn − w̄)T for any
vector w = (w1, . . . , wn)T.
The two models, (3) and its centred version, give exactly the same esti-
mates of the fixed effect µ and the random effects u, and the same residual
likelihood and hence the same estimates of the variance components σ2

e and
σ2
u; ie, in this example where the constraints on u are implicit in the orig-

inal mixed model (3), explicit centring of the random effects is redundant
as far as parameter estimates are concerned.

2.2 Linear population and subject effects

We consider the mixed model where population mean and subject effects
are linear:

yi,j = β0 + β1ti + u0,j + u1,j ti + εi,j , i = 1, . . . ,m, j = 1, . . . , n, (5)

where uj = (u0,j , u1,j)
T ∼ N (0,Σ0), and Σ0, 2 × 2, is a positive defi-

nite symmetric matrix. Let β = (β0, β1)T be the vector of fixed effects,
u = (uT

1 , . . . ,u
T
n)T be the vector of random effects, and T0 = [1m : t].

Corresponding to (3) we have

y | u = [1n⊗T0]β+ [In⊗T0]u+ε, u ∼ N (0, In⊗Σ0), ε ∼ N (0, σ2
eIN ).

(6)
The model is readily fitted with lme and the BLUP of the random effects
satisfies

∑
ũ0,j =

∑
ũ1,j = 0. As in the one-way layout, the distribution

of u ensures that the estimates are correctly centred. The centred mixed
model corresponding to (6) replaces u ∼ N (0, In ⊗Σ0) with

u | (
∑
u0,j =

∑
u1,j = 0) ∼ N (0,Hn ⊗Σ0) . (7)

Again, we find that model (6) and its corresponding centred version give
the same estimates of β, u, σ2

e and Σ0.
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2.3 Curved population and subject effects

We can write model (1) compactly as

y | (u, b,v) = [1n ⊗ T0]β + [1n ⊗ T ]u+ [In ⊗ T0]b+ [In ⊗ T̆ ]v + ε, (8)

where T , m×K, and T̆ , m× K̆, are regression matrices of truncated lines.
The distribution of the random effects is defined as follows:

u = (u1, . . . , uK)T ∼ N (0, σ2
uIK), (9)

b = (bT

1 , . . . , b
T

n)T, bj = (b0,j , b1,j)
T, b ∼ N (0, In ⊗Σ0), (10)

v = (vT

1 , . . . ,v
T

n)T, vj = (v1,j , . . . , vK̆,j)
T, v ∼ N

(
0, σ2

vInK̆
)
. (11)

Finally, ε ∼ N (0, σ2
eIN ). This is the model proposed by Ruppert et al. (2003)

and fitted with the lme function in R by Durban et al. (2005). We fit the

model with K = 39 and K̃ = 19. If we want T0β̂ + T ũ to estimate the
population mean then we must check that the subject random effects are
appropriately centred. We find that

∑
b̃0,j =

∑
b̃1,j = 0, so the linear

component is correctly centred but
∑
ṽk,j 6= 0 for each k = 1, . . . , K̃.

The right panel of Figure 1 shows that the estimate of the population
mean is indeed biased. We centre the model by replacing the distribution
v ∼ N

(
0, σ2

vInK̆
)

with its centred distribution

v | (
∑
jvk,j = 0, k = 1, . . . , K̃) ∼ N

(
0, σ2

vHn ⊗ IK̆
)
. (12)

The right panel of Figure 1 shows that the bias of the estimate of the
population mean has been removed: the centred estimate now tracks the
observed mean very well.
The problem with the original formulation is that the subject effects are
not centred. Let Sj(t) denote the j th subject effect and S̃j(t) be the BLUP
of Sj(t) in the centred model. Then

∑
j

S̃j(t) =
∑
j

(
b̃0,j + b̃1,jt+

∑
k

ṽk,j(t− τ̆k)+

)
= 0, ∀ t. (13)

In other words, centring the random effects centres the entire curve; we
call this perfect centring. Table 1 shows values of the mean bias per city,∑
j S̃j(t)/n, for selected t. Truncated lines come in two versions: the forward

basis with truncated lines of slope +1 and the backward basis with truncated
lines of slope −1. Fixed effects models with forward and backward bases
are parameterizations of each other, but in a mixed model the two models
are different. The forward basis is more usual but results for both bases are
shown in Table 1. The bias with the forward basis is substantial.

3 Centred mixed models

Equations (4), (7) and (12) show a common pattern and suggest a general
class of mixed models. A convenient definition is:
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TABLE 1. Mean bias
∑
S̃j(t)/n, t = 1, 100, 200, 300, 365

Day 1 100 200 300 365

Centred 0 0 0 0 0
Forward 0 −0.3 −0.7 −1.3 −1.6
Backward 0.1 0.3 0.2 0.1 0

Definition A centred mixed model is a mixed model y = Xβ+Zu+ ε for
data Y , m× n, y = vec(Y ), such that X and V = var(y) have the form

X = 1n ⊗X0, V = In ⊗ V0 − 1
n1n1T

n ⊗ψ0. (14)

All our earlier examples, including, perhaps surprisingly, the mixed model (8),
are examples of centred mixed models. For model (8) we have

V0 = σ2
eIm + T0Σ0T

T

0 + σ2
vT̆ T̆

T, ψ0 = −nσ2
uTT

T. (15)

Thus, even although model (8) is not centred in the usual sense of the
word, the model structure is that of a centred mixed model. For the centred
version of model (8) V0 remains the same and ψ0 = σ2

vT̆ T̆
T − nσ2

uTT
T.

The original mixed models for the one-way layout and the linear by linear
model are trivial examples of centred mixed models with ψ0 = 0.
Computation is an issue with centred mixed models. As far as we are aware,
centred mixed models cannot be fitted with lme since the required variance
structure is not available. However, the structure (14) does admit an effi-
cient estimation scheme. The key result is that a variance function V of
the form (14) admits a closed form inverse

V −1 = In ⊗ V −1
0 + 1

n1n1T

n ⊗ (V0 −ψ0)−1ψ0V
−1

0 . (16)

This result enables us to obtain all the necessary quantities in the estimat-
ing equations with computations of size m instead of size N = mn. For
example, the variance components are chosen by maximising the residual
likelihood

− 1
2 log |V |− 1

2 log |XTV −1X|− 1
2y

T(V −1−V −1X(XTV −1X)−1XTV −1)y
(17)

and we can show that

|V | = |V0|n−1|V0 −ψ0| (18)

XTV −1X = nXT

0 (V0 −ψ0)−1X0 (19)

XTV −1y = XT

0 (V0 −ψ0)−1Y 1n. (20)

The estimate of the fixed effect β follows from (19) and (20):

β̂ =
1

n

(
XT

0 (V̂0 − ψ̂0)−1
0 X0

)−1

XT

0 (V̂0 − ψ̂0)−1Y 1n. (21)

Similar formulae exist for the remaining term in the residual likelihood
and the estimates of the random effects, but are omitted in this paper. The
computational formulae (18) through (21) simplify in the trivial case when
ψ0 = 0 and are of interest in their own right.
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4 Conclusions

We have (a) defined a new class of mixed models, centred mixed models,
(b) given a number of examples, (c) indicated efficient computation and
(d) used such a model to remove bias in an important example in the
analysis of longitudinal data. Future work includes the calculation of con-
fidence intervals and the application of the ideas to B-spline bases and to
unbalanced data.
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Abstract: This paper explores the possibilities of fitting spatial data within the
GAMLSS framework, to model any or all of the parameters of a non-exponential
family distribution for the response variable. It uses kriging, tensor product and
thin plate splines for spatial modelling to a small data example and shows that
the use of different distributions with GAMLSS helps the modelling of the data.
The potential of using spatial analysis within GAMLSS is discussed.
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1 Introduction

One of the features in spatial statistics is the interdependence of data, in
the sense of the first law of geography: “Everything is related to everything
else, but near things are more related than distant things” Tobler (1970).
Geostatistics is where a response variable (and potentially explanatory vari-
ables) are measured at points in space. Important work by Krige (1951)
and Matheron (1963) laid the foundation for the field of geostatistics where
some of the first methods for modelling spatial dependence were proposed,
see Schabenberger and Gotway (2005) for more details. The methodology
developed thereafter is referred in the literature as “kriging”.
Alternatives to kriging in geostatistics, are the smoothing techniques pop-
ularised by Hastie and Tibishirani (1990) and by the P-spline approach of
Eilers and Marx (1996 ). The P-spline models were extended to smoothing
spatial data, requiring the use of tensor product and row-wise Kronecker
product (Eilers and Marx, 2003; Currie et al., 2006; Eilers et al., 2006; Lee,
2010). Thin plate regression splines smoothers are another strong candidate
since they are invariant to rotation of the covariate space, Wood (2006).
The study of discrete spatial variation, where the variables are defined
on discrete domains, such as regions, regular grids or lattices, are studied

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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by the Markov Random Field theory (MRF). Extensive theoretical and
practical details are provided by Rue and Held (2005).
The focus of this paper is to provide spatial modelling facilities within the
GAMLSS framework, Rigby and Stasinopoulos (2005). This would allow
the fitting of a variety of different distributions, rather than restricting
to the exponential family distribution used within the generalised linear
models (GLM) framework and allow spatial modelling of all parameters
of the response variable distribution. Therefore these models are able to
cope with heterogeneity in the variance and/or skewness or/and kurtosis
in the data. An example of using MRF in GAMLSS is given in Rigby et
al. (2013) while an R package (R core team, 2014) to incorporate MRF
within gamlss, to model any or all of the parameters of a distribution for
the response variable, is given by De Bastiani et al. (2014). In this paper
we are concentrating on a comparison of thin plate splines, tensor product
splines and kriging within GAMLSS. Section 2 describes the GAMLSS
methodology, Section 3 shows the data used while Section 4 provides the
analysis. Conclusions are given in section 5.

2 The GAMLSS methodology

GAMLSS provides a very general and flexible system for modelling a re-
sponse variable. The distribution of the response variable is selected by the
user from a very wide range of distributions available in the gamlss package
in R including highly skewed and kurtotic continuous and discrete distribu-
tions. The gamlss package includes distributions with up to four parame-
ters, denoted by µ, σ, ν and τ , which usually represent the location (e.g.
mean), scale (e.g. standard deviation), and skewness and kurtosis shape
parameters, respectively. All the parameters of the response variable dis-
tribution can be modelled using parametric and/or nonparametric smooth
functions of explanatory variables, thus allowing modelling of the location,
scale and shape parameters. Specifically, a GAMLSS model assumes that,
for i = 1, 2, . . . , n, independent observations Yi have probability (density)
function fY (yi|θi) conditional on θi = (θ1i, θ2i, θ3i, θ4i) = (µi, σi, νi, τi) a
vector of four distribution parameters, each of which can be a function to
the explanatory variables. Rigby and Stasinopoulos (20005) define the ori-
ginal formulation of a GAMLSS model as follows. For k = 1, 2, 3, 4, let gk(.)
be a known monotonic link function relating the distribution parameter θk
to predictor ηk. Then we set

gk(θk) = ηk = Xkβk +

Jk∑
j=1

hjk(xjk), (1)

where hjk is a smooth nonparametric function of variable Xjk, where, for
example, θ = (θk1, θk2, . . . , θkn)> is a vector of length n. The advantage of
modelling spatial data within GAMLSS is that different distributions beside
the exponential family can be fitted and also it is possible, if needed, to
model spatially any or all the parameters of the distribution.
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3 Description of the chemical properties of soil data

The data were collected by the Laboratory of Spatial Statistics in western
Paran (Brazil) in a commercial area of grain production in Cascavel City.
The data refer to the agricultural year 2010/2011 and reference an area of
167.35ha. The purpose of the study is to analyse the chemical contents and
properties of the soil. Here the Phosphorus [P] (mg dm−3) composition of
the soil is modelled. The marginal distribution (ignoring the spatial coor-
dinates) of the sample indicate some positive skewness in the distribution.

4 Comparison of different methods

The phosphorus data provide a simple example of spatial data with no co-
variates. The location parameter µ for each fitted distribution is modelled
spatially by i) a bivariate thin plane spline ii) a bivariate tensor product
spline and iii) using kriging. This was achieved by building interfaces be-
tween the gamlss() function and the packages mgcv, SAP and fields. All
three packages provide ‘prior weights’ for their fitting procedures something
that can be utilised within the iterative backfiting algorithm of gamlss().
The other parameters of the fitted distributions in Table 1 were fitted as
constants. The smoothing parameters were chosen by ‘local REML” pro-
cedure which is a Penalised Quasi Likelihood (PQL) approach in which a
normal approximation of the likelihood is used at each backfitting iteration
of the algorithm to estimate the random effect part of the model. Tensor
products were fitted by both mgcv and the SAP packages, but here we re-
port only the second since the results were very similar. Note that all the
distributions fitted are two parameter distribution apart from the t family
and BCCT which have three parameters.
It is clear from the Table 1 that the normal or t symmetric distributions
are rejected in favour of skew alternatives. The reverse Gumbel, gamma
or the LOGNO seem to fit best resulting to lower AIC or BIC. All three
distributions provide good residuals diagnostics in terms of worm plots (not
showing here).
Figure 1 shows contour and surface plots for the fitted µ assuming the
LOGNO distribution which has the lowest AIC and BIC. The left column
plots show the contours for µ while the right columns show the fitted sur-
faces for µ. The rows of Figure 1 show the mgcv-thin plate, SAP-tensor
product and field-kringing respectively. The fitted contours for thin plate
and tensor product are similar within the spatial range of the data, but
differ considerably in the extrapolated regions. The kriging method has a
more wiggly surface than the two other methods and this is more evident
in the part where there is a gap in the dataset as can be seen is Figure 1.

5 Conclusions

We have shown that it is possible to model spatial data within the GAMLSS
model by interfacing GAMLSS with other available R packages, mgcv, SAP,
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Distribution df GD AIC BIC

ga - REML

Normal 7.2373 522.669 537.143 555.154
t-student 5.7888 525.437 537.010 551.416

Gamma 7.3319 505.559 520.222 538.469
Inverse Gaussian 7.6225 510.077 525.322 544.292

thin plate Reverse Gumbel 8.5803 499.761 516.921 538.274
BCCG 9.6918 499.080 518.464 542.583

LOGNO 7.4846 503.255 518.224 536.851

sap - REML

Normal 7.0965 522.666 536.859 554.519
t-student 6.1372 525.657 537.931 553.204

Gamma 6.8079 505.514 519.130 536.072
Inverse Gaussian 6.6682 511.212 524.549 541.144

tensor product Reverse Gumbel 7.6323 502.372 517.636 536.630
BCCG 7.5979 504.848 520.044 538.953

LOGNO 6.8470 503.964 517.658 534.698

fields-REML

Normal 11.5273 513.293 536.348 565.035
t-student 7.0489 522.683 536.781 554.323

Gamma 12.1397 494.277 518.556 548.768
Inverse Gaussian 12.0504 503.245 527.346 557.335

kriging Reverse Gumbel 16.2939 486.066 518.653 559.203
BCCG 15.0974 487.485 517.680 555.252

LOGNO 13.2785 489.653 516.210 549.255

TABLE 1. Summary of the fitted models, showing the effective degrees of freedom
(df) for the spatial part of the model, the global deviance (GD), the AIC and
BIC. It highlights that the LOg-Normal has the lowest AIC and BIC.

and field. The resulting methodology allows fitting of non Exponential
family response variable distributions and also allows spatial modelling not
only of the location parameter of the response variable distribution, but
also other parameters of the distribution. An advantage of this approach is
more accurate fitted centiles. Further study is required to established the
properties of such models.
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Eilers, P.H.C. and Marx, B.H. (2003) Multidimensional calibration with tem-
perature interaction using two-dimensional penalized signal regres-
sion, Chemometrics and Intell Lab Sys, 66, 159-174.
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Abstract: We propose a new approach for combining biological knowledge with
gene expression data to infer a network of genes. The goal is that of making
accurate predictions of the effects of gene silencing. The main advantage of this
approach relies on its simplicity: although prior information is included, there is
no need to specify a prior distribution on the space of all network structures. The
approach is illustrated by predicting the effect of the knockdown of the nkd gene
in a fruit fly.
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1 Introduction

Molecular pathways underlie the basic functions of a living cell. They fea-
ture genes, gene products and other small molecules working together to
achieve a particular biological effect. One example is shown in Figure 1.
Although possibly imprecise, they represent our up-to-date knowledge on
most cell processes. One question pertaining to pathways is the importance
of individual genes that participate in it. Are they essential for the path-
way activation, or the cell can work its way around them to deliver the
signal? What happens with other participants of the pathway if one gene is
switched off? In order to answer these questions scientists perform exper-
iments called gene silencing. Gene silencing is a method for suppressing a
particular gene to a minimal non-lethal level, helping us learn more about
the function of that gene. Although advantageous, this procedure is very
expensive. In the present work, we propose a method for prediction of the
effects of silencing (knockdown) that could, under certain conditions, lead
to more effective experimental design and thus considerable savings of time

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. WNT signalling pathway in Drosophila, taken from the Kyoto En-
cyclopedia of Genes and Genomes (KEGG)

and money. To do that, we need gene expression values (under normal con-
ditions) for the set of genes of interest. In the first step, we combine these
data with biological knowledge represented by the pathway to find the Di-
rected Acyclic Graph (DAG) that best describes the dependencies between
genes. In the second step, we use this graph to make predictions of the
effects of silencing.

2 Modeling the gene knockdown

We model gene expression values (appropriately transformed and normal-
ized) with a multivariate normal distribution

(X1, . . . , Xp)
T ∼ Np(µ,Σ),

where p is the number of considered genes; µ ∈ Rp and Σp×p > 0 are
unknown parameters. We assume there is a known directed acyclic graph
G whose nodes correspond to X1, . . . , Xp and whose arrows depict the
relationships between them in the following way. Firstly, the joint density
of X factorizes with respect to G; in other words, if Pai denotes a set of
parents of Xi in G, the joint density can be expressed as the product of p
one-dimensional conditional densities:

f(x1, . . . , xp) =

p∏
i=1

f(xi | Pai), (1)

where f is a generic term for density function. Secondly, we assume that
that arrows represent cause and effect relations between variables. In our
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context, this can be interpreted as follows: if Xi → Xj then a change in
expression of gene i causes a change in expression of gene j but not vice
versa. This a strong assumption not verifiable mathematically and thus
based on subject matter knowledge. Genomics setting is one of the (few)
contexts in which such assumption is plausible.
Assume now that we would like to predict the effect of silencing gene k,
where k ∈ {1, . . . , p}. Directed acyclic graphs provide good framework for
studying effects of interventions (see Pearl, 2000). Here, we give a brief
description of this approach modified to accommodate continuous data. Let
the external intervention leading to gene silencing (knockdown) be target
specific, i.e., it affects directly only the targeted gene. Define he j-th causal
effect of knockdown, δj , to be a change in the mean of Xj resulting from
a unit decrease in the silenced gene Xk. Because the joint distribution is
multivariate normal, all conditional distributions are also normal, and thus
(1) defines a set of linear regression models. Denote B = {βij}pi,j=1 the
upper triangular matrix of regression coefficients, where βij is the coefficient
of Xi in regression for Xj . We note that such ordering of nodes, so that B
is upper triangular, is always possible in directed acyclic graphs. It can be
easily verified that the vector of causal effects δ can be found as k-th row
of the matrix

D = (I −B)−1, (2)

where I is the p× p identity matrix.

3 Refining the graphical structure

We saw in the previous section that predicting the effects of knockdown
once the underlying graph is known is straightforward. However, there is a
great deal of uncertainty about the dependence structure. Although path-
ways represent our up-to-date knowledge of the cellular processes, they
might not provide the optimal basis for the prediction of effects of gene
silencing. In fact, if we test the model fit of the graph derived from the
pathway using data on expression level of its genes, we are likely to find a
poor fit, implying that the pathway is not well supported by experimental
data. As a remedy we propose a method for combining the gene expression
data with the information provided by the pathway. We build the proposal
upon the idea of the learning algorithm K2 (Cooper and Herskovits, 1992).
The K2 algorithm, belonging to the class of score based learning algorithms,
searches for the graph that maximizes the posterior probability among all
DAGs with a specified topological ordering. Topological ordering of a di-
rected graph is an ordering of its nodes such that for every directed edge
Xi → Xj , Xi comes before Xj . The K2 algorithm takes as an input in
addition to the data, the ordering of variables. In our application this rep-
resents an opportunity to include available prior information. To do that,
we transform the pathway into a DAG and then pass its (non-unique) or-
dering to the algorithm. We note that K2 is designed for discrete variables,
and to the best of our knowledge, no generalization to continuous variables
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has been proposed. Although it is possible to discretize our observations,
here we consider a different approach.
Score based learning algorithms consist of two independent components: a
score function that evaluates each structure with respect to the data, and
a search strategy employed to explore the space of possible structures. In
the case of the K2, the score function is the K2 criterion while the search
strategy is a one step greedy search. Since K2 criterion is defined only for
discrete variables we replace it with the criterion applicable to continuous
data, namely BIC criterion. The BIC criterion belongs to the Bayesian
scoring metrics family and can be seen as an asymptotic approximation
of the posterior probability of the structure. Houghton (1998) proved that
it is a consistent scoring criterion. It contains an explicit penalization to
guard against over-fitting. This penalization is sometimes found to be too
stringent in the context of network inference (Yu et al. 2004) and in the
next Section we address this issue. As for the other component of the
algorithm, the search strategy, the simple greedy search can be substituted
with a more elaborate heuristic search method. However, we opted to keep
it since it has a straightforward implementation in the context of a search
space restricted to DAGs with a specified topological ordering.

4 Drospohila melanogaster experiment

We applied this approach to data provided by the Biology Department
of the University of Padua. They performed an experiment in which they
silenced nkd gene of the WNT pathway (Figure 1) in the fruit fly. The data
consists of two sets of 15 observations of 12 genes, the first set corresponding
to the treatment (knockdown) group and the second set corresponding to
the control group. This experiment provided an excellent opportunity to
access the performance of our approach, since we were able to compare
model based predictions with observed effects of gene silencing.
Using gene expression data of the control group and the topological or-
dering of genes according to the WNT pathway we applied the structure
learning algorithm. In order to address the issue of too stringent penal-
ization of the BIC criterion, but also the issue of the small sample size we
adopted a bootstrap approach. We sampled 2000 samples with replacement
from the original data and then estimated the structure for every sample
using the proposed algorithm. This allowed us to assign an empirical mea-
sure of uncertainty to every plausible edge (an edge is plausible when it
is in line with the topological ordering) by counting how many times out
of 2000 it was discovered by the algorithm. On the basis of this result we
constructed an ”average” DAG, which consists of all the edges that were
discovered at least c% of times, where c is an appropriately chosen cutoff
level. Obviously, the cutoff level controls the number of edges in the result-
ing DAG. Subject matter considerations tell us that networks of genes are
expected to be sparse, and in this particular case the number of edges is
expected to approximately match the number of genes. The choice c = 50%
leads to a structure with 11 edges, shown in Figure 2.
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FIGURE 2. Success of predictions of mean expression values after the silencing of
the nkd gene based on (left) DAG derived directly from the pathway and (right)
DAG refined by the proposed algorithm.

We used the average DAG as a basis for making predictions of the effects of
silencing of nkd. The causal effect on every individual gene was computed
according to (2). Since we predict mean expression values of genes after
the knockdown, we consider prediction a success when the predicted value
lies in the 95% confidence interval for the mean computed on the basis
of the knockdown group. Figure 2 shows both the graph derived directly
from the pathway, and the one obtained by the proposed algorithm. By
refining the structure of the graph we were able to significantly improve
our predictions: the original graph yields 6 successful predictions while the
refined graph led to 9 successful predictions of gene expression levels after
the knockdown.

5 Discussion

In this work we propose a method to refine the structure of the signaling
pathway. We consider a simple learning algorithm, inspired by the well-
known K2 algorithm, that combines the prior information about the struc-
ture with observed gene expression measurements. Our approach is driven
by a specific problem: we aim to find the graph that allows for the most
accurate predictions of effects of gene silencing. We note that this graph
does not necessarily provide a good description of an underlying biological
mechanism (due to possible unobserved factors or the local nature of our
approach). That said, we believe the structures found by the proposed al-
gorithm offer a rough but very useful sketch of an underlying mechanism
and can be used to find new hypothesis to be tested or as a guidance for
future silencing experiments. In addition to that, this approach can signal
a possible inconsistency in the representation of molecular pathways. For
instance, in this study, we noted that the levels of the dally gene were
extremely high after silencing when compared to the control group. Such
behavior could not be expected neither on the basis of available prior in-
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formation (Figure 1) nor on the basis of the refined DAG. This led us to
look for a possible explanation in the literature, and we found that there is
a feedback loop targeting this gene which was not depicted in the KEGG
representation. In other words, when the WNT pathway is active it propa-
gates a signal to initiate the transcription of the dally gene (among others)
which leads to its high expression levels.
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Abstract: New computational methods have recently been developed that allow
stable fitting of constrained GLMs with bounded non-canonical link functions,
such as the log link binomial model. By employing B-splines, we can extend
these approaches to allow for semi-parametric adjustment of rate differences, risk
differences and relative risks. These methods provide alternatives to standard
fitting methods, resulting in greater stability for accommodating the required
parameter bounds. They also provide a straightforward way to accommodate
additional restrictions such as monotonic regression functions. We demonstrate an
application to data from a clinical trial of oxygen supplementation in premature
infants.
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1 Introduction

Rate differences, risk differences and relative risks are often useful effect
measures in biostatistical settings, and their analogues also have broad
applicability in other areas of statistics. However, in order to adjust for
covariates we must use a constrained generalized linear model (GLM) with
a non-canonical link where the fitted means are restricted to a bounded
interval. These GLMs include the log link binomial, and identity link Pois-
son and binomial models. Common fitting methods based on Fisher scoring
and other Newton-type algorithms can fail to converge to the maximum
likelihood estimate (MLE) in this situation.
It is therefore useful to have more stable methods for fitting these mo-
dels. Combinatorial EM (CEM) algorithms have recently been developed
for these GLMs, allowing stable computation of the MLE. Using B-splines,
we extend these methods to generalized additive models (GAMs), where
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tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
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continuous covariates can have a semi-parametric relationship with the out-
come. This approach leads to greater stability for accommodating the re-
quired parameter bounds, and allows additional model constraints such as
monotonic regression functions.

2 Method

The GLM with link function g is extended to a GAM by the introduction of
C continuous covariates that affect g(µ) through the unspecified functions
f1, . . . , fC . We restrict our estimate of each fc to the space defined by a
chosen set of basis functions, such that

f̂c(w) =

Dc∑
d=1

γcdBcd(w).

The basis functions we use here are the B-splines of order 3, which are
strictly non-negative. Thus if all of the coefficients are non-negative, f̂c(w)
will be non-negative for all w; and likewise if the coefficients are non-
positive, the curve will always be non-positive. The B-splines are nor-
malized such that

∑
dBcd(w) = 1, which means that we must apply an

identifiability constraint γctc = 0 for some tc.
When C = 0, methods have been developed for estimating the MLE for
identity link Poisson (Marschner, 2010), log link binomial (Marschner and
Gillett, 2012) and identity link binomial GLMs. The methods are all CEM
algorithms (Marschner, 2014), which will always converge to the MLE.
With these methods we are also able to restrict certain coefficients to be
non-negative or non-positive.
CEM algorithms require that the parameter space is partitioned into dis-
tinct subspaces, and use an EM algorithm to find the constrained MLE
within each. One of these constrained MLEs will be the overall MLE. For
these GAMs, we partition the parameter space based on the index of the
smallest or largest B-spline coefficient, which can be achieved by setting
a particular γctc = 0 and restricting the remaining coefficients to be non-
negative or non-positive. We repeat this process for all possible choices of
tc and find the constrained MLE for each, one of which will coincide with
the overall MLE.
A sufficient condition for f̂c to be monotonically non-decreasing is that the
sequence of B-spline coefficients is non-decreasing. To apply a monotonicity
constraint to any of these models, we can reparameterize the smooth curve
such that we are estimating the increments between successive coefficients,
and can constrain these to be non-negative or non-positive, as required.

3 Application

The BOOST-NZ Study (Darlow et al., 2014) was a randomized trial in pre-
mature infants, comparing the effects of different target ranges for oxygen
saturation (SpO2).
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FIGURE 1. Risk of primary outcome by median SpO2 and randomized treatment
(blue solid = low target, red dashed = high target) in BOOST-NZ, under (a) log
link and (b) identity link binomial models.

Both high and low levels of oxygen are associated with mortality and other
complications, so the primary outcome of the study was death or major
disability at two years of age. Unadjusted analysis of the primary outcome
showed a relative risk of 1.16 (95% CI 0.90–1.50) and a risk difference of
0.06 (95% CI -0.04–0.17), with lower risk in the low-target group.
We use the methods outlined in Section 2 to adjust these effect measures
for the actual level of oxygen that the infant received. Each infant’s median
SpO2 level whilst receiving supplementary oxygen was entered as the semi-
parametric covariate into each model, and the results are shown in Figure 1.
The adjusted analyses show that the minimum risk is associated with an
SpO2 close to 94%. The adjusted effect of randomized treatment is a relative
risk of 1.46 (95% CI 1.04–2.07) and a risk difference of 0.19 (95% CI 0.06–
0.33). The confidence intervals for these parameters were estimated using
a normal approximation.
For the outcome of mortality, the risk of death decreases as the SpO2 level
increases, and so we can restrict the semi-parametric curve to be monoton-
ically non-increasing. The unadjusted effect of treatment is a relative risk
of 1.08 (95% CI 0.65–1.78) or a risk difference of 0.01 (95% CI -0.06–0.09)
in favour of the low-target group.
The results of the adjusted analyses are shown in Figure 2. The adjusted
relative risk is estimated to be 1.89, and the adjusted risk difference is 0.04.
The estimates from these models are on the boundary of their respective
parameter spaces, so we must estimate confidence intervals using boot-
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FIGURE 2. Risk of death by median SpO2 and randomized treatment (blue
solid = low target, red dashed = high target) in BOOST-NZ, under (a) log link
and (b) identity link binomial models.

strap resampling. Importantly, the algorithm will converge to the MLE
in every bootstrap sample, eliminating bias due to non-convergence. From
1000 bootstrap samples, we estimate the 95% confidence intervals to be
1.10–2.86 for the relative risk, and -0.03–0.10 for the risk difference.

4 Other methods

We compared our approach with other methods for fitting GAMs that
have been implemented in R, and were able to show that our method has
advantages over existing methods in some contexts.
The most notable existing methods are implemented in the gam (Hastie,
2013), mgcv (Wood, 2011) and gamlss (Rigby and Stasinopoulos, 2005)
packages. The fitting procedures underlying these approaches each employ
a Newton-type algorithm, which is not guaranteed to converge to the MLE
unless step-size optimization is performed.
In fact, of these packages, only mgcv incorporates automatic step-halving if
the potential update of the parameter estimates moves outside the parame-
ter space. This method reported convergence in all 1000 bootstrap samples
for the analysis in Figure 1, for both the log and identity links. However,
in some cases mgcv converged to sub-optimal parameter estimates, par-
ticularly when the MLE was on the boundary of the parameter space.
Furthermore, mgcv is unable to accommodate the monotonicity constraint
for the analysis depicted in Figure 2.
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The gamlss package allows the user to specify the step size for updating the
parameter estimates and also offers the option to use step-halving if the
deviance increases at a particular iteration. However, the method termi-
nates with an error if the parameter estimates move outside the parameter
space, making it inappropriate for automated model-fitting such as boot-
strapping. It failed to converge in 52 of the 1000 bootstrap samples using
the log link, and did not converge in any of the samples when we used the
identity link.
The gam package does not include either step-halving or any check for the
validity of the parameter estimates. As such, it may fail to converge or
converge to a solution outside the parameter space, which occurred in 844
and 963 of the 1000 bootstrap samples, using the log and identity links
respectively.
A difference with these methods is that they maximize a penalized like-
lihood, allowing greater flexibility in the number and positioning of the
knots while discouraging large fluctuations in the resulting smooth curve.
Penalized likelihood could be incorporated into our methods by a simi-
lar approach to that used by Marschner and Gillett (2012; Supplementary
materials), but this would add substantially to the computational load.
Aside from its stability, another benefit of our approach is that it is straight-
forward to impose monotonicity constraints on selected smooth curves.
If it is appropriate to assume monotonicity, this can reduce the spurious
fluctuations in the estimated curve, and possibly increase the efficiency of
the parameter estimates in the model.
The GMBBoost (Leitenstorfer and Tutz, 2007) and GMonBoost (Tutz and
Leitenstorfer, 2007) functions employ the technique of likelihood boosting
to apply a monotonicity constraint to smooth functions in maximizing a
penalized log-likelihood. The current implementation of both, however, only
allows canonical link functions, and therefore cannot be used to fit the
models considered in this paper.
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Abstract: The aim of this study is to analyze how some of the variables con-
sidered as risk factors will relate to the probability of having breast cancer. The
data set for this analysis was provided by the Portuguese Cancer League (LPCC)
and includes the breast cancer diagnosis, the year of birth, breast cancer family
history, age of menarche and menopause, reproductive factors and socioeconomic
and geographical factors as covariables. Structured Additive Regression (STAR)
models were used in order to combine this wide range of covariates and to simul-
taneously explore possible spatial correlations. The findings of the study shows
that early menarche and late menopause ages increase the risk of the disease.
This result is in line with recent studies that argue that early menarche and
late menopause can increase breast cancer risk by extending women’s time span
of reproductive years. Regarding the fixed effects we point out the effect of the
family history, showing women with sisters, mother or daughters that had breast
cancer constitute a risk group.
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1 Introduction

Understanding the causes of breast cancer is critical when studying the
disease. When cancer is developed, it is usually due to the presence of one
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or a combination of a multitude of risk factors. Some of the risk factors
are intrinsic to woman, like age, menarche and menopause ages, family
and personal history. Others factors are associated to the environment of
a woman and her life choices. The data set for this analysis was provided
by the Portuguese Cancer League (LPCC) and consists of women who
attended the Breast Cancer Screening Program in central Portugal,for the
period between 1990 and 2010. The aim of the study is to analyze how
some risk factors will relate to the probability of having breast cancer, using
STAR models. The covariates in the study are: year of birth, menarche age,
menopause age, pregnancy, nursing status, the use of oral contraceptives,
the municipality purchasing power index (PPI) and the spatial correlations
of woman place of residence. In addition, we also considered the interaction
between menopause and menarche ages.

2 Case Study

The central region of Portugal represents approximately 25% of the pop-
ulation of Portugal. A total of 78 municipalities were considered in this
study. The database has women born after 1920, with screening age be-
tween 44 and 70. There are 212517 women (76%) who reached menopause.
A total of 275753 women (99%) with diagnostic NO (no breast cancer) and
2618 women (only 1%) with diagnostic YES. Oral contraceptives, preg-
nancy and nursing status are binary variables. Only 7% of women were
never pregnant. In this study, 55% of women breastfed and 53% of women
used anovulatory. Other important variable is the breast cancer family his-
tory. This is coded with levels from 0 to 3 and introduced in the analysis as
dummy variables. Level 0 (88%), means the woman has no direct related
family with breast cancer, level 1 (6%), if the relatives with this disease
were aunties and grandmothers, level 2 (3%) for sisters, and level 3 (3%)
for mother or daughters. The quantitative variables in this study were: age
of menarche, with a range 8-18 years old and mean equal 13.2 (SD = 1.8)
years old; age of menopause varies between 20 and 59 years old and with
a mean equals to 48.2 (SD = 5.3) years old; birth year, between 1920 and
1965, with mean of 1949 (SD = 9.3). The municipality code where a woman
lives was used for spatial effects analysis. PPI is expressed as an index, with
100 being the municipality’s baseline. Municipalities with values under 100
represent regions with lesser economical power.

3 Statistical Methodology

Structured Additive Regression (STAR) models is the framework chosen in
this study since it is of the utmost importance to work with models that
not only are flexible enough to deal with different and complex structures
of data sets, but also are able to consider a multitude of covariates while
exploring possible spatial and temporal correlations. In this study, the gen-
eral structured additive predictor is used to perform a geoadditive mixed
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model of the univariate exponential family with binomial response. The
geoadditive mixed model terms are fixed effects, continuous and spatial
covariates, and can be represented as

ηi = f1(xi1) + . . .+ fk(xik) + fspat(si) + u′iγ,

where fj(xij), j = 1, . . . , k, are smooth functions of continuous covariates,
and fspat(si) is a spatially correlated effect of the location si where the
observation belongs to. The spatial effect is separated into a spatially struc-
tured and a spatially unstructured part, thus the predictor equation takes
the following form:

ηi = f1(xi1) + . . .+ fk(xik) + fstr(si) + funstr(si) + u′iγ.

The non-linear effects are estimated based on Bayesian cubic P-splines
(Lang and Brezger (2004)). Markov random fields (MRF) and i.i.d. random
effects are the prior structures for the estimation of spatially structured
effects and spatially unstructured effects, respectively (Fahrmeir and Lang
(2001a)). Using an empirical Bayes approach, both fixed effects and random
effects are modeled using random variables with appropriate priors and
are estimated using a penalized likelihood method in combination with
Restricted Maximum Likelihood (REML) for estimating the random effects
variances (Fahrmeir et al.(2004), Kneib (2005)).

4 Results

The geoadditive predictor used to perform this analysis is:

ηi = γ0 + γ1(famhist1i) + γ2(famhist2i) + γ2(famhist3i) (1)

+γ4(pregnancystatusi) + γ5(oralcontraceptivesi)

+γ6(nursingstatusi) + f1(birthyeari) + f2(PPIi)

+f3(menopausei) + f4(menarchei) + f3|4(menopause,menarche)

+fstr(municipalityi) + funstr(municipalityi)

The findings for the fixed effects are presented in Table 1. As expected, the
use of oral contraceptives increases the risk of breast cancer while pregnancy
reduces this risk. However, nursing status appears as a risk factor, while
the literature shows it as a protective factor. Women with sisters, mother
or daughters with breast cancer constitute a risk group. Figure 1 shows the
non-linear effects of the year of birth, menopause age and the purchasing
power index. The risk of breast cancer decreases for younger women and
increases for late menopause. The PPI effect has a U shape, indicating
municipalities with less and higher economical power as a risk factor. The
non-linear effect of menarche was not significant. An interesting result has
been the interaction effect found between menopause and menarche ages.
The corresponding surface and contour plot (Figure 2) indicate a higher risk
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FIGURE 3. Unstructured spatial effects: posterior mode estimates (left), poste-
rior 95 % probabilities (right).

of breast cancer for women with early menarche and late menopause. This
result concurs with the premise that women with longer fertility periods
may have a higher risk of breast cancer. Although the structured spatial
effects show a marked increase in breast cancer risk along the east-west
direction (results not shown), the corresponding posterior probability map
indicates that such effects are not significant. The unstructured random
effects map of Figure 3, points out several municipalities with significant
higher risk.

TABLE 1. Estimates, standard deviations (SD), p-values and credible intervals
(CI) of fixed effects.

Variable Estimates SD p-value CI 95%

Oral Contraceptives 0.117 0.051 0.021 (0.018, 0.217)
Nursing status 0.177 0.054 0.001 (0.072, 0.283)
Pregnancy status -0.343 0.086 <0.001 (-0.512, -0.174)
Family History 1 0.173 0.100 0.085 (-0.024, 0.369)
Family History 2 0.536 0.093 <0.001 (0.353, 0.719)
Family History 3 0.499 0.116 <0.001 (0.270, 0.727)

5 Final comments

The findings of this analysis shows the importance of the screening data,
in the study of breast cancer risk factors. In general, the results concurs
and strengthen the premises supported by the literature. However some
results went against this, namely nursing status. Considered as a protec-
tive factor in the literature, is shown in our findings as a risk factor. This
interpretation must be carefully taken. Another issue that arose with this
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analysis is that low risk of breast cancer can be associated with municipal-
ities with moderate and rich purchasing power. The bigger accessibility of
non-screening diagnostic clinics in richer municipalities influence the par-
ticipation patterns of women, a self-selection bias that can influence the
results. In future analysis, we could address this problem by including in
the model other variables, such as the participation and detection rates.
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RNA Sequencing and Zipf’s Law
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Abstract: We describe a model for observed frequencies of “read” counts in
RNA sequencing, which resembles Zipf’s law. We extend it to a Poisson mixture
with a latent power law. The model is illustrated on data for soybean, C. elegans
and humans.

Keywords: Power law, composite link model

1 Introduction

Nowadays, many statisticians will be familiar with basic facts from genet-
ics. DNA, organized in chromosomes, carries genetic information in the
form of genes, which is transcribed to RNA, for further translation into
proteins downstream. The RNA molecules are characteristic for the gene
they belong to and so we can measure the activity of genes by measuring
the concentration of their RNA. This activity generally varies over different
tissues and time.
A modern technique in this field is high-throughput RNA sequencing, ab-
breviated as RNAseq. It catches short RNA fragments, called “reads” and
determines their sequence of nucleotides, which are mirror images of the
familiar A, C, G and T “letters” of the DNA alphabet. If the sequences
of a gene is known, the number of matching reads can be counted. This
is done for all known genes. It is assumed that RNA concentrations are
proportional to the counts. This description of the technology cuts several
technical corners, but it will be adequate for our presentation.
For the analysis of RNAseq reads we must use generalized linear models for
counts, with proper allowance for over-dispersion. The majority of genes
shows low counts (less than 10). While studying these low counts we ob-
served remarkably stable patterns. They are the subject of this paper.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Cumulative distribution of the counts in one sample of soybean. The
dots indicate the 20 largest counts.

2 Data and models

The total number of reads in an RNAseq experiment can be many millions
(M). Our data consist of 14 samples, with 66210 genes, from different parts
of the soybean plant (Severin et al, 2010). Among the 14 samples the largest
total is 5M, the smallest 1M. Other studies can have hundreds of millions
of reads per sample.
Many counts are (very) small and almost half of the genes have zero counts.
This is illustrated by the cumulative distribution in Figure 1. The percent-
age of genes having counts zero, 10 or less, or 100 or less are shown in
Figure 2. They show little systematic variation with sample size.
Figure 3 presents histograms for counts from zero to ten, showing a rapid
decay. If we plot them on double logarithmic axes, for all 14 samples, we
get almost straight lines, quite close to each other.
This pattern indicates that the sum of the frequencies of low counts does
not vary much. Indeed the smallest sum is 36516 while the largest is 49528,
a ratio of 1.36, where the total counts vary by a factor 5.
The decreasing frequencies remind us of Zipf’s law (Zipf, 1932; Young,
2014). Zipf discovered that in natural language the frequencies of words are
approximately inversely proportional to their rank. A generalization states
that pk = ck−a, for integer k > 0, with c the normalizing constant. It
follows immediately that log p = log c+a log k, a straight line with slope a.
In our case, a naive estimate of a can be obtained by linear regression of
the logs of the frequencies on the logs of the counts (excluding zero counts).
When we do this with a model with a common slope and separate intercepts
for each sample (excluding the zero counts), we find a = −0.73 (standard
error 0.018).
One way to model discrete distributions is to interpret them as a mixture
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FIGURE 3. Histograms of counts up to 10, on linear (left) and logarithmic scales
(right), for all 14 Soybean samples (marked by different colors and symbols).

of Poisson distributions; we will follow that approach here. Let λ be the
expected count for an arbitrary gene. We introduce a latent density, fol-
lowing a power law, and imagine a two-stage sampling process. First λ is
sampled from f(λ) = cλα. It determines the expected value of a Poisson
distribution, of which the count of reads is sampled. The theoretical distri-
bution of counts is a mixture of Poisson distributions, with mixing density
f(λ):

pk = c

∫ ∞
0

λke−λλα/k!dλ.
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FIGURE 4. Left: fit of the Gamma model to the observed frequencies of counts.
Right: fit of the Power Gamma model. In gray the 1:1 line.

The gamma function is defined as Γ(t) =
∫∞

0
xt−1e−xdx and k! = Γ(k+1),

so we find that
pk = cΓ(k + α+ 1)/Γ(k + 1).

It would be convenient if the normalizing constant c could be determined by
integrating λα from zero to infinity, but the integral diverges. Because we
only study a limited range of values for k, we first set c = 1 and normalize
the vector p afterwards to sum to 1 over this range.
This model fits quite well. Results are shown in the left panel of Figure 4.
The value of αj was determined for each sample separately by minimizing
the deviance

Dj = 2
∑
jk

yjk log(yjk/µjk),

where yjk is the frequency of k counts in sample j and µjk = pk
∑
l yjl. We

find that the value of α̂ varies over a small range (-0.87 to -0.82) and shows
a strong negative correlation with the total number of reads in a sample.
A generalized linear model with Poisson response and log p as explanatory
variable gives an excellent fit. This amounts to having

pjk = c[Γ(k + αj + 1)/Γ(k + 1)]βj .

We call it the Power Gamma model. The right panel of Figure 4 shows the
much better fit of this model. The value of β̂ varies between 0.75 and 0.90,
with one exception (it is 1.05 for sample 6).
These results are not limited to this Soybean data. In figure 5 we show re-
sults for the worm C. elegans. The data were found in the Recount database
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FIGURE 5. Summary of data and results for C. elegans.
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FIGURE 6. Summary of data and results for humans (HapMap).

(Frazee et al. 2011). The total number of reads varied from below 1 to al-
most 60 million. Figure 6 shows results for human data, based on HapMap
cell lines (Cheung et al. 2010), also obtained from ReCount. Here the total
number of reads varied from 3 to almost 9 million. The patterns we find
are the same as for the soybean data and the power-Gamma model gives
an excellent fit in both cases. We have investigated several other data sets,
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and got very similar results in each case.

3 Discussion

We have presented an accurate model, inspired by Zipf’s law, for the fre-
quencies of low read counts in RNAseq. The model fits well to many data
sets. An important issue that has to be resolved, is the mechanism be-
hind the observed distributions. Is it caused by artifacts in the sequencing
pipeline, or is it a biological phenomenon, typical for low gene expression
levels? We are working on that.
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Abstract: Statistical models for cancer mortality or incidence projections pro-
vide invaluable help to epidemiologists and public health managers to evaluate,
plan and improve the distribution of resources for cancer prevention, treatment
and research. Not for nothing, cancer still remains a major public health con-
cern. Alternative tools have been proposed in the literature to forecast cancer
burden. These techniques include age-period-cohort models or joint-point regres-
sion models, but much of this work does not include the spatial component and
space-time interactions. Very recently P-spline models have been incorporated
into the disease mapping toolkit and they have been proved to be a very attrac-
tive alternative for smoothing and also forecasting cancer mortality or incidence
counts. In this work, an ANOVA-type P-spline model is considered to obtain
cancer mortality projections. This model considers explicitly additive smooth
terms for space, time, and space-time interactions, splitting the final projections
into different components: one spatial, another one temporal and a final term
accounting for the contribution of the spatio-temporal interaction to the total
projection. An advantage of P-spline models is that they can be reformulated as
mixed effects models (or generalized mixed effects models in this context), so that
well settled estimation and prediction theory can be applied. The methodology
will be illustrated to forecast cancer mortality risks in 50 Spanish provinces.

Keywords: Cancer Mortality; Forecasting; P-spline models.

1 Introduction

Noncommunicable diseases such as cardiovascular diseases, cancer and chro-
nic obstructive pulmonary disease, account for 80% of deaths in the Eu-
ropean Region. Cancer is the second leading cause, accounting for nearly

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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20%, and prevention is the only measure to reduce the impact of that dis-
eases. In this context, projections of future cancer incidence and mortality
figures play a key role as they are essential to make recommendations for
the allocation of prevention services and social programs in national or re-
gional level. Forecasting of cancer mortality trends may be also useful to
assess how much progress have done public health interventions (advertising
against smoking, screening programs, promoting healthy life-styles, etc.) in
reducing cancer rates. Many health agencies such as World Health Orga-
nization, European Cancer Registry (EUROCARE) or even the Spanish
Ministry of Health, Social Services and Equality use projections of cancer
mortality based on statistical models such as temporal Poisson log-linear
models, Jointpoint Regression, etc. to set out health strategies for oncoming
years.
The inclusion of the spatial component in this forecasting models allows to
identify the spatial patterns (maps) of a disease and to show how this spatial
pattern is going to evolve with time. For example, Schmid and Held (2004)
provide stomach cancer mortality projections using age-period-cohort mo-
dels including spatial correlation. Very recently Ugarte et al.(2012a) con-
sider a three-dimensional P-spline model to project prostate cancer mor-
tality counts in 50 Spanish provinces.
The goal of this paper is to assess the suitability of an ANOVA-type P-
spline model to provide projections of cancer mortality counts and com-
pare the results with different conditional autoregressive models (CAR),
P-splines models, and a combination of both in terms of their predictive
capacity. This model was initially proposed by Lee (2010) and Lee and
Durbán (2011) to estimate smoothed ozone levels in Europe. To technical
details, the readers are referred to those references. In this work we focus on
extending the model to provide a new forecasting approach in space-time
disease mapping. The extension of this model is based on the mixed model
reformulation of the ANOVA-type P-spline model requiring some matrix
algebra. This model allows to split the projections into a smooth trend
common to all regions, a smooth spatial surface constant along the time
period, and smooth interaction terms representing the region-specific time
evolution of the risks or counts. The mean squared error (MSE) of the pre-
dictions and appropriate prediction intervals are also derived allowing the
assessment of the coverage probabilities. The technique will be illustrated
with Spanish prostate cancer mortality data during the period 1975-2008
because this is the data set used in other papers and comparisons among
models will be feasible.

2 Extended ANOVA-type P-spline model

In this work, our interest lies in estimating and forecasting risks and counts
for each province (s = 1, . . . , S). Let us define the extended time period for
observed and forecast values as t∗ = 1, . . . , T + 1, T + 2, . . . , T + p, where
p are the number of years to forecast. Then, conditional on the unknown
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relative risk rst∗ , the number of deaths Cst∗ is assumed to be Poisson
distributed with mean µst = est∗rst∗ , where est∗ is the expected number of
deaths calculated on the basis that the sth province in time t behaves as
the whole country in the studied period. Then

Cst∗ |rst∗ ∼ Poisson(µst∗ = est∗rst∗), logµst∗ = log est∗ + log rst∗ . (1)

Using the extended ANOVA-type model, the log-risk for observed and fore-
cast values are modelled as

ust∗ = log rst∗ = δ + fs(x1, x2) + ft(t
∗) + fst(x1, x2, t

∗) = B∗θ∗. (2)

where δ can be interpreted as the logarithmic of the overall risk; fs(x1, x2)
represents the smooth spatial effects constant along the period; ft(t

∗) is
a extended temporal trend common to all areas, and fst(x1, x2, t

∗) is the
extended interaction term that can be interpreted as the specific temporal
trend for each area (see for example Ugarte et al., 2012b). In these expres-
sions x1 and x2 are the coordinates of the centroid of the ith small area
(longitude and latitude respectively), t∗ is the time (for observed and fore-
cast values), and fi, i = s, t, st are smooth functions to be estimated using
P-splines with B-spline bases. B∗ is the extended B-spline basis and θ∗ is
a vector of coefficients.
To ensure that fi, i = s, t, st are smooth functions, the P-spline approach
places penalties on the coefficients θ∗. The extended penalty matrix P∗ =
diag(0,Ps,P

∗
t ,P

∗
st) is defined by a block-diagonal matrix whose compo-

nents are penalties for the two-dimensional spatial component, the one
dimensional time component and the three-dimensional component (space-
time interactions). The key point in this process is to choose an extended
transformation matrix preserving the original transformation matrix T
used to fit the data (see for more detail Lee and Durbán, 2011; Ugarte
et al., 2012b). Based on the transformation matrix T given in the previ-
ous citations, and extended transformation matrix T∗ is proposed is this
work. Using this extended transformation matrix and the results in Gilmour
et al.(2004) about predictions with mixed models, the generalized mixed
model reformulation of the extended ANOVA-type P-spline model can be
obtained.

3 Illustration

To illustrate results, Spanish prostate cancer mortality data from 1975 to
2008 are considered. This data set has been described elsewhere (see Ugarte
et al., 2012a; Ugarte et al., 2012b; Etxeberria et al., 2013) to study differ-
ent disease mapping models in terms of smoothing and forecasting. This
facilitate comparisons with the ANOVA-type P-spline model considered in
this work.
The Dawid-Sebastiani score (Dawid and Sebastiani, 1999) is used to com-
pare the P-spline ANOVA type model with a pure interaction P-spline



126 Forecasting cancer mortality figures

model and spatio-temporal CAR models in three, two and one-year-ahead
predictions. For three year ahead predictions, the score for the pure in-
teraction P-spline model outperforms the P-spline ANOVA type model.
These models also provide better scores for two-year ahead predictions,
but similar values for one-year-ahead projections. In general, the P-spline
ANOVA type model produces an overcoverage that is not observed with a
pure interaction P-spline model and CAR models. This can be attributed
to wider prediction intervals because of higher mean squared error. The
main reason to explain this higher mean squared error is that the number
of variance components (smoothing parameters) in the P-spline ANOVA
type model is higher. However, the model allows to decompose the predic-
tion into different parts: one spatial, one temporal common to all regions,
and one specific for each area. Hence it is possible to detect if the contri-
bution of each part make the risks/counts prediction increase or decrease.
This is relevant for health researchers and authorities to make hypothesis
about factors in specific regions that contribute to increase or decrease the
risks.
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Abstract: We propose an iterative algorithm to estimate change-points in gen-
eral regression models. The algorithm avoids grid search to obtain maximum
likelihood estimates, and thus it guarantees moderate computational time re-
gardless of the sample size and the number of change-points to be estimated.
Furthermore, it allows estimation in random effects models, where grid search is
unfeasible. We present the proposed approach in practice by analyzing variations
of lung functionality on a sample of transplant recipients.

Keywords: change-points, piecewise constant, grid search algorithm.

1 Introduction

Change-point detection is an important goal of many statistical analyses
with applications in several fields, including Biology, Ecology and Eco-
nomics. One of the most known applications concerns array-based compar-
ative genomic hybridization (Pinkel et al., 1998), where knowing change-
point locations is crucial to identify possibly damaged genes involved in
cancer and other diseases; in Economics interest lies in detecting structural
changes, namely time points where one or more covariate effects change
abruptly. Several approaches have been proposed to address this problem
within the likelihood framework, such as segmentation techniques (Olshen
et al., 2004), segmented regression (Muggeo and Adelfio, 2011), penalized
regression (e.g., Rippe, Meulman and Eilers, 2012), or the well-known dy-
namic grid search algorithm (Bai and Perron, 2003) having a computational
cost equal to O(n2) for any number of change-points. While grid search is
the ‘usual’ approach, particularly in economics and econometrics, there are
at least two issues to be emphasized. First, sample size is still a concern,
and, therefore, estimation with huge datasets could represent a practical

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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limitation. Second, and more importantly, grid search cannot be employed
when dealing with individual piecewise constant profiles, namely when the
underlying regression model includes subject-specific parameters modelled
by random effects (e.g. Jackson and Sharples, 2004). We propose an iter-
ative algorithm to carry out estimation of general regression models with
unknown change-points. We discuss the presented algorithm in the simple
context of a single-break piecewise constant relationship, and apply it to a
model with random change-points, where the Bayesian paradigm is usually
employed.

2 Methods

For the sake of simplicity, we consider a simple, only fixed effects, model
with a shift and relevant change-point only in the mean level. Let Y be the
response variable with µi = E(Yi|xi), related to the quantitative covariate
x through the following regression equation

µi = β0 + β1I(xi > ψ). (1)

At ψ the mean level of Y shifts instantaneously from β0 to β0 + β1: our
goal is to set up an iterative algorithm to obtain all the unknown model
parameters (β0, β1, and ψ) efficiently. Our proposal relies on

I(xi > ψ) ≡ 1

2

xi − ψ
|xi − ψ|

+
1

2
,

for xi 6= ψ. This identity, when placed in (1), after some simple manipula-
tions gives

µi = β0 + β1zi(ψ̃) + γwi(ψ̃), (2)

where γ = −βψ. Note the auxiliary (or ‘working’) covariates are

zi(ψ̃) =

(
1

2
+

1

2

xi

|xi − ψ̃|

)
and wi(ψ̃) =

(
1

2

1

|xi − ψ̃|

)
, (3)

with ψ̃ meaning an approximate value. Notice model (1) has been converted
in the simple linear model (2). Formulas above suggest a simple iterative
algorithm: starting from initial guesses for the change-point, compute the
auxiliary covariates (3), fit the working linear model (2), and update the
change-point estimate via

ψ̃ = − γ̃
β̃
. (4)

While the outline of the algorithm is quite simple, there are two main
pitfalls that should be warned. First, the (profile) log-likelihood for the
change-point is a step function, with typically many local optima; second,
xi values close to ψ̃ may cause computational troubles, since denominators
in (3) go to zero. We skip details, but moving the xis away from the change-
point value ψ̃ according to some adjusting factor, allows to circumvent both
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FIGURE 1. Profile log-likelihoods for ψ in a toy dataset. Black line: objective
log-likelihood for model (1), with global optimum at 30. Grey line: log-likelihood
for the working model (2), with starting value ψ̃ = 50, and relevant optimum at
41 to be used to compute the working covariates at the next iteration.

problems, to some extent. Figure 1 tries to portray as the algorithm works
in a toy dataset.
Notice how the working linear model (2) leads, at each step, to a smooth
objective function, with a unique solution to be used as starting value in
the next iteration.

3 Application to random effect modelling

One of the most noteworthy advantages of the aforementioned algorithm
is that it straightforwardly extends to piecewise linear mixed models with
random change-points; here the grid-search algorithm can not be employed
and the only feasible approach appears to be the Bayesian one. We discuss
how the proposed algorithm allows inclusion of random effects also in the
change-point parameter within the likelihood based framework. For i =
1, 2, . . . , n subjects each with j = 1, 2, . . . , ni measurements, the model
reads as

yij = β0i + β1iI(xij > ψi) + εij

= (β0 + b0i) + (β1 + b1i)I(xij > ψ + pi) + εij . (5)

The subject specific parameters β0i, β1i and ψi are given by the sum of
fixed and random effects.
Using the idea of the previous section, we transplant the nonlinear mixed
effect model (5) into a conventional linear mixed model

yij = β0i + β1izij(ψ̃i) + γiwij(ψ̃i) + εij (6)

that is fitted iteratively. At each iteration, change-point estimates are up-
dated as in (4), for each subject. At convergence, change-points can be
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expressed as linear parameters of an additional LMM; using the new aux-
iliary covariate

w′ij = −β̃1iwij(ψ̃i)

the final model is

yij = β0i + β1izij + ψiw
′
ij + εij , (7)

where in the zijs and w′ijs the dependence on previous estimates has been
omitted. This allows to obtain subject specific change-point and also the
relevant variance parameter estimates.
Jackson and Sharples (2004) analyzed data from n = 204 patients receiving
lung transplant: in the first months after the transplant patients have an
high risk of complications, such as rejection episodes and infections, and
thus lung conditions, evaluated via the forced expiratory volume in 1 sec-
ond (FEV1), need to be monitored constantly. For each subject, different
measurements are available with decline patterns being smooth or chang-
ing suddenly. Unlike Jackson and Sharples (2004) relying on the Bayesian
paradigm, we model such data in a likelihood based framework and apply
the aforementioned algorithm to fit a regression model with random effects
in the regression and change-point parameters as well. More specifically,
the model we fit takes the form (5), where yij is the j-th FEV1 measure-
ment (as baseline percentage) for patient i, and xij is the month at which
the measurement is taken after the transplant. For simplicity we assume
the random effects for intercept (b0i), shift (b1i) and changepoint (pi) to be
Gaussian and independent, namely b0i

b1i
pi

 ∼ N
 0

0
0

 ,
 σ2

0 0 0
0 σ2

1 0
0 0 σ2

ψ

 ,

and, as usual, εij ∼ N(0, σ2
ε ) independently. We focus only on subjects

having an abrupt change in their FEV1 profiles; Table 1 shows fixed effect
and variance parameter estimates for the fitted model. Fixed parameter es-
timates indicate that high values of FEV1 immediately after the transplant
are followed by an important drop (β̂1 = −42.88) occurring, on average,
after 40 months. However, the variance parameters emphasize considerable
heterogeneity among subjects especially in time of occurrence of dropping
(via the variance component σ2

ψ) and relevant amount of dropping (via σ2
1).

Such heterogeneities are well appreciated in Figure 2 that illustrates ob-
served trajectories and relevant fitted profiles for some subjects under
study: the quite different locations of changepoints and mean levels after
the changepoints themselves reflect the high variance estimates reported in
Table 1.

4 Conclusions

We have discussed an iterative algorithm to fit models with change-points.
While the proposed algorithm is quite general and can be exploited even
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TABLE 1. Parameter estimates for the piecewise constant regression model with
random change-points (5) fitted iteratively via the working model (6).

Parameter Estimate St.Err.

β0 97.89 2.78
β1 −42.88 5.00
ψ 40.02 5.44
σ2

0 9.30 -
σ2

1 17.00 -
σ2
ψ 18.42 -
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FIGURE 2. Observed and fitted piecewise constant profiles for some patients
under study. The grey lines represent the fixed effect estimates and the black
lines the subject specific estimates.

for the ‘simple’ regression models in the spirit of Bai and Perron (2003),
we have discussed it within the mixed model framework where no paper
previously published in literature addresses the problem from a likelihood
view. Interestingly, the proposed algorithm is able to provide fixed effects
and subject-specific predictions of the change-points in a likelihood based
framework. The algorithm appears to work reasonably well in practice, but
there are some aspects to be investigated, in particular computations of
standard errors for all model parameter estimators. For instance, the stan-
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dard errors reported in Table 1 are based on the usual information matrix:
some simulations have shown that such information-based standard errors
do not work adequately for the change point estimator, and thus other
methods should be exploited. For instance, the bootstrap could represent
a possible alternative. Testing for the non-zero change-point variance com-
ponent or for the existence of change-point itself, also represent challenging
topics to be investigated in detail.
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estimates.
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1 Introduction

In computational finance the state prices density (SPD) is a fundamental
tool in option pricing tasks. It describes the perceived uncertainty about
the future value of an option contract. There is no way to observe the SPD
directly. Instead it has to be estimated from quoted option prices.
We propose a semi-parametric approach. The observed option prices can
be described as expected values of possible pay-offs at maturity weighted
by the unknown SPD. We model the logarithm of the latter as a smooth
function while matching the expected values of (possible) pay-offs with the
observed prices. This leads to a special case of the penalized composite link
model (Eilers, 2007).

2 Composite smooth estimation of the SPD

Imagine that we offer you the ‘option’ to buy a given asset (e.g. a stock) at
a future date T (maturity) paying a given price k (strike price). Intuitively,
if s < k at T you will not exercise the option given that the value of the
underlying asset is lower than the price you originally agreed to pay for it.
Of course the situation is opposite in the case s > t (positive pay-off). How

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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much (c) would you pay today for this contract giving you the right to buy
an asset of uncertain value in the future (at time to maturity τ = T − t)?
Intuitively this price should take into account this uncertainty about the
pay-off s − k at expiration date (a part form the the cost of money). In
other words the fair price of this contract should be equal to the discounted
expected value of the possible pay-offs computed under an appropriate
density function f(s): the state price density. More formally:

c = exp(−rτ)

∫ ∞
0

(s− k)+f(s)ds, (1)

where r is the interest rate guaranteed by a risk-free asset (e.g. a saving
account).
Unfortunately we do not observe f(s) directly but only the prices c quoted
on the market. The idea is to estimate f(s) starting from the (c, k) pairs
observed at a given time. This is an inverse problem and it is ill-conditioned,
meaning that the data do not uniquely determine f(s). We assume that f(s)
is positive and smooth. To estimate it we suppose that fj = f(uj) = exp(ηj)
and that the ith observed option price follows the model:

yi = µi + εi = G exp(η) + ε

=
∑
j(uj − ki)+ exp(ηj) + εi,

(2)

with εi i.i.d. random variables with null mean and constant variance σ2I
and u = {u1, ..., uM ; uj ∈ [min(k) − γ,max(k) + γ]} is a fine grid of spot
prices (γ is a constant that useful to enlarge the set of plausible pay-offs).
In Eq. (2), G is a composition matrix defined as:

G =


(u1 − k1)+ (u2 − k1)+ · · · (uM − k1)+

(u1 − k2)+ (u2 − k2)+ · · · (uM − k2)+

... · · ·
. . .

...
(u1 − kN )+ (u2 − kN )+ · · · (uM − kN )+

 .
In addition, we need to ensure that

∑M
j=1 f̂j = 1. To incorporate this

constraint, we extend the G matrix with a row vector of large constants ξ
(e.g. 105), and add an extra element to the vector of observed call prices
also having value ξ.
The vector η can be estimated via (penalized) IRWLS (Eilers, 2007) by
minimizing:

S = ‖c− µ‖2 + λ‖Dη‖2,

where D is a matrix forming third order differences. The mean function
can be linearized in a neighborhood µ̃i as follows:

µi = µ̃i +
∑
j

∂µ̃i
∂ηj

∆ηj = µ̃i +
∑
j

Gij exp(η̃j)∆ηj .
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FIGURE 1. Composite smooth estimation of the SPD for a set of prices of an
European vanilla call option simulated under the B&S model.

The estimates are then obtained by iteratively solving the set of normal
equations: (

Ẽ>Ẽ + λD>D
)
η = Ẽ>

(
c− µ̃+ Ẽη̃

)
,

where E = G diag (exp(η)) and a tilde as in η̃ indicates an approximation
to the solution. The estimation process usually converges quite fast (less
than 10 iteration in most cases). The roughness penalty λ‖Dη‖2 ensures
smoothness of η. The parameter λ tunes the degree of smoothness of the
final fit and can be selected by exploiting the link between penalized regres-
sion and mixed models (Ruppert et al., 2003). Indeed, taking λ = σ2

ε /σ
2
PEN

the optimal balance between goodness of fit and degree of smoothing can
be found through an EM-type algorithm, i.e. by updating till convergence

σ2
ε = (N − ED)

−1 ‖c− µ‖2and σ2
PEN = (ED)

−1 ‖Dη‖,

with the effective dimension defined as ED = tr[(E>E+λD>D)−1E>E]
(in analogy with Hastie and Tibshirani, 1990).
Figure 1 shows the estimates obtained for a set of call prices simulated
under the Black and Scholes (1973) model (with k ∈ [$8.02, $14.61] and an
observed spot price s = $10 and τ = 180 days).
The model in Eq. (2) guarantees estimates that are consistent with the
no-arbitrage conditions (Harrison et al., 1981):

• Positiveness of the estimated pay-off: ĉ ≥ 0.

• Monotone decay:
∂ĉ(k)

∂k
< 0.

• Convexity:
∂2ĉ(k)

∂k2
≥ 0.
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FIGURE 2. Smoothed pay-offs and extracted SPDs of the S&P 500 call option
with maturity 53 days. The estimated call prices and state price density are
compared with the ones consistent with the Black and Scholes log-normality
hypothesis.
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FIGURE 3. Smoothed pay-offs and extracted SPDs of the S&P 500 call option
with maturity 80 days. The estimated call prices and state price density are
compared with the ones consistent with the Black and Scholes log-normality
hypothesis.
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• Proper density:
∑M
j=1 exp(ηj) = 1.

The prices estimated using the model in Eq. (2) are positive by definition.
The monotonicity condition is also satisfied. Indeed, for two strike prices
ki ≤ ki+1 the matrix G is such that the number of non-zero elements is
higher in row i than in row i+1. The vector ĉ is computed as positive linear
combination of strictly convex functions and this ensures the convexity of
the estimated pay-off. The fourth condition requires that the estimated
SPD is a proper density. This is imposed by augmenting the convolution
matrix and the vector of observed prices with a large ξ vector (constant)
as described above.

3 A real data example

In this section we apply of our model to estimate the SPDs implied in the
observed prices of two S&P 500 call options (Carmona, 2004). Figure 2
and figure 3 show the results obtained for contracts expiring in 53 and 80
days (values of the index equal to $449.3 and $446.79). The estimates have
been obtained using a grid of 100 possible spot prices (u). The estimated
call prices and state price density are compared with the ones extracted
under the Black and Scholes (1973) log-normality assumption. It clearly
appears that the model properly fits the observed data. For a larger time
to maturity the quality of the call prices approximation obtained following
the Black and Scholes model is lower.

4 Discussion

We have introduced a new semi-parametric approach for the estimation of
the state price density implied in option prices. Our proposal takes advan-
tage from the penalized composite link model framework. The parametriza-
tion of the regression model, together with the definition of a composition
matrix consistent with the option pay-off function, ensures estimated prices
consistent with the theoretical no-arbitrage constraints. We have shown the
efficiency and flexibility of the proposed approach using real and simulated
data.
Our approach offers many opportunities for future research. The regression
framework can be extended to estimate bivariate multivariate SPDs, using
tensor products P-splines. The second dimension could be time to maturity
or it could be used to model intra-day variation.
Instead of a full two-dimensional density estimate, it is possible to model
a “mother density” which is scaled and shifted. We have investigated this
idea for different times to maturity, with promising results.

Acknowledgments: The first author acknowledges financial support from
IAP research network P7/06 of the Belgian Government (Belgian Science
Policy).
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1 Introduction

We observe a group of 127 pigs over a period of about 100 days. On a
very dense grid of time points, it is recorded when each pig is feeding.
The data is coming from the PIGWISE project funded by the European
Union within the ICT-AGRI 2010 call for transnational research projects.
The objective of the project is to “optimize the performance and welfare
of fattening pigs using High Frequent Radio Frequency Identification (HF
RFID) and synergistic control on individual level”.
HF RFID is used to record feeding times of the pigs. More precisely, HF
RFID antennas were installed above the troughs to identify feeding pigs
fitted with one or two passive RFID tags on their ears. The HF RFID
system at the trough registered the presence of the tags when they came
within range of the antenna (Madelyne et al., 2014). This leads to binary
functional data for each pig and day, as for each time point it is recorded
whether the pig is feeding or not. Let yij(t) = 1 if pig i is feeding at time
t at day j, and 0 otherwise.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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Movements of the pig during feeding, however, can move the ear tag in
and out of the range of the antenna. For these reasons, consecutive RFID
registrations of an ear tag will display irregular time gaps between readings
(Madelyne et al., 2014). Therefore the data were downsampled to consec-
utive sampling intervals of 10 seconds. As sometimes a pig is just passing
by the trough but not feeding, a pig was considered as feeding when the
respective tag was registered at least twice within a 10 second interval. So
on a very dense and regular grid of time points t1, t2, t3, . . . , t8640 binary
observations yij(tr) ∈ {0, 1} are available for pig i across day j, saying
whether the pig is feeding (y = 1) or not (y = 0).
In addition to the feeding data, there are measurements such as temper-
ature and humidity available that may influence the pigs behavior. One
important objective of the data analysis is to find pig-specific feeding pro-
files telling us when a certain pig is typically feeding. (1) These profiles
can be used for summarizing and illustrating the data observed. (2) They
are a potential basis for further data analysis and smart usage of the HF
RFID technology. On the one hand, this technology is intended for mon-
itoring pigs and identifying pigs showing unusual feeding behavior since
this may indicate problems such as sickness. For identifying “unusual” be-
havior, however, we first need to known the usual feeding behavior of a
pig. On the other hand, once the feeding profiles are obtained, we can use
them as a basis for further data analysis, for example, for clustering pigs
or comparing groups of pigs.
For analyzing the feeding data, we propose a functional logistic regression
approach allowing us to model the binary but functional measurements by
assuming underlying smooth pig-specific profiles. The method also allows
to incorporate additional covariates (such as temperature and humidity).

2 Methods

In the simplest case, the probability πij(t) that pig i is feeding at time t at
day j is modeled as

πij(t) =
exp{ηij(t)}

1 + exp{ηij(t)}
, (1)

with ηij(t) = αi(t), and αi(t) denoting the underlying profile of pig i of in-
terest. By extending ηij(t), however, the method also allows to incorporate
additional functional covariates such as temperature xj(t) and humidity
uj(t), or non-functional covariates. Here, the specification we propose has
the form

ηij(t) = αi(t) + β1ixj(t) + β2iuj(t) + β12i{xj(t)uj(t)}.

The interaction term is included as the effect of temperature may be dif-
ferent for different values of humidity. Since each pig may react differently
to changes in temperature and humidity, the corresponding regression co-
efficients β1i, β2i, and β12i are pig-specific.
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The observations made at time points tr are now used to estimate the
pig-specific profiles αi(t) and effects of temperature and humidity. The ob-
servations made for one pig are of course dependent. According to the the-
ory of generalized estimation equations (Liang and Zeger, 1986; Zeger and
Liang, 1986), however, we can use a working independence assumption to
estimate the parameters, as we are just interested in the marginal effects of
the latent profiles (and other covariates) on feeding behavior. For instance,
we are not going to predict whether pig i is feeding at time t given it was
feeding (or not) at time t′. Primary interest is in estimating the profiles.
Those are assumed as smooth and equal for each day and hence equal at
the beginning (0h/12 a.m.) and at the end of the day (24h/12 p.m.). For
function αi(t), we therefore use a cyclic cubic regression spline where the
ends of the function match up to the second derivative (see, e.g., Wood,
2006). Estimation is carried out by R package mgcv (Wood, 2006).

3 Simulation Studies

Before applying our method to the data it is tested in a small simulation
study. In each simulation run, we generate a true underlying profile using
(similar to Tutz and Gertheiss, 2010)

α(t) =

5∑
k=1

(bk sin(tπ(5− bk)/150)−mk),

with t ∈ [0, 300], bk ∼ U(0, 5), and mk ∼ U(0, π). Then binary data points
yj(tr) are generated at equidistant points tr ∈ [0, 300], r = 1, . . . , 300, using
probabilities πj(t) = exp{α(t)}/(1+exp{α(t)}). We consider three different
sample sizes n = 1, 10, 100, that is, j = 1, . . . , n.
We compare our spline method to a very simple method just using inter-
polated relative frequencies of 1s at time points tr, and a smoothed version
of these frequencies using a smoothing spline with 20, 40, or 80 degrees of
freedom. Performance of the different methods is evaluated via the squared
error ∫ 300

0

(
π̂(t)− exp{α(t)}

1 + exp{α(t)}

)2

dt,

where π̂(t) is the (feeding) probability at time t estimated by the method
considered. This procedure of profile and data generation, model fitting and
evaluation is repeated 50 times. Figure 1 shows the errors obtained for the
different methods. It is seen that the errors produced by our spline method
(SME) are usually very small. Simple relative frequencies are much worse
(see RFE), performance of the smooth version heavily depends on the de-
grees of freedom (see SRFE20, SRFE40, SRFE80). The penalty parameter
for our spline method is chosen via the Un-Biased Risk Estimator (UBRE;
Craven and Wahba, 1978).
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FIGURE 1. Mean squared error with respect to the latent profile estimated by
different methods.

4 Application to Animal Husbandry

For our real data, UBRE cannot be used for determining the penalty pa-
rameter because it assumes that the observations are independent. With
our data this leads to far too small penalty parameters and hence extreme
under-smoothing. Similar problems arise with methods like GCV or REML.
We hence use pig-specific K-fold cross-validation on a daily basis. More pre-
cisely, we use folds of entire days, and for each day j in the test set the
integrated Brier score (IBS)∫ 24h

0h
(yij(t)− π̂ij(t))2 dt, (2)

is calculated, with π̂ij(t) being the estimated (marginal) probability that
pig i is feeding at time t (given in seconds since 0h) at day j. For each pig
minimization of the IBS is done separately, producing pig-specific smooth-
ing parameters.
For one specific pig, Figure 2 shows the estimated (marginal) probabilities
of feeding at time t ∈ [0h, 24h] at day 93–102. The differences in the curves
result from differences in temperature and humidity (note, the latent profile
is assumed to be equal for each day). The profile and the effects of tem-
perature and humidity were estimated using the data from days 1–92 only.
On the x-axis the actually observed feeding times are marked. We see that
the probability curve is in relatively good accordance with these observed
values. The pig shown here usually feeds in the morning and afternoon,
which is the somewhat natural feeding behavior of pigs.
In order to compare the method proposed to some alternative and simpler
approaches, we fit the feeding probabilities for each pig and day 93–102 (us-
ing days 1–92 only). For each pig i and day j, we calculate the integrated
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FIGURE 2. Estimated (marginal) probabilities for feeding as a function of time
for one specific pig and ten days, together with observed feeding times marked
at the x-axis.
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FIGURE 3. Prediction performance in terms of the integrated Brier score of the
proposed method compared to some alternative approaches.

Brier score (2). The score is then averaged across days to have one score
per pig. Figure 3 summarizes the pigwise differences between our spline
method with additional predictors temperature and humidity (SplMTH)
and competing simpler methods. These methods are a spline method as
specified at (1) but without temperature and humidity (SplM), in analogy
to the simulation studies, a very simple method just using interpolated
relative frequencies of feeding at time points t0, t1, . . . , t8640 (RFM), and
a smoothed version of these frequencies using a smoothing spline with 60,
100, or 200 degrees of freedom (SRFM60, SRFM100, and SRMF200, re-
spectively). We see that our method is distinctly superior to the simpler
methods, but accuracy does not really benefit from including temperature
and humidity.
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Abstract: Many follow-up studies produce different types of outcomes including
both longitudinal measurements and time-to-event outcomes. Commonly, it is of
interest to study the association between them. To estimate this association, an
extended version of the Cox model with longitudinal covariates (Anderson and
Gill, 1982) or a two-stage approach (Self and Pawitan, 1992) can be used. How-
ever, these techniques have several limitations, including the possibility of biased
estimations. To solve these limitations, joint modeling approaches for longitudi-
nal and survival data were proposed in the recent statistical literature (Rizopou-
los, 2010; Phillipson et al, 2012). This paper compares the predictive accuracy
performances of these modeling approaches to study the longitudinal and time-
to-event survival processes together. The predictive performance of these models
is assessed using time-dependent ROC curves (Heagerty et al, 2005). All the sta-
tistical approaches were applied to a biomedical database on Primary Biliary
Cirrhosis data.

Keywords: Joint model; longitudinal data; time-dependent ROC curves; time-
dependent AUCs.

1 Introduction

There exist various methods to study the association between a longitudi-
nal outcome and the survival process in the literature. The earliest methods
are the extended Cox model (Anderson and Gill, 1982) and a two-stage ap-
proach method (Self and Pawitan, 1992). Although these methodes have

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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advantages in terms of fast computing, they also have several limitations.
The extended Cox model assumes that the covariates are external and not
related to the failure mechanism (Kalbfleisch and Prentice, 2002); also, this
model does not take into account the measurement error of the longitudi-
nal process. In the two-stage approach no survival information is used for
the longitudinal process such that informative drop-out is not accounted
for. If the main interest is on the association between the longitudinal and
survival data, joint models are required to feature this correlation. Joint mo-
dels have gained increasing attention over the last two decades, especially
in biomedical investigations. In this paper, we compare the predictive per-
formances of two recent approaches of joint modeling by Rizopoulos (2010)
and by Philipson et al (2012) with alternative methods like the extended
Cox model (Anderson and Gill, 1982) and the two-stage approach (Self and
Pawitan, 1992).
All models were used to analyse the data of a study on Primary Biliary Cir-
rhosis (Fleming and Harrington, 1991). The objective is to analyse the ef-
fect of the longitudinal measures of serum bilirubin (serBilir) on the patient
survival. The database includes a status indicator of 312 patients (status2),
a treatment indicator if the patient have a ”placebo” or ”D-penicil” (drug)
and an indicator of hepatomegaly. The trajectories of serum bilirubin are
shown in Figure 1.

FIGURE 1. Longitudinal trajectories for failed and censored patients separately
for patients with placebo and with D-penicil.

2 Statistical models

In this section we introduce four different regression models to study the
longitudinal process with time to event survival for the PBC dataset, con-
sidering a model selection according to predictive accuracy.

2.1 The extended Cox Model (Anderson and Gill, 1982)

One of the models that allows incorporation of time dependent covariates
into the survival model is an extension of the Cox Model introduced by An-
derson and Gill, 1982. In our biomedical study, this model can be described
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as

hi(t) = h0(t)Ri(t) exp(γ1drugi + γ2hepatomegalyi + α log(serBilir)i(t))

where γ is Ri(t) is a left continuous at risk process with Ri(t) = 1 if subject
i is at risk time at time t and Ri(t) = 0 otherwise, serBiliri(t) is encoded
using (start-stop) notation. These points indicate the time intervals of the
recorded serum bilirubin measurements.

2.2 The two-stage approach (Self and Pawitan, 1992)

This model is described in two stages:

(i) A linear mixed effects model is fitted to estimate the true longitudinal
process (Pinheiro and Bates, 2000)

log(serBilir)ij = Intercept + β1(drug(tij)year(tij))

+β2(hepatomegaly(tij)) + U0i + U1itij + εi(tij) (1)

where t is year, β1 and β2 is the fixed effects coefficients, U0i is the random
intercept and U1i is the random slope parameter.
(ii) The random effects of the model (1) are incorporated into the survival
sub-model as covariates in the following manner

hi(t) = h0(t) exp γ1drugi + γ2hepatomegalyi + γdrugi + α0U0i + α1U1iyeari

where U0i is the random effect of intercept and U1i is the random effect of
slope.
The main advantages of two-stage models include fast computing and exist-
ing software. However they may lead biased inference because of estimating
parameters in the first stage based only observed covariate data. That is,
the trajectories of the longitudinal data who experience an event may be
very different from those who do not.

2.3 Joint Model I (Rizopoulos, 2010)

This model focuses on the survival model in which an individual’s survival
is influenced by a longitudinal outcome that is measured with error. In this
approach the longitudinal sub-model is the same as the two-stage approach
(1) and the survival sub-model is expressed as:

hi(t) = h0(t) exp (γ1drugi + γ2hepatomegalyi + α log(serBilir)i(t))

where log serBiliri(t) is true (unobserved) value of longitudinal outcome.

2.4 Joint Model II (Phillipson et al, 2012)

In this model an informative censoring is assumed for the longitudinal
variable and the focus is on the both processes. The longitudinal sub-model
is described by the two-stage approach (1) and the survival sub-model is
expressed as:

hi(t) = h0(t) exp (γ1drugi + γ2hepatomegalyi + γdrugi + α0U0i + α1U1iyeari)
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3 Results

The extended Cox model is fitted by Anderson Gill model (1982), two-stage
approach is fitted by a linear mixed effects model (Pinheiro and Bates,
2000) and a survival Cox model (Cox, 1972). The joint modelling approach
of Rizopoulos (2010) and Philipson et al (2012) are fitted to the dataset with
their implementations through the JM package in R written by Rizopoulos
(2010) and joineR package written by Philipson et al (2012). Furthermore,
the linear predictors of each model at time t is used to calculate the incident
sensitivity and dynamic specificity to compute the ROC curves and the area
under curve for each time point (Heagerty et al, 2005). This calculation is
implemented through risksetROC package in R.
The results obtained for each regression model, given in Table 1, show a
statistically significant association between the longitudinal and survival
process with different coefficients. According to these results the patients
with higher serum bilirubin tend to have a worse survival. However, as we
can observe in this table, the two-stage model over-estimates the effect of
the slope (α1 = 6.29) as compared with the joint model approach (α1 =
1.39) and has a lower discrimination after a certain time point (Figure 3).
The extended Cox model has lower discrimination at all time points and
a decrease in standard errors of coefficients compared with the others as a
result of ignoring the longitudinal process measured with error leading to
biases estimates.
Joint model approaches show better discrimination according to time de-
pendent AUC values (Figure 3) in comparison with the extended Cox model
and the two-stage approach. Also the log likelihood values of two joint
model approaches are less than those obtained from both the extended
version of the Cox model and the two-stage approach.

4 Discussion

This study showed that when the longitudinal data and survival process
are correlated, a joint model approach is most appropriate to analyse this
relationship in comparison with the extended Cox model and the two-stage
approach.
Also for the joint model, we used two different approaches implemented in
software R, JM by Rizopoulos (2010) and joineR by Philipson et al (2012).
The joineR package permits to analyse the intercept and slope effect to sur-
vival separately and JM package has several options to study the longitudi-
nal and survival sub-models with more flexibility. Further study is required
to analyse the longitudinal trajectories with flexible linear mixed models
and to compare different models for the survival process (e.g., Weibull,
piecewise and spline method) already implemented in JM package.

Acknowledgments: This work is partially financed by Spanish Ministry
of Economy and Competitiveness (MTM 2011-28285-C02-01).
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FIGURE 2. Time dependent AUCs for each model separately for patients with
placebo and with D-penicil.
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Longitudinal Process

Cox Model Two-stage Joint Model I Joint Model II
Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE)

Intercept 0.56(0.08) 0.56(0.08) 0.55(0.08) 0.40(0.06)

Drug 0.13(0.11) 0.13(0.11) 0.13(0.11) 0.14(0.11)
Year 0.17(0.01) 0.17(0.01) 0.19(0.01) 0.18(0.01)
Drug*Year 0.004(0.02) 0.004(0.02) 0.009(0.02) 0.0008(0.02)
Loglikelihood −1534.73 −1534.737 - -

Event Process

Drug 0.15(0.18) 0.06(0.15) 0.05(0.16) 0.10(0.20)
Hepatomegal 0.41(0.24) 0.56(0.17) 0.66(0.17) 0.72(0.17)

serBilir (α) 1.07(0.09) 1.21(0.08)
(α0) 0.96(0.10) 1.13(0.09)
(α1) 6.29(0.68) 1.39(0.19)

Loglikelihood −705.7366 −736.1549 −1960.943 −2420.385

TABLE 1. Fitted models of different approaches.
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Abstract: In this paper we model data from a 26contingency table. The categor-
ical variables have to do with individuals with HIV. Practitioners are interested
in predicting an outcome, so we have fit logistic regression models that include in-
teraction terms. For the practitioners, the interpretation of the interaction terms
can be difficult. Interval estimates for these interpretations are seen to require
unreasonable assumptions and approximations. We suggest a method for develop-
ing confidence intervals for the common measures of interaction. For these data,
we find that models that measure relationships among all of the variables (i.e.,
log-linear models) provide a better description.
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1 Introduction

The purpose of this paper is to demonstrate the application and interpre-
tation of various models for describing the relationship among variables
associated with care of individuals infected with the human immunodefi-
ciency virus (HIV). Models used to describe these data included logistic
regression models, log-linear models and Bayesian models for categorical
data. Of particular interest is the interpretation of interaction parameters
within these models and the relationship of parameters among models. The
dichotomous factors in the 26 table were age group, gender, the clinical set-
ting in which care was delivered, whether or not a mental health problem
was identified by the care giver, whether or not patients consistently ad-
hered to their treatment regimen and whether or not patients experienced
viral load suppression for a year.
One naturally might be interested in asking if viral load suppression can be
predicted from the other five variables. For example, one may ask whether
the presence of a mental health issue is predictive of viral load suppression.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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Logistic regression models are frequently used for this type of analysis. On
the other hand, a log-linear model may shed light on the possibility that
viral load suppression, or lack thereof, is related to mental health and the
possibility that a patient with a mental health issue is less likely to adhere
to his treatment regimen which in turn could impact viral load.
The first order interaction terms in a logistic regression model are related
to the second order interactions in a log-linear model (Aitkin, et. al., 2009).
The preference of interpretation of the interaction terms in a logistic re-
gression model is not consistent among applied researchers (e.g. epidemi-
ologists, economists, educators) and assessing precision of the estimates of
the interaction parameters appears to be unsettled.
We review some suggestions that have been offered in the literature and
propose what we believe to be a sensible approach. Should we measure
interaction on an additive scale, as is typical in fields like engineering and
psychology where models predominately employ the identity link, or on the
multiplicative scale, so as to be consistent with the interpretation of pa-
rameters estimated in logistic regression, which is common in epidemiology,
biostatistics and economics.

2 Fitting some Models

In fitting log-linear models, we began with the saturated model and re-
duced this by removing interaction terms that were not significant. The
only factor interacting with the setting variable was age; older individuals
were more likely to receive their care in hospitals as opposed to clinics.
In subsequent modeling we assumed that setting was essentially an alias
for age. Our final model showed that younger individuals were more likely
to be male, more likely to reveal a mental health issue and more likely to
have a problem adhering to their treatment regimen. Mental health issues
were associated with gender, age, problems with adherence, and to a lesser
extent with viral load suppression. Adherence problems and viral load sup-
pression were strongly associated, as one might suspect. Figure 1 depicts
the final model where we have made some mild epidemiological assump-
tions about causation (e.g., mental health does not have a causal impact on
gender), a practitioner may conclude that good adherence facilitates viral
load suppression, mental health issues may lead to adherence problems and
that women and elderly individuals living with HIV are less likely to have
mental health issues, the later less likely to have adherence problems.
A logistic regression model was fit specifying viral load suppression as the
response variable and the other five dichotomous variables and their first
order interactions as predictors. Three interaction terms were significant,
gender:age, gender:setting and age:mental health. It is common for prac-
titioners to exponentiate the main effect parameters to obtain odds ratios
and to a somewhat lesser extent and perhaps not so wise, to interpret these
odds ratios as risk ratios.
The interpretation of odds ratios as risk ratios is apparently justified by
the fact that when the response variable is rare, these two ratios will be
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approximately the same. How rare does the response indicator have to be
in order for this approximation to apply and how much difference does the
distinction matter in some applied fields, e.g. public health administration?
Here viral load suppression indicator is not rare, being yes slightly more
than half of the time.

FIGURE 1. Graphical representation of log-linear model fit

3 Measures of Interaction in Logistic Regression

Suppose we have two potentially predictive dichotomous factors and we
wish to express the probability of the presence of some outcome (a third
indicator variable that we wish to predict) under each of the four combi-
nations of the levels of the two factors. We may call the probability of the
indicator variable (response variable) being one at the ith level of factor A
and the jth level of factor B, pij.

3.1 Multiplicative Measures of Interaction

Define the risk for the first and second levels of factor A to be (p11 +
p12)/(p11+p12+p21+p22) and (p21+p22)/(p11+p12+p21+p22), respectively,
and similarly for factor B. The risk ratio comparing the risk at the first
and second level of A is then (p11 + p12)/(p21 + p22).
The odds in favor of a 1 on the response variable at the first and second
levels of factor A would be (p11 +p12)/(1− (p11 +p12) and (p21 +p22)/(1−
(p21 +p22). The odds ratio comparing the odds at the first and second level
of A is ((p11 + p12)/(1 − (p11 + p12))/((p21 + p22)/(1 − (p21 + p22)) which
is approximately the risk ratio if the pij’s are very small.
Within level one and two of factor B, the risk ratios would be respec-
tively p11/p21 and p12/p22 and the ratio of risk ratios (p11p22)/(p21p12),
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and similarly for ratios of odds ratios, (OR11OR22)/(OR21OR12). These
are multiplicative measures of interaction.

3.2 Additive Measures of Interaction

Kalilani and Atashhili (2006) review some approaches for measuring in-
teractions, e.g. linear contrasts (LC), interaction contrast ratios (ICR) or
equivalently relative excess risk due to interaction (RERI), attributable
proportion due to interaction (AP) and a synergy index (S) measuring the
ratio between combined effect and individual effects. ICR, AP, and S are
considered additive measures in as much as that they are ratios involving
linear contrasts. These authors agree with the argument that interactions
measured on an additive scale are more associated with biological inter-
actions than interactions measured on a multiplicative scale. They point
out that in epidemiology, interaction describes the extent the joint effect
of two factors differs from their independent effects and that interaction
effects are the remainder of subtracting the marginal effects from the joint
effect in an additive measure.
The linear contrast (LC) or interaction contrast (IC) is LC = IC =
(p11 − p21) − (p12 − p22) which is the way we think about interactions in
experimental design. The interaction contrast ratios (ICR) or equivalently
relative excess risk due to interaction (RERI) is ICR = IC/RR11 = RR22−
RR21 − RR12 + 1. The attributable proportion due to interaction (AP) is
defined to be AP = IC/RR22 = (RR22 −RR21−RR12 + 1)/RR22 and the
synergy index (S) measuring the ratio between combined effect and individ-
ual effects is given by S = (RR22−RR11)/((RR21−RR11)+(RR12−RR11).
The amount by which the product of the individual factors has to be mul-
tiplied by to obtain the joint effect is a multiplicative measure. In public
health, epidemiologists attempt to predict a disease from a number of fac-
tors. Many argue that in this setting, these effects are best viewed on an
additive scale. Here, the interaction would be defined to be the difference in
joint effect differences. Based on simulations, they emphasize that the odds
ratios should not be used to estimate the risk ratios, as they sometimes
are when calculating the interaction contrast. This is the main point of
the Kalilani and Atashhili (2006) paper. Zhang and Yu (1998) discuss the
extent to which the odds ratio over-estimates the risk ratio when outcome
proportions are not small.

4 Precision of Interaction Measures

Using an alternative parameterization, but assuming odds ratios (ORs) are
approximately risk ratios (RRs), Hosmer and Lemeshow (1992) find that
Var(ICR) and Var(AP) are obtainable. They propose using Wald type in-
tervals, but caution that the coverage properties of these intervals have
not been studied for the methods proposed. Somewhat more recently, Ass-
mann, Hosmer, Lemeshow and Mundt (1996) use four methods of con-
structing confidence intervals in logistic regression, a delta method and
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three bootstrap methods. They found that one of the bootstrap methods
(using percentiles of the bootstrap distribution) had very good coverage
properties. This work also assumed that ORs are approximately RRs.
Chu, et al. (2011) demonstrate the use of Markov Chain Monte Carlo
(MCMC) in obtaining confidence intervals for RERI. For the following
example, from data collected on individuals living with HIV in the US, we
have obtained estimates for the interaction and probability intervals using
MCMC. For comparison purposes, we have obtained bootstrap estimates
using SAS as suggested by Assman et al. (1996).
Collapsing the data from our study into a 2×2 table with cell proportions
{{0.678, 0.672}, {0.606, 0.405}}, our modeled proportions using MCMC were
virtually identical, {{0.679, 0.071}, {0.606, 0.405}}. Defining the interaction
contrast, LC, as above, the MCMC readily produced an estimate of -0.1927
and a 95% probability interval (-0.3242, -0.0446). We also defined the inter-
action measures RERI and AP, obtaining estimates and probability inter-
vals. We then constructed bootstrap confidence intervals for RERI and AP
using SAS and the approaches studied by Assman, et. al. (1996). These es-
timates that assume that odds ratios are approximately risk ratios differed
considerably from those produced by MCMC.

5 Summary

We have explained the use and performance of various approaches in the
context of the log-linear models for the HIV data and contrasted these with
a Bayesian MCMC approach, which makes the calculation and comparison
of alternative interaction summaries straightforward. Using this approach,
results (estimates and associated uncertainty) from the model are an easily
interpreted, but not misleading, summary for health-care professionals and
policy advisers.
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Abstract: Digit preference occurs most commonly as a result of recall inaccu-
racy, but may also be due to behavioural preference. Inspection of usage of units
of blood transfused after stem cell transplantation reveals a strong preference for
even numbers, which is due to behavioural preference on the part of prescribing
physicians. In the reporting of the age at which smokers quit smoking, strong
bias towards round numbers is observed. We conceive of a latent variable which
has a smooth distribution, which is transformed via stochastic rules to a dis-
crete variable with probability spikes at preferred digits. We propose a modelling
framework based on a latent variable specification and stochastic transformation
to the spiked distribution. Specification of the stochastic rules is important to
success in accurate modelling of the process.

Keywords: digit preference; heaping; latent variable.

1 Introduction

Response variables with frequency spikes at certain digits are commonly
encountered. The best-known example is zero inflation, for which models
are well developed. In our first motivating example, the outcome of interest
is the number of packed red blood cell (PRBC) units transfused to stem cell
transplant patients. A strong preference for even numbers is evident. In the
second motivating example, survey respondents who are ex-smokers report
the age at which they stopped smoking. A strong rounding preference is
observed.
We distinguish between an underlying unobserved variable Z, which has
a smooth distribution, and the observed variable N whose distribution is
discrete with probability spikes at preferred digits. The mapping of Z to N
is stochastic and governed by a model for the digit preference. We specify a
model for N which assumes the latent distribution of Z, and the stochastic
rules for Z ⇒ N . Maximum likelihood estimation is implemented for the
marginal distribution of N .
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tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
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2 Statistical model for N

We assume a latent variable Z and an observed variable N , where N is de-
termined from Z by some stochastic rules. A smooth discrete or discretized
continuous distribution is assumed for Z. We define the matrix C as having
entries Cij = P (N = j |Z = i). If, for example, odd numbers are rounded
up to the next number with probability π, then

C =


1− π π 0 0 · · ·

0 1 0 0
0 0 1− π π
0 0 0 1
...


The distribution of N is achieved by the redistribution of probabilities:

PN (n) =

∞∑
k=0

CknPZ(k) or PN = CT PZ .

In order to fully define the distribution of N , it remains to specify the latent
distribution PZ(z). The distribution of N is fully specified, with parameters
(π,θ), where θ is the vector of parameters of the distribution of Z. While
the likelihood equations may be tractable in particular cases of PZ(z), in
general they are solved numerically.

3 The blood transfusion data

Heller and Dunlop (2012) report on a study of n = 166 stem cell transplant
patients at a Sydney hospital who received an autologous peripheral blood
stem cell transplant. The haematologist made the decision to prescribe two
or more units of PRBC per transfusion event, dependent on the patient’s
clinical condition. The number of units transfused was summed over the
patient’s entire admission. The left panel of Figure 1 shows the histogram of
the total number of units transfused. The following features are apparent:
the minimum number of units transfused in those patients transfused is 2;
and there is a strong preference for transfusing an even number of units.

4 The smoking data

In the 2001 National Drug Strategy Household Survey conducted by the
Australian Institute of Health and Welfare (AIHW 2002), ex-smokers were
asked at what age they stopped smoking. People aged ≥65 years were
analysed (n = 1, 205). The right panel of Figure 1 shows the histogram of
the reported age of quitting smoking. A strong preference towards rounding
to 10s, and to a lesser extent to 5s, is observed.
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FIGURE 1. Left panel: histogram of number of PRBC units transfused; right
panel: histogram of reported age of quitting smoking

5 Statistical model for blood transfusion

We make a distinction between the amount of blood the patient needs and
the amount he/she receives. Z is the unobserved number of units needed
and the relationship between Z and N , the number of units transfused, is
modelled as

1. if one or two units are needed, two units are transfused;

2. if an odd number of units are needed, one more unit than is needed
is transfused, with probability π.

We have

PN (n) =


PZ(1) + PZ(2) for n = 2

πPZ(n− 1) + PZ(n) for n = 4, 6, . . .

(1− π)PZ(n) for n = 3, 5, . . .

0 otherwise

and

C =



0 0 1 0 0 0 0 · · ·
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1− π π 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1− π π

.

.

.


For the latent distribution of Z we specify the discretized Gamma distri-
bution parametrized as:
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PZ(z) =

∫ z

z−1

w−1

Γ (ν)

(
wν

µ

)ν
e−wν/µ dw , z = 1, 2, . . . .

Maximum likelihood estimation was performed numerically, using the R
function nlm for optimization. MLEs are µ̂ = 3.12, ν̂ = 1.71, π̂ = 0.37. A
strong tendency to round up is indicated. In a comparison with the zero
truncated Poisson (ZTP) and zero truncated negative binomial (ZTNB)
distributions, the estimates of the mean of the latent distribution in the
latter two models are positively biased. In addition, standard errors for the
mean based on the ZTP and ZTNB are an order of magnitude greater than
that of the proposed model. The fitted distribution of the number of units
N is shown in Figure 2, as well as the fitted latent Gamma distribution of
the volume of blood. The fitted distribution of N replicates the observed
pattern well, supporting the choice of the discretized Gamma distribution
for Z.
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FIGURE 2. Observed and fitted distribution of PRBC units transfused (N); and
underlying Gamma distribution of the latent volume of blood.

6 Statistical model for age of quitting smoking

Z is the unobserved age (in years) at which the subject quit smoking and
N is the reported age. The relationship between Z and N is modelled as

1. if Z ends in 7, 8, 9, 1, 2 or 3, round to 0 with probability π1;

2. if Z ends in 4 or 6, round to 5 with probability π2.
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The C matrix has entries Cij = P(age j reported as i):

15 16 17 18 19 20 21 22 23 24 25 · · · 85

15 1 π2

16 1− π2

17 1− π1

18 1− π1

19 1− π1

20 π1 π1 π1 1 π1 π1 π1

21 1− π1

22 1− π1

23 1− π1

24 1− π2

25 π2 1

.

.

.

Specifying a discretized Weibull distribution for Z results in the fitted
distribution shown in Figure 3.
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7 Discussion

Wang and Heitjan (2008) propose a Bayesian model for heaped cigarette
count data in a situation more complex than our examples, where digit
preference is either for a multiple of 5 or 10, or the size of a cigarette pack
(20), and the heaping is partially due to misreporting and partially due
to people tending to smoke whole numbers of cigarette packs. Camarda
et al (2008) and Eilers and Borgdorff (2004) adopt a penalized likelihood
approach to model distributions observed with digit preference.
We have shown that the proposed model accurately reproduces the ob-
served variation in both data sets. Observed digit preference may be due
to misreporting, or genuine behavioural preference. In the PRBC data,
there was no misreporting and the digit preference observed was due to the
tendency for physicians to prescribe at least two units at a time. In the
survey data, digit preference was due to recall bias. Whatever the reason
for the digit preference, it is important to reflect this accurately in the spec-
ification of the C matrix. It is a fairly simple matter to implement more
intricate patterns of digit preference using this method.
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Abstract: The Penn World Tables (PWT) are the most prominent source for
international comparable Gross Domestic Product (GDP) data and are frequently
updated. Recently, several authors have pointed out the sensitivity of econometric
results to revisions of these data (e.g., Johnson et al. 2013). In this paper we
propose a model framework based on a latent variable specification to derive
consensus GDP series based on a large set of the six most recent PWT vintages.
This approach allows us to take into account the variability associated with the
different PWT revisions in a formal and consistent way and to quantify the
corresponding uncertainty of real GDP figures.
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1 Motivation

International income data from the Penn World Tables (PWT) data base is
widely used among economists. The PWT provide purchasing power parity
(PPP) adjusted GDP (and GDP components) figures which are essential
for conducting cross-country comparisons.
Repeated revisions due to updates of national income data (Base Year),
new International Comparison Program (ICP) price data and changes in
the underlying methodology to estimate purchasing power parities (PPPs)
result in substantial alterations of PWT’s real GDP figures. Moreover, Ci-
ccone & Jarocinski (2010) and Johnson et al. (2013) show that studies on
the determinants of economic growth, e.g. Sala-i-Martin et al. (2004) and
Fernandez et al. (2001), are sensitive to the used PWT vintage.
In this paper we propose a Bayesian model framework based on a latent
variable specification (see e.g., Grün et al., 2013) to derive a consensus
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GDP (henceforth CGDP) series based on the heterogenous information of
the different PWT vintages. For the latent CGDPs our framework assumes
both a inter-temporal correlation within the single country’s GDP series
as well as a correllation between the countries. The former is achieved via
latent AR-processes while for the latter correlation we make use of Bayesian
spline regressions (see e.g. Lang and Brezger, 2004). In addition, based
on the estimated CGDPs, our framework allows for validating the single
PWT vintages by analyzing the mean/variance structure of the consensus
deviations for the single PWT vintages.

1.1 The latent consensus GDP model

For PWT version j, we denote the observed GDP of country i at time t,
with Yij(t). Due to different input data (ICP, Base Year) and heterogenous
modelling approaches, Yij(t) might vary for fixed i, t between the PWT
versions j. Therefore we assume a latent ”true” CGDP, Y ∗i (t), estimated
from the observed Yij(t). That is,

Yij(t) = Y ∗i (t) + εij(t), (1)

with εij(t) denoting the error of PWT version j for country i at time t. Fol-
lowing equation 1 probabilistic processes for both the consensus Y ∗i (t) and
the error structure εij(t) have to be specified. Y ∗i (·), our CGDP estimates
can be interpreted as a more informative GDP estimate, as it encapsu-
lates the information contained in the various observable, but heterogenous
PWT vintages Yij(t).
To model CGDP, we assume that each Y ∗i (t) follows some country’s id-
iosyncratic development νi(t), (e.g., wars, government actions) plus some
macroeconomic factors f , which induce a correlation between the countries’
CGDPs. Several approaches might be appropriate for modelling νi(·) and
f(·). Here we assume latent AR(1) processes for νi(t) and the more flexible
class of cubic penalized spline regressions (P-splines) to handle correlations
between the Yij(t), i.e. to model f(t). The dependency of each single i from
the global market f is denoted via αi. Formally we have

Y ∗i (t) = νi(t) + αif(t), (2)

with νi(t) = γiνi(t−1)+ εi(t) and f(t) =
∑
m ξmBm(t). Bm(t) denotes the

m-th spline basis function. Following e.g., Fahrmeir et al. (2010) conven-
tional Bayesian P-spline smoothing is based on random walk priors for the
(first) differences of ξ, i.e., ξm = ξm−1 + um, um ∼ N(0, τ2).
Next to the CGDP Y ∗i (t) we have to discuss admissible models for the errors
εij(t). Here we assume that each PWT vintage has its own characteristic
error µj(t), which is independent of country i, i.e.,

εij(t) = µj(t) + σjεij(t), (3)

with σj ∼ N(0, τσ), εij(t) ∼ N(0, 1) ∀t and µj(t) denoting the PWT
vintage specific errors. Again, the time structure of the error function µj(t)
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is captured via standard AR(1) processes and to guarantee identifiability
of our model

∑
j µj(t) = 0, ∀t is required.

2 Results

We are now ready to present the most prominent results of our CGDP
model framework. We apply our model framework to demeaned GDP data
from the Penn World Table Version 6.1 to 8.0. Table 1 summarizes the main
characteristics of these versions but also displays the estimated averaged
mean errors of the different PWT vintages.

TABLE 1. Properties of the different PWT vintages. The last row displays the
mean values (time averaged) of the PWT deviations µj(t) from the estimated
consensus

PWT 6.1 6.2 6.3 7.0 7.1 8.0

From 1950 1950 1950 1950 1950 1950
To 2000 2004 2007 2009 2010 2011
Base Year 1996 2000 2005 2005 2005 2005
Countries 168 188 188 189 189 167
ICP 1996 2002 2002 2005 2005 1970–2005
µj(·) 592.80 −206.35 −227.78 198.80 167.85 −403.09

Based on the estimated CGPD values the largest deviations are observed
for PWT version 6.1 followed by the latest release PWT 8.0.
Additionally we can inspect the estimated CGDP as well as the CGDP
compositions in terms of αif(t) and the idiosyncratic developments νi(t).
Figure 1 illustrates these decompositions for the USA and Botswana. While
for the US we find the global market as a driver for the GDP pattern and
the idiosyncratic process is mainly a shift of the GDP values, the picture
looks vica-versa for Botswana. Here we find that the CGDP is mainly driven
by the idiosyncratic νi(t) process.

Acknowledgments: Paul Hofmarcher’s research is supported by the
Oesterreichische Nationalbank under the Jubiläumsfond grant 14663.
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Abstract: So far, different markers reflecting the blood sugar levels are anal-
ysed separately and used for the diagnosis and control of diabetes. It is known
that such markers (glycated proteins) have a high correlation which is expected
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1 Introduction

Diabetes, a common life-long disease, is characterised by chronic hyper-
glycemia (high blood sugar) and causes long-term complications like retino-
pathy (damage of the retina of the eye), nephropathy (kidney disease), or
neuropathy (diseases affecting nerves). According to the World Health Or-
ganization, it is expected that the number of patients with diabetes will
rise to 370 million in the world by 2030 (Wild et al., 2004).
The determination of the glycated protein hemoglobin (a1c) has been pro-
posed as a criterion for the diagnosis of diabetes. However, the correlation
between blood sugar level and a1c is not perfect. In addition to hemoglobin,
the serum protein fructosamine (fru) in the plasma can also become gly-
cated and can therefore also be used as a marker of blood sugar levels with
the difference that fru provides an index of glucose control over a period of
2–3 weeks compared to a period of 3 months for a1c. Estimating indepen-
dent models for a1c and fru may lead to misspecification and thus to the

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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wrong diagnosis. Furthermore, since one of them represents the glycation
process inside the red blood cells (RBC) (intracellular) and the other one
in plasma (extracellular), any factors that modify RBC survival (such as
anemia) will also modify a1c test results relative to the true level of blood
sugar and thus also its relationship with the other glycated proteins.
So far, most statistical approaches in analysing epidemiological and clini-
cal studies focused on linear predictors following the classical framework of
generalised linear models. In all these models, only the mean of a depen-
dent variable is related to covariates, neglecting the potential dependence
of higher moments or the correlation between a1c and fru on covariates.
Assuming that the conditional distribution of a1c and fru is bivariate Gaus-
sian, the framework of Bayesian structured additive distributional regres-
sion (Klein et al., 2013a) allows to consider such dependence structures.
Their model class is based on the framework of generalised additive models
for location, scale and, shape (GAMLSS, Rigby and Stasinopoulos, 2005)
where potentially complex parametric distributions can be assumed for re-
sponse variables. However, since the framework of GAMLSS is currently
restricted to univariate responses, we rely on an extended approach for
multivariate responses, recently developed by Klein et al. (2013b) in the
spirit of distributional regression.
With the purpose of assessing the impact of clinical and biochemical fac-
tors on both the mean and the variability of the glycated proteins a1c (in
%) and fru (in µmol/l), we analysed data from 542 adults recruited until
December 2013 within a study performed in the municipality of A Estrada
in north-western Spain. Available clinical factors are: age of the adult in
years, hepatic disease (hep, 0=no, 1=yes) and kidney disease (renal , 0=no,
1=yes). Biochemical ones are: glucose (glu, fasting glucose concentrations
in mg/dl), serum albumin (alb, in g/l) and mean corpuscular volume (mcv ,
f/l in red cells). In addition, a specific objective of the study is to analyse
the relationship between both responses according to the levels of mcv after
adjusting by other potential confounding factors including glucose levels.

2 Bivariate Gaussian Distributional Regression

We assume that the joint conditional distribution of (a1ci , frui)
′ given all

covariates summarised in ν′i = (xi, zi)
′, i = 1, . . . , 542, follows a bivariate

Gaussian distribution. We write (a1c, fru)′ ∼ N (µ,Σ) and recall that the
joint density is characterised by the expectation µ = (E(a1c),E(fru))

′ ∈ R2

and the positive definite covariance matrix with parameters σ2
1 = Var(a1c),

σ2
2 = Var(fru), and ρ = Cor(a1c, fru). Following Klein et al. (2013b) we

do not only explain the expectations µ1, µ2 of the marginal distributions of
a1c and fru as functions of covariates as it is for instance done in seemingly
unrelated regression, but also allow the standard errors and the correlation
parameters to depend on covariates. Furthermore, we allow for a flexible
modelling of continuous covariates to overcome the restrictions of linear
predictors. This means that each parameter of the distribution is linked to
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an additive predictor structure (Fahrmeir, Kneib, and Lang 2004) formed
of covariates as explained below. To ensure possible parameter space re-
strictions, we choose appropriate link functions and end up with the five
predictor equations

ηµ1

i = µ1,i, ηµ2

i = µ2,i, ησ1
i = log(σ1,i), ησ2

i = log(σ2,i), ηρi =
ρi√

1− ρ2
i

where the corresponding parameter is denoted in the exponent of the pre-
dictor. Effects have been selected based on the Deviance Information Cri-
terion (DIC) in combination with expert knowledge from previous studies:

ηµdi = βµd0 +renal iβ
µd

1 +hepiβ
µd

2 +f µd

1 (agei)+f µd

2 (glui)+f µd

3 (albi)+f µd

4 (mcv i)

ησki = βσk0 + fσk1 (glui), ηρi = βρ0 + f ρ1 (mcv i),

d = 1, 2. Dropping the parameter index for simplicity, the predictors are an
additive composition of an intercept β0 representing the overall level of the
predictor, linear effects xi (renal , hep), and functions fj(zij) reflecting non-
linear effects of continuous covariates zij (age, glu, alb, mvc) with penalised
spline approaches. Our justification for choosing the bivariate Gaussian dis-
tribution is based on normalised quantile residuals. Estimation is performed
with Bayesian inference relying on Markov chain Monte Carlo simulation
techniques and iteratively weighted least squares proposals. Further details
about the approach are given in Klein et al. (2013b).

3 Results

The effects of covariates on expectations, standard errors and correlation
between the responses, can be visually inspected and their functional form
identified in the graphs shown in Figure 1 to 4. (1) Marginal expectations,
Figure 1 and 2. Mean a1c concentrations increase almost linearly with age
while fru concentrations only do so for elderly people (> 60 years). Glucose
(glu) is the main covariate on predicting both a1c and fru concentrations
and the functional form of the effect of glucose levels on both proteins
is similar. mcv concentrations are slightly and inversely associated with
a1c concentrations. Albumin (alb) levels seem not to be associated with
a1c concentrations while the effect of albumin levels on fru is marked, as
expected.
(2) Marginal standard deviations, Figure 3. Variabilities of a1c and fru are
higher at lower and higher glucose levels. A larger variability is expected in
both glycated proteins at higher levels of glucose indicating people with dia-
betes. The high variability in the glycated proteins at lower levels of glucose
could also indicate the presence of people with diabetes being treated with
anti-diabetic drugs and thus presenting low glucose levels when measured.
(3) Correlation, Figure 4. The correlation between both proteins increases
with increasing levels of mcv . Starting from a slightly negative correlation
we estimate a significantly positive correlation between a1c and fru for mcv
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FIGURE 1. Estimated posterior mean effects of age (top-left), glu (top-right),
mcv (bottom-left) and alb (bottom-right) on µa1c together with 95% credible
interval. Effects are centred around zero.

FIGURE 2. Estimated posterior mean effects of age (top-left), glu (top-right),
mcv (bottom-left) and alb (bottom-right) on µfru together with 95% credible
interval. Effects are centred around zero.

in the range of 85-100 f/l. This supports the hypothesis that the glycation
processes are different if these proteins are located inside or outside the red
cells. Thus, clinicians should take into account levels of mcv when control
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FIGURE 3. Estimated marginal standard errors of σa1c (left) and σfru (right) as
a function of glu. Shown are posterior means together with 95% credible interval.

FIGURE 4. Estimated correlation between a1c and fru as a function of mcv .
Shown are posterior means together with 95% credible interval.

and diagnosis of diabetes is based on a1c values.

4 Discussion

In the present study we provide evidence that besides blood glucose other
conditions such as age and albumin concentrations are variables related to
a1c and fru. Furthermore, we find that different mean corpuscular volumes
induce different correlations between a1c and fru. Since concentrations of
a1c are used for diagnosing diabetes these finding could have clinical im-
plications: a1c of patients with lower levels of mcv might be overestimated
while underestimated for patients with higher levels of mcv if the correla-
tions are neglegted.
In future research it will be interesting to incorporate the functional form
of glucose levels with repeated measurements over the day and to further
relax the distributional assumption or to compare the bivariate normal
distribution with other bivariate distributions based on copulas.
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1 Introduction

Based on dental data gathered in a longitudinal oral health study, the
Signal Tandmobielr (ST) study (Vanobbergen et al., 2000), we aim at
assessing the effect of predictors on the time to caries experience (CE) in the
permanent dentition. This motivates our research consisting of developing
a regression model for misclassified correlated (clustered) interval-censored
data since: (i) events on teeth of the same child are dependent, (ii) due to
the setup of the study, the tooth status was assessed yearly and, thus, the
time to CE can only be determined to lie in a given interval of time, and (iii)
several examiners were involved in the study and their caries classification
may not perfectly reflect the tooth’s true condition and, therefore, the
presence/absence of CE can be misdiagnosed.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Misclassified interval-censored data

Let T(i,j) ∈ R+ be the time-to-event (time to CE) for the jth unit (tooth)
of the ith subject (child), i = 1, . . . , N , j = 1, . . . , J . Suppose that the
occurrence of the event is assessed by using a sequence of subject-specific
evaluations. Let 0 < v(i,1) < v(i,2) < · · · < v(i,Ki) < +∞ be the ordered
examination times for the ith subject, i = 1, . . . , N . In a regular interval-
censored data context, the time-to-event T(i,j) is unobserved but is exactly

known to lie in an interval T(i,j) ∈
(
v(i,l(i,j)−1), v(i,l(i,j))

]
obtained from

the sequence of examinations, l(i,j) ∈
{

1, . . . ,Ki + 1
}

, where v(i,0) ≡ 0
and v(i,Ki+1) ≡ +∞. Such data are obtained if it can be assumed that at
each examination, the occurrence of the event is diagnosed by a perfect
procedure with a zero probability of both false positive and false negative
findings. The follow-up of the (i, j)th unit is then typically terminated at
time v(i,l(i,j)) when the event was diagnosed.
In the context of the ST study, or any other study where the occurrence
of the event is determined by a diagnostic test or examination with im-
perfect sensitivity and/or specificity, however, all units are examined for
the occurrence of the event at all examination times. Therefore, the ob-
served data for the (i, j)th unit is a vector of binary variables Y(i,j) =(
Y(i,j,1), . . . , Y(i,j,Ki)

)>
, where Y(i,j,k) indicates (subject to a potential clas-

sification error) whether the event was diagnosed at examination at time
v(i,k) for having experienced the event (Y(i,j,k) = 1) or not (Y(i,j,k) = 0),
k = 1, . . . ,Ki. With perfect classification, the sequence Y(i,j) would always
be monotone in case of a classical non-reversal survival event. Neverthe-
less, this is not necessarily true in our context due to possible misclassifi-

cation of the event status. In the following, set Yi =
(
Y>(i,1), . . . ,Y

>
(i,J)

)>
,

i = 1, . . . , N , which can be characterized as misclassified interval-censored
data for the ith subject.
Finally, we shall assume that for each subject and unit, a p-dimensional de-
sign vector including endogenous covariates is recorded, x(i,j), i = 1, . . . , N ,
j = 1, . . . , J . The main aim here is to develop a regression model for the
event times T(i,j) as a function of covariates x(i,j), where the event times
T(i,j) are observed only through vectors of possibly misclassified binary in-

dicators Y(i,j) of the event status. Finally, let Ti =
(
T(i,1), . . . , T(i,J)

)>
,

i = 1, . . . , N , be the event times of all units of the ith subject. When devel-
oping the model, it should also be taken into account that the elements of
the random vector Ti are not necessarily independent due to the clustering.

3 The misclassification model

With respect to the evaluation of the event status, we shall assume that
its classification is performed at each examination by one of Q different
examiners (Q different diagnostic tests). We denote by ξ(i,k) ∈

{
1, . . . , Q

}
the index of the examiner who performed classification of all units of the ith
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subject at its kth examination at time v(i,k). Values of ξ(i,k), i = 1, . . . , N ,
k = 1, . . . ,Ki, act as covariates of the misclassification model.
Following Garćıa-Zattera et al. (2012), we allow for the fact that differ-
ent examiners may have different misclassification rates and that they can
also vary across different units. In the context of the dental study, this
allows, e.g., for the fact that classification of caries on teeth deeper in
the mouth is more difficult than on teeth closer to the front. Let ηq =(
η(q,1), . . . , η(q,J)

)>
, and αq =

(
α(q,1), . . . , α(q,J)

)>
, q = 1, . . . , Q, be the

vectors containing the unit-specific unknown specificities and sensitivities
of the qth examiner, respectively. That is,

η(q,j) = P
(
Y(i,j,k) = 0

∣∣T(i,j) > v(i,k); ξ(i,k) = q
)
,

α(q,j) = P
(
Y(i,j,k) = 1

∣∣T(i,j) ≤ v(i,k); ξ(i,k) = q
)
,

i = 1, . . . , N , j = 1, . . . , J , k = 1, . . . ,Ki, q = 1, . . . , Q. All specificities,

η =
(
η>1 , . . . , η

>
Q

)>
, and all sensitivities, α =

(
α>1 , . . . , α

>
Q

)>
, are then

the unknown parameters of the misclassification model. A simplified version
of the misclassification model assuming, e.g., η(q,1) = · · · = η(q,J) and
α(q,1) = · · · = α(q,J), for every q = 1, . . . , Q, was also considered.

4 The event times model

A possible way to regress the event times on the covariates, while taking
into account dependence stemming from clustering, is a random-intercept
accelerated failure time (AFT) model

log
(
T(i,j)

)
= x>(i,j)β + bi + ε(i,j), i = 1, . . . , N, j = 1, . . . , J,

where β ∈ Rp is a vector of unknown regression coefficients, b1, . . . , bN are
i.i.d. random variables with density gb, and ε(1,1), . . . , ε(N,J) are i.i.d. ran-
dom variables with density gε, independent of b1, . . . , bN . Let ϕ(·; µ, σ2)
be the density of an N (µ, σ2) distribution. We shall assume that gε(·) =
ϕ(·; 0, σ2

ε), where σ2
ε is an unknown error variance. To make the model ro-

bust against the misspecification of the distribution of the event times T(i,j)

implied by assumed forms of gε and gb, we specify the random-intercept
density gb in a flexible way. To this end we exploit a penalized Gaussian
mixture (see, e.g., Komárek and Lesaffre, 2008), that is,

gb(·) =
1

τ

M∑
l=−M

wl ϕ
( · − µ

τ
; κl, ζ

2
)
, (1)

where κ−M , . . . , κM is a fixed and fine grid of equidistant knots centered at

κ0 = 0, ζ2 is a known basis variance, w =
(
w−M , . . . , wM

)>
is a vector of

unknown positive weights that sum up to one, and µ and τ > 0 are unknown
location and scale parameter, respectively. Following the recommendations
provided by Komárek and Lesaffre (2008), we took M = 15, leading to
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2M + 1 = 31 mixture components, κ−M = −4.5, κM = 4.5, and ζ2 = 0.22.
Note that regularization of estimate of the density (1) is achieved by using
a penalty for the mixture weights w in a mood of penalized smoothing.
In summary, the unknown parameters of the event times model are θ =(
β>, w>, µ, τ2, σ2

ε

)>
.

5 Observed data model and inferential procedure

By considering standard conditional independence assumptions, the mis-
classification model and the event times model induce a marginal model for
observed data, which are the sequences Y1, . . . ,YN of binary indicators of
possibly misclassified event statuses of all units of all subjects. Unknown
parameters of the marginal model are the specificities η and sensitivities α
from the misclassification model, and the parameters θ from the event times
model. Following the results obtained by Garćıa-Zattera et al. (2012), we
consider the following restrictions on the misclassification parameter space
to avoid identification problems: η(q,j) + α(q,j) > 1 for all q = 1, . . . , Q,
j = 1, . . . , J .
The inferential procedure has been implemented in a Bayesian framework
using the Monte Carlo Markov chain (MCMC) methods. The software im-
plementation is available in recent versions of the R (R Core Team, 2014)
contributed package bayesSurv (≥2.3).

6 Simulation study

To illustrate the behavior of the proposed model and to asses the effect of
the misclassification process, we conducted a simulation study under the
scenarios which mimic to a certain extent the ST data. The time-to-event
data were simulated using the following random intercept AFT model

log
(
T(i,j)

)
= β0 + β1x(i,j,1) + β2x(i,j,2) + bi + ε(i,j),

i = 1, . . . , N, j = 1, . . . , 4,

where x(i,j,1)
i.i.d.∼ U(0, 1), x(i,j,2)

i.i.d.∼ Bern(0.5), β0 = 2.00, β1 = 0.20 and

β2 = −0.10, ε(i,j)
i.i.d.∼ N (0, σ2

ε), while considering different values of the
error variance σ2

ε . Furthermore, several settings for the shape of the random
effects distribution were considered. In this paper, we show selected results
for a scenario in which the random effects b1, . . . , bN followed a Gumbel
distribution transformed to have mean zero and variance σ2

b . The variances
σ2
ε and σ2

b were chosen such that the overall variance σ2
b +σ2

ε was constantly
equal to 0.1 and different scenarios corresponding to different proportions
between the random effects and error variability were considered. In this
paper, we show results for settings with ratio σb/σε being 0.5 and 5. Finally,
results for three sample sizes of N = 500, 1000, 2000 will be shown.
The true time-to-event were interval-censored by simulating the “visit”
times for each subject. We considered Ki = 10. The first visit time was
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FIGURE 1. Simulation study, left panel: σb/σε = 0.5, right panel: σb/σε = 5.
First row: true value (dashed line under the solid line), mean across simulations
of the posterior mean (solid line) and the simulation based pointwise 95% confi-
dence band for the marginal survival function with x(i,j,1) = 0.5, x(i,j,2) = 0 and
N = 500. Second and the third row: boxplots across simulations of the posterior
means of parameters β1 = 0.20 and η(1,1) = 0.70.
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randomly chosen from an N (3.0, 0.22) distribution. The time between the
consecutive visits was drawn from an N (1.0, 0.12) distribution. We assume
that the assessment of the occurrence of the event was performed by Q =
5 examiners, allocated randomly to each subject and visit. Unit-specific
sensitivity and specificity parameters were assumed ranging from 0.60 to
0.96.
For each scenario, 500 replicates were generated. Selected results illustrat-
ing usefulness of our approach are shown on Figure 1. It shows, for the
lowest considered sample size of N = 500, the mean across simulations of
the posterior mean of the marginal (random effects being integrated out)
survival function for a particular covariate combinations. It is practically
indistinguishable from the true survival function. Moreover, the simulation
based pointwise 95% confidence band becomes even narrower when the
sample size increases (not shown here) suggesting that despite the misclas-
sification we are able to estimate the survival function not only unbiasedly
but also consistently. The remaining part of Figure 1 suggests that also
the model parameters from both the event times and the misclassification
model are being estimated unbiasedly and consistently by the posterior
means of the Bayesian model.
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Abstract: Shares of available resources, such as land resources, at a fine meshed
grid of 1km*1km are required as a priori information for i) managing these re-
sources at a local level by disaggregating the resource scenarios to a spatial ex-
plicit scale; ii) allowing the development of local environmental indicators, many
of which depend on the local combination of land uses and environmental condi-
tions. In this paper, we develop a Bayesian multinomial logit model for disaggre-
gating the observations of shares, available only at a large scale (NUTS3 regions).
The model runs at a fine scale, but, is aggregated at a large scale to integrate the
observations of shares. Results of land use shares in EU countries are interesting
for main crops.

Keywords: Bayesian modeling; disaggregating of shares; Prediction of land use.

1 Methods and developments

1.1 Resources share model at a fine scale

We consider a share model at a fine meshed grid (local level: h), which
is characterized by the explanatory variables Xh and by its total resource
Ah such as total land to be shared. The local shares model is a classical
multinomial logit model. If Y is the vector of L possible and exclusive uses
of the resource Ah and Xh is the vector of d independent variables; the
share model (Sh,l) for each category of resource’ use l is:

Sh,l =
exp(βT

l xh)∑L
l=1 exp(βT

l xh)
×Ah , (1)

with βl the model parameters for the category of resource’ use l.
The Multinomial Logit model (MNL) in equation (1), can be represented
as the random utility model RUM (McFadden , 1974; Fruhwirth-Schmatter

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



180 Bayesian spatial disaggregating of shares

and Fruhwirth, 2012). By choosing a baseline category, the difference ran-
dom utility model dRUM is given as:

Zh = Xhβ + εh , (2)

where Zh = [Zh,1, . . . , Zh,L−1]
T

and Zh,l = log(
Sh,l
Sh,L

) is the logarithm of

the relative proportion of shares with respect to baseline category L. β =[
βT

1 , . . . , β
T

L−1

]T
is a vector of model parameters. Xh = I ⊗ xT

h is a matrix
of input variables. εh is the error terms and each component of εh follows
a standard logistic distribution.
In this paper, to avoid the expensive computational time in order to get
the Bayesian estimates and as the logistic distribution is a special case of
a normal distribution, we assume that the vector of transformed shares Zh
follows:

Zh ∼ N (Xhβ,R) , (3)

with R = (Ri,i = π2/3, Ri,j|i6=j = π2/6)

1.2 Likelihood of the model and posterior distributions

The relative proportions of resource shares (exp(Zh)) follows a multivari-
ate lognormal distribution and the geometric mean of unknown shares
(exp(Zh)) over all the fine scale (h) within a given large scale (NUTS2)
follows a multivariate lognormal distribution if we assume independence
between Zh. We use the geometric mean as we are working with relative
proportions and as it allows for getting an analytic likelihood. Formally, if
Yn = [Yn,1, . . . , Yn,L−1]

T
(n = 1, 2, . . . , N) are a vector of the logarithm of

the known relative proportions at a large scale; Xn = 1
Hn

∑Hn
h=1/h∈NUTS2 Xh

and Rn = R/Hn with Hn the number of fine scale (h) within NUTS2, the
general Bayesian linear model (Smith 1973) is defined as follows:

π (yn/β) ∼ N (Xnβ,Rn) (4)

π (β) ∼ N (β0, B0) , (5)

and the conjugate a posteriori distributions follow a multivariate normal
distribution (Smith 1973; Fruhwirth-Schmatter and Fruhwirth, 2012),
π (β/y) ∼ N (β∗, B), with :

β∗ = B

(
B−1

0 β0 +

N∑
n=1

X T

nR
−1
n yn

)
(6)

B =

(
B−1

0 +

N∑
n=1

X ′nR−1
n Xn

)−1

(7)

2 Application to Land use shares in EU countries

We apply the share model to disaggregate the crop shares from the ad-
ministrative levels (NUTS2/3) to a local level or Homogenous Spatial Unit
(HSU: h). The HSU is a spatial unit at a fine meshed grid, being constructed
from 1km x 1km pixel.
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2.1 Explanatory variables: (X)

To better discriminate all the land use within a HSU, we choose the bio-
physical variables used during the process of delineating the HSUs such as
the soil texture, organic content, sand, and clay: the relief (slope and alti-
tude); the meteorological parameters (annual rainfall, sum of temperature
and vegetation period); land cover classes (CORINE). To these variables,
we add the prices of main crops and meats such as wheat, barley, rape
seeds, potatoes, milk, beef and pork as the prices of main crops and meats
can impact the decision of farmers.

2.2 Available land use shares

The Farm Structure Survey (FSS) of 2010, conducted by EUROSTAT pro-
vides the observations of land use areas or shares at an administrative
level (called NUTS3) for some European countries. The FSS data gives
the distribution of agricultural land use shares within each NUTS2 region.
Forest data comes from the European Forest cover maps and is available
at 25m×25m grid.

2.3 Choice of prior distributions

To have a conjugate posterior distribution, we assume that the prior distri-
butions of the model parameters follow a multivariate normal distribution.
The mean and the covariance matrix are previously estimated by using the
multinomial logit regression with the LUCAS survey data of land use/cover
(Lamboni et al., 2013). LUCAS survey is a point-based observation and it
gives at any sample point, the land cover found.

2.4 Results

To assess the accuracy of the Land Share Model, used to predict the crop
shares at HSU level Figure 1 shows the QQ-plots of aggregated predictions
of land share versus observations at NUTS3 level. As the forest areas are
already available at a HSU level, we have constrained the predictions of
forest shares to match with the observations. Moreover, we have left out
the land use with zero as share at the large scale or NUTS3.
The predictions of the most frequent crops with available observations are
very interesting. For non-frequent crops such as flower (FLOW), nurseries
(NURS), tobacco (TOBA), there is a need to add additional constraints
so that the predictions will be consistent with the observation at NUST3
level.

3 Conclusion

In this paper, we investigate the predictions of crop shares over the new
Homogeneous Spatial Unit (HSU) by using the Land share Model (LSM).
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FIGURE 1. QQ-plots of aggregated predictions of shares at NUTS3 in France (in
log10). On the figure, the value of log10(0) (constrained prediction) is represented
by −2 to avoid the concentration of points in one side.
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Bayesian modelling helps for integrating the observations of land use avail-
able at a large scale (NUTS3) and the point-based observations (LUCAS
survey data) via a local share model. The predicted crop shares at a fine
scale are reasonable and interesting for frequent crops. The constrained,
predicted shares will be integrated into CAPRI system (Common Agri-
cultural Policy Regionalized Impact) for deriving environmental indicators
and for linking different models.

References

Fruhwirth-S., S. and Fruhwirth, R. (2012). Bayesian inference in the multino-
mial logit model. Austrian Journal of Statistics, 41, 27 – 43.

Lamboni M., Koeble R., Leip A. (2013). Prediction of crop land shares for envi-
ronmental impact assessment over EU. In: Proceedings of ICAS VI Con-
ference, Brazil.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviours.
In: P. Zarembka (Ed), Frontiers of Econometrics New York: Academic, pp.
105 – 142.

Smith A. F. (1973). General Bayesian linear model. Journal of the Royal Statis-

tical Society, 35, 67 – 75.





Joint modeling of a multilevel factor analytic
model and a multilevel covariance regression
model

Emmanuel Lesaffre1 2, Baoyue Li1, Luk Bruyneel3

1 Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands
2 L-Biostat, Department of Public Health and Primary Care, KU Leuven, Leu-

ven, Belgium
3 Centre for Health Services and Nursing Research, Department of Public Health

and Primary Care, KU Leuven, Leuven, Belgium

E-mail for correspondence: E.Lesaffre@erasmusmc.nl

Abstract: We propose a novel modeling approach that could model both the
mean structure and the covariance structure with a mixed effects model in a
multivariate context. We call this multilevel covariance regression (MCR) model.
When the dimension of the response is high, a joint model of a multilevel factor
analytic (MFA) model and an MCR model is then proposed.
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1 Introduction

A traditional multilevel regression model assumes a constant residual vari-
ance (homoscedasticity) after adjusting for fixed and random effects. When
homoscedasticity does not hold, the variance may depend on covariates
and even random effects. Modeling this on top of a traditional multilevel
regression model could be quite challenging, and even more challenging
for a covariance matrix in the case of a multivariate response. We pro-
pose a novel modeling approach that extends the multivariate multilevel
regression model in the following two ways: 1) the covariance matrix of the
multivariate response is modeled with both fixed and random effects, which
is called the multilevel covariance regression (MCR) model (Li et al., 2013),
2) for a high-dimensional multivariate response, we propose to combine a
multilevel factor analytic (MFA) model with the MCR model by using the
factor scores as the multiple responses in the MCR model, resulting in the
multilevel higher-order factor (MHOF) model (Li et al., 2014).

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Proposed models

A p-variate 2-level MCR model has the following form:

zij = Bxij + uj + δij ,

δij = λijFij + εij , λij = B∗x∗ij + u∗j ,

with

uj ∼ N(0,Σu), u∗j ∼ N(0,Σ∗u),

Fij ∼ N(0, 1), εij ∼ N(0,Σε),

where the p-variate response zij is modeled using fixed effects Bxij and
random effects uj , and the residual δij is further modelled with a factor
analytic model having a single factor Fij with a structured factor loading
λij . The implied covariance matrix of the response, constructed by the
factor model, therefore depends on both fixed and random effects.
Our proposed MHOF model further replaces the response zij in an MCR
model with factor scores from an MFA model, and estimates both models
simultaneously. A 2-level MFA model is:

yij = µ+ bj +Lzij + εFA,

with
bj ∼ N(0,Σbu), εFAij ∼ N(0, diag(σ2

1 , σ
2
2 , ..., σ

2
q )),

where the observed response yij has q dimensions with q � p. The p-
dimensional common factor zij is further used as the response in an MCR
model. In this way, the MHOF model can handle high-dimensional re-
sponses.

3 RN4CAST data set and research questions

We first applied the MCR model to data from the RN4CAST (Sermeus et
al. 2011) FP7 project which involves 33,731 registered nurses in 2,169 nurs-
ing units in 486 hospitals in 12 European countries. The MHOF model was
applied to the Belgium part of the project. As response we have taken in the
first analysis the historically derived three burnout dimensions (Maslach
and Jackson, 1981), while the MHOF model is based on the raw data,
i.e. the responses to the 22-item questionnaire. The three burnout dimen-
sions are emotional exhaustion (EE), depersonalization (DP) and personal
accomplishment (PA). Applying the MHOF model to burnout could ad-
dress the following questions simultaneously: 1) is the burnout structure
the same as the commonly used structure by Maslach and Jackson? 2) how
much variation of burnout could be explained by the level-specific fixed
and random effects? 3) do the variances and correlations among burnout
stay constant across level-specific characteristics and units at each level?
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FIGURE 1. (co)Variances (upper triangle) and correlations (lower triangle) with
working experience at the nurse level.

4 Computational aspects

We opted for the Bayesian approach as our estimating method for the
MCR and MHOF models. The JAGS (just another Gibbs sampler) MCMC
(Markov chain Monte Carlo) program was used through the R package
rjags. Most parameters were assigned a non-informative prior except for
the fixed and random effects in the factor loadings in the MCR part. These
parameters were assigned a mixture prior respectively to overcome the
”flipping states” issue in Bayesian context. Model comparison was done
using the pseudo Bayes factor (PSBF).

5 Simulation study

A limited simulation study was performed that compared the parameters
estimates from the MHOF model and the two-stage model, i.e. first run an
MFA model and then model the factor scores with an MCR model.
Compared with the MHOF model, the two-stage model is less computa-
tionally intensive, but it estimates the regression coefficients biasedly in
both the mean structure and the covariance structure, as well as some
variance/covariance parameters of the random effects.

6 Main results

For the mean structure of the three-dimensional burnout response, after
taking into account the multilevel structure, several covariates at each level
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are found relevant. Fulltime nurses suffer more from burnout than part-time
nurses, and more experienced nurses suffer less from burnout. At higher lev-
els (nursing unit and hospital levels), better work environment and heavier
work load within a nursing unit/hospital result in less burnout nurses.
The covariance structure provides additional insights into the burnout phe-
nomenon. Findings suggest a significantly larger variation in personal ac-
complishment for experienced nurses (see Figure 1). The justification of
including random effects implies that the covariances and the correlations
among burnout are different across hospitals and nursing units. The fixed
effects reflect the temporal or demographical measurement of the varia-
tion of burnout, while the random effects reflect the spatial or geographical
measurement of the variation of burnout.

7 Conclusions

The proposed MHOF model provides a way to directly assess the het-
eroscedasticity of the multi-dimensional lower-order factor scores in a com-
plex situation. This modeling can reveal some ”hidden” information that
may have never been obtained through modeling only the mean of the mea-
surements, thus could provide valuable information for the administration
of the hospitals and nursing units in nursing affairs. Our methods apply
equally well to numerous research topics in psychology, sociology and po-
litical science, to name a few, which often deal with multilevel research
designs, latent constructs, and an interest in covariance regression.
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Abstract: If Y1 ∼ N (µ, σ2) and Y2 ∼ Exp(ν), with Y1 independent of Y2,
then their sum Y = Y1 + Y2 follows an Exponentially Modified Gaussian (EMG)
distribution. In many applications it is of interest to model the two components
separately, in order to investigate their (possibly) different important predictors.
We show how this can be done through a GAMLSS with EMG response, and
apply this separate regression modelling strategy to a dataset on lung function
variables from the SAPALDIA cohort study.

Keywords: Exponentially Modified Gaussian distribution; GAMLSS; Deconvo-
lution.

1 Introduction

The sum of two independent r.v.’s, one Gaussian and one Exponential,
follows an Exponentially Modified Gaussian (EMG) distribution. Such a
distribution has found interesting applications in some specific areas: mod-
elling inter-mitotic time in genetics (Golubev, 2009), response times in
experimental psychology (Palmer et al., 2011), peaks in chromatography,
but seems to have received very little attention in biostatistics. We show
in this paper how to fit separate regression models to the two components
of an EMG response through a GAMLSS, and apply this separate regres-
sion modelling strategy to one of the lung function variables which arise in
spirometry.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
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2 The Exponentially Modified Gaussian distribution

If Y1 ∼ N (µ, σ2) and Y2 ∼ Exp(ν), where ν = E(Y2), with Y1 independent
of Y2, then their sum Y = Y1 + Y2 follows an Exponentially Modified
Gaussian (EMG) distribution, and one can then write Y ∼ EMG(µ, σ, ν).
By convolution, the p.d.f. of Y ∼ EMG(µ, σ, ν) can be shown to be:

fY (y;µ, σ, ν) =
1

2ν
exp

[
1

2ν
(2µ+

σ2

ν
− 2y)

]
erfc

(
µ+ σ2

ν − y√
2σ

)
(1)

where erfc(z) = 1− erf(z) = 2√
π

∫∞
z

exp(−t2)dt is the complementary error

function. Exploiting the known relation: erfc(
z√
2

) = 2Φ(−z), where Φ(·)

is the Standard Normal distribution function, (1) can be written in the
following form, perhaps more familiar to statisticians:

fY (y;µ, σ, ν) =
1

ν
exp

(
µ− y
ν

+
σ2

2ν2

)
Φ

(
y − µ
σ
− σ

ν

)
(2)

This is the parameterisation used by the R library gamlss (Rigby and
Stasinopoulos, 2007) and adopted in this paper. The following expressions
for the first four moments can be easily derived:

E[Y ] = µ+ ν; V ar[Y ] = σ2 + ν2;

Sk[Y ] = 2

(
1 +

σ2

ν2

)− 3
2

; Ku[Y ] = 6

(
1 +

σ2

ν2

)−2

.

Our interest in the EMG distribution arose in the study of lung func-
tion variables, where it accommodates in a flexible way both the (pos-
itive) skewness and the ”peakedness” which characterise such variables.
This flexibility, along with the possibility of a mechanistic interpretation
of its derivation as the convolution of a Gaussian and an Exponential dis-
tribution, have motivated our preference for this distribution over other
well-fitting, but somewhat more complex and less interpretable, positively
skewed distributions, in analysing the dataset presented in Sec. 4.

3 Regression models for the Gaussian and
Exponential components of an EMG response

Suppose a response variable Y is known to be the sum of two unobserv-
able components Y1, Y2, which are of substantive interest, and that two
GLMs: M1 : E[Y1] = h1(Xβ);V ar[Y1] = φ1V (E[Y1]) and M2 : E[Y2] =
h2(Zγ);V ar[Y2] = φ2V (E[Y2]) are set up for modelling the effects of ex-
planatory variablesX and Z on the expected values of the two components;
the model matricesX and Z can be formed by the same, by partly different
or by completely separated explanatory variables.
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Clearly, in general, if only the ”convoluted response variable” Y = Y1 + Y2

is available, there will be serious problems of identifiability and estimability
of the parameters (β, φ1) and (γ, φ2) in the two separate GLMs, depending
on the degree of separation and orthogonality of X and Z. This difficulty
parallels the complexity of deconvolving the distribution of the sum of two
r.v.’s.
From this point of view, an EMG response Y is a fortunate exception. As
outlined above, the location parameter of the Gaussian component enters
only in the expression of E[Y ], while, for fixed σ, the higher moments
depend only on the location parameter ν of the Exponential component.
This makes it possible to specify two separate regression models for the
vectors µ and ν, assuming σ unknown but fixed:

y ∼ EMG(µ, σ,ν) (3)

µ = hµ(Xβ) (4)

ν = hν(Zγ) (5)

and to consider (3), (4) and (5) as a GAMLSS with EMG response distri-
bution (Rigby, Stasinopoulos, 2005).

4 Application to respiratory physiology

SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Dis-
eases In Adults) is a large population-based cohort study, initiated in 1991
in eight areas of Switzerland. Participants were between 18 and 60 years
old at recruitment. They were re-examined in 2002 and 2010/11. Besides
responding to a computer-based interview with detailed questions on res-
piratory health and allergies, lifestyle, socio-demographic characteristics,
home and workplace environment, study participants also underwent sev-
eral examinations, including lung function testing. Methodological details
are provided in Martin et al. (1997). SAPALDIA spirometry data have been
used to derive sex -, age - and height - based reference equations for lung
function variables in adults (Brändli et al., 1996 and 2000). Since the focus
of these analyses was on modeling percentile functions, quantile regres-
sion methods were applied. Later, with the advent of GAMLSS modelling
and related software, it became possible to fit models with skewness and
kurtosis parameters. The Global Lung Function Initiative used this new
methodological framework to develop a global set of spirometric reference
equations for adults and children taking into account differences according
to geography and race (Cole et al., 2009, Quanjer et al., 2012).
Two fundamental outcome variables of spirometry (i.e., lung function test-
ing) are FV C, the Forced Vital Capacity of the lung, and FEV1, the Forced
Expiratory Volume in the 1st second. We focus in this paper on the differ-
ence FEVa1 = FV C−FEV1, where FEVa1 stands for ”Forced Expiratory
Volume after the 1st second”.
An extensive exploratory analysis on FEVa1 has shown a surprisingly good
fit of the EMG distribution to the observed data. It is not yet clear whether
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this reflects a precise causal mechanism, related to the physiology of res-
piration. In any case, it is of interest to try to find out the determinants
of the two components, the Gaussian and the Exponential, through the
approach outlined in Sec. 3.
For the purpose of illustration, we fitted the GAMLSS defined in (3),
(4) and (5) to the sub-sample of male non-smokers in the first (1991)
SAPALDIA survey; in keeping with the default options in gamlss, we chose
hµ = identity and hν = log. The results of the final model, chosen through
a stepwise procedure based on AIC, are reported in Table 1. Inspection of
the table shows that the individual characteristics (Age, Height and BMI)
combine in different ways to determine the Gaussian and Exponential com-
ponents. In particular, BMI has a strong, both linear and quadratic, effect
on the Gaussian component, along with an interaction with Age, but no
significant effect on the Exponential component.

TABLE 1. Parameter estimates for the EMG model

Estimate Std. Error t value p-value

Regression model for the Gaussian component
Intercept -13.2116 3.14420 -4.20 0.00002
Age 0.0503 0.00586 8.58 0.00000
Height 0.1118 0.03596 3.10 0.00189
BMI 0.1288 0.02031 6.34 0.00000
Age2 -0.0001 0.00005 -3.42 0.00063
Height2 -0.0002 0.00010 -2.69 0.00718
BMI2 -0.0013 0.00042 -3.27 0.00105
Age:BMI -0.0010 0.00024 -4.29 0.00001

log(σ) -1.231 0.02141

Regression model for the Exponential component
Intercept -5.8710 0.82903 -7.08 0.00000
Age -0.0368 0.01581 -2.33 0.01978
Height 0.0290 0.00430 6.74 0.00000
Age2 0.0005 0.00019 2.80 0.00500

An insightful way of presenting this model is to plot the two estimated
component densities for a subject with a given combination of explanatory
variables. As an example, in Figure 1 the plots on the same row have the
same combination of Age and Height (top row: Age=20 yrs., Height=175
cm.; bottom row: Age=60 yrs., Height= 195 cm.), and therefore they have
the same Exponential component. The left and right plot in each row dif-
fer only by BMI (left panel: BMI=24 kg/m2, right panel=48 kg/m2), and
therefore their comparison helps to visualise the role of BMI, which affects
only the Gaussian component. From inspection of these plots, it is evident
how older and taller people have a ”flatter” (i.e. with larger mean) Expo-
nential component, and also a more marked effect of BMI on reducing the
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mean of the Gaussian component.
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FIGURE 1. Estimated Gaussian and Exponential components for four exemplary
individuals

The interplay of Age, Height and BMI in determining the two component
distributions can be appreciated in Figure 2, where we report the estimated
Gaussian and Exponential components for the two ”extreme” individuals
(i.e. having the two largest and smallest combinations of estimates (µ̂, ν̂))
in our sample: in the left panel, a 51 years old man 197 cm. tall and with
BMI = 27.1 kg/m2; in the right panel, a 21 years old man, 164 cm. tall
and with BMI = 19.3 kg/m2.
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FIGURE 2. Estimated Gaussian and Exponential components for two ”extreme”
individuals

The combined effect of the three variables yields larger values of FEVa1 in
the older, taller and overweight subject in the left panel compared to the
younger, shorter and normal weight subject in the right panel: this is the
consequence of both the Exponential and the Gaussian components being
shifted to the right for the latter compared to the former. In interpreting



194 EMG response modelling

these findings, one should keep in mind that a large value of the
FEVa1

FEV1
ratio is an indicator of obstructed expiration.

References
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1 Introduction

Rating data are very common in several fields where the individuals’ per-
ceptions and attitudes are often investigated by means of Likert-type scales
or, more generally, questionnaires with several questions whose possible re-
sponses are ordered. Among the methods and techniques proposed in the
literature to model rating data (see for example Agresti, 2013; Tutz, 2012),
an interesting proposal is given by CUB models (Piccolo, 2003; D’Elia and
Piccolo, 2005). Several papers concerning CUB inferential issues, identifi-
ability problems, fitting measures, computational strategies and software
routines have been published (see Iannario and Piccolo, 2012, 2014 and
the references therein). In addition, CUB models have been extended in
several directions (for example, Iannario, 2012a,b; Grilli et al., 2013; Man-
isera and Zuccolotto, 2014b; Piccolo, 2014) and applied in different fields
(for example, Iannario et al., 2012). A generalization of CUB models is
the so-called Nonlinear CUB (NLCUB; Manisera and Zuccolotto, 2014a),
a new class of models recently proposed in order to take account of the
categorical nature of the rating data. While CUB models imply that the
response categories are equally spaced in the respondents’ mind, NLCUB
can address their (possible) unequal spacing, that is a situation where re-
spondents, in their unconscious search for the “right” answer, find it easier
to move, for example, from rating 1 to 2 than from rating 4 to 5. This

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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corresponds to the concept of “nonlinearity” introduced by NLCUB mo-
dels, defined as the nonconstantness of the transition probabilities (that is
the probabilities to move from one rating to the next one). Unlike CUB,
NLCUB can be used to model rating data when the transition probabilities
are not constant. Simulation studies and real data analyses (Manisera and
Zuccolotto, 2014a) show promising results that encourage further research.
The aim of this contribution is to present the functioning and some features
of the NLCUB models by means of an application to real data coming
from the Eurobarometer survey and concerned with the European citizens’
perceptions about economy.
The paper is organized as follows: in Section 2 we describe the basic features
of CUB models and the new class of NLCUB models. In Section 3 we show
the results of the application and draw the main conclusions.

2 CUB and Nonlinear CUB models

CUB models have been introduced in the literature (Piccolo, 2003; D’Elia
and Piccolo, 2005) to analyse ordinal data and fit into the latent variable
framework. With CUB, rating or ranking data are modelled by a mixture
of a Uniform and a Shifted Binomial random variables: the observed rating
r (r = 1, · · · ,m) is a realization of the discrete random variable R with
probability distribution

Pr{R = r|θ} = πPr{V (m, ξ) = r}+(1−π)P{U(m) = r} r = 1, 2, . . . ,m

with θ = (π, ξ)′, π ∈ (0, 1], ξ ∈ [0, 1]. For a given m, V (m, ξ) is a Shifted
Binomial random variable, with trial parameter m and success probability
1− ξ, modelling the feeling component of a decision process, and U(m) is
a discrete Uniform random variable defined over the support {1, . . . ,m},
aimed to model the uncertainty component. CUB models are identifiable
for m > 3. In terms of interpretability, 1 − ξ is the feeling parameter and
measures the agreement with the object being evaluated, while 1−π is the
uncertainty parameter and measures the intrinsic uncertainty in choosing
the ordinal response.
Nonlinear CUB models (NLCUB) are a generalization of CUB introduced
by Manisera and Zuccolotto (2014a). With NLCUB, the discrete random
variable R generating the observed rating r has a probability distribution
that depends on a parameter T (T ≥ m− 1) and is given by

Pr{R = r|θ} = π
∑

y∈l−1(r)

Pr{V (T + 1, ξ) = y}+ (1− π)P{U(m) = r}

where l is a function mapping from (1, · · · , T+1) into (1, · · · ,m). In detail,
l is defined as

l(y) =


1 if y ∈ [y11, . . . , yg11]
2 if y ∈ [y12, . . . , yg22]
...

...
...

m if y ∈ [y1m, . . . , ygmm]
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where yhs is the h-th element of l−1(s), and

(y11, . . . , yg11, y12, . . . , yg22, . . . , y1m, . . . , ygmm) = (1, · · · , T + 1).

We denote with gs = |l−1(s)|, where | · | denotes the cardinality of a set,
the number of “latent” values to which rating s corresponds according to
l. The values g1, · · · , gm univocally determine the l function and can be
considered as parameters of the model. We have T = g1 + · · ·+ gm − 1.
When T = m − 1 and gs = 1 for all s = 1, · · · ,m, then the proposed
model collapses to the classical CUB. In Manisera and Zuccolotto (2014a)
the NLCUB formulation is derived as a special case of a general framework
describing the Decision Process (DP) that drives individuals’ responses
to questions with ordered response levels. In this general model, the DP is
composed of two different approaches, which, borrowing the CUB terminol-
ogy, are called feeling and uncertainty approach, respectively. The feeling
approach consists of a step-by-step reasoning, which proceeds through T
consecutive steps and is called feeling path. At each step, an elementary
judgment is given. The last rating of the feeling path results from these
elementary judgments that are summarized and transformed into a Likert-
scaled rating. The uncertainty approach consists of a random judgment
that can be given by an uncertain respondent that hesitates in choosing
the ordinal response, due to a variety of reasons. In the end, the expressed
rating can derive from the feeling or the uncertainty approach with given
probabilities. Some existing statistical models can be viewed as special cases
of this general framework.
Due to comparability issues, the feeling parameter in NLCUB is given by
the expected number µ of one-rating-point increments during the feeling
path, while, 1−π still is the uncertainty parameter. An interesting feature
of the NLCUB model is the possibility to express the so-called transition
probabilities (i.e. the probability of moving to the next rating at the next
step of the feeling path), which describe the state of mind of the respon-
dents about the response scale used to express judgments in the feeling
path. Transition probabilities account for the above mentioned unequally
spacing between response categories, in the sense that when the probability
of moving, say, from rating 1 to 2 is higher than that from rating 4 to 5,
then ratings 1 and 2 can be interpreted as “closer” than ratings 4 and 5
in the respondents’ minds. For ease of interpretation, the average transi-
tion probabilities, obtained averaging over the steps, are generally used.
Transition probabilities can be transformed, by means of a proper func-
tion, into “perceived distances” between two consecutive ratings and used
for constructing the so-called transition plot, a graphical representation of
the spacing existing between rating categories. A linear transition plot sug-
gests that the ratings are perceived as equally-spaced in the respondents’
mind (all the transition probabilities are equal) while a nonlinear transi-
tion plot accounts for unequally-spaced perceived ratings. Details about
the parameter estimation of NLCUB models, interesting insights about the
behaviour of this new class of models, suggestions on the future theoret-
ical developments and some applications are in Manisera and Zuccolotto
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FIGURE 1. Observed relative frequencies vs NLCUB fitted probabilities, Stan-
dard Eurobarometer 78 (QA3.1), Germany (top-left) Greece (top-right), Hungary
(bottom-left), Italy (bottom-right).

(2014a) and the references therein. R routines for estimation and graphical
representations of NLCUB models are freely available upon request to the
authors.

3 Case study and conclusions

This section describes a case study dealing with real data coming from the
wave 78.1 of Eurobarometer, a sample survey of the European Commis-
sion carried out in the 27 EU Member States (European Commission, 2013
- http://ec.europa.eu/public opinion/archives/eb/eb78/eb78 en.htm). Due
to space constraints, the results here shown only focus on the responses
given to one question (QA3.1: “How would you judge the current situation
of your national economy?”, with possible responses given by “very bad”,
“rather bad”, “rather good” and “very good”) for four selected countries
(Germany, DE; Greece, EL; Hungary, HU; Italy, IT). Figure 1 shows the ob-
served relative frequencies and the corresponding NLCUB fitted probabili-
ties. In all the cases, the NLCUB model almost perfectly fits the observed
frequencies.
On the whole, all the respondents from the four considered countries show
a very low uncertainty (1 − π is 0.06 for Germany and 0.01 for Greece,
Hungary and Italy), while some differences can be observed for the feeling
parameters µ (in this case µ ∈ [0, 3]): Greeks are the most pessimistic about
their national economy (µ=0.19), followed by Italians (µ=0.60) and Hun-
garians (µ=0.72). Germans, instead, are much more confident (µ=1.85). Fi-
gure 2 shows the transition plots for the four countries. Greece has a linear
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FIGURE 2. Transition plots of the NLCUB models, Standard Eurobarometer
78 (QA3.1), Germany (top-left) Greece (top-right), Hungary (bottom-left), Italy
(bottom-right).

transition plot: in this case, the estimated NLCUB model exactly matches
the linear CUB structure. The other three countries have nonlinear pat-
terns: Germany and Italy are characterized by a decreasing probability of
moving to higher ratings, while this probability is increasing for Hungary.
This means that, in general, for Greek respondents moving, for instance,
from rating 1 to 2 is as hard as from rating 3 to 4. Instead, Germans and
Italians find it easier to move from rating 1 to 2 than from rating 3 to 4.
On the contrary, Hungarians find it harder to move from rating 1 to 2 than
from 3 to 4.
Concluding, this case study shows how NLCUB models allow us to model
rating data resulting from cognitive mechanisms with non-constant tran-
sition probabilities, thus extending the possibilities of application of the
well-known framework of CUB models.
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Abstract: The correct identification of the source of a propagation process is
crucial for research questions in a wide range of research fields: to determine the
epicenter of infectious disease outbreaks, the onset of blackouts in power grids,
the root of computer virus attacks in the Internet, the origin of misinformation
in social networks, or the starting point of the invasion of non-endemic species
in ecology. Here, we consider source determination of train delays in railway sys-
tems, which mimic many-faceted diffusion patterns. Delays can never be entirely
avoided, but their impact has to be kept to a strict minimum. We enhance a
fast and efficient approach for the source identification of propagation processes
on networks, which is structurally quite general and only requires a minimum
data basis. In extensive simulation studies, we investigate the performance in
dependency of time and network node centrality. We examine the robustness of
the approach by the application of different delay management strategies, which
mimic various propagation mechanisms. Finally, we test for performance improve-
ment due to the integration of additional knowledge in the network definition.
Altogether, the source detection framework turns out to be robust for diverse
spatio-temporally evolving processes, which promises the general applicability in
many research fields.

Keywords: Source Detection; Complex Network; Public Transportation.

1 Introduction

Many spreading phenomena, e.g., the transmission of diseases and the prop-
agation of delays in railway networks can be modeled as processes on net-
works. The aim of source detection is to find the starting point of such

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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a propagation process from data about the observed event counts at the
network nodes. With the knowledge of the origin of a propagation process,
one is able to truly combat further spreading. Additionally, the origin is
the basis for the prediction of the propagation process. Therefore, source
detection plays a crucial role in the problem assessment of spreading phe-
nomena.
Thereby, modern propagation patterns are highly complex and irregular.
They can be described best by processes on complex networks. Therefore,
we enhance the network-based approach for source detection by Manitz et
al. (2014), which has been originally developed to reconstruct the epicenter
of food-borne disease outbreaks. As a many-faceted application, we chose
delay propagation in railway networks. Based on a well-defined network,
the application has the advantage that good models for delay propagation
exist. Thus, the spreading of delays can be easily simulated and various
complex diffusion patterns can be mimicked. Hence, delay propagation on
railway networks is a good candidate example to test whether the network-
based approach can be applied for source detection problems other than
the spreading of food-borne diseases.

2 Methods and Data

2.1 Network-Based Source Detection

The approach requires an underlying network, which can be specified as a
collection of nodes k = 1, . . . ,K, which are connected by direct links be-
tween them. When modeling food-borne infectious diseases, the underlying
network represents the transportation routes of contaminated food. Here,
the network is defined by a public transportation system, where nodes rep-
resent railway stations. Two nodes are connected by a link (also called
edge) if there is a track between the corresponding stations, which is used
by a scheduled train.
An appropriate distance d(k, l) is defined for a specific path γkl between all
pairs of nodes k, l = 1, . . . ,K of the network. This will be specified in the
next section. Furthermore, we assume a time-dependent stochastic process
{Xk(t)} on the network nodes characterizing a propagation mechanism in
a time range t = 1, . . . , T . Corresponding observations xk(t) in each node
k are conducted at different time points t = 1, . . . , T to find sequential
pictures of the distribution pattern.
The basic assumption is that propagation phenomena are spreading in a
circular pattern from the correct origin k0. The focal idea of source recon-
struction is testing different source candidates and examine the concen-
tricity of the observed pattern on a minimum shortest-path tree with the
candidate k0 as the root. Thus, given an appropriate distance definition d,
the source can be reconstructed as the median of the observed pattern at
time t, which is obtained by minimizing the expected distance µX(d; k0, t)
from the origin k0 to all other network nodes, i.e.

k̂0(t) ∈ arg min
k0∈K0

µX(d; k0, t), (1)
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where k̂0(t) is from the set of nodes k0 ∈ K0 for which the expected distance

attains the smallest value, i.e. µX(d; k̂0, t) = min
k0∈K0

µX(d; k0, t).

Thereby, the expected distance µX(d; k0, t) can be estimated by the average
distance d(k, k0) from source k0 to all destination nodes k weighted by the
observed number of delays xk(t) in node k until time t. Thus,

µ̂X(d; k0, t) =
1

Nx(t)

K∑
k=1

xk(t) · d(k, k0), (2)

where Nx(t) =
∑
k xk(t) is the total number of delays in the network at

time t.
For the transformation of the irregular diffusion pattern into a typical con-
centric spreading circle, the replacement of the classic geographic distance
by a network-based effective distance is necessary (see Brockmann and Hel-
bing, 2013; Manitz et al., 2014).

2.2 Characteristics of the Railway Network

The public transportation network consists of K = 319 nodes connected by
446 links, which results in a very low link density of 0.009. Only about 1%
of all possible links in a fully connected network are present (see Figure 1).
The average link number to other stations is 2.8 and similar to other PTNs
(e.g., von Ferber et al., 2009). The majority of the stations are stops on a
line (median is 2). The degree distribution is left-skewed, so that there are
a few stations of high importance with a large number of links in various
directions.
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FIGURE 1. Railway network. Nodes are color-coded according to closeness
centrality, which measures the inverse distance of a node to all other nodes in
the network. Network data bases on Public Transportation Network, which is
obtained from the optimization software LinTim (Goerigk et al., 2014), which is
similar to the German high-speed railway network.
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2.3 Train Delay Simulation

Based on a public transportation network (see Section 2.2) we compute
a line concept and a timetable. We generate a set of initial delays, which
model exterior influences such as weather conditions, strikes or construc-
tion work. Those initial delays are then propagated, because of dependen-
cies between the trains due to passenger transfers or track occupation of
subsequent trains. The decision which passenger transfers can be hold and
the sequence of trains running along a track are made according to a pre-
scribed delay management strategy. They allow to remove transfers from
the delayed trains and to switch train orders in order to decrease the im-
pact of delays. Using the LinTim software package (Goerigk et al., 2014)
for executing delay management strategies we are able to generate diverse
propagation mechanisms to mimic various interesting spreading patterns.

3 Results and Conclusions

The simulation results confirm the applicability of the source detection
approach, that suggest that train delay spreading has similar underlying
propagation mechanism as the transmission of infectious diseases. We ob-
serve decreasing source detection performance over time, while the influence
of node centrality is moderate, if regular networks are considered. It can be
also shown that our approach for source detection is extremely robust in
regard to different propagation mechanisms. Furthermore, the incorpora-
tion of additional knowledge in the network definition improves the source
detection performance. However, the unweighted network performs only a
little worse, so that the approach can be recommended even without knowl-
edge for link weighting. The simulation results illustrate the applicability
of the method not only in the area of infectious diseases but also in the
area of train delays.
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and the Simulation Science Center Clausthal/Göttingen.
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Abstract: Mixed effects models are commonly used to analyse longitudinal data,
typically under the assumption that the random effects are Gaussian distributed.
However, this assumption may not always be valid. We consider the specific
departure from normality characterized by multimodality. Such a scenario can
arise if key categorical variables are omitted, or under the situation known as the
mover-stayer scenario. In this case, a subset of the population never changes state
over time, while another subset does. Research has indicated mixed evidence for
the impact of misspecified random effects distribution on inference and predic-
tion. This warrants further study, particularly in the panel survey setting, which
is subject to more variability and non-response than in biomedical settings due
to the collection of self-reported data. Through simulations we comprehensively
investigate the effect of misspecifying random effects arising from a three compo-
nent mixture of Gaussians in a logistic mixed model. We conclude with examples
where misspecifying the random effects distribution has a substantial impact on
interpretation.

Keywords: Generalised linear mixed models; random effects; misspecification;
panel data; mixture distribution

1 Introduction

Generalised linear mixed models (GLMMs) are regularly used to analyse
longitudinal data in health and social sciences. Parameters of interest are
often estimated using maximum likelihood, typically under the assumption
of Gaussian (or normal) distributed random effects with mean zero and
covariance matrix D. However heterogeneity of the random effects may
often occur in practice, particularly if a key categorical variable is omitted
from the model, resulting in a random effects distribution following a finite
mixture of Gaussian distributions (Verbeke and Molenberghs, 2009).

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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Another common situation leading to misspecification of the random ef-
fect distribution is the mover-stayer scenario. In the simplest case of ex-
amining transitions between two states, a subset of the population never
changes states (stayers), while another subset does (movers). In this case,
the random effects may not follow a Gaussian distribution as the stayers
and movers will have considerably different probabilities of being in the
state being modelled. To accommodate the movers and the two groups of
stayers, a more flexible distribution such as a three-component mixture of
Gaussian distributions could capture the inherent heterogeneity.
Evidence regarding the impact of misspecified random effect distributions
on inference and prediction has been mixed (McCulloch and Neuhaus,
2011). Studies have considered assessing misspecification under a variety
of true distributions including two- and three-component mixtures of nor-
mals. However, the impact of invalid assumptions about the random effects
distribution has not been systematically investigated.
The confusion about the effect of misspecification has been further exac-
erbated by the lack of investigation of factors such as non-response and
attrition prevalent in panel survey settings. This is an important area of
study, as surveys are subject to more variability and non-response than in
biomedical settings due to the collection of self-reported data.
We consider the specific departure from normality arising from a three
component mixture of Gaussians in a logistic mixed model. By replicating
the complexities inherent in panel survey data, including attrition, we com-
prehensively investigate the effect of misspecified random effects within the
mover-stayer scenario.

2 Simulation Study

The simulated data were generated from a logistic random intercept model
whereby the random intercepts arise from a three-component Gaussian
mixture model representing the mover-stayer scenario.
The parameters and design matrix were motivated from the results of mod-
elling employment outcomes in the Household and Income Labour Dynamic
in Australia (HILDA) (Wooden and Watson, 2007). The generated data
represents employment status (employed vs. not-employed) of a sample
of 1000 women aged between 30 and 44 at baseline over a period of 11
years. The model includes explanatory variables to adjust for age (X1),
marital status (X2, X3), highest level of education achieved (X4, X5, X6)
and whether the woman has dependent children aged 14 or less (X7). The
corresponding parameter coefficients are denoted β1 to β7, respectively.
The random intercept bi was simulated from a symmetric three compo-
nent mixture of normal distributions with equal mixing proportions and
component variances (σ2

b ),

bi ∼
1

3
N(µ1, σ

2
b ) +

1

3
N(µ2, σ

2
b ) +

1

3
N(µ3, σ

2
b ).
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FIGURE 1. Standardized bias for selected parameter estimators of random inter-
cept logistic model for complete case (CC) and MCAR missingness for increasing
distances of random intercept component means (µ3−µ1) under three component
variance scenarios (σ2

b = 1, 4, 9). Red horizontal solid line at standardized bias=0
and red horizontal dashed lines at standardized bias ± 40 (Burton et al. (2006)).

Nineteen random effect distributions of increasing component mean dis-
tances, each with component variances σ2

b = 1, 2, 4 and 9, were considered.
The different mean combinations for µ1, µ2 and µ3 have a symmetric distri-
bution with mean zero. We consider the case where µ1 = −µ3 and µ2 = 0,
where µ3 ranges from 1 to 10, increasing in increments of 0.5.
Simulations were performed under two missing data scenarios, complete
data (CC) and incomplete data due to attrition. Attrition was assumed to
be generated by the missing completely at random (MCAR) mechanism,
with the same wave-to-wave attrition as observed in HILDA (Table 1).

TABLE 1. Wave-to-wave attrition (%) for main sample in HILDA

Wave
1 2 3 4 5 6 7 8 9 10 11

− 13.2 9.6 8.4 5.6 5.1 5.3 4.8 3.7 3.7 3.5

For each random effect and missing data scenario (152 in total), 100 datasets
were generated and a random intercept logistic model assuming Gaussian
random effects was fitted to each dataset. Performance measures such as
standardized bias, mean square error (MSE) and coverage were used to
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FIGURE 2. Mean square error (MSE) for selected parameter estimators of ran-
dom intercept logistic model for complete case (CC) and MCAR missingness for
increasing distances of random intercept component means (µ3−µ1) under three
component variance scenarios (σ2

b = 1, 4, 9).

assess the sensitivity of the normality assumption on estimating model pa-
rameters under random effects distribution misspecification. Criteria for
acceptable performance were standardized bias within the ± 40 threshold
and coverage rates within 91% and 99% (Burton et al. (2006)). For the
performance measures relating to the random intercept distribution, the
variance estimate of the random intercept was compared to the overall
variance of the three component mixture distribution.

3 Results and Discussion

Figure 1 presents examples of standardized bias for the intercept (β0), age
coefficient (β1) and the random intercept standard deviation estimate (σ)
for component variances σ2

b = 1, 4, 9 and two missing data scenarios (CC
and MCAR). With increasing distance of the random intercept component
means, defined as µ3−µ1, the standardized bias of σ exceed the threshold of
±40 when component mean distance ≥ 4. For the CC scenario, β0 exceeded
40 when component mean distance ≥ 17, and β1 exceeded 40 for component
mean distances ≤ 3 for σ2

b ≤ 4. Results were similar for the MCAR missing
data scenario, with larger component variances resulting in more bias for
β0. Results for the fixed effects coefficients β4, β5, β6 had similar trends to
β0, whilst β2, β3 and β7 showed no substantial bias.
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FIGURE 3. Coverage rates for model based 95% confidence intervals for selected
parameter estimators of random intercept logistic model for complete case (CC)
and MCAR missingness for increasing distances of random intercept component
means (µ3 − µ1) under three component variance scenarios (σ2

b = 1, 4, 9). Red
horizontal solid line at nominal coverage rate= 0.95 and red horizontal dashed
lines at coverage rate=0.91 and 0.99 (Burton et al. (2006)).

The MSE increased as the distance between component means increased,
with large increases occurring for β0 and σ when component mean distances
> 15 (Figure 2). The MSE for the MCAR missing data scenario was larger
than the complete case for all coefficients and all variance scenarios. MSE
was larger for increasing component variances. The MSE for the fixed effects
coefficients β2 to β7 showed similar patterns to β1.
For the complete case scenario coverage rates were close to the nominal rate
of 95% for all parameter estimates with the exception σ2 (Figure 3). For all
component variances, the nominal coverage rates for σ were ≤ 91% when
component mean distance > 5. Nominal coverage rates for the MCAR data
scenario were slightly smaller except for σ. The coverage rates for the fixed
effects coefficients β2 to β7 showed similar patterns to β1, with coverage
rates generally within 91% and 99%. The standardized bias, MSE and
coverage results for σ2

b = 2 were similar to σ2
b = 1.

The simulation study suggests that incorrectly assuming Gaussian random
effects when the true distribution arises from a three component mixture of
Gaussian distributions can impact on inference. Misspecification of the ran-
dom effects distribution can result in seriously biased random effect stan-
dard deviation estimates and substantially low coverage rates. The impact
of misspecification on fixed effect coefficients is minimal with bias experi-
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enced for some coefficients including β0 when random intercepts have large
component means distances, or for small component mean distances such as
β1. The impact of attrition assuming MCAR missingness had little impact
on bias and coverage, though it resulted in larger MSE than the complete
case. Future work will need to consider attrition generated by other missing
data mechanisms and random effects generated from asymmetric mixture
distributions.
In conclusion, this study demonstrates that misspecification of the random
effects distribution in logistic mixed models within the panel survey setting
can seriously impact estimates of the random effect variance, with attrition
having minimal additional impact.
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Abstract: Case reports from infectious disease surveillance with registered lo-
cation and time of infection allow for spatio-temporal point process models of
infectious disease spread. An endemic component describes the baseline risk of
infection driven by population density as well as temporal and exogenous effects.
A second, epidemic component captures interaction between cases and includes
covariate effects on the force of infection. Here we investigate nonparametric es-
timation of spatial as well as temporal interaction using B-splines. Such flexible
formulations disclose the distance-decay and time-course of infectivity in a more
data-driven manner than previously used parametric models.
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1 Introduction

Infectious disease surveillance aims at the timely detection of outbreaks as
well as their prevention and control. Public health authorities routinely col-
lect data on the occurrence of communicable diseases, registering location
and date of infection, and the specific pathogen involved. The case reports
often contain patient characteristics which are potentially associated with
individual infectivity, e.g. the patient’s age, and are ideally supplemented
by lattice data on environmental and socio-demographic factors for spa-
tial regression. Given such surveillance data, spatio-temporal point process
models are a useful tool to estimate the role of individual characteristics
and exogenous factors in shaping disease spread.
Following Held et al. (2005), disease risk is decomposed additively into two
components: An endemic component describes the baseline risk driven by
population density as well as temporal and exogenous effects (e.g., season-
ality, population structure, prevalence of correlated diseases), whereas an

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
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214 Interaction in a spatio-temporal point process of infectious disease spread

observation-driven epidemic component invokes explicit dependence be-
tween cases. Meyer et al. (2012) proposed a spatio-temporal point pro-
cess model with such components, and applied it to 635 cases of invasive
meningococcal disease (IMD) caused by the two most common meningo-
coccal finetypes in Germany,2002–2008. They identified a time trend with
seasonal pattern, and no evidence for an additional (lagged) association
with local waves of influenza. The epidemic component revealed that the
meningococcus of serogroup B was approximately twice as infectious as the
C-type. However, spatial and temporal interaction of cases were modelled
rather naively by assuming a Gaussian distance decay of time-constant in-
fectivity. The former was improved by Meyer and Held (2014), who found
power laws for spatial interaction to outperform previous formulations in
two modelling frameworks for infectious disease surveillance data. In this
paper, we investigate the use of B-splines to estimate interaction in a more
flexible way.

2 Self-exciting spatio-temporal point process model

The spatio-temporal point process model proposed by Meyer et al. (2012) is
designed for time-space-mark data {(ti, si,mi) : i = 1, . . . , n} of dependent
events such as case reports of infectious diseases. It is defined through the
conditional intensity function

λ(t, s) = ν[t][s] ρ[t][s] +
∑
j:tj<t

ηj · g(t− tj) · f(‖s− sj‖) (1)

in a region W 3 s during a period (0, T ] 3 t. The first, endemic component
consists of a log-linear predictor log(ν[t][s]) = β0 + βTz[t][s] with a multi-
plicative offset ρ[t][s], typically the population density. Both the offset and
exogenous covariates in ν[t][s] are given on a spatio-temporal grid, hence
the notation [t][s] for the period containing t in the region covering s. Note
that such a piecewise constant endemic model is equivalent to a Poisson
regression model for the aggregated number of cases on the given grid.
However, with the second, epidemic component the intensity process de-
pends on previously infected individuals and becomes “self-exciting”. The
epidemic force of infection at (t, s) is the superposition of the infection
pressures caused by previously infected individuals. The log-linear predic-
tor log(ηj) = γ0 + γTmj weights infectivity by individual/infection-specific
characteristics mj . Regional-level covariates from the endemic grid can also
be included in ηj , e.g., to model ecological effects on infectivity.
Decreasing infection pressure over space is described by f(x) as a function
of the spatial distance from the infectious source. Meyer et al. (2012) orig-
inally used the Gaussian kernel fG(x) = exp

{
−x2/(2σ2)

}
as a standard

choice. Subsequently, Meyer and Held (2014) showed that the power law

fPL(x) = (x+ σ)−d , (2)
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σ, d > 0, is more appropriate in describing distance decay of infectiv-
ity, which seems to translate from the power-law feature of human travel
(Brockmann et al., 2006). For the time course of infectivity, g(t), both
works simply assumed a constant function over a fixed period.
However, the basic model framework (1) actually allows for arbitrary shapes
with the only requirements that the interaction functions are differentiable
with respect to their parameters, and that g(t) and f2(s) = f(‖s‖) are inte-
grable over (0, T ] and W− sj , respectively. In what follows, we investigate
flexible estimates of spatial and temporal interaction for the IMD data,
retaining the endemic component and ηj from the previous analyses.

3 Spatial interaction
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FIGURE 1. Flexible estimates of spatial interaction vs. the power law. Dashed
lines represent 95% confidence intervals and the bottom “rug” shows the observed
distances of events to their potential sources, i.e., to events of the past 30 days.

The left part of Figure 1 shows results from Meyer and Held (2014) with
fixed g(t) = I(0,30](t). The estimated power law features a pronounced ini-
tial decay of infectivity as well as a heavy tail capturing occasional trans-
missions over large distances. The step function was estimated with six
log-equidistant knots up to an upper-bound range of 100 kilometres. It
suggests an even sharper initial drop but forfeits monotonicity.
A more sophisticated approach of flexible estimation is a log-log B-spline

fB(x) = exp

{
K∑
k=1

αkBk(log(x+ σ))

}
, (3)

where the Bk form a set of suitable basis functions (Fahrmeir et al., 2013,
Section 8.1). The log-log formulation is motivated by the fact that the
power law (2) turns into a simple linear relation on that scale:

log(eγ0 · fPL(x)) = γ0 − d · log(x+ σ) .
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This is also why linear basis functions might be sufficiently flexible, al-
though resulting in non-differentiable joints. The right plot of Figure 1
shows estimates based on a linear and a natural cubic B-spline, respec-
tively, each with 5 degrees of freedom. We fixed σ at the estimate from
the power-law model (σ = 4.60), and the inner knots were again chosen to
be equidistant on the log-scale. The spline fits are very similar and in ac-
cordance with the step function in suggesting an even steeper initial decay
than the power law. With respect to AIC they perform substantially better:
∆AIC = −23.7 for the cubic, and −22.2 for the linear variant, respectively.
Note, however, that computational cost of the B-spline models is more than
10-fold compared to the power law. We have to evaluate basis functions and,
most notably, we cannot simplify the spatial integrals

∫
W−sj f(‖s‖) ds in

the likelihood to a one-dimensional quadrature problem (cf. Meyer and
Held, 2014, Supplement B), but have to rely on product Gauss cubature.

4 Temporal interaction

Temporal interaction g(t) has not been estimated in previous models for
the IMD data, but assumed constant for 30 days from infection, vanishing
to zero afterwards. This reluctance is mainly due to the sparseness of cases:
on average, there are only 4 and 3.6 infections with types B and C, respec-
tively, per month. For illustration, we estimate some alternative temporal
interaction functions g(t) while sticking to the upperbound length of 30
days for the infectious period and employing the spatial power law fPL(x).
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FIGURE 2. Point estimates of various models for temporal interaction. The
bottom “rug” shows the observed time lags between events, where the size cor-
responds to the associated spatial interaction given by the estimated power law
from Figure 1.

A simple parametric model for the time course of infectivity is exponential
decay gE(t) = e−αt, α > 0. The B-spline formulation (3) is also applicable
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for g(t) but using plain rather than log-scale. Figure 2 shows estimates
of temporal interaction assuming either exponential decay, or B-splines of
degrees 0 (step function) or 1 with equidistant knots, or a simplified step
function with a single knot after 2 days. Note that the overall level varies
slightly between the alternatives since a change in g(t) also affects the
estimation of fPL(x) and γ0. One would expect the more flexible estimates
to approach zero for larger time lags. However, considering late infections
close to previously infective sites tends to improve the likelihood, since the
endemic component is only constant within districts. It is thus necessary
to determine a reasonable range of temporal interaction by other means,
e.g., epidemiological considerations.
Concerning model performance, only the simplified one-step function im-
proves upon the previous constant model (∆AIC = −6.4). It suggests a
partial drop of infectivity already after two days, which might correspond
to quarantine actions taken after the appearance of symptoms.

5 Conclusion

We have shown that flexible B-spline formulations of interaction can be
incorporated into a spatio-temporal point process model for infectious dis-
ease surveillance data. They may deliver additional insight into the spatial
dependence structure and the time course of infectivity. It is crucial that
the spatio-temporal resolution of the surveillance data is high enough to
allow for flexible estimation of interaction. The IMD data set used for il-
lustration is rather small and carries little information at small distances,
which is why results should be regarded with caution.
As a common drawback, the regression splines depend on the chosen (bound-
ary) knots and require much more computation time, especially in the spa-
tial domain. A compromise are 0-degree B-splines, which don’t require nu-
merical integration and may serve as a quick initial benchmark for spatial
and temporal interaction.
The application of this and two related model frameworks in R is described
in detail in Meyer et al. (2014).
Software: All calculations have been carried out in the statistical software
environment R 3.0.3. The point process model (1) is implemented in the
R package surveillance as function twinstim(), and a simplified version
of the IMD data is included as data("imdepi") (courtesy of the German
Reference Centre for Meningococci). Spatial integrals in the likelihood have
been evaluated using cubature methods from the R package polyCub (see
Meyer and Held, 2014, Supplement B). The implementation also allows for
other specifications of the interaction functions f and g, respectively.

Acknowledgments: The research is financially supported by the Swiss
National Science Foundation (project 137919: Statistical methods for spatio-
temporal modelling and prediction of infectious diseases).
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Abstract: We propose a random forest approach for functional covariates. The
method is based on partitioning the functions’ domain in intervals and to use the
functions’ mean values across those intervals as predictors in regression (or classi-
fication) trees. This approach appears to be more intuitive to applied researchers
than usual methods for functional data, while also performing very well in terms
of prediction accuracy. We apply our method to Raman spectra of boar meat.

Keywords: Functional Data; Functional Linear Model; Random Forests; Re-
gression Trees; Spectroscopy.

1 Introduction

Functional data occurs frequently in various fields of applications. Many
statistical methods have their functional counterparts tailored to the spe-
cific properties of such data, see for example Ramsay and Silverman (2005).
Many applied researchers, however, are not familiar with the methods of
functional data analysis and rely on more intuitive procedures. One of
these more intuitive approaches is to discretize a signal x(t), t ∈ J ⊂ R,
by partitioning its domain into several intervals and employ the mean val-
ues computed from each interval for example as covariates in a regression
or classification model. Based on this idea of computing mean values over
intervals, we propose a special form of random forests (Breiman, 2001) to
analyze functional data. The covariates used for the single trees are the
mean values over intervals partitioning the functional curves. The intervals
are generated at random using exponentially distributed waiting times.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Functional Random Forests

We consider data of the form (yi, xi(t)), i = 1, . . . , n, with predictor curve
xi(t), and yi being the response value. In a first step, a training set is gen-
erated from the original data set by drawing, with replacement, a random
sample (yj , xj(t)), j = 1, . . . , n, of the same size n as the original data
set. We then successively draw random numbers rλ from an Exp(λ) distri-
bution, where we choose a fixed value for λ. A number rλ represents the
waiting time (on the “time” scale t of the curves xi(t)) from the end of the
previous interval to the beginning of the next interval. For a set of random
numbers r1

λ, . . . , r
I
λ (where I denotes the number of waiting times needed

to cover the observed curve) independently drawn from an Exp(λ) with a
certain fixed λ, we obtain a pattern of intervals. The value of λ determines
whether the functions’ domain tends to be split into just a few (small λ) or
many (large λ) intervals. Using this partition of the functions’ domain, the
mean values over the respective intervals are computed for each curve xi(t)
form the training set and used as predictors in a regression (or classifica-
tion) tree; for details on trees, see, e.g., Breiman et al. (1984). The partition
pattern obtained is stored for future use when predicting new data. The
procedure of data sampling, interval, predictor and tree construction is re-
peated m times and the resulting trees are used to construct a (random)
forest. Given a regression problem, for instance, the respective functional
random forest (FRF) predictions ŷFRFi , i = 1, . . . , n, are constructed by
averaging the set of single tree predictions ŷi,1, . . . , ŷi,m by

ŷFRFi =
1

m

m∑
l=1

ŷi,l. (1)

In a classification problem, the class of a new observation would be pre-
dicted as a majority vote among the trees forming the forest.

3 Predicting Skatole Concentration using Raman
Spectra

We consider data from Raman spectroscopy on samples of boar meat.
Raman spectroscopy is a technique based on the inelastic scattering of
monochromatic light, e.g. laser light, on molecules (Raman scattering).
The resulting spectrum gives information about vibrational modes in the
analyzed system. This vibrational information provides a fingerprint by
which molecules (and therefore substances present in the sample) can be
identified.
Our Raman data is functional in nature, coming as curves xi(t) of intensity
at wavelength t for meat sample i, with t ∈ [332nm, 2105nm]. The scalar
response yi of interest is the skatole content in parts per billion (ng/g) in
the respective meat sample i, i = 1, . . . , n. Skatole is a white crystalline
organic compound present in the meat of boars that have not been cas-
trated. If present in high concentration it has a strong off odor. The goal
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FIGURE 1. Mean curves of intensity measurements, with colors assigned ac-
cording to the skatole content level.

of our analysis is predicting the skatole content from the spectra xi(t). If
an accurate prediction of the skatole content is possible, the Raman spec-
troscopy can be utilized as an alternative to chemical analysis to determine
the skatole content of meat.
The total number of meat samples is n = 148. For each of these samples, the
Raman spectroscopy was repeated ten times on an inner layer of the meat
sample. The response variable yi, the skatole content, was determined for
each meat sample i by chemical analysis. To obtain a single Raman spectra
xi(t) for each sample i, we take mean values across the ten replicates. Figure
1 displays the spectra xi(t), with colors corresponding to the skatole content
given by the response observations yi, i = 1, . . . , 148.
From the color distribution of the curves it becomes visible that there are
a few curves corresponding to extremely high skatole content levels (more
than 1000 parts per billion), while the majority of the curves correspond
to lower levels. These extreme skatole content levels are hard to predict,
especially when the training data mainly consists of moderate observations.
Furthermore, by visual inspection, no direct relationship between the curves
(measured intensity at the different wavelengths) and the skatole content
is found. Therefore, prediction of the skatole content is expected to be a
difficult task.
For our analysis we use n1 = 100 meat samples as training set and the
remaining n2 = 48 as test set for prediction, with n1 + n2 = n. We per-
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form the assignment of training and test cases by randomly drawing n1

cases (without replacement), employ it as training set, and use the remain-
ing n2 cases as test set. Then the proposed random forest for functional
data is used for predicting the test observations. As competing methods,
we consider a functional linear model and a random forest using single
measurements x(tj) as predictors, with tj , j = 1, . . . , 1024, being the dis-
crete wavelengths at which intensity was actually measured. For fitting the
linear model we use the method proposed by Goldsmith et al. (2012) and
implemented in R package refund (Crainiceanu et al., 2013); for the non-
functional random forest, we use the R package randomForest by Liaw and
Wiener (2002). When constructing the functional random forest we con-
sider different choices of λ (0.01, 0.03, 0.05, 0.2, 0.5) reflecting long, medium
and short waiting times (where λ = 0.5 represents extremely short waiting
times and results in a procedure very close to the non-functional random
forests), and m = 1000 in each case. For the non-functional random forests,
the number of grown trees is chosen as m = 1000 as well. The generation
of training and test data, model fitting and test set prediction is repeated
20 times.

TABLE 1. Average MAE and RMSE values for the considered models, average
taken over all values of the 20 repeated runs.

MAE RMSE

Functional Linear Model 253.210 361.356
Functional RF λ = 0.01 244.380 354.375
Functional RF λ = 0.03 242.495 352.205
Functional RF λ = 0.05 242.716 353.380
Functional RF λ = 0.2 242.181 354.942
Functional RF λ = 0.5 242.317 355.790
Non-functional RF 253.541 364.283

Table 1 shows the average over the 20 mean absolute error and root mean
square error values of prediction for the different methods. We see that,
both in terms of the MAE and the RMSE, the proposed functional random
forest outperforms the functional linear model and the non-functional ran-
dom forest which simply uses the measurements at t1, t2, . . . as predictors.
The performance of the latter is even slightly inferior to the functional
linear model. The predictive performance of the functional random forest,
however, slightly depends on the chosen λ determining the average number
and length of the employed intervals. For larger values of λ the functional
random forests approximate to the non-functional version. For the largest
considered value λ = 0.5 the predictive performance starts to deteriorate.
This value corresponds to average interval lengths of 2 units on the scale of
t, which is close to the procedure used for the non-functional random forest.
On the contrary, too large interval lengths as generated by a small value
such as λ = 0.01 yield a deterioration in predictive performance as well.
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Obviously larger interval lengths are less able to account for the variability
within each of the curves. Therefore, the optimal λ for a specific data set
should be obtained in a data-driven way, for example, via a cross validation
procedure. We will investigate such a procedure in additional case studies.
Further analyzes may also consider spectra obtained from an outer layer
of the meat, or a model utilizing both, the outer and the inner layer as
covariates.
The functional and non-functional random forests employed for the cur-
rent analysis are based on regression trees predicting the skatole content
as a continuous response. However, our proposed functional random forests
(and the non-functional random forests) can be applied with classification
trees as well, as sketched in Section 2. As it is also of high interest to
predict whether a sample of meat has a skatole content below or above
a given threshold, we will analyze the predictive performance of our func-
tional random forests with classification trees for a binary response (skatole
content above/below threshold) in further case studies. As there are not
many functional classification methods available for multi-categorical out-
comes, further development of the proposed functional random forests in
that direction is promising, too.

Acknowledgments: We thank Daniel Mörlein from the Department of
Animal Sciences, Georg-August-University Göttingen, for providing the
data used in Section 3 and related information.
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Abstract: One of the main issue in science is to discover complicated inter-
action patterns between variables in multivariate data of various types. Copula
Gaussian graphical models is one potential way to discover the underlying condi-
tional independence of variables in such mixed data. In this paper, we proposed
a comprehensive Bayesian approach in copula Gaussian graphical models that
accomplished the diverse types of data, including binary, ordinal and continuous.
We embed a graph selection procedure inside a semiparametric Gaussian copula.
We carry out the posterior inference by using an efficient sampling scheme which
is a trans-dimensional MCMC approach based on the continuous-time birth-death
process. The proposed method is tested in real and simulated examples. We im-
plemented the method as a general purpose in the R package BDgraph which is
freely available online.
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1 Introduction

Graphical models provide an effective way to describe statistical patterns in
data, specially for high-dimensional datasets such as gene expression data.
In this context undirected Gaussian graphical models are commonly used,
since inference in such models is often tractable. In undirected Gaussian
graphical models, the graph structure is characterized by its precision ma-
trix(the inverse of covariance matrix): the non-zero entries in the precision
matrix show the edges in the graph.
In the real world, however data are often non-Gaussian or discrete. For non-
Gaussian continuous data, variables can be transformed to Gaussian latent
variables. Then a graph structure is inferred for the Gaussian variables.
For discrete data, however, the situation is more convoluted; we can not
transform them directly into latent Gaussian variables, since the mapping

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
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is one-to-many. A common approach is to apply a Markov chain Monte
Carlo method (MCMC) to simulate both the latent Gaussian variables and
the posterior distributions (Hoff, 2007, Dobra and Lenkoski, 2011, Liu et
al. 2009, and Pitt et al. 2006).
In this paper, we propose an efficient Bayesian framework in Copula Gaus-
sian graphical models that can be contributed for binary, ordinal or contin-
uous variables simultaneously. We embed graphical model selection inside a
semiparametric Gaussian copula. For our copula framework we use the ex-
tended rank likelihood (Hoff, 2007). We carry out the posterior inference for
the graph and the precision matrix by using an efficient sampling scheme
which is a trans-dimensional MCMC approach based on the continuous-
time birth-death process (Mohammadi and Wit, 2013).

2 Copula Gaussian graphical models

Let X = (X1, . . . , Xp) be a p-dimensional random vector following a multi-
variate normal distribution Np(0,K−1) with precision matrix K. A Gaus-
sian graph model for the random vector X is represented by an undirected
graph G = (V,E), where V = {1, . . . , p} is the set of p vertices and E is the
edge set. Zero entries in the precision matrix correspond to the absence of
edges on the graph and conditional independence between pairs of random
variables given all other variables.
In practice, we encounter both discrete and continuous variables and copula
Gaussian graphical modeling has been proposed to describe dependencies
between such heterogeneous variables. Let X be a collection of continuous,
binary, ordinal or count variables with Fj the marginal distribution of Xj

and F−1
j its pseudo inverse. Towards constructing a joint distribution of X,

we introduce a multivariate normal latent variable Z ∼ N (0,Γ(K)), where
Γ(K) is the correlation matrix for a given precision matrix K. The joint
distribution of X is given by

P (X1 ≤ x1, . . . , Xp ≤ xp) = C(F1(x1), . . . , Fp(xp) | Γ(K)), (1)

where C(·) is the Gaussian copula given by

C(u1, . . . , up | Γ) = Φp
(
Φ−1(u1), . . . ,Φ−1(up) | Γ

)
,

with uv = Fv(xv), and Φp(·) is the cumulative distribution of multivari-
ate normal and Φ(·) is the cumulative distribution of univariate normal
distributions. It follows that Xv = F−1

v (Φ(Zv)).
In semiparametric copula estimation, the marginals are treated as nuisance
parameters and estimated by the rescaled empirical distribution that results
the joint distribution in (1) to be parametrized only by the correlation
matrix of the Gaussian copula. Our aim is to infer the underlying graph
structure G of the observed variables X implied by the continuous latent
variables Z. Since Zs are unobservable we follow the idea of (Hoff, 2007)
that relate them to the observed data as follows. Given the observed data
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x from a sample of n observations, the latent samples z are constrained to
belong to the set

A(x) = {z ∈ <n×p : Lrj(z) < z
(r)
j < Urj (z), r = 1, . . . , n; j = 1, . . . , p}.

(2)
where

Lrj(z) = max
{
z

(k)
j : x

(s)
j < x

(r)
j

}
andUrj (z) = min

{
z

(s)
j : x

(r)
j < x

(s)
j

}
. Further (Hoff, 2007) suggested that inference on the latent space can
be performed by substituting the observed data x with the event D =
{z ∈ A(x)} and defined the likelihood as:

P (x | K,Fv : v ∈ V ) = P (D | K) P (x | D,K, Fv : v ∈ V ). (3)

The only part of the observed data likelihood relevant for inference on K
is P (D | K). Thus, the likelihood function is given by

P (D | K) = P (z ∈ A(x) | K) =

∫
A(x)

P (z | K)dz (4)

where

P (z | K) ∝ (det(K))n/2 exp

{
−1

2
tr(KU)

}
, (5)

with U = z′z.

3 Bayesian Copula Gaussian graphical modelling

Consider the joint posterior distribution of K ∈ PG and the graph G given
by

P (K,G | D) ∝ P (D | K) P (K | G) P (G). (6)

Sampling from this joint posterior distribution can be done by a computa-
tionally efficient birth-death MCMC sampler proposed in Mohammadi and
Wit (2013) for Gaussian graphical models.
For the prior distribution of the graph, as a non-informative prior, we
propose a discrete uniform distribution over the graph space, P (G) ∝ 1.
For other choice of priors see Mohammadi and Wit (2013).
For the prior distribution of the precision matrix, we use the G-Wishart
which is attractive since it is conjugate for normally distributed data and
places no probability mass on zero entries of the precision matrix. A zero-
constrained random matrix K ∈ PG has the G-Wishart distribution
WG(b,D), if

P (K|G) =
1

IG(b,D)
|K|(b−2)/2 exp

{
−1

2
tr(DK)

}
,
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where b > 2 is the degree of freedom, D is a symmetric positive definite
matrix, and IG(b,D) is the normalizing constant,

IG(b,D) =

∫
PG
|K|(b−2)/2 exp

{
−1

2
tr(DK)

}
dK.

The G-Wishart prior is conjugate to the likelihood (5), hence, the posterior
distribution of K is

P (K|D, G) =
1

IG(b∗, D∗)
|K|(b

∗−2)/2 exp

{
−1

2
tr(D∗K)

}
,

where b∗ = b+ n and D∗ = D + S, that is, WG(b∗, D∗).

3.1 The proposed birth-death MCMC algorithm

We describe here a MCMC sampler scheme for the joint posterior distri-
bution which is proposed by Mohammadi and Wit (2013). Here we extend
their algorithm for more general case of Copula Gaussian graphical models.
Our algorithm is based on a continuous time birth-death Markov process in
which the algorithm explores over the graph space by adding or removing
an edge in a birth or death event. The birth and death rates of edges occur
in continuous time with the rates determined by the stationary distribu-
tion of the process. The algorithm is considered in such a way that the
stationary distribution equals the target joint posterior distribution of the
graph and the precision matrix (6).
The birth and death processes are independent Poisson processes. Thus,
the time between two successive events is exponentially distributed, with
mean 1/(β(K)+δ(K)). Therefore, the probability of birth and death events
are proportional to their rates.
Suppose that we consider the birth and death rates as

βe(K) =
P (G+e,K+e \ (kij , kjj)|D)

P (G,K \ kjj |D)
, for each e ∈ E, (7)

δe(K) =
P (G−e,K−e \ kjj |D)

P (G,K \ (kij , kjj)|D)
, for each e ∈ E. (8)

It can be shown that based on above birth and death rates, the algorithm
converge to the target joint posterior distribution of the graph and the pre-
cision matrix (6). The extended birth-death MCMC algorithm for Copula
Gaussian graphical models are summarized as follows.

Algorithm 3.1. Given a graph G = (V,E) with a precision matrix K,
iterate the following steps:
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Step 1. Sample the latent data. For each r ∈ V and j ∈ {1, 2, ..., n}, we

update the latent value z
(j)
r from its full conditional distribution

Zr|ZV \{r} = z
(j)
V \{r} ∼ N(−

∑
r′

Krr′z
(j)
r′ /Krr, 1/Krr),

truncated to the interval
[
Ljr, U

j
r

]
in (2).

Step 2. Sample the graph based on birth and death process.

2.1. Calculate the birth rates by equation 7 and β(K) =
∑
e∈E βe(K),

2.2. Calculate the death rates by equation 8 and δ(K) =
∑
e∈E δe(K),

2.3. Calculate the waiting time by w(K) = 1/(β(K) + δ(K)),

2.4. Simulate the type of jump (birth or death),

Step 3. Sample the new precision matrix, according to the type of jump.

In step 3, we use the direct sampling algorithm from the precision matrix
K, which is proposed by Lenkoski (2013).

4 Results

Hoff (2007) considered the analysis of multivariate dependencies among
income, eduction and family background. The data concerns 1002 males
in the U.S labor force. The data is available in R package BDgraph at
http://CRAN.R-project.org/package=BDgraph. The seven observed vari-
ables which have been measured on various scales are as follow: the income
(inc), degree (deg), number of children (child), parents income (pinc), par-
ents degree (pdeg), number of parents children (pchild), and age (age).
We run our algorithm for 100, 000 iterations and 60, 000 as a burn-in. Fi-
gure 1 (in the left) shows convergency of our algorithm. Figure 1 (in the
right) shows the graph with the highest posterior probability. Table 1 re-
ports the posterior edge inclusion probabilities for all edges based on our
proposed method. To compare the performance of our method (in the same
conditions) with the existing Bayesian approaches, we check our result with
the method proposed by Dobra and Linkeski (2011). Both approaches se-
lect the same graph as the best graph. The main difference is that our
algorithm converges faster than their algorithm.

5 Conclusion

We proposed an efficient Bayesian framework to extend Gaussian graphical
models which applicable to binary, ordinal or continuous data. Our results
show that our proposed method leads to similar results as the existing
methods, while being more computationally efficient and more generally
applicable.
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FIGURE 1. (Left) Plot of the cumulative occupancy fractions of all possible
edges to check convergence of our algorithm. (Right) Most probable graph with
11 edges for the data based on the output of our algorithm.

TABLE 1. The posterior edge inclusion probabilities for all edges.

inc deg child pinc pdeg pchild age

inc 1.00 1.00 0.01 0.01 0.00 1.00
deg 0.27 0.00 1.00 0.68 0.02

child 0.01 0.86 1.00 1.00
pinc 1.00 0.04 0.00
pdeg 0.99 1.00

pchild 0.00
age
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Abstract: In this work we study the estimation of functional coefficient regres-
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1 Introduction

In this work we study functional coefficient regression (FCR) models us-
ing expansion in father wavelets to estimate the coefficient functions. Let
{Yt, Ut,Xt} be a jointly strictly stationary process, where Ut is a real ran-
dom variable and Xt a random vector in Rd. Let E(Y 2

t ) <∞. Considering
the multivariate regression function m(x, u) = E(Yt|Xt = x, Ut = u), the
FCR model has the form

m(x, u) =

d∑
i=1

fj(u)xi, (1)

where the fj(·)s are measurable functions from R to R and x = (x1, . . . , xd)
T,

with T denoting the transpose of a matrix or vector.
Differently from the usual, in our study it is not necessary the assumption
of independence for the errors.

2 Estimation

Any wavelet basis has an associated multiresolution analysis, which is a
sequence of nested and closed spaces {Vj}j∈Z of L2(R) satisfying certain

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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properties. One of them states that there exists a function ϕ ∈ V0 such
that {ϕ(· − k)}k∈Z is a Riesz basis for V0.
Usually ϕ is called father wavelet (or scaling function) and it is well-known
that it generates a basis {ϕJk}k, where ϕJk(·) = 2J/2ϕ(2J · −k), of the
space VJ , where J is called resolution level.
Now, let Ji be a resolution level associated to the coefficient function fi,
and, for sake of simplicity, denote φik(·) = 2Ji/2ϕ(i)(2

Ji ·−k). Thus, follow-
ing the idea of Huang and Shen (2004), it is possible to approximate each
coefficient function by an orthogonal projection in a multiresolution space
VJi and, then, approximate (1) by

m(x, u) ≈
d∑
i=1

∑
k

αikφik(u)xi. (2)

If the coefficient functions and the father wavelet have compact support,
there are just a finite number ri, i = 1, . . . , d, of wavelet coefficients different
from zero. Thus, it is possible to estimate the wavelet coefficients of wavelets
and then estimate the functions fj of the model (1) by

f̂j(u) =

ri∑
k=1

α̂ikφik(u),

where α̂i = (α̂i1, . . . , α̂iri)
T, i = 1, 2, . . . , d, is the estimator of αi.

Thus, denoting the covariance matrix of the errors by Σ, and supposing
initially that it is known, one can estimate the wavelet coefficients vector
minimizing the least squares function

`(α) = (Y −Xα)TΣ−1(Y −Xα), (3)

where α = (αT
1 , . . . , α

T

d)T, αi = (αi1, . . . , αiri)
T, Y = (Y1, . . . , Yn)T and

the t-th row of X corresponds to the vector φik(Ut)Xtj , k = 1, 2, . . . , ri,
i = 1, . . . , d. Hence, the coefficient vector estimator is given by

α̂ = (XTΣ−1X)−1XTΣ−1Y. (4)

Note that when the errors are independent, Σ is a identity matrix. With
assumptions similar to those used by Huang and Shen (2004), we derive
rates of convergence for distances between the estimators and the real func-
tions, which are presented bellow as a theorem. Since fJii is the orthogonal

projection of fi in VJi , denote ρi = ‖fJii − fi‖.

Theorem 1. Under appropriate assumptions, we have

d∑
i=1

E‖f̂i − fi‖22 ≤ C
d∑
i=1

(
2Ji

n
+ ρ2

i

)
,

for some C > 0. In particular, if ρi = o(1), then E‖f̂i − fi‖22 = o(1),
i = 1, . . . , d.
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As in practical situations the covariance matrix Σ is unknown, it has to be
estimated (e.g., Σ̂), and with such estimator, the wavelet coefficients can
be computed as

α̃ = (XTΣ̂−1X)−1XTΣ̂−1Y. (5)

If the estimator of the covariance matrix is consistent in probability, in the
sense that all eigenvalues of Σ̂−1Σ − I are op(1), with I being a identity
matrix, it is possible to find that

|α̃− α̂|2 = op(1). (6)

Thus, denoting f̃i(u) =
∑ri
k=1 α̃ikφik(u), i = 1, . . . , d, based on (6), we can

derive the following result.

Proposition 1. Under the same assumptions of Theorem 1, with Σ̂ con-
sistent in probability in estimating Σ, then

d∑
i=1

‖f̃i − fi‖22 = Op

(
d∑
i=1

(
2Ji

n
+ ρ2

i

))
.

In particular, if ρi = o(1), then f̃i is consistent in probability in estimating
fi, i.e., ‖f̃i − fi‖2 = op(1), j = 1, . . . , d.

Now, it is possible to find a consistent estimator Σ̂ supposing that Σ =
Σ(θ), i.e., the covariance matrix is a function of a parameter vector θ =
(θ1, . . . , θp)

T, where p is a fixed number. In general, one can suppose that
the errors of the model are represented by autoregressive processes AR(p).

Then it is possible to find a consistent estimator to θ, say θ̂, and hence
obtain a consistent estimator for the covariance matrix.
Borrowing ideas of Cochrane and Orcutt (1949), we can proceed the esti-
mation iteratively. Firstly, the wavelet coefficients vector can be estimated
acting as if the errors were independent (Σ = I) and then computing the
residuals. Next, one can fit an autoregressive model to the residuals and
by using the estimate of the autoregressive coefficients, the covariance ma-
trix can be estimated. In the following, the wavelet coefficients vector α̃
could be computed by (5), with the estimate of covariance matrix. This

double stage procedure (computation of Σ̂ and α̃) can be repeated until,
for example, the convergence of the residual mean square is achieved.
Another procedure, that we will use in this work, is the following. Denoting
by η the vector (αT, θT)T and xt as the t-th row of X, we estimate jointly
the coefficients of the FCR model α and the autoregressive coefficients θ
minimizing numerically

`(η) =

n∑
t=1

{θp(L) (Yt − xT

t α)}2 , (7)

where θp(L) = 1−θ1L−. . .−θpLp and the backshift satisfying LkVt = Vt−k,
k > 0.
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Selection of the resolution level

In this estimation procedure it is important to choose an adequate resolu-
tion level J . In this work, we proceed similarly to Huang and Shen (2004).
We will use the information criteria AIC, AICc and BIC. Denoting the
sample size by n, the number of parameters to be estimated by p and the
residual mean square by RMS, these criteria are can be defined as

AIC = log(RMS) +
2p

n
, AICc = AIC +

2(p+ 1)(p+ 2)

n(n− p− 2)

and
BIC = log(RMS) +

p

2
log(n).

3 Simulation and application

A simulation study was carried over to assess the theoretical results and an
application to the industrial production index of USA was done and will
be given at the presentation.
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support (grant 2013/00506-1)
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Abstract: We introduce restricted pairwise composite likelihood methods for
estimation of mean and covariance parameters in a Gaussian random field, with-
out resorting back to the full likelihood. A simulation study is carried out to
investigate how this method works in settings of increasing domain as well as
in-fill asymptotics, whilst varying the strength of correlation. Preliminary results
showed that simple marginal pairwise likelihoods tend to underestimate the vari-
ance parameters, especially when there is high correlation. Using RECL together
with the pairwise method improved the estimates, more so when weighting was
done using effective sample size. However, the choice of how the effective sample
size is calculated also affects the estimates, and some sub analyses may need to
be done in order to get correct estimates for final model.
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1 Introduction

Likelihood based methods are often used to estimate parameters of inter-
est in spatial analysis. Unfortunately, even with simple likelihoods such as
those obtained from Gaussian data, maximum likelihood involves inversion
of matrices for each likelihood function calculated, which quickly increases
the computational effort as the number of observations increases. To reduce
the computational burden, composite likelihood methods have become pop-
ular in spatial statistics. A recent review of composite likelihood methods
is given by Varin (2008) and Varin et al. (2011). The idea of composite
likelihoods (CL) is to replace the likelihood by a simpler function, con-
structed from summing over the contributions of the likelihoods on subsets
of the data, as such leading to a simpler function to be evaluated, but at
the cost of efficiency loss. This idea was proposed by Besag (1974) in the
context of spatial data, and called pseudo-likelihood. Later, it was called
composite likelihood by Lindsay (1988). We will focus on the specification

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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of the composite likelihood for spatial geostatistical data based on pairwise
differences, as done by Curriero and Lele (1999), and on pairwise likelihood
contributions as defined by Varin (2008). However, when variance parame-
ters are of interest, for example when interest is in the variogram, maximum
likelihood (ML) estimation is known to be biased as a result of the loss in
degrees of freedom. The same applies for the composite likelihood estima-
tion of the covariance parameters. This bias can be reduced substantially
by using restricted maximum likelihood (REML). In this paper, it will be
investigated how the composite likelihood method can be penalised in a
similar way as in REML, in order to reduce bias in the variance parame-
ter. The proposed method will be called the restricted composite likelihood
method (RECL).

2 Methods

Let Z = (Z(s1), ..., Z(sn)) be a univariate random variable from a Gaussian
random field with observations Z(si) recorded at sites si (i = 1, ..., n) such
that

Z ∼ N(µ,C(σ2, ρ))

where µ = Xβ is the mean of the variable and C is the covariance function,
capturing the spatial dependence. The latter is a function of the variance
of the spatial process σ2, and the correlation between sites ρ determined
by the distance between them. This second-order stationary process has
semi-variogram

γ(si, sj) =
1

2
var(Z(si)− Z(sj)).

The most popular semivariogram is the Matérn class, with as special case
the exponential semivariogram. The latter can be parametrized as γ(|si −
sj |;φ) = c0 + σ2(1 − ρ|si−sj |) where = φ = (c0, σ

2, ρ). The parameters c0
and σ2 are called the nugget and the sill, respectively, and c0+σ2 represents
the process variance, ρ is the spatial dependence.
Two types of composite likelihood methods are considered: (1) pairwise
differences (CL1), (2) marginal pairwise method (CL2). When the mean
parameter µ needs to be estimated, the latter approach will result in biased
estimates for the covariance function. Similar as with REML, a penalisation
is added to the (log) composite likelihood function to come up with the
RECL formulated as

RECL =

n−1∑
i=1

n∑
j>i

(wij ln f (Z(si), Z(sj);µij ,Cij))−
1

2
ln

∣∣∣∣∣∣
n∑
i=1

n∑
j>i

X ′ijC
−1
ij Xij

∣∣∣∣∣∣
with weights wij = n′

n(n−1) , and with n the number of locations and n′

denoting the effective sample size (ESS) given by

n′ =
n2∑n

i=1

∑n
j=1 ρ

|si−sj |
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FIGURE 1. Box plot of variance parameter (left) and correlation parameter
(right) for moderate dependence settings. Estimation methods: 1: ML; 2: REML;
3: CL1; 4:CL2; 5: RECL1; 6: RECL2; 7: RECL3; and 8: RECL4.

Fortin and Dale (2005). The weights wij are (1) set equal to 1 (RECL1),
or estimated by setting ρ equal to (2) known ρ (RECL2), (3) ρ̂ from CL1

(RECL3) and (4) ρ̂ from CL2 (RECL4).

3 Simulation study

A simulation study is carried out to explore the properties of our estimators
in a similar fashion to Curriero and Lele (1999). Data are simulated on
an 8 x 8 regular grid with 1 unit interval spacing, and on two 15 x 15
grids obtained by halving the grid spacings to 0.5 (infill asymptotics) and
doubling the grid spacing to 2 (increasing domain asymptotics). ρ was
varied to represent relatively weak, moderate, and strong levels of spatial
dependence by setting the distance (effective range) at which values become
approximately uncorrelated to be 0.2, 0.5, and 0.8 times the maximum
distance over the domain S. The variance parameter σ2 was set at 1, and
the mean µ was set at 3. Part of the results are summarised in Figure 1
(results for moderate dependence). The figure shows box plots of the σ2 and
ρ parameters for eight estimation methods. The horizontal line corresponds
with the true underlying value.
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4 Conclusions

The ML and REML estimates that use the full likelihood have better es-
timates than all other methods, but have the drawback that it is compu-
tationally intensive. CL1 also works very good, but treats the mean pa-
rameters as nuisance, while they could be of interest in practice. CL2 and
RECL1 perform similar to each other, with bias in mainly the parameter
ρ. Inclusion of weights greatly improved the point estimates. While fixing
the value of ρ to determine the weights wij , it is not useful in practice
and estimation of ρ̂ from the differences method came up with the best
alternative to be used in practice. Note that all models perform relatively
well when the correlation is weak. However, larger differences are observed
as the correlation gets stronger, especially for the ρ parameter, with the
proposed method providing a good correction.
In conclusion, penalization seems important also in composite likelihood
methods, and the choice of weights is key in obtaining good results. Weight-
ing with inverse distance and using only nearby neighbours does give better
parameter estimates than the unweighted model fits. However, using esti-
mated effective sample size shows better improvement. There is continuing
work to explore variance estimation for the proposed methods, as well as
inclusion of covariates and application to real data.
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Abstract: We address the estimation of the extreme quantiles of a conditional
distribution when the data are randomly right-censored. This issue is of particular
interest in the analysis of failure time data. We propose a new estimator of the
conditional extreme quantiles and we investigate its properties via simulations.
The proposed estimator outperforms alternative existing methods.
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1 Introduction

Consider a set of n independent observations (Y1, X1), . . . , (Yn, Xn) of the
couple (Y,X) where Y is the duration until some event of interest (recov-
ery of a patient, ruin of a company. . . ) and X is a p-vector of covariates
(biological markers recorded on a patient, economic characteristics of a
company. . . ). In practice, it is often of interest to estimate extreme quan-
tiles of the conditional distribution F (·|x) of Y given X = x i.e. quantities
of the form:

F←(1− α|x) = inf{y : F (y|x) ≥ 1− α}
where α is so small that this quantile falls beyond the range of the observa-
tions Y1, . . . , Yn. Several papers address this issue, e.g. Gardes and Girard
(2008, 2010).
In this work, we consider this problem in the more complex setting where
Y1, . . . , Yn are randomly right-censored. Under censoring, the observations
consist of triplets (Zi, δi, Xi), i = 1, . . . , n where Zi = min(Yi, Ci), δi =
1{Yi≤Ci}, 1{·} is the indicator function and Ci is a random censoring time.
The estimation of extreme quantiles under censoring but without covariates
is addressed by Matthys et al. (2004) and Einmahl et al. (2008).
Here, we consider the estimation of extreme quantiles when both censoring
and covariates are present. We construct a new estimator of F←(1− α|x)

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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by combining a moving-window approach with the inverse probability-of-
censoring weighting principle (Section 2). The proposed estimator is asymp-
totically normal. We examine its finite-sample performance via simulations
and we illustrate our methodology on a set of AIDS survival data (Section
3).

2 The proposed estimator

For all x, we denote by q(α, x) the conditional quantile of order 1 − α
(α ∈ (0, 1)) of F (·|x). We assume that F (·|x) belongs to the domain of
attraction of a Fréchet distribution with shape γ1(x). That is, F (·|x) can
be written as:

F (u|x) = 1− u−1/γ1(x)L1(u, x)

where γ1(·) is an unknown positive function of x (referred to as the condi-
tional tail index function) and L1(·, x) is a slowly varying function at in-
finity. A preliminary step in the estimation of q(α, x) is to estimate γ1(x).
Some further notations are needed first.
Let B(x, r) = {t ∈ Rp, d(x, t) ≤ r} and hn,x be a positive sequence tending
to 0 as n tends to infinity. Letmn,x =

∑n
i=1 1{xi∈B(x,hn,x)} be the number of

observations (Zi, Xi) lying in [0,∞)×B(x, hn,x). Let Zx(1) ≤ . . . ≤ Z
x
(mn,x)

be the ordered values of Z for these observations and δx(1), . . . , δ
x
(mn,x) be

the corresponding δ’s (that is, δx(i) = δj if Zx(i) = Zj). The usual conditional

Hill estimator of γ1(x) is of the form

γ̂
(H)
kx,mn,x

(x) =
1

kx

kx∑
i=1

i log(Zx(mn,x−i+1)/Z
x
(mn,x−i))

where kx is an integer such that 1 ≤ kx ≤ mn,x. First, we adapt this
estimator to censoring by dividing it by the proportion

p̂x =
1

kx

kx∑
i=1

δx(mn,x−i+1)

of uncensored observations among the kx largest Zi in a neighbourhood of
x. Our estimator of γ1(x) is thus:

γ̂
(c,H)
kx,mn,x

(x) =
γ̂

(H)
kx,mn,x

(x)

p̂x
(1)

Based on this, we now address the estimation of conditional extreme quan-
tiles q(αmn,x , x) of order 1 − αmn,x of F (·|x). Such quantiles verify 1 −
F (q(αmn,x , x)|x) = αmn,x where αmn,x → 0 as mn,x → +∞.
We define a conditional Kaplan-Meier-type estimator based on the moving-
window approach:

1− F̂mn,x(y|x) =

mn,x∏
i=1

(
mn,x − i

mn,x − i+ 1

)δx(i)1{Zx(i)≤y}
(2)
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Based on (1) and (2), we finally propose the following Weissman-type esti-
mator of q(αmn,x , x):

q̂(c,H)(αmn,x , x) = Zx(mn,x−kx)

(
1− F̂mn,x(Zx(mn,x−kx)|x)

αmn,x

)γ̂(c,H)
kx,mn,x

(x)

(3)

The estimator (3) is consistent and asymptotically normal (see Ndao et al.,
2013). The next section reports a small part of the results of a comprehen-
sive simulation study conducted by Ndao et al. (2013) and a case-study.

3 Simulation study and a real-data example

3.1 A simulation study

We first simulate 1000 samples of size n (n = 500, 1000, 1500) of indepen-
dent replicates (Zi, δi, xi). The conditional distribution of Yi given X = xi
is Pareto with parameter γ1(x) = .5(.1+sin(πx))(1.1−.5 exp(−64(x−.5)2))
(with x ∈ [0, 1]) and the distribution of Ci is chosen to yield various cen-
soring percentages c (c = 10%, 25%, 40%). For each sample, we obtain the
estimate (3) of the conditional extreme quantile q(1/5000, 0.5) ≈ 19.70786
of order 1− 1/5000 of F (·|0.5). Then, we obtain the averaged value of the
1000 estimates along with their RMSE and MAE. We also obtain asymp-
totic 95%-level confidence intervals for q(1/5000, 0.5), along with the em-
pirical coverage probabilities over the 1000 intervals. Table 1 reports the
results.

TABLE 1. Conditional extreme quantile estimation: simulation results.

n c = 10% c = 25% c = 40%

500 average est. 19.777 20.225 20.072
RMSE (.258) (.265) (.310)
MAE [.326] [.333] [.383]
conf. interval [16.00,25.88] [15.90,27.77] [15.56,28.25]
coverage prob. 0.594 0.936 0.970

1000 average est. 19.381 19.960 20.086
RMSE (.182) (.206) (.222)
MAE [.226] [.259] [.280]
conf. interval [16.54,23.39] [16.71,24.77] [16.55,25.53]
coverage prob. 0.708 0.971 0.989

1500 average est. 19.841 19.981 19.905
RMSE (.142) (.161) (.179)
MAE [0.177] [0.199] [0.223]
conf. interval [17.75,22.47] [17.21,23.59] [17.26,23.70]
coverage prob. 0.910 0.990 0.992

From these results (and the additional results in Ndao et al., 2013), the
proposed estimator (3) provides a satisfactory approximation of the true
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extreme quantile in a wide range of simulation scenarios. Moreover, this
estimator outperforms competing alternatives such as the complete-case
estimator (see Ndao et al., 2013).

3.2 A real-data example

We now illustrate our methodology on a set of AIDS survival data. The
dataset contains n = 2754 male patients diagnosed with AIDS in Australia
before 1 July 1991 (see Venables and Ripley, 2002). The information on
each patient includes the age x at diagnosis, the date of death or end
of observation and an indicator which equals 1 if the patient died and 0
otherwise. 1708 patients died, the other survival times are right-censored.
We estimate the quantile q(1/1000, x) of order 1−1/1000 of the conditional
distribution of the survival time given x for x = 27, 37, 47. The estimated
conditional extreme quantiles obtained from (3) are 10.04 years (when x =
27), 12.77 years (x = 37) and 11.29 years (x = 47). The ”naive” complete-
case method provides substantially smaller (and certainly biased) quantile
estimates, which is consistent with the findings of our simulation study.

Acknowledgments: Pathé Ndao acknowledges financial support from the
Agence Universitaire de la Francophonie.
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1 Introduction

Recent years have seen a tremendous increase in interest related to regres-
sion beyond the mean of the conditional distribution of a response given
covariates. Surprisingly, regression models for the conditional mode of the
response distribution given covariates have received very little attention.
However, estimating conditional modes would be of high interest since
(i) the mode is by far the visually most prominent feature of a density;
(ii) the mode is extremely robust with respect to outliers; (iii) the mode
provides a location measure that is easily communicated to practitioners;
(iv) there may be situations where the dependence of the mode on covari-
ates may be quite different from the dependence of the median and/or the
mean.
Consider the regression specification y = xTβ + ε where y is the response
variable of interest, x ∈ Rq is a vector of covariates supplemented with
regression coefficients β ∈ Rq and ε is the error term. Unlike in mean
regression, we do not assume E(ε) = 0, but

arg max
ξ
fε|x(ξ|x) = 0, (1)

i.e. the conditional density of the error terms fε(·|x) is assumed to have
a global mode at zero. This implies that the regression predictor xTβ is

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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the conditional mode of the response distribution fy(·|x) and the mode
regression coefficient can be defined as

β = arg max
b
fε(y − xTb|x). (2)

An equivalent formulation is obtained based on the loss function L(ξ) =
1(ξ 6= 0), i.e. the indicator function for arguments different from zero. In
this case, the mode regression coefficient is given by

β = arg min
b

E [L(y − xTb)|x] . (3)

Unfortunately, an estimate for the mode regression coefficient cannot be
determined by an empirical analogue to (2) unless specific assumptions are
made for the error density fε(·|x). Criterion (3) is anyway not useful for
modal regression based on data with continuous error distribution since
in this case, there will in general be no unique solution even if the den-
sity of the errors ε has a global mode. As a consequence, earlier attempts
to mode regression usually either rely on nonparametric kernel regression
from which the mode is then derived in a second step (Collomb et al., 1987;
Einbeck and Tutz, 2006) or on different types of approximations to the loss
function L(ξ) (Lee, 1989; Kemp and Santos Silva, 2012). We build upon
Kemp and Santos Silva (2012) and (i) provide a differentiable approxima-
tion to the loss function defining mode regression such that an iteratively
re-weighted least squares (IRLS) algorithm can be used to estimate the
mode regression coefficients, (ii) study the properties of this estimate and
show its consistency and asymptotic distribution, (iii) extend the purely
linear mode regression model to additive models combining nonparametric
effects of several covariates in a penalized IRLS framework. The main ad-
vantage of the IRLS framework we apply, is that it allows to easily include
extended regression functionality from (generalized) additive models which
also rely on IRLS estimation. In fact, we can further exploit this connection
by determining smoothing parameter estimates within the IRLS framework
such that the semiparametric mode regression estimate is fully data-driven.

2 Iteratively Reweighted Least Squares Estimation

The basic idea to proof the equivalence of the two mode coefficient condi-
tions in (2) for the density of the error term and in (3) for the zero-one-loss
is based on an approximation that, in the limit, represents the zero-one-loss.
Consider

Lε(ξ) = 1(−ε ≤ ξ ≤ ε), (4)

as an approximation to L(ξ), where ε defines a local environment around
zero. Based on this approximate loss function, any value within the ±ε
interval around the mode is a solution to minimizing the expected loss. In
the limiting case ε → 0, we re-obtain the original loss function and the
estimate approaches the true mode.
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FIGURE 1. Illustration of the loss function. Left panel: function h(ξ). Middle
panel: function f(|ξ|). Right panel: L(ξ). In all figures, the parameter c = 10−5

is fixed, parameters k and g vary: g = 20, . . . , 1; k = 0.1, . . . , 6 in 99 steps.

Our approach to mode regression follows a similar reasoning: the loss func-
tion is approximated such that it is zero not only for ξ = 0, but in a sur-
rounding of ξ = 0. The approximation – denoted by L(ξ) – will replicate
the idea of (4), i.e. L(ξ) will have a very broad minimum in the early itera-
tions and it will be very close to L(ξ) for the final iteration of the proposed
algorithm. However, L(ξ) is approximated by a continuously differentiable
function. This has two important advantages: (i) the approximated loss
L(ξ) can be linked to iteratively re-weighted least squares estimation, and
(ii) the smooth approximation allows to determine asymptotic properties
such as consistency and asymptotic normality. To imitate the idea of the
approximation (4), the tuning parameters of L(ξ) approximate their lim-
iting values while iterating such that L(ξ) is close to L(ξ) when the algo-
rithm converges. To allow for a smooth transition, the algorithm will have
a small step length and thus relatively many iterations until convergence.
Concretely, we employ the function

L(ξ) = 1− exp(c
1
2g − ((kξ)2g + c)

1
2g ),

depending on the set of tuning parameters T = {g, k, c} and limT→T L(ξ) =
L(ξ) for some set of limiting values T . L(ξ) is constructed by the scaled

composition f(h(k·ξ)) of the two functions f(ξ) and h(ξ): h(ξ) = (ξ2g+c)
1
2g ,

where g is as a positive integer and c is a small, positive constant. As
illustrated in Figure 1, h(ξ) accounts for the broad minimum that is needed
to imitate approximation (4) of the zero-one-loss. For the limiting value
g = 1, h(ξ) simply approximates the absolute value function. Due to the
constant c, it is continuously differentiable. f(ξ) = 1 − exp(−ξ); let k be
a positive number, then f(k · ξ) actually approximates the indicator L(ξ);
the approximation is the closer to L(ξ), the larger k is. Hence, the tuning
parameters have to be chosen such that g is relatively large in the early
iterations of the IRLS algorithm; it should equal one for the final iteration.
k is relatively small in the beginning of the algorithm and as large as
possible for the final iteration. The constant c is as small as possible. As
the value of k affects the width of the minimum of L(ξ) for g > 1, it is
possible to choose a fixed sequence for g and to address all issues of tuning
by a properly chosen sequence of k. We propose to choose the initial value
of k driven by the data: the minimum of the loss function in the initial
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iteration of the IRLS algorithm should capture all observed error terms;
whereat ε is estimated by a preceding median regression.

3 Asymptotic Properties

We consider the properties of the estimate β̂n for n → ∞. For the algo-
rithm’s final iteration and with vector notation, minimizing L(y −Xβ) is
equivalent to the minimization of 1−K(u) where

u 7→ K(u) =
1

2
exp

{
−
√
u2 + c

}
, 0 < c ≤ 1, (5)

where u = k · (y−xTβ) and where k is a scaling parameter with k →∞ at
a proper rate. K(u) in turn is an approximation of 1

2 exp(−|u|) which is the
density of a Laplace distributed random variable U with mean E(U) = 0
and variance V(U) = 2. That is, for the final iteration, the proposed ap-
proximation can be interpreted as one minus a rounded (and thus, differ-
entiable) Laplace kernel. Kemp and Santos Silva (2012) derive asymptotic
properties for mode regression for a general kernel K(u). One can show that
function (5) structurally fits in this framework as the tuning parameter k
relates inversely to the bandwidth δ of Kemp and Santos Silva (2012). (A
scaled version of) function (5) meets all requirements needed to prove con-
sistent and asymptotically normal estimates. There is a consistent estimate
of the asymptotic covariance matrix of β. However, the speed of conver-
gence is at most n2/7. Even though it is possible to link the choice of the
final value of k to the required assumptions, the results depend crucially on
the observed sample when the number of observations is in a realistic range.
In practice, we advise to apply bootstrap methods to assess the estimate’s
variance.

4 Semiparametric Mode Regression

Semiparametric regression models allow for unspecified predictive functions
such as

y = xTβ +

r∑
j=1

f(zj) + ε,

where as before, xTβ represents linear effects. Functions f(·) can represent
nonlinear smooth effects of continuous covariates zj , j = 1, . . . , r, for exam-
ple, modeled by penalized B-splines (Eilers and Marx, 1996); but they can
also depict flexible spatial effects or other additive components. Approxi-
mating mode regression by replicating the idea of the theoretical approx-
imation (4) continuously is a stable procedure. It allows for reliable esti-
mation even when there are relatively many covariates. Moreover, approx-
imating mode regression with an IRLS algorithm provides a very versatile
computational framework. Estimation can be easily amended by quadratic
penalties of form Pλ(β) = βTKλβ, Kλ ∈ Rq×q; the index denotes the
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FIGURE 2. Left panel: estimated effect of the age in the model of Kemp and San-
tos Silva (2010). Middle panel: estimated effect of the age in the semiparametric
model. Right panel: estimated effect of the year in the semiparametric model.

dependency of Kλ on one or several smoothing parameter(s) λ. Hence,
the stable computational approach and its compatibility with quadratic
penalties enable semiparametric mode regression. Like a modular system
and with none but the usual restrictions, mode regression can be combined
with any quadratic penalty and/or smooth component. In the IRLS frame-
work, the proposed method is incorporated by weighting the algorithm with
the derivatives of the approximation L(ξ). Hence, it is possible to combine
mode regression with existing software by alternating the updates of the
approximation and of the IRLS algorithm. Concretely, we employ the pack-
age mgcv (Wood, 2011; R Core Team, 2013) to implement penalized cubic
B-splines, Markov random fields and different methods for the estimation
of the smoothing parameter(s) λ. The results of conducted numerical ex-
periments are promising – especially when the smoothing parameters are
chosen by the negative log restricted likelihood (REML criterion).

5 Application and Outlook

To illustrate the value of semiparametric mode regression, we reanalyze
the exemplary data set employed in Kemp and Santos Silva (2010). The
aim of the analysis is to explain the development of the body mass index
(BMI) based on the composition of the population in England. We focus
on non-pregnant women between the ages of 18 and 65 observed in the
period between 1997 and 2006. The available covariates are the age, the
year of the observation and a binary factor indicating non-white women.
In Kemp and Santos Silva (2010), the effect of log(age) is modeled by a
third order polynomial while the other covariates are considered with one
coefficient only. The left panel of Figure 2 shows the re-transformed ef-
fect of log(age). In mean, median and mode regression, the effect of the
age differs only slightly. The scalar effect of the year (not shown) stands
out as it is positive in mean and median regression but negative in the
mode regression estimated with the methods of Kemp and Santos Silva
(2010). However, the methodology of Sections 2 and 4 allows to model
the effects of age and year smoothly: the middle and the right panel of
Figure 2 illustrate that the effects of age and year estimated with the
proposed method differ substantially from those in the parametric model
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of Kemp and Santos Silva (2010). The effect of the age seems to fol-
low the aging process of women – the effect changes e.g. in the span of
the menopause. In contrast, the effect of the year meanders around zero.
Amongst others, future work has to address the impact of the error distri-
bution – especially cases where the mode is at the margin of the domain of
the error distributions are interesting as they are not yet covered by existing
theory. Moreover, it would be eligible to find approaches for multi-modal
error distributions.
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Abstract: Generalized linear mixed models are a natural and widely used class
of models, but one in which the likelihood often involves an integral of very high
dimension. Because of this apparent intractability, many alternative methods
have been developed for inference in these models, but all can fail when the model
is sparse, in that there is only a small amount of information available on each
random effect. A new approximation method is introduced, which exploits the
structure of the integrand of the likelihood to reduce the cost of finding a good
approximation to the likelihood in models with sparse structure. The method
is demonstrated for models for tournaments between pairs of players, and for
models with nested random-effect structure.

Keywords: Graphical model, Laplace approximation, Nested model, Pairwise
competition model

1 A motivating example: pairwise competition
models

Consider a tournament among n players, consisting of m contests between
pairs of players. Each contest has a binary outcome yij , which takes value 1
if i beats j, and 0 if j beats i. We suppose that each player i has some ability
λi, and that conditional on all the abilities, the outcomes of the contests are
independent, with distribution depending on the difference in abilities of the
players i and j. In particular, we suppose that Pr(Yij = 1|λ) = h(λi − λj)
for some known function h(.). For example, if h(x) = logit−1(x), then this
describes a Bradley-Terry model (Bradley and Terry, 1952).
If covariate information xi is available for each player, then interest may lie
in the effect of the observed covariates on ability, rather than the individual
abilities λi themselves. To model how the ability of a players depends on
the observed covariates, we might initially suppose that λi = βTxi for some
unknown parameter β. However, in such a model any two players with the
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tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
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same covariate values must have the same ability. This is unlikely to be
true in practice, so we add an extra error term to our model for λi, so that
λi = βTxi + σui, where ui are independent N(0, 1) samples.
In order to do inference on the parameters θ = (β, σ) of the model, we
attempt to compute the likelihood, given by

L(θ; y) =

∫
Rn

∏
i,j

h
[(
βT (xi − xj) + σ(ui − uj)

)
(−1)yij+1

] n∏
j=1

φ(uj)du.

Unless n is very small, it will not be possible to approximate the likelihood
well by direct computation of this n-dimensional integral. It is therefore
common to use some approximation to the likelihood in place of the true
likelihood for inference. If a poor-quality approximation is used, the result-
ing inference can have some very bad statistical properties.
This problem is not unique to the example of pairwise competition models,
and the likelihood of the parameters of any generalized linear mixed model
may be similarly written as an n-dimensional integral over the random
effects. In the special case of a nested model with only one layer of random
effects, the likelihood factorizes into a product of one-dimensional integrals,
but in other cases the likelihood does not factorize in this way.

2 Existing methods for approximating the likelihood

Pinheiro and Bates (1995) suggest using a Laplace approximation to the
likelihood. Write g(u1, . . . , un|y, θ) for the integrand of the likelihood. This
may be thought of as a non-normalized version of the posterior density for
u, given y, and θ. For each fixed θ, the Laplace approximation relies on a
normal approximation gna(.|y, θ) to g(.|y, θ), so that

gna(u|y, θ) =
g(µθ|y, θ)

φn(µθ;µθ,Σθ)
φn(u;µθ,Σθ)

for some µθ and Σθ, where we write φn(.;µ,Σ) for the Nn(µ,Σ) density.
When we integrate over u, only the normalizing constant remains, so that

LLaplace(θ|y) =
g(µθ|y, θ)

φn(µθ;µθ,Σθ)
= (2π)−

n
2 (det Σθ)

− 1
2 g(µθ|y, θ).

In the case of a linear mixed model, the approximating normal density is
precise, and there is no error in the Laplace approximation to the likelihood.
In other cases, and particularly when the response is discrete and may only
take a few values, the error in the Laplace approximation may be large,
especially when the model is sparse, so that there is only a small amount
of information available on each random effect.
In cases where the Laplace approximation fails, Pinheiro and Bates (1995)
suggest constructing an importance sampling approximation to the likeli-
hood, based on samples from the normal distribution Nn(µθ,Σθ). Unfortu-
nately, there is no guarantee that the variance of the importance weights
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will be finite. In such a situation, the importance sampling approximation
will still converge to the true likelihood, but the convergence may be slow
and erratic.

3 A new method for approximating the likelihood

The approximations to the likelihood introduced so far have ignored the
structure of the integrand of the likelihood, g(.|y, θ). We define a graph,
G1, which we call the posterior dependence graph, so that the posterior
distribution of u given y is a graphical model with conditional independence
structure represented by G1. To do this, we define G1 to have a node for
each random effect, with an edge between two nodes if both random effects
are involved in a single observation. In a pairwise competition model, G1

is the graph with a node for each player and an edge between two nodes if
there is at least one contest between the corresponding pair of players.
To see how the graphical model structure can help to simplify computation
of the likelihood, we first require some definitions. A complete graph is one
in which there is an edge from each node to every other node. A clique of a
graph G is a complete subgraph of G, and a clique is said to be maximal if
it is not itself contained within a larger clique. We write M1 for the set of
maximal cliques of G1. By construction of G1, we are able to factorize the
the integrand of the likelihood over these maximal cliques, as g(u|y, θ) =∏
C∈M1

gC(uC).
We now describe a new method, which we call the ‘sequential reduction’
method, which exploits this factorization to reduce the cost of finding a
good approximation to the likelihood. The new method is similar to the
variable elimination algorithm for finding the marginal distributions of an
undirected graphical model (see, for example, Jordan (2004)), although
the posterior distribution of the random effects is continuous, so existing
methods which work for discrete distributions may not be applied directly.

1. The ui may be integrated out in any order. Later, we discuss how
to choose a good order, with the aim of minimizing the cost of ap-
proximating the likelihood. Reorder the random effects so that we
integrate out u1, . . . , un in that order.

2. Factorize g(u|y, θ) over the maximal cliques M1 of the posterior de-
pendence graph, as g(u|y, θ) =

∏
C∈M1

g1
C(uC).

3. Once u1, . . . ui−1 have been integrated out (using some approximate
method), we have the factorization g̃(ui, . . . , un|y, θ) =

∏
C∈Mi

giC(uC),
of the (approximated) non-normalized posterior for ui, . . . , un. Write

giNi(uNi) =
∏

C∈Mi:C⊂Ni

giC(uC).

We first store an approximate representation g̃iNi(.) of giNi(.), then

integrate over ui, to give an approximate representation g̃iNi\i(.) of
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giNi\i(.). An approximate representation of giNi(.) could be found by

evaluating giNi(uNi) at a fixed set of points for uNi , then interpolating
between those fixed points.

4. Write

g̃(ui+1, . . . , un|y, θ) = g̃iNi\i(uNi\i)
∏

C∈Mi:C 6⊂Ni

giC(uC),

defining a factorization of the (approximated) non-normalized poste-
rior density of {ui+1, . . . , un} over the maximal cliques Mi+1 of the
new posterior dependence graph Gi+1.

5. Repeat steps (3) and (4) for i = 1, . . . , n−1, then integrate g̃(un|y, θ)
over un to give the approximation to the likelihood.

If we store an approximate representation of giNi(.) by using a |Ni| - dimen-
sional grid of points, with K points in each direction, the cost of integrating
out ui is O(K |Ni|), The random effects may be removed in any order, so it
makes sense to use an ordering that allows approximation of the likelihood
at minimal cost. This problem may be reduced to a problem in graph the-
ory: to find an ordering of the vertices of a graph, such that when these
nodes are removed in order, joining together all neighbors of the vertex
to be removed at each stage, the largest clique obtained at any stage is
as small as possible. This is known as the triangulation problem, and the
smallest possible value, over all possible orderings, of the largest clique ob-
tained at some stage is known as the treewidth of the graph. If the posterior
dependence graph has treewidth T , the likelihood may be approximated at
cost at most O(nKT ). If the treewidth is small, this will be much less than
the O(Kn) cost of direct numerical integration.

4 Examples

We now demonstrate the sequential reduction method in two examples,
using code written by the author in R (R Core Team, 2013).

4.1 A pairwise competition model

We simulate a tournament from a pairwise competition model with n = 63
players, which has ‘tree’ structure, so that the posterior dependence graph
is a tree (a graph with no cycles). Any tree has treewidth 2, so in this case
the sequential reduction method may be used to approximate the likelihood
at cost O(nK2). Suppose that there is a single observed covariate xi for
each player, where λi = βxi + σui and ui ∼ N(0, 1). We simulate from the
model with the moderately large parameter values β = 1.5 and σ = 1.5.
The covariates xi are independent draws from a Bernoulli( 1

2 ) distribution.
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FIGURE 1. Importance sampling and sequential reduction approximations to
`p(1.20, 1.06)− `p(2.00, 1.50), plotted against the time taken to find the approx-
imation, on a log scale.

The performance of the new method is compared with that of an impor-
tance sampling approximation. We consider approximations to the differ-
ence between the log-likelihood at two points for θ = (β, σ), (1.20, 1.06)
and (2.00, 1.50), and consider the quality of each approximation relative
to the time taken to compute it. Figure 1 shows the trace plots of impor-
tance sampling and sequential reduction approximations to this difference
in log-likelihoods, plotted against the length of time taken to find each ap-
proximation, on a log scale. The improvement offered by the new method
is dramatic: the sequential reduction method provides a more accurate
likelihood approximation in a few seconds than an importance sampling
approximation which takes more than a day to compute.

4.2 A nested model

Although the sequential reduction method has been described for pairwise
competition models, the same method may be applied for other generalized
linear mixed models. We demonstrate this using a nested model, with two
layers of random effects. Suppose that binary observations are made on
items, each contained within some level-1 grouping, which themselves are
nested within some level-2 grouping. Writing g1(i) and g2(i) for the level-1
and level-2 groups of item i, we model

logitPr(Yi = 1|u,v) = α+ βxi + σ1ug1(i) + σ2vg2(i)

where each uj , vj ∼ N(0, 1). In our example, there are 2 items in each
level-1 group, 5 level-1 groups in each level-2 group, and 10 level-2 groups
in total.
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TABLE 1. Sequential reduction estimates for the three-level model

Laplace k = 2 k = 3 k = 4 k = 5

(Intercept) -0.043 -0.044 -0.045 -0.045 -0.045
x 0.933 1.070 1.154 1.153 1.154
σ1 0.908 1.240 1.441 1.437 1.439
σ2 0.900 0.986 1.014 1.013 1.014

The treewidth of the posterior dependence graph is 2, so the cost of com-
puting the sequential reduction approximation to the likelihood is O(nK2)
Using a grid with K = 2k − 1 points in each direction for storage gives the
parameter estimates shown in Table 1. The estimates quickly stabilize as
we increase k.

5 Discussion

Many common approaches to inference in generalized linear mixed models
rely on approximations to the likelihood, which may be of poor quality
if there is little information available on each random effect. There are
many situations in which it is unclear how good an approximation to the
likelihood will be, and how much impact the error in the approximation will
have on the statistical properties of the resulting estimator. It is therefore
very useful to be able to obtain an accurate approximation to the likelihood
at reasonable cost.
The sequential reduction method allows a good approximation to the likeli-
hood to be found in many models with sparse structure — precisely the sit-
uation where currently-used approximation methods perform worst. Some
cases do remain in which the model is sparse and yet the treewidth is large,
and further work is required to construct an accurate approximation to the
likelihood in these cases.
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Abstract:
In this paper, we propose parsimonious models for joint modeling between-subject
covariance matrix Σ1 and within-subject covariance matrix Σ2 for financial data
such as panel data or longitudinally balanced data. In our approach, the modeling
of Σ1 is based on the alternative Cholesky decomposition (A.CD) in the form of
Σ1 = DLLTD (Chen and Dunson, 2003), where D is a diagonal matrix and L is a
lower triangular matrix with 1’s as the main diagonal entries, while the modeling
of Σ2 is based on the modified Cholesky decomposition (M.CD) in the form of
Σ2 = LD2LT (Pourahmadi,1999). We also consider other covariance structures
including compound symmetry (Σ1 = DRD) specified to Σ1 and GARCH(1, 1)
structure to Σ2. Simulation studies show that the proposed approach works quite
well.

Keywords: Covariance matrix modelling; Cholesky Decomposition; GARCH.

1 Introduction

Nowadays, modern technologies make big panel data available in many
areas like genomic, biomedical study and finance, where both the number
of subjects P and the number of repeated measurements T are large. In
finance, the statistical analysis of high-dimensional data usually involves
the estimation of between-subject covariance matrix Σ1 and its inverse
Σ−1

1 (also referred to as precision matrix), because they are very useful
in portfolio management and risk analysis. Many methods for modeling
of between-subject covariance matrix Σ1 are available in the literature,
for example, Chang and Tsay (2010), Dellaportas and Pourahmadi (2012),
Fan, Liao and Mincheva (2013), but their Σ1 is assumed to have a specific
structure, which may not be true in practice.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
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We propose here a novel method for joint modeling of between-subject
covariance matrix Σ1 and within-subject covariance matrix Σ2, where the
panel data are assumed to follow a matrix normal distribution NP,T (0,Σ1⊗
Σ2). Here the mean is assumed to be zero for simplicity, e.g., the expected
return of the stocks is zero, and Σ1 ⊗ Σ2 is an PT × PT matrix, imply-
ing the spatial-temporal correlations are separable. The model has a nice
interpretation since the big PT × PT covariance matrix can be used to
describe the covariances of subjects at various observation time points. In
fact, the between-subject covariance matrix Σ1 and within-subject covari-
ance matrix Σ2 explain associations/correlations with respect to subject
and time space, respectively. Our proposed approach is more flexible since
no structure is specified to either Σ1 or Σ2, and actually they both are
modeled through data-driven methods as outlined in Section 2.

2 Estimation methods

Let Y be a P × T random matrix where yij is the jth of T measurements
of log-return on the ith of P stocks and let tij be the time at which yij is
observed. It is assumed that Y ∼ NP,T (0,Σ), where Σ = Σ1⊗Σ2, implying
Σ is completely determined by the between-subject covariance matrix Σ1

and the within-subject covariance matrix Σ2 through a Kronecker product.
We exploit data-driven techniques for the modeling of the two covariance
matrices Σ1 and Σ2. For the within-subject covariance matrix Σ2, modified
Cholesky decomposition (M.CD) is applied. While for the between-subject
covariance matrix Σ1, it is modeled by using alternative Cholesky decom-
position (A.CD). This strategy is reasonable because when the correlation
matrix R is of interest, estimation of the correlation matrix R is robust
against the misspecification of models for the diagonal matrix D (Maadoo-
liat and Pourahmadi, 2013).
We propose to model Σ1 and Σ2, respectively, due to the following facts
(Pan and Fang, 2000)

Σ
−1/2
1 Y ∼ NP,T (0, IP ,Σ2),

Y Σ
−1/2
2 ∼ NP,T (0,Σ1, IT ).

Then an estimation of Σ can be achieved by updating the estimates of Σ1

and Σ2 iteratively until convergence.

2.1 A.CD for Σ1 and M.CD for Σ2

Given the estimate of Σ2, we have Y1 = Y Σ
−1/2
2 ∼ NP,T (0,Σ1, IT ), or

equivalently, Xi ∼ NP (0,Σ1) where Xi is the ith column of Y1. Now the
between-subject covariance matrix Σ1 is modeled via alternative Cholesky
decomposition (A.CD) as outlined below. Since it is positive definite, there
exists a unique lower triangular matrix L with 1’s as main diagonal en-
tries and a unique diagonal matrix D with positive diagonal entries such
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that Σ1 = DLLTD. The diagonal entries of D2, innovation variances σ2
i ,

can be modeled through log σ2
i = ωTi λ, where ωi are the covariates related

to the ith subject. While the below-diagonal entries of L are the moving
average coefficients θi,j (Maadooliat and Pourahmadi, 2013). They are un-
constrained and can be modeled through θi,j = zTi,jγ where zi,j are the
covariates including the information of the subjects i and j.
The minus twice log-likelihood, up to a constant, is given by

−2l = 2

T∑
t=1

log|D|+
T∑
t=1

XT
t Σ−1

1 Xt.

The following maximum likelihood estimating equations for each elements
in γ and λ can be obtained by direct calculations:

U(γr) = tr(TD−1(

T∑
t=1

XtX
T
t )(TD−1)TTLλr ) = 0

U(λs) = tr((

T∑
t=1

XtX
T
t Σ−1

1 − TIP )D−1Dλs) = 0

where T = L−1. Since the solutions satisfy the above equations, the pa-
rameters γ and λ can be sequentially solved with one parameter kept fixed
in the optimization. Given λ, the estimate γ̂ can be obtained by solving
the equation of U(γ)., e.g., using Newton-Raphson algorithm. Similarly,

when γ is given, the estimate of λ̂ can be obtained by solving the equation
of U(λ). Our algorithm starts by initializing Σ1 = IP and repeats until a
pre-specified convergence criteria is met.

Given the estimate of Σ1, we have Y2 = Σ
−1/2
1 Y ∼ NP,T (0, IP ,Σ2), or

equivalently, X̃i ∼ NT (0,Σ2) where X̃i is the ith row of Y2. The within-
subject covariance matrix Σ2 can then be modeled via the modified Cholesky
decomposition (M.CD) outlined as below. Since it is positive definite, there
exists a unique lower triangular matrix T with 1’s as main diagonal entries
and a unique diagonal matrix D with positive diagonal entries such that
TΣ2T

T = D2 which can also be written as Σ2 = LD2LT where L = T−1.
The below-diagonal entries of T are the negatives of the autoregressive co-
efficients, φi,j , which is unconstrained and can be modeled by φi,j = zTi,jγ.

While the diagonal entries of D2, innovation variance σ2
i , can be modeled

by log σ2
i = hTi λ, where hi are the covariates of the ith subject. The MLEs

of λ and γ can be archived in a similar way as before and has been well
explained in Pan and Mackenzie (2003).

2.2 Other specifications to Σ1 and Σ2

A simple structure for the between-subject covariance matrix Σ1 is com-
pound symmetry in the form of Σ1 = DRD, where the correlation between
any two subjects/stocks, i.e., the off-diagonal elements in correlation ma-
trix R, is assumed to be same and denoted by ρ. The standard deviation for
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each subject/stock, i.e., diagonal element in the diagonal matrix D, may
vary from subject to subject, which can be modeled through log σ2

i = gTi ω,
where gi are the covariates of the ith subject.
The other specification to the within-covariance matrix Σ2 is the so-called
GARCH(1,1) model, which is one of the commonly used models in modeling
volatilities for financial data. Here we apply GARCH(1,1) models to each
subject/stock and then take the average in order to obtain the estimates
of the parameters ω, α and β involved in GARCH(1,1) model.

3 Data Analysis

TABLE 1. Average of the parameter estimates with simulated standard devia-
tions in parentheses for 500 random samples generated from the matrix normal
distribution, where A.CD decomposition is applied to Σ1 and M.CD decomposi-
tion is applied to Σ2

True P=50 P=100 P=200
value T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20

λacd1 -1.60 -1.621 -1.595 -1.596 -1.611 -1.585 -1.593 -1.612 -1.602 -1.594
(0.301) (0.168) (0.128) (0.292) (0.165) (0.111) (0.252) (0.135) (0.088)

λacd2 -4.50 -4.473 -4.494 -4.498 -4.508 -4.492 -4.484 -4.523 -4.503 -4.501
(0.316) (0.199) (0.135) (0.262) (0.149) (0.102) (0.336) (0.222) (0.104)

λacd3 -2.30 -2.336 -2.301 -2.288 -2.303 -2.295 -2.302 -2.304 -2.299 -2.291
(0.265) (0.167) (0.118) (0.282) (0.175) (0.129) (0.269) (0.199) (0.094)

γacd1 0.51 0.514 0.510 0.510 0.513 0.509 0.511 0.511 0.511 0.507
(0.075) (0.044) (0.053) (0.065) (0.036) (0.024) (0.056) (0.027) (0.027)

γacd2 0.47 0.475 0.468 0.471 0.473 0.471 0.469 0.478 0.472 0.473
(0.095) (0.059) (0.040) (0.063) (0.040) (0.028) (0.069) (0.040) (0.038)

γacd3 0.33 0.338 0.329 0.329 0.333 0.334 0.333 0.332 0.331 0.331
(0.078) (0.049) (0.036) (0.064) (0.045) (0.040) (0.046) (0.029) (0.022)

λmcd1 6.00 5.961 5.978 5.971 5.984 5.965 5.966 6.041 6.007 5.988
(0.631) (0.295) (0.197) (0.612) (0.228) (0.150) (0.760) (0.525) (0.128)

λmcd2 -0.50 -0.467 -0.498 -0.501 -0.474 -0.500 -0.496 -0.486 -0.498 -0.500
(0.336) (0.097) (0.032) (0.237) (0.073) (0.023) (0.185) (0.053) (0.016)

λmcd3 0.03 0.023 0.029 0.030 0.025 0.029 0.029 0.027 0.029 0.030
(0.055) (0.008) (0.001) (0.039) (0.006) (0.001) (0.029) (0.004) (0.001)

γmcd1 0.80 0.798 0.796 0.799 0.785 0.797 0.800 0.799 0.799 0.800
(0.225) (0.051) (0.008) (0.162) (0.034) (0.005) (0.121) (0.025) (0.004)

γmcd2 -0.3 -0.300 -0.298 -0.299 -0.286 -0.298 -0.299 -0.299 -0.299 -0.300
(0.215) (0.028) (0.002) (0.156) (0.019) (0.001) (0.119) (0.013) (0.001)

γmcd3 0.02 0.020 0.019 0.020 0.017 0.019 0.020 0.019 0.019 0.020
(0.043) (0.003) (0.0002) (0.031) (0.002) (0.0001) (0.024) (0.001) (0.0001)

The results of our simulation studies are presented in Tables 1-3 below,
where each result is the average of parameter estimates for 500 simulation
runs. Table 1 reports the parameter estimates for the panel data gener-
ated from a matrix normal distribution, and the simulated standard errors
(in parentheses). In total, nine combinations of the number of subjects
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TABLE 2. Average of the parameter estimates with simulated standard devia-
tions (Compound symmetry for Σ1 and M.CD for Σ2)

True P=50 P=100 P=200
value T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20

λcs1 -3.20 -3.199 -3.200 -3.201 -3.196 -3.199 -3.200 -3.201 -3.201 -3.195
(0.056) (0.040) (0.026) (0.043) (0.031) (0.022) (0.031) (0.027) (0.018)

λcs2 -4.70 -4.706 -4.701 -4.701 -4.702 -4.703 -4.703 -4.702 -4.703 -4.701
(0.074) (0.052) (0.035) (0.050) (0.034) (0.023) (0.032) (0.022) (0.014)

λcs3 -1.70 -1.699 -1.697 -1.699 -1.702 -1.702 -1.701 -1.701 -1.698 -1.701
(0.065) (0.047) (0.031) (0.047) (0.032) (0.021) (0.033) (0.025) (0.019)

ρcs 0.7 0.634 0.672 0.705 0.673 0.714 0.739 0.766 0.779 0.787
(0.146) (0.102) (0.067) (0.133) (0.096) (0.070) (0.081) (0.072) (0.062)

λmcd1 6.00 5.865 5.952 6.033 5.967 6.092 6.173 6.307 6.207 6.188
(0.610) (0.366) (0.263) (0.489) (0.347) (0.293) (0.394) (0.225) (0.128)

λmcd2 -0.50 -0.494 -0.500 -0.498 -0.496 -0.496 -0.498 -0.497 -0.498 -0.500
(0.355) (0.096) (0.033) (0.226) (0.069) (0.023) (0.169) (0.054) (0.018)

λmcd3 0.03 0.027 0.029 0.029 0.029 0.029 0.030 0.028 0.029 0.030
(0.058) (0.008) (0.001) (0.037) (0.006) (0.001) (0.027) (0.004) (0.001)

γmcd1 0.80 0.794 0.795 0.799 0.800 0.798 0.800 0.795 0.799 0.798
(0.210) (0.049) (0.008) (0.158) (0.032) (0.005) (0.107) (0.026) (0.005)

γmcd2 -0.3 -0.296 -0.297 -0.299 -0.301 -0.299 -0.299 -0.296 -0.298 -0.299
(0.200) (0.027) (0.002) (0.150) (0.017) (0.002) (0.102) (0.015) (0.001)

γmcd3 0.02 0.019 0.019 0.020 0.020 0.019 0.020 0.019 0.019 0.020
(0.040) (0.003) (0.0002) (0.030) (0.002) (0.0001) (0.021) (0.001) (0.0001)

TABLE 3. Average of the parameter estimates with simulated standard devia-
tions (Compound symmetry and A.CD for Σ1 and GARCH(1,1) for Σ2)

True T=1000 True T=1000
value P=50 P=100 P=200 value P=50 P=100 P=200

λcs1 -3.20 -3.201 -3.200 -3.201 λacd1 -1.6 -3.196 -3.199 -3.201
(0.024) (0.018) (0.011) (0.092) (0.065) (0.031)

λcs2 -4.70 -4.703 -4.701 -4.702 λacd2 -4.5 -4.508 -4.492 -4.504
(0.031) (0.019) (0.013) (0.062) (0.049) (0.032)

λcs3 -1.70 -1.699 -1.701 -1.698 λacd3 -2.3 -2.303 -2.296 -2.301
(0.026) (0.024) (0.018) (0.082) (0.075) (0.029)

ρcs 0.7 0.706 0.713 0.717 γacd1 0.51 0.510 0.511 0.508
(0.075) (0.064) (0.063) (0.065) (0.064) (0.034)

γacd2 0.47 0.478 0.472 0.473
(0.061) (0.022) (0.015)

γacd3 0.33 0.329 0.331 0.333
(0.038) (0.025) (0.013)

ωgarch 0.80 0.798 0.796 0.799 ωgarch 0.80 0.785 0.797 0.800

(×10−5) (0.065) (0.051) (0.038) (×10−5) (0.062) (0.034) (0.025)

αgarch 0.121 0.116 0.124 0.125 αgarch 0.121 0.115 0.131 0.117
(0.015) (0.013) (0.009) (0.015) (0.019) (0.011)

βgarch 0.852 0.820 0.819 0.870 βgarch 0.852 0.817 0.879 0.820
(0.043) (0.055) (0.036) (0.052) (0.042) (0.061)
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P and number of observations T are considered (P = 50, 100, 200 and
T = 5, 10, 20). From Table 1, it is clear that the resulting parameter esti-
mators are quite close to their true values, indicating the proposed method
works very well. It is also clear that the simulated standard deviation is
smaller for the cases with large T and fixed P , or large P and fixed T .
Similar conclusions can also be drawn from Tables 2-3. Note that the esti-
mation results are improved when increasing either the number of subjects
P or the number of observations T . The proposed approach performs well
as demonstrated by our simulation studies.
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1 Introduction

In regression type models often many of the collected variables are catego-
rial, measured on an ordinal or nominal scale. The usual modelling strategy
is to use one of the levels as baseline and to define dummy variables for
the other levels. This can easily lead to a high-dimensional vector of re-
gression effects. A sparse representation of the model can be achieved by
fusing category levels with essentially the same effect into one category and
by removing variables where none of the levels has a non-zero effect. As an
example we analyse the effects of social and demographic characteristics,
such as age or educational level, on annual personal income. For this analy-
sis we use Austrian data from the Survey on Income and Living Conditions
(SILC) in 2010.

2 Model Specification

Let y denote the normal response in a standard linear regression model with
j = 1, . . . , p categorial covariates cj . We assume that the j-th covariate has

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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Kj + 1 categories 0, . . . ,Kj and the first category 0 defines the reference
category. We specify the linear regression model as

y = µ+

p∑
j=1

Kj∑
k=1

Xjkθj,k0 + ε, ε ∼ N (0, σ2)

with regressors Xjk defined as in Gertheiss and Tutz (2009): We use split
coding for ordinal covariates, i.e.

Xjk =

{
1, for cj ≥ k
0, otherwise,

k = 1, . . .Kj

and usual dummy coding for nominal covariates.
For the nominal covariates the regression effects corresponding to the Kj

dummy variables can be interpreted as the effect contrast of category k and
the reference category. To allow for fusion of level effects we define for all
k > l by θj,kl the effect contrast of categories k and l of covariate cj , which
leads to the restriction

θj,k0 − θj,l0 − θj,kl = 0, for all 0 < l < k ≤ Kj .

We subsume all parameters θj,kl with 0 ≤ l < k ≤ Kj in the vector θj .

3 Priors and Bayesian inference

We assign a flat proper prior to the intercept, µ ∼ N (0,M0σ
2) and the

improper prior p(σ2) ∝ 1
σ2 to the error variance.

To encourage sparsity in the coefficient vectors we specify for each element
of θj a spike and slab prior distribution (George and McCulloch, 1993)
hierarchically as

p(θj,kl|δj,kl, τ2) ∼ δj,klN (0, τ2) + (1− δj,kl)N (0, rτ2),

where r is a small value and δj,kl is an indicator for the slab component
with prior distribution p(δj,kl = 1) = wj . wj corresponds to the weight
of variable j and is assigned a Beta hyperprior, wj ∼ B(a0j , b0j). Effect
fusion is accomplished by the spike component: If δj,kl = 0, the effect θj,kl
is assigned to the spike component and hence shrunk to zero. Thus the
corresponding level effects θj,k0 and θj,l0 are fused.
Bayesian inference is accomplished by sampling from the posterior distribu-
tion using MCMC methods. To guarantee the restriction on the parameters
θj we use the kriging algorithm described in Rue and Held (2005). Poste-
rior means of the indicators δj,kl suggest which levels of variable cj can be
fused and which variables can be completely removed from the model.
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4 Modelling Income in Austria

4.1 Data

We use data from EU-SILC (SILC = Survey on Income and Living Condi-
tions) in 2010 to model personal income of full-time employees in Austria.
The data set provides a wide range of variables on financial and living as-
pects of households as well as demographic characteristics of individuals.
In our analysis we model the logarithm of the annual income and use sex,
age (grouped), Austrian federal state of residence, citizenship and highest
education achieved as potential regressors. As we restrict the analysis to
full-time employees with no missing values in the covariates, the final data
set comprises 4,029 subjects.

4.2 Results

Table 1 compares the results of a Bayesian analysis of the unrestricted
model, where a flat normal prior is assigned to all regression coefficients,
to the model averaged results using spike and slab priors. The variance
parameter τ2 is set to 1 and the parameters for the hyperprior on the
weights wj are a0j = b0j = 1.
In general, it can be seen that the income of female employees in Austria is
lower than the income of their male colleagues. Age has a positive effect on
the income, but the level effects are very similar for age categories above 51
years in the unrestricted model. Under the spike and slab prior distribution
these categories are fused. Income varies between the federal states in Aus-
tria, but the differences are very small. Using sparse modelling, all category
effects, and hence the whole variable, are excluded from the model. Em-
ployees with Austrian citizenship have a higher income than others. The
negative effects of a citizenship from a state of former Yugoslavia (without
Slovenia) or the ’New EU10’ (Estonia, Latvia, Lithuania, Malta, Poland,
Slovakia, Slovenia, Czech Republic, Hungary, Cyprus) are very similar and
fused to one group under the spike and slab prior.
An educational level higher than secondary school generally has a positive
effect on personal income. The effect increases with educational level and
posterior means are almost identical for categories (1) and (2) as well as
categories (3), (5), (6) and (7) under the spike and slab prior. Posterior
means and 90% HPD intervals of the level effects are compared in Figure 1
for a flat prior and the spike and slab prior. Obviously, also HPD intervals
of the effects of categories (1) and (2) on the one hand and (3), (5), (6) and
(7) on the other hand are almost identical under the spike and slab prior.
As fused categories will have the same posterior distribution, this suggests
that the effect of education on income could be represented by only four
levels. The corresponding HPD intervals are shorter than those under the
flat prior. However, this is not generally the case, as 90% HPD intervals
of the effects of categories (4) and (9) are even longer than under the flat
prior.
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FIGURE 1. Posterior mean and 90% HPD intervals for level effects of highest
education. Left plot: flat prior. Right plot: spike and slab prior.
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FIGURE 2. Heat map of fusion probabilities for categories of highest education

More insight into effect fusion is given in Figure 2 which shows a heat
map of fusion frequencies in the MCMC iterations under the spike and
slab prior. In 77% of the iterations the effects of categories (1) and (2),
and in almost 95% those of the four categories (3), (5), (6) and (7) are
fused. Results are not so clear for the remaining categories, since effects of
categories (8) and (9) are fused with those of the four categories (3) and
(5)–(7) in roughly 76% and 63%, and with that of category (4) in 23%
and 27% of the iterations, respectively. Figure 3 shows the trace plots of
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FIGURE 3. Trace plot of effect contrasts. Left plot: category (5) to (4). Right
plot: category (5) to (9).

the effect contrasts of categories (5) and (4) (left plot) and categories (5)
and (9) (right plot) which further illustrate that both differences are set
to zero, and hence the corresponding effects are fused, in some, but not all
iterations.
In addition to the category fusion probabilities shown in the heat map,
more detailed information on models with high posterior probability might
be of interest. Posterior model probabilities can be estimated by the num-
ber of visits to each model during MCMC. The two top models (each with
estimated marginal posterior probability 0.12) both fuse the effect of cat-
egory (9) with those of categories (3) and (5)–(8). In one of these models
the effect of category (4) is also fused to this effect, in the other it is not
fused with any category effect at all. The model with third highest posterior
probability (0.08) fuses the effect of category (4) with that of categories (1)
and (2). While in the three top models, which together account for roughly
one third posterior model probability, the effect of category (9) is fused
with other level effects, it is not fused at all in several models visited less
often. This uncertainty on fusion is reflected in the larger posterior variance
of the effects of categories (4) and (9).
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5 Conclusion

We propose a method for sparse modelling of ordered and unordered cate-
gorial covariates by effect fusion and removing of (almost) non-zero effects.
Bayesian inference is done using MCMC methods, a spike and slab prior
distributions on the regression effects encourage sparsity.

Acknowledgments: We acknowledge greatfully financial support by the
Austrian Science Fund FWF, projekt number P25850 ’Sparse Bayesian
modelling for categorial predictors’.

TABLE 1. Estimation results

variable flat spike and incl.
prior slab prior prob.

intercept 8.94 8.90 –
women -0.22 -0.22 1.00
age (base:16 to 20 years)

21 to 30 years 0.67 0.65 1.00
31 to 40 years 0.87 0.86 1.00
41 to 50 years 0.96 0.97 1.00
51 to 60 years 1.01 0.98 1.00
over 60 years 1.00 0.98 1.00

federal state (base: Upper Austria)
Carinthia -0.05 0.00 0
Lower Austria -0.05 0.00 0
Burgenland -0.09 0.00 0
Salzburg -0.02 0.00 0
Styria -0.11 0.00 0
Tyrol -0.04 0.00 0
Vorarlberg 0.12 0.00 0
Vienna -0.03 0.00 0

citizenship (base: Austria)
EU15/EFTA -0.07 -0.02 0.13
New EU10 -0.25 -0.19 1.00
Rest of Yugoslavia without Slovenia -0.19 -0.19 1.00
Turkey -0.19 -0.03 0.16
Others -0.19 -0.07 0.38

Highest education achieved
(base: max. secondary school degree)

(1) apprenticeship, trainee 0.23 0.24 1.00
(2) master craftman’s diploma 0.19 0.23 1.00
(3) nurse’s training school 0.41 0.48 1.00
(4) other vocational school (medium level) 0.33 0.36 1.00
(5) academic secondary school (upper level) 0.45 0.48 1.00
(6) college for higher vocational education 0.46 0.48 1.00
(7) vocational school for apprentices 0.43 0.48 1.00
(8) university, academy, FH: first degree 0.55 0.50 1.00
(9) university: doctoral studies 0.68 0.55 1.00
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Abstract: In categorical data analysis, several regression models have been pro-
posed for hierarchically-structured response variables, such as the nested logit
model. But they have been formally defined for only two or three levels in the
hierarchy. Here, we introduce the class of partitioned conditional generalized lin-
ear models (PCGLMs) defined for an arbitrary number of levels. The hierarchical
structure of these models is fully specified by a partition tree of categories. Using
the genericity of the (r, F, Z) specification of GLMs for categorical data, PCGLMs
can handle nominal, ordinal but also partially-ordered response variables.

Keywords: hierarchically-structured categorical variable; partition tree; partially-
ordered variable; GLM specification.

1 (r,F,Z) specification of GLM for categorical data

The triplet (r, F, Z) will play a key role in the following since each GLM for
categorical data can be specified using this triplet; see Peyhardi et al. (2013)
for more details. The definition of a GLM includes the specification of a link
function g which is a diffeomorphism fromM = {π ∈ ]0, 1[J−1|

∑J−1
j=1 πj <

1} to an open subset S of RJ−1. This function links the expectation π =
E[Y |X=x] and the linear predictor η = (η1, ..., ηJ−1)t. It also includes
the parametrization of the linear predictor η, which can be written as the
product of the design matrix Z (as a function of x) and the vector of
parameters β. All the classical link functions g = (g1, . . . , gJ−1), rely on
the same structure which we propose to write as

gj = F−1 ◦ rj , j = 1, . . . , J − 1. (1)

where F is a continuous and strictly increasing cumulative distribution
function (cdf) and r = (r1, . . . , rJ−1)t is a diffeomorphism from M to an

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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open subset P of ]0, 1[J−1. Finally, given x, we propose to summarize a
GLM for a categorical response variable by the J − 1 equations

r(π) = F(Zβ),

where F(η) = (F (η1), . . . , F (ηJ−1))T . In the following we will consider
four particular ratios. The adjacent, sequential and cumulative ratios re-
spectively defined by πj/(πj + πj+1), πj/(πj + . . .+ πJ) and π1 + . . .+ πj
for j = 1, . . . , J − 1, assume order among categories but with different in-
terpretations. We introduce the reference ratio, defined by πj/(πj +πJ) for
j = 1, . . . , J − 1, useful for nominal response variables.
Finally, a single estimation procedure based on Fisher’s scoring algorithm
can be applied to all the GLMs specified by an (r, F, Z) triplet. The score
function can be decomposed into two parts, where only the first one depends
on the (r, F, Z) triplet.

∂l

∂β
= ZT

∂F
∂η

∂π

∂r︸ ︷︷ ︸
(r,F,Z) dependent part

Cov(Y |X = x)−1 [y − π]︸ ︷︷ ︸
(r,F,Z) independent part

. (2)

We need only to evaluate the density function {f(ηj)}j=1,...,J−1 to compute
the corresponding diagonal Jacobian matrix ∂F/∂η. For details on compu-
tation of the Jacobian matrix ∂π/∂r according to each ratio, see Peyhardi
(2013).

2 Partitioned conditional GLMs

The main idea consists in recursively partitioning the J categories then
specifying a conditional GLM at each step. This type of model is therefore
referred to as partitioned conditional GLM. Such models have already been
proposed, such as the nested logit model (McFadden, 1978), the two-step
model (Tutz, 1989) and the partitioned conditional model for partially-
ordered set (POS-PCM) (Zhang and Ip, 2012). Our proposal can be seen
as a generalization of these three models that benefits from the genericity
of the (r, F, Z) specification. In particular, our objective is not only to pro-
pose GLMs for partially-ordered response variables but also to differentiate
the role of explanatory variables for each partitioning step using specific
explanatory variables and design matrices. We are also seeking to formally
define partitioned conditional GLMs for an arbitrary number of levels in
the hierarchy.

PCGLM definition: Let J ≥ 2 and 1 ≤ k ≤ J − 1. A k-partitioned
conditional GLM for categories 1, . . . , J is defined by:

• A partition tree T of {1, . . . , J} with V∗, the set of non-terminal
vertices of cardinal k. Let Ωvj be the children of vertex v ∈ V∗.

• A collection of models C = {(rv, F v, Zv(xv)) | v ∈ V∗} for
each conditional probability vector πv = (πv1 , . . . , π

v
Jv−1), where πvj =



Peyhardi et al. 271

P (Y ∈ Ωvj |Y ∈ v;xv) and xv is a sub-vector of x associated with
vertex v.

PCGLM estimation: Using the partitioned conditional structure of model,
the log-likelihood can be decomposed as l =

∑
v∈V∗ l

v, where lv represents
the log-likelihood of GLM (rv, F v, Zv(xv)). Each component lv can be max-
imised individually, using (2), if all parameters {βv}v∈V∗ are different.

PCGLM selection: The partition tree T and the collection of models C
have to be selected using ordering assumption among categories.

• Nominal data: the partition tree T is built by aggregating similar
categories - such as the nested logit model of McFadden (1978) - and
C contains only reference models, appropriate for nominal data; see
Peyhardi (2013).

• Ordinal data: we propose to adapt the Anderson’s indistinguishability
procedure (1984) for PCGLM selection.

• Partially ordered data: the partial ordering assumption among cate-
gories can be summarized by an Hasse diagram. Zhang and Ip (2012)
defined an algorithm to build the partition tree T automatically from
the Hasse diagram; see figure 1 with the pear tree dataset. It should
be remarked that every partially-ordered variable Y can be expressed
in terms of elementary ordinal and nominal variables Ỹi (with at least
one ordinal variable). We propose to build the partition tree T di-
rectly from these latent variables Ỹi to obtain a more interpretable
structure. For these two methods of partition tree building, the main
idea is to recursively partition the J categories in order to use a simple
(ordinal or nominal) GLM at each step.

3 Application to pear tree dataset

Dataset description: In winter 2001, the first annual shoot of 50 one-
year-old trees was described by node. The presence of an immediate axillary
shoot was noted at each successive node. Immediate shoots were classified
into four categories according to their length and transformation or not of
the apex into spine (i.e. definite growth or not). The final dataset was thus
constituted of 50 bivariate sequences of cumulative length 3285 combining
a categorical variable Y (type of axillary production selected from among
latent bud (l), unspiny short shoot (u), unspiny long shoot (U), spiny short
shoot (s) and spiny long shoot (S)) with an interval-scaled variable X1

(internode length).

Results: A higher likelihood and simpler interpretations were obtained
using partial ordering information. The axillary production Y of pear tree
can be decomposed into two levels. Production first follows a sequential
mechanism (ordinal model), giving latent bud, short shoot or long shoot
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(first level of hierarchy; figure 1), which is strongly influenced by the in-
ternode length X1 (the longer the internode, the longer the axillary shoot).
The axillary shoot apex then differentiates or not into spine (second level
of hierarchy; figure 1) depending on distance to growth unit end (second
explanatory variable X2 expressed in number of nodes).

FIGURE 1. Hasse diagram and corresponding partition tree.
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Abstract: We present a new method of estimating graphical models with the
clear goal of providing models that minimize the mean squared error of certain
parameters of interest to the researcher. The method is applicable to undirected as
well as to mixed graphs containing both directed and undirected edges. Quadratic
approximations to several well studied penalties deal with problems where the
number of nodes is greater than the number of samples. Extensions of the current
application include a dynamical image of graphs based on consecutive focus points
and estimating graphs where information is borrowed among subjects.

Keywords: Undirected Markov networks; Temporal chain graphs; Focused in-
formation criterion; Model selection; fMRI

1 Introduction and motivation

Motivated by a resting-state fMRI study and by the definitory characteris-
tics of such data (a complete dataset of n repeated measurements for each
of p brain regions per subject) we propose a new method for model selection
for undirected as well as mixed graphical models (with both directed and
undirected edges), in situations where the number of nodes in the graph is
larger than the number of cases. The method is constructed to have good
mean squared error properties and it is based on the focused information
criterion (FIC) developed in Claeskens and Hjort (2003).
The reason for modeling the data in this way is two-fold: first, the graphi-
cal representation offers insight into the complex relations that might exist
between the nodes (brain regions in this case) revealing thus patterns of

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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functional connectivity within the brain (Bullmore and Sporns, 2009). Sec-
ond, we wish to accommodate distinct research objectives and select models
tailored to those interests. Unlike traditional model selection criteria (such
as AIC or BIC), the FIC allows to selecting individual models, tailored
to a specific research purpose (the focus), as opposed to attempting an
identification of a single model that should be used for all purposes.

2 Method description

In the context of graphical modeling (see Lauritzen, 1996), given multivari-
ate data, the goal is to estimate plausible positions of edges in the graph,
or equivalently conditional independencies between variables. A temporal
chain graph G(E, V ), includes both directed and undirected edges for which
the multivariate random vector Y at time t follows

Yt|Yt−1 ∼ N(ΓYt−1,Σ).

A directed edge between nodes i and j belongs to E if Γij 6= 0 and an
undirected one is placed if Σ−1

ij 6= 0.
Working under a nodewise local misspecification framework assumes that
the true model is in a ‘neighborhood’ of the least complex model one is
willing to assume, that is for a particular node Y , given a sample of n
cases, it assumes that

Yk has density f(yk|wk, zk, θ, γ0 + δ/
√
n),

where f is two times continuously differentiable in a neighborhood of the
vector (θ0, γ0). We define a focus parameter, i.e. µ(θ0, γ0 + δ/

√
n) as a

function of the parameters of the model density, and potentially of a user-
specified vector of covariate values, for any particular node in the graph
G(E, V ). The vector θ corresponds to all parameters that are included in
every model (if a node X is known a priori to influence Y , then its effect is
included in θ, and we call it a protected node) while γ collects all parameters
corresponding to the potential influential set of nodes. W and Z denote the
sets of protected and unprotected nodes.
An estimator for (θ, γ) is obtained by optimizing

Q(θ, γ) =
1

n

n∑
k=1

log f(yk|wk, zk, θ, γ)− λ

n

dγ∑
j=1

ψ(|γj − γj0|), (1)

with respect to θ and γ for a given penalty function ψ (that is twice differ-
entiable in 0) and that depends on an external value λ.
Subsequent steps involve specifying a collection of models S (based on
which some γ elements are set at 0, while others are freely estimated) and
(1) is optimized for parameters corresponding to the prespecified models.

For n → ∞ the quantity
√
n(µ̂S − µtrue)

d→ ΛS for which ΛS is a normal
random variable with a certain mean and variance.
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Adding squared bias and variance, we immediately obtain the MSE expres-
sion of the estimator µ̂S .
The FIC estimates the MSE for each of a collection of models S at each
node, and selects the model with the smallest MSE value. A nodewise
decomposable FIC score pertaining to the entire graph is then constructed
as:

FIC(G(ES , V )) =

p∑
l=1

M̂SE(µ̂l;Sl).

Since our above argumentation was nodewise related, we construct an es-
timated graph as follows: at each node both the contemporaneous and
dynamic effects of other nodes are used in order to determine a low-MSE
model, and none of them is on a priori grounds protected. Once all nodewise
models are selected (some might include only contemporaneous or dynamic
effects, while others might contain both) we apply the following ‘OR’ rule
adapted from Meinshausen and Bühlmann (2006):

Êλ,OR
i−j =

{
(i, j) ∪ (j, i) : it ∈ n̂eλjt OR jt ∈ n̂eλit

}
Êλ,OR
i→j =

{
(i, j) : it−1 ∈ n̂eλjt

}
Êλ,OR =

{
Êλ,OR
i−j ∪ Ê

λ,OR
i→j

}
,

where n̂eλ denotes the neighborhood of the considered node for a certain
value of λ. The focus of the research (i.e. the purpose of the model), directs
the selection and different focuses may lead to different selected models.
In this way, one can obtain better selected models in terms of MSE, than
obtained from a global model search. For this application of FIC for graphs,
the focus is the expected value of a variable, reflecting interest in discovering
a topology of the graph that produces a low MSE for this focus. To deal
with situations where n < p a quadratic approximation to penalties such
`1, ‘SCAD’ or ‘Bridge’ is applied on the γ vector. We propose further the
selection of the regularization level as the quantity optimizing the MSE
expression as

λS =
ωtGSδ1

t
q(J

11,S,0)tω − ωtδ1tq(J11,S,0)tω

ωtJ11,S,01q1tq(J
11,S,0)tω

√
n

ψ′′(0)
,

where GS and J11,S,0 can easily be obtained from the Fisher information
matrix, while ω involves both the derivatives of the focus parameter and
parts of the Fisher information matrix and ψ

′′
(0) is the second derivative

of the penalty function evaluated at 0.

3 fMRI data application

Figure 1 illustrates that for a new subject, for which certain brain regions
(colored in red) have a large signal compared to the average, the FIC per-
forms well in discovering the activated regions. Moreover, studying the
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FIGURE 1. fMRI data. FIC graph based on `2 penalty. Undirected edges de-
note contemporaneous effects between brain regions while directed edges denote
autoregressive dynamic effects. L/R denote the left/right hemisphere and larger
labels correspond to high-degree regions.

evolution of the network over time by considering each time the measured
signal as a focus, one can conclude that, for example, based on Figure 2
the small-worldness feature of the network which quite often is an interest-
ing aspect of the network to look at, seems to be implausible for the two
subjects in the analysis. Most of the estimated values seem to be below a
threshold line at 1 and only in a relatively small number of cases the esti-
mated values are larger than the cut-off value. Interestingly, it seems that
for subject 1 the estimated networks at later time points produce larger
values, while for subject 2 the networks estimated in the first and third
part of the measurements produce larger index values.
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FIGURE 2. fMRI data. Estimated Small-World indexes for two subjects. At each
time point, for each of the subjects, a graph based on the `2 penalty is estimated
and based on the graph structure, the Small-World index is computed.
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The basic method is then expanded towards three types of situations:

• where one wishes to bring in all information from all the subjects in
the analysis and construct one estimated network;

• where one wishes to construct related networks for subjects by al-
lowing for dependence between the measurements for one region of
interest across multiple subjects;

• or where one is pooling all data and wishes to estimate networks
taking into account subject specific effects.

4 Simulation study

To show the method’s performance in a controlled study, we have generated
data from 42 different settings using various sample sizes, number of nodes
or true graph model and inspected the empirical MSE, sparsity index and a
‘structure closeness’ score F1 that measures how close the estimated graph
is to the true graph for 3 different focuses. Figure 3 presents averages of the
empirical MSE value when the data obtained from 42 different simulation
settings each with 300 simulation runs is pooled together. The FIC proce-
dures with three types of penalties provide low MSE with the `2 penalty
being the best performing one.
Depending on the focus and the simulation setting sometimes the FIC pro-
vides sparser graphs than competitors (sometimes denser) and sometimes
the graphs estimated by the FIC are closer to the true data generating pro-
cess, sometimes further away, but most importantly the estimated graphs
perform well with respect to MSE as intended from construction.

5 Discussion

Using the FIC one has at disposal a powerful method to study evolutions
over time of networks constructed to study the functional connectivity be-
tween brain regions. The method clearly identifies important brain regions
which seem to be highly connected with others, acting as ‘hubs’ or ‘infor-
mational gateways’ and performs well on simulated data.

Acknowledgments: This research was partially supported by KU Leuven
grant GOA FlexStatRob.
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Abstract: The sequential logit model for ordinal response is an important tool
for the modelling of disease progression and discrete survival. A common issue
is the problem of effect type selection: if the available predictor variables are
specified with a constant effect across response categories, one obtains a rather
inflexible model that is parsimonious and straightforward to interpret. Using
category-specific effects leads to a flexible, but high-dimensional model that is
difficult to handle. With reference to the effects of these parameterizations, they
are also called “proportional” and “nonproportional” effects. In the literature,
most authors decide on one type of effect and assume a priori that all covari-
ate effects are of the chosen type. We investigate the downside of this status
quo and develop a penalized likelihood approach based on a grouped fused lasso
penalty that enables us to seperately choose between proportional and nonpro-
portional effects for each covariate in an automatic, data-driven way. Moreover,
our method provides a continuous transition from nonproportional to propor-
tional effects. The usefulness of our approach is illustrated on data about the
time to bankruptcy of newly founded companies.

Keywords: Ordinal regression; Discrete Survival Analysis; Regularization; Group
Fused Lasso.

1 The Sequential Logit Model

Let Y ∈ {1, 2, . . . , k} denote the categorical response variable whose cate-
gories can be ordered and let x be a vector of (potential) predictors for Y .
With q = k−1 denoting the amount of relevant category transitions, the
sequential logit model in its traditional form is given by (Tutz, 2012)

P (Y = r|Y ≥ r,x) =
exp(β0r + xTβ)

1 + exp(β0r + xTβ)
, r = 1, . . . , q, (1)

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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which is equivalent to

log

(
P (Y = r|x)

P (Y > r|x)

)
= β0r + xTβ.

Thus, “continuation ratio logits” are the quantity that is linearly parame-
terized in sequential logit models. Simple derivations yield

log

 P (Y=r|x1)
P (Y >r|x1)

P (Y=r|x2)
P (Y >r|x2)

 = (x1 − x2)Tβ, (2)

log

 P (Y=r|x)
P (Y >r|x)

P (Y=s|x)
P (Y >s|x)

 = β0r − β0s ∀r 6= s. (3)

Equation (2) demonstrates the advantage in interpretation offered by global,
category-unspecific coefficients. Equation (3) shows that for model (1), the
log-odds-ratios between two response categories are unaffected by the co-
variates. Hence, continuation ratio odds for all categories are proportional
to one another and only differ by constant factors exp(β0r−β0s). A similar
proportionality concept also holds for cumulative models and for different
link functions, for example, in the proportional hazards model (cf. Tutz,
2012). Therefore, we subsequently call this type of effect a proportional
effect.
The major disadvantage of model (1) is that it a priori assumes all predic-
tors to have proportional effects. A generalization is given by the sequential
logit model with category-specific and thus nonproportional effects:

P (Y = r|Y ≥ r,x) =
exp(β0r + xTβr)

1 + exp(β0r + xTβr)
, r = 1, . . . , q. (4)

This model offers much more flexibility and avoids the proportionality as-
sumption, but its interpretability suffers since (2) and (3) no longer hold.
Thus, one should only use nonproportional effects β•j = (β1j , . . . , βqj)

T

for those predictors xj that actually require it and assign proportional ef-
fects otherwise. Additionally, the large number of parameters in model (4)
can lead to instability or even non-existence of parameter estimates. For
these reasons, it is highly desirable to be able to perform variable selection
and to simultaneously decide between proportional and nonproportional
effects. In the next section, we develop a penalty approach that performs
these selection tasks in an automatic and data-driven way.

2 A Grouped Fusion Penalty for the Selection of
Proportional Effects

To perform variable and effect type selection, penalty approaches maxi-
mize a penalized loglikelihood of the form lpen(β) = l(β) − J(β), where
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l(β) denotes the loglikelihood of the chosen model, here based on either
(1) or (4), and J(β) is a functional that penalizes the coefficient vector.
Selection of variables in ordinal models has been considered in Archer &
Williams (2012) and Zahid & Tutz (2013). The first authors use a pro-
portional sequential logit model like (1) in conjunction with a lasso-type
penalty (Tibshirani, 1996) of the form J(β) = λ

∑q
r=1

∑p
j=1 |βrj | to model

the influence of genes on disease progression. Zahid & Tutz (2013) use a
boosting approach for the proportional odds model.
First, we consider variable selection. In the nonproportional model, each
predictor influences the response via a vector β•j . Following Tutz, Pößnecker
& Uhlmann (2012), these coefficient vectors should be penalized jointly to
achieve variable selection. Therefore, we suggest to use a penalty similar to
the sparse group lasso of Simon et al. (2013):

J(β) = λ

p∑
j=1

(
ψ
√
βT
•jβ•j + (1−ψ)

q∑
r=1

|βrj |

)
. (5)

The tuning parameter λ > 0 controls the degree of penalization, ψ ∈ [0, 1]
balances variable selection and selection of atomic coefficients.
To select proportional versus nonproportional effects, we add a grouped
fusion penalty to (5), obtaining:

J(β) = λ1

p∑
j=1

(
ψ
√
βT
•jβ•j + (1−ψ)

q∑
r=1

|βrj |

)
+ λ2

p∑
j=1

√
βT
•jΩβ•j , (6)

with Ω = DTD and

D =


−1 1 0

−1 1
. . .

0 −1 1

 .

Since sequential models implicitly assume that response categories can only
be reached successively, only differences between adjacent coefficients must
be penalized. Our penalty (6) is able to yield solutions in which β1j = β2j =
. . . = βqj holds and thus shrinks nonproportional effects to proportional
ones. Hence, we can always start with the more flexible model (4) since our
penalty automatically removes unimportant variables from the model and
selects proportional effects whenever possible. Even if a covariate effect is
estimated to be nonproportional, the “degree of nonproportionality” is still
reduced by (6). Thus, our penalty term provides a continuous transition
from nonproportional to proportional effects.

3 Application to the Munich founder study

To illustrate the benfit of our approach, we consider data about the survival
of newly founded companies in Munich, Germany. Their survival time, de-
fined as the time to bankruptcy, is measured in intervals of six months, so,
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e.g., yi = 3 means bankcruptcy occured between 12 and 18 months after
company foundation. Companies that survived more than three years are
pooled in a seventh response category. Explanatory variables are economic
sector, legal form, location, whether the new company was built up from
scratch or resulting from a takeover, starting, equity and debt capital, tar-
get market, type of customer, number of employees as well as the degree,
sex, age (metric) and business experience of the company’s founder.
We fit a sequential logit model with nonproportional effects and penalty
(6) to this dataset. Note that the quantity P (Y = r|Y ≥ r,x) can here be
interpreted as a discrete hazard rate. Hence, nonproportional and propor-
tional effects here correspond to time-varying and (time)-constant effects,
respectively.
The tuning parameters λ1 and λ2 are chosen via 10-fold crossvalidation,
ψ is set to 0.5. The parameter estimates for this model are given in Ta-
ble 1. Proportional effects are assigned to the variables economic sector,
target market, customer type and age, hence their effect is constant over
time. Legal form, start and debt capital as well as the number of employ-
ees have a nonproportional and thus time-varying effect on the companies’
survival. The remaining six variables are removed from the model. There-
fore, this dataset exhibits a mixture between irrelevant, proportional and
nonproportional effects.

4 Outlook

Simulation results prove that our approach distinctly outperforms all ex-
isting techniques if the true model contains a mix of proportional and
nonproportional effects. We will investigate the consequences and impor-
tance of effect type selection in greater detail using both simulated and real
data. The connection between sequential models and survival analysis for
discrete-time will also be treated in greater detail.
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TABLE 1. Penalized coefficient estimates for the Munich founder study.

Response category 1 2 3 4 5 6

Intercept -1.76 -1.84 -2.22 -2.19 -2.50 -2.71
sector2 0.52 0.52 0.52 0.52 0.52 0.52
sector3 0.49 0.49 0.49 0.49 0.49 0.49
legalform2 -0.33 -0.49 0.19 -0.47 0.46 -1.26
legalform3 -1.81 -0.99 -1.41 -1.69 -0.76 -1.32
legalform4 -0.38 -0.36 0.11 -0.15 1.14 -0.31
location2 0 0 0 0 0 0
takeover 0 0 0 0 0 0
startcapital2 -1.62 -0.58 0.25 -0.43 -0.62 0.41
startcapital3 -2.92 -0.92 -0.48 -0.16 -1.24 -0.15
equity2 0 0 0 0 0 0
equity3 0 0 0 0 0 0
equity4 0 0 0 0 0 0
debtcapital2 0.79 0.41 0 0.18 0 -0.59
market2 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19
customertype2 -0.24 -0.24 -0.24 -0.24 -0.24 -0.24
degree2 0 0 0 0 0 0
degree3 0 0 0 0 0 0
sex 0 0 0 0 0 0
experience2 0 0 0 0 0 0
experience3 0 0 0 0 0 0
employees2 -0.31 0.23 -0.27 -0.01 -0.53 -0.66
employees3 -0.74 0.07 -0.54 -0.54 0.26 -1.94
age -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
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1 Introduction

In 1809 Gauss proved that the only location model (under mild conditions)
such that the sample mean is the maximum likelihood estimator (MLE) of
the location parameter is the normal distribution. For this reason this prop-
erty is known as Gauss’ principle (see Puig 2008 and references therein).
Of course at Gauss’ time maximum likelihood estimation was not invented
yet, and he expressed in other words by saying:
It has been customary certainly to regard as an axiom the hypothesis that
if any quantity has been determined by several direct observations, made
under the same circumstances and with equal care, the arithmetical mean
of the observed values affords the most probable value, if not rigorously, yet
very nearly al least, so that it is always most safe to adhere to it.
(Book 2, section 177 in Theoria Motus, 1809)
This important result has been the starting point of many maximum like-
lihood characterizations of distributions, some of them described in the
recent paper of Duerinckx et al. (2014). In particular, it is remarkable the
work of other pioneer, Poincaré, who characterized in 1896 the one parame-
ter families satisfying the Gauss’ principle obtaining an exponential family
with a density function of the form,

f(x; θ) = h(x) exp(A(θ)x+B(θ)),

where θA′(θ) +B′(θ) = 0.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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According to the Gauss’ spirit and all the subsequent research, the key
points in the line of reasoning of MLE characterizations can be summarized
as follows:

1. The center of interest is certain statistic: sample mean, median, cir-
cular mean, trimmed mean, etc.

2. The objective is to find a specific distribution, inside a general family,
such that the chosen statistic is the “best” estimator of its population
counterpart.

3. MLE is the “best” in the sense that it is asymptotically unbiased and
efficient. So, it is usually imposed that the chosen statistic has to be
the MLE of the corresponding population parameter.

However, if the statistic of interest is an unbiased estimator of its population
counterpart, it seems reasonable to impose only the condition of being
asymptotically efficient, not necessarily to be the MLE of the population
parameter. It leads to interesting characterizations and even more new
distributions, as we’ll see in the next section.

2 Characterization of symmetric error distributions

In 1809 Gauss considered the most simple measurement model, where it is
assumed that the observations yi satisfy the relation yi = µ+εi, i = 1, ..., n,
where εi are independent and identically distributed random errors, and
µ represents the true value of the magnitude that have to be estimated.
Gauss also assumed that this random error was symmetric around zero and,
consequently, the observations could be described by symmetric location
models. Therefore, we shall now consider statistical models defined on the
real line with a density function of the form f(x − µ), where µ is the
location parameter and f(t) = f(−t). Under enough regularity conditions,
the Cramér-Rao lower bound for any unbiased estimator of µ is,

σ2
CR(f) =

1

2n
∫∞

0
(f ′(x))2/f(x)dx

. (1)

Given an unbiased estimator µ̂ of the location parameter, having an asymp-
totic variance σ2

µ̂(f), solving the functional equation σ2
CR(f) = σ2

µ̂(f) we
shall find all the distributions for which the chosen estimator of the lo-
cation parameter µ̂ is asymptotically efficient. Sometimes the solutions of
this functional equation can be obtained with a tricky application of the
Cauchy-Schwarz inequality. Next, we are going to present some results.

2.1 The Hodges-Lehmann estimator

The Hodges-Lehmann estimator (HLE) is the median of all pairwise means
of the observations, that is,

µ̂ = median

{
yi + yj

2
, i, j = 1, ..., n

}
.
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This is a robust and unbiased estimator of the location parameter for any
symmetric location model, and it is very easy to calculate. Its asymptotic
variance is,

σ2
HL(f) =

1

12n(
∫
R f

2(x) dx)2
. (2)

Equating (1) and (2) and solving the resulting functional equation, we
prove that the only symmetric distribution with a strictly positive density,
for which the HLE is an asymptotically efficient estimator of the location
parameter µ is the logistic distribution (Damilano and Puig, 2006). It is
important to remark that, for the logistic distribution, the HLE is not the
MLE of µ. Both are asymptotically equivalent but they are not the same.

2.2 Linear combination of the median and the sample mean

About 200 years ago, Laplace proposed to estimate the population mean µ
of a symmetric distribution using a linear combination of the sample mean
ȳ and the sample median ỹ of the form µ̂ = wȳ+(1−w)ỹ, being w a constant
(Stigler, 1973). It is immediate to see that this is an unbiased estimator of
µ. Laplace proposed to choose w in such a way that its asymptotic variance
were minimized. Assuming that the distribution has a continuous density
positive at zero, the asymptotic variance of the Laplace estimator (LE) has
the form,

σ2
LE(f) = w2 v

2

n
+
w(1− w)τ

f(0)n
+

(1− w)2

4f2(0)n
, (3)

where v2 =
∫∞
−∞ t2f(t)dt and τ =

∫∞
−∞ |t|f(t)dt. Equating (1) and (3)

and solving the resulting functional equation, we obtain a three-parameter
density of the form,

fθ(x;µ, σ) =
φ(θ)

2(1− Φ(θ))σ
exp(−θ |x− µ|

σ
− (x− µ)2

2σ2
), (4)

where φ(.) and Φ(.) denote the standard normal density and cumulative
distribution functions, respectively, µ and σ are location and scale param-
eters, and θ is a shape parameter (Damilano and Puig, 2004). Moreover,
fixing θ, the constant w of the linear combination remains w = w(θ) =
(1 − Φ(θ))/(1 − Φ(θ) + θφ(θ)). The density is unimodal for θ ≥ 0 and bi-
modal for θ < 0 as can be seen in Figure 1. Note that when θ = 0 it is
the normal distribution. When θ and σ tend to ∞ such a way that θ/σ
tends to a constant, the limiting density is that of the Laplace distribution.
This density can be successfully used to model currency exchange interbank
rates US Dollar/Euro (Damilano and Puig, 2004).

2.3 The trimmed mean

Trimmed mean was first documented in an anonymous work in 1821:
...to determine the mean yield of a property of land, there is a custom to
observe this yield during twenty consecutive years, to remove the strongest
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FIGURE 1. Standardized densities for some values of θ.

and the weakest yield and then to take one eighteenth the sum of the others.
(Annales de Mathmatiques pures et appliques, tome 12 (1821-1822), p. 181-
204. Translated by Huber in 1972.)
The α%-trimmed mean (TMα) of the observations is calculated by sorting
all the values, discarding α% of the smallest and α% of the largest values,
and computing the average of the remaining values. Note that TM0 is
the sample mean and TM0.5 is the sample median. It is known that for
symmetric distributions this a unbiased estimator of the population mean
µ, with an asymptotic variance expressed as,

σ2
TMα

(f) =
1

n(1− 2α)2

(∫ a

−a
x2f(x)dx+ 2αa2

)
, (5)

where, −a = F−1(α) and a = F−1(1− α).
Similarly to the preceding examples, equating the asymptotic variance (5)
to (1) and solving the corresponding functional equation, the following
three parameter density is obtained:

h(x;µ, a, b) =
b2eb

2

a(erf(b)
√
πb+ e−b2)

 exp
(
− ((x−µ)2+a2)b2

a2

)
|x− µ| ≤ a

exp
(
− 2b2|x−µ|

a

)
|x− µ| > a

where erf(.) is the error function. Note that the profile of this sliced density
is like a Gaussian density in the interval |x − µ| ≤ a, and like a Laplace
density otherwise. The location parameter (population mean) is indicated
as µ, and b is a shape parameter that directly determines the truncation
percentage α% of the trimmed mean and the kurtosis of the distribution
as well. Direct calculations show that b can be expressed as a function of
α solving numerically the equation,

erf(b)
√
πb exp(b2) =

1

2α
− 1.
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FIGURE 2. Standardized densities (µ = 0) for α = 5% and some different values
of the variance σ2.

For instance, when α = 0.05 (this is just the case considered in the former
publication of 1821) we obtain b = 1.2273. It can be shown that, when b
is fixed, the variance of the distribution σ2 is a lineal function of a2. In
particular, for α = 0.05 the variance has the expression σ2 = 0.38718a2.
Figure 2 illustrates the profiles of these densities for µ = 0 and variances
equal to 1, 2 and 3.
When α = 0, b tends to ∞ and h(x;µ, a, b) tends to be a Gaussian density.
On the other hand, when α = 0.5, b tends to 0 and h(x;µ, a, b) tends to be
a Laplace density. Figure 3 shows the corresponding standardized densities
for several values of α.
As far as we know, this density has not been considered or studied before.
Anyway, we are not optimistic about its utility in practical applications.
However, this density can be useful in studies of robustness of location
estimators, where the trimmed mean will be the “best” estimator of the
location parameter for samples generated from this distribution.
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Abstract: Since the seminal paper by Cook and Weisberg (1982), local in-
fluence, next to case deletion, has gained popularity as a tool to detect influ-
ential subjects and measurements for a variety of statistical models. For the
linear mixed model the approach leads to easily interpretable and computation-
ally convenient expressions, not only highlighting influential subjects, but also
which aspect of their profile leads to undue influence on the model’s fit (Ver-
beke and Lesaffre 1998). Ouwens, Tan, and Berger (2001) applied the method to
the Poisson-normal generalized linear mixed model (GLMM). Given the model’s
non-linear structure, these authors did not derive interpretable components but
rather focused on a graphical depiction of influence. In this paper, we consider
GLMMs for binary, count, and time-to-event data, with the additional feature
of accommodating overdispersion whenever necessary. For each situation, three
approaches are considered, based on: (1) purely numerical derivations; (2) using
a closed-form expression of the marginal likelihood function; and (3) using an
integral representation of this likelihood. The methodology is illustrated in case
studies of A Clinical Trial in Epileptic Patients.

Keywords: Boundary condition; Case deletion; GLMM; Combined model; Local
Influence.

1 Introduction

Next to linear mixed models (LMM) for hierarchical Gaussian data (Ver-
beke and Molenberghs 2000), generalized linear mixed models (GLMM)
have become a tool for routine use for the analysis of a hierarchical data of
a variety of data types over the last twenty years (Molenberghs and Ver-
beke, 2005). Like with every statistical model, after formulating and fitting
a model, an assessment of model fit and a diagnostic analysis is advisable.
In this paper, we are concerned with the detection of influential subjects.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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A large variety of diagnostic tools is available for linear and generalized lin-
ear models. Cook and Weisberg and and Chatterjee and Hadi (1988) pro-
vide early treatises. In classical linear regression, Cook’s distances (Cook
1977a, 1977b, 1979) have been used extensively. Linear mixed models, un-
like linear models, generally do not allow for closed-form parameter estima-
tors. Further, residual analysis is not straightforward, given the presence
of both fixed-effect and random-effects covariates, so that even uniquely
defining residuals is not possible. For these and related reasons, Lesaffre
and Verbeke (1998) chose local influence (Cook 1986, Backman, Nacht-
sheim, and Cook 1987) to examine influence in linear mixed models.
In this study, we extend local influence for the GLMM in several ways.
First, we consider outcomes of binary, count, and time-to event type. Sec-
ond, using the extension proposed by Molenberghs, Verbeke, and Demétrio
(2007) and Molenberghs et al (2010), we flexibly allow for overdispersion in
the GLMM, by introducing conjugate random effects, in addition to normal
ones. This model is referred to as the combined model. Third, apart from
numerical derivations of local influence, we examine two alternative routes:
(a) closed forms for the marginal likelihood such as proposed in Molen-
berghs et al (2010) and (b) the marginal likelihood with integral form.
The closed forms in (a) do not always exist; while they are available for
the probit-(beta-)normal, Poisson-(gamma-)normal, and Weibull-(gamma-
)normal, they are not for the logit-(beta-)normal. Even when they do, they
may be somewhat unwieldy and therefore, route (b) is more promising.

2 Local Influence for GLMM

Local influence was presented by Cook (1986) and used by several authors
since. The impact of individuals and measurements on the analysis is as-
sessed by comparing standard maximum likelihood estimates with those
resulting from slightly perturbing the contribution of an individual or a
measurement. Lesaffre and Verbeke (1998) introduced an influence assess-
ment paradigm for the linear mixed model.
Cook (1986) derived a convenient computational scheme.Let ∆i be the
s-dimensional vector of second-order derivatives of log-likelihood `(θ|ω),

w.r.t. perturbation ωi and all components of θ, and evaluated at θ = θ̂ and
ω = ω0. Also, write ∆ for the s× r matrix with ∆i in the ith column. Let
L̈ denote the s×s matrix of second derivatives of `(θ), evaluated at θ = θ̂.

For any unit vector h in Ω, it follows that: Ch = 2
∣∣∣ h′∆′L̈∆h

∣∣∣ . Various

choices for h have received attention. First, as will be done here, one can
focus on subject i only, by choosing h = hi, the zero vector with a sole 1 in

the ith position. Local influence then is Ci ≡ Chi = 2
∣∣∣ ∆′iL̈∆i

∣∣∣ . Lesaffre

and Verbeke (1998) showed that local influence Ci can be re-expressed as

Ci = 2||L̈|| ||∆i||2 cos(ϕi), (1)

where ϕi is the angle between vec(−L̈) and vec(∆i∆
′
i).
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The integral-based approach can be used as an alternative way to alle-
viate complexities with the explicit marginal likelihood expressions. The
marginal density corresponding to the linear mixed model is defined as:
f̃(yi) =

∫
f̃(yi|β, bi)f̃(bi|D) dbi, with the log-likelihood contribution of

the ith individual takes the form: `i(θ) =
∑N
i=1 f̃(yi).

For count data,the first derivative of log-likelihood contribution for ith
subject as followed:

∂`i(β, D)

∂β
=

ni∑
j=1

{yij − E(yij |bi)}xij =

ni∑
j=1

rijxij , (2)

∂`i(β, D)

∂djk
= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jk

q∑
k=1

Var(bik)

}
,(3)

where djk is a component of D and δjk is one if j is equal to k, and zero
otherwise. Interpretable expressions can now be derived using (1). It showed

||∆i||2 =

 ni∑
j=1

rijxij

 ni∑
j=1

rijxij

′

+
∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

.

Let Ci = C1i + C2i with:

C1i = 2||L̈|| ||rixi||2 cos(ϕi), (4)

C2i =
1

2
||L̈|| ||(D−1)kl − (D−1D−1)klVar(bi)||2 cos(ϕi), (5)

where rixi =
∑ni
j=1 rijxij . Note that C1i and C2i are the contributions of

subject i to local influence Ci from β and D, respectively. Reconstructing
the component C1i and C2i leads to the interpretable components that can
be described local influence. Hence, the interpretable components of Ci in
the case of the Poisson-normal model can be described using the ‘length of
the fixed effect’ (||xix′i||), the ‘squared length of the residual’ (||ri||2), and
the ‘squared of random effect variability’ (Var(bi)

2).
In binary cases, the local influence for both probit and logit normal models
have been derived.The first derivatives for probit-normal model are:

∂`i(ξ, D)

∂ξ
= [I − (Xiξ)−1]Xi, (6)

∂`i(ξ, D)

∂djk
=

3

2
L−1

(
Ini − ZiMiM

′
i(D

−1D−1)jkZ
′
i

)
, (7)

where Mi =
(
D−1 + Z ′iZi

)−1
. It also follows that

||∆i||2 = [I − (Xiξ)−1]2XiX
′
i +
∑
k,l

9

4L2

(
Ini − ZiMiM

′
i(D

−1D−1)jkZ
′
i

)2
.
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Thus, also for this case, the components ||Xi||2 and ||ZiZ ′i||2 turn up.
Evidently, the same binomial expression is used, but now with logit(λij) =
x′ijξ + z′ijbi.The derivatives of logit-normal model take the form:

∂`i(ξ, D)

∂ξ
=

ni∑
j=1

xij

∫
1

1 + exp(µij)
τ̃(bi|yi)dbi, (8)

∂`i(ξ, D)

∂djk
= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jkVar(bi)

}
, (9)

where µij = x′ijξ + z′ijbi. It also follows that

||∆i||2 ∝

 ni∑
j=1

xij

 ni∑
j=1

xij

′+∑
k,l

(
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

)2

.

Reconstructing the fixed- and random-effects components, respectively, like
in the Poisson case, leads to C1i = 2||L̈|| ||xi||2 cos(ϕi) and C2i as in
(5). Hence, the interpretable components of Ci for the logit-normal model
can be described using the length of fixed effect (||xi||2) and the squared
random-effects variability, Var(bi)

2 (i.e., the sum of all variances), in anal-
ogy with the Poisson-normal model. The same is true for the Weibull-
normal model, as will be seen next.
The first derivative for Weibull case take the form:

∂`i(ξ, D)

∂ξ
=

ni∑
j=1

xij − λ
ni∑
j=1

yρijxij exp(µij), (10)

∂`i(ξ, D)

∂djk
= −1

2
(2− δjk)

[
(D−1)jk − (D−1D−1)jkVar(bi)

]
, (11)

where δjk = 1 if j = k and 0 otherwise. It further follows that

||∆i||2 =

 ni∑
j=1

xij

 ni∑
j=1

xij

′ − 2

ni∑
j=1

xijQ
′
i +QiQ

′
i

+
∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

,

where Qi = λ
∑ni
j=1 y

ρ
ijxij exp(µij).

Like in the Poisson-normal and binary-normal cases, a decomposition Ci =
C1i + C2i follows, with

C1i = 2||L̈||
{
||xi||2 − 2xiQi + ||Qi||2

}
cos(ϕi)

and C2i as in (5). Hence, interpretable components analogous to the earlier
settings arise.
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3 Application

The Epileptic dataset consisted of 89 patients with 2 different group of
treatments, placebo and a new anti-epileptic drug (AED). Patients were
followed (double-blind) during 16 weeks (some patients until 27 weeks).
The outcome of interest is the number of epileptic seizures experienced
during the most recent week. Poisson-normal (P-N) model as well as the
combined model with gamma random effect (PGN) have been fitted as
follow:

ln(λij) =

{
(β00 + bi) + β01tij if placebo
(β10 + bi) + β11tij if treated,

(12)

where Yij represent the number of epileptic seizures patient i experiences
during week j, tij is the time point at which Yij has been measured and the
random intercept bi ∼ N(0, d). Parameter estimates are given in Table 1.
Figure 1 contain index plots (versus patient ID) for various local influence
analyses. The top row represents local influence for (P-N) model, yet in
below rows for (PGN) model. Patients #38, #49, and #62 stand out with
large total influence Ci when compared to other patients. Importantly,
influences show a major drop when switching from (P-N) to (PGN). To get
further insight as to why these subject have higher influence than others,
plots with interpretable components are given in Figure 2: ‘squared length
of the fixed effects’ ||xix′i||, ‘squared length of the residual’ ||ri||2, and
‘random-effect variability’ Var(bi)

2. It is hardly surprising that #38 stands
out in terms of ||ri||2. Influences on #49 and #62 are less pronounced.

4 Discussion

It has been showed from this study that the influential subject for hier-
archical model can be detect using local influence approach. And it was
found that the combined model can be used to reduced the influence effect
of the subject. Moreover, the interpretable components can be use as the
tools to evaluate in which way the influence subject affect the estimation
in modeling process.
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Poisson-Normal:

Combined Model:

FIGURE 1. Plot of Local Influence

FIGURE 2. Plot of Interpretable components of Local Influence

TABLE 1. Parameter estimates (standard errors) for the P-N and PGN models.

Effect Par. P-N PGN

Interc. plac. β00 0.818(0.168) 0.911(0.176)
Slope plac. β01 -0.014(0.004) -0.025(0.008)
Interc. treat. β10 0.648(0.170) 0.656(0.178)
Slope treat. β11 -0.012(0.004) -0.012(0.007)
Treat. eff. β11 − β10 0.002(0.006) 0.013(0.011)
Treat. eff. β11/β10 0.840(0.398) 0.475(0.335)
Std. rand. int. σ 1.076(0.086) 1.063(0.087)
Overdisp. par. α 2.464(0.211)
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Abstract: Missing data is an important issue in almost all fields of quantita-
tive research. A nonparametric procedure that has been shown to be useful is
the nearest neighbor imputation method. We suggest a weighted nearest neigh-
bor imputation method based on Lq-distances. The weighted method is shown
to have smaller imputation error than available NN estimates. In addition we
consider weighted neighbor imputation methods that use selected distances. The
careful selection of distances that carry information on the missing values yields
an imputation tool that outperforms competing nearest neighbor methods dis-
tinctly.

Keywords: kernel function; weighted nearest neighbors; weighted imputation;
MCAR; metric data

1 Nearest Neighbors

Missing data has always been a challenging topic for researchers. Ignoring
all the missing cases is not an advisable way to deal with missing values. The
methods for filling the incomplete data matrix can be divided into two main
categories; single imputation and multiple imputation (Little and Rubin
(1987)). In the literature many techniques have been suggested to impute
data when the values are missing completely at random (MCAR), nearest
neighbor imputation is one of them (Troyanskaya et al. (2001)). It is based
on the average of the k nearest neighbors which are computed based on
some distance measure. In a comparative study on gene expression data,
Troyanskaya et al. (2001) concluded that k nearest neighbor imputation
performs better than mean imputation and singular value decomposition
techniques.
We suggest a new imputation estimate based on weighted average of k
nearest neighbors using Lq distance. Our proposed method does not depend
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on k, rather it uses almost all the information in the neighbors. For the high-
dimensional cases, we suggest a new distance that uses weights that are
proportional to the correlation among variables. This method automatically
selects the relevant variables.

2 Weighted Neighbors

Let data be collected in (n, p) matrices, X={xi} = (xis), i = 1, . . . , n,
with xis denoting ith observation of the sth variable, and let O = (ois),
with ois = 1 denoting that it has been observed, ois = 0 if it is missing.
If xis is a missing value (ois = 0), one determines the k nearest neighbors
from the (ñ, p) reduced data set X̃ = {xj , ojs = 1} obtaining

x(1), . . . ,x(k) with d(xi,x(1)) ≤ · · · ≤ d(xi,x(k))

Distances between two observation xi and xj , which represent rows in the
data matrix, can be computed by using the Lq-metric for the observed data

dq(xi,xj) = [
1

mij

p∑
s=1

|xis − xjs|qI(ois = 1)I(ojs = 1)]1/q, (1)

where mij =
∑p
s=1 I(ois = 1)I(ojs = 1) denotes the number of valid

components in the computation of distances. The indicator function I(a)
= 1, if a is true and 0 otherwise. The actually used components in the
computation of neighbors is given by Cij = {s : I(ois = 1).I(ojs = 1) = 1}.
The weighted imputation estimate for xis considered here is

x̂is =

k∑
j=1

w(xi,x(j))x(j)s (2)

with weights

w(xi,xj) = K(d(xi,xj)/λ)/

k∑
l=1

K(d(xi,xj)/λ), (3)

where K(.) is a kernel function and λ is a tuning parameter. If k = ñ,
where ñ is the number of all available nearest neighbors of xis, then the
widow-width λ is the only tuning parameter. The optimal value of λ is
chosen by cross validation. The performance of different NN imputation
methods is compared on the basis of mean square error (MSE) computed
from original and imputed values (Troyanskaya et al. (2001)).

2.1 Simulation Study

For a pre-defined number of settings, the data are generated from Np(0,Σ),
where Σ is the correlation matrix. The data are missed completely at ran-
dom with a probability of p. The weighted NN imputation estimates for
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FIGURE 1. Comparison of NN imputation with fixed k (white boxes), optimal
k (light grey), and weighted NN estimates (dark grey).

L1-metric (q=1) and L2-metric (q=2) are compared with unweighted ap-
proach (see, as an example, Figure 1 for ρ=0.9 with 10% missing data).
Simulation results (not presented here) suggest that the Gaussian kernel
provides smaller MSE as compared to other kernel functions. The optimal
λ is chosen with MSE via cross validation. It is seen that for larger values
of k, weighting results in a reduced MSE.

3 Weighted Neighbors with Selection of Predictors

An extended version of (1) uses weights for the computation of distances
that are linked to the correlation. Consider imputation for xi in component
s (ois = 0). When computing distances from the reduced data set {xj , ojs =
1} we propose to use use an additional weight. More concrete, for Lq-
distance we compute component-specific distances by

dq,C(xi,xj) = { 1

mij

p∑
l=1

|xil − xjl|qI(ois = 1)I(ojs = 1)C(rsl)}1/q, (4)

where rsl is the empirical correlation between covariates s, l and C(.) is a
convex function defined on the interval [−1, 1] that selects the components
that are correlated with component s (or weights according to the strength
of the correlation). Thus, components that are strongly correlated with
component s contribute to the computation of distances, components that
are not correlated do not contribute to the distance.
For C(.), we used C(r) = 0 if |r| ≤ c, C(r) = |r|/(1 − c) − c/(1 − c) if
|r| > c, where c > 0. Thus if |rsj | ≤ c the component s does not contribute
to the distance. Of course c is an additional tuning parameter. A smoother
approach is C(r) = |rm|, where m is the additional tuning parameter.
Here rsl cannot be computed since missing values are present in the data.
For simplicity we use a simple first step imputation, namely unweighted
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FIGURE 2. Comparison of weighted NN imputation with selection of variables(*)
(dark grey), weighted L1 & L2 metrics (light grey), and two R packages as bench-
marks (white); impute from Bioconductor (BIO) & VIM (VIM).

five nearest neighbors from which the correlations are computed. Then
the actual imputation is carried out by using the computed correlation.
The optimal values of the tuning parameters are again selected by cross
validation on a double grid, i.e., the pair (λ, c) or (λ,m) with minimal MSE
is selected as optimal.

3.1 Simulation Study

We generate data with predefined settings from Np(0,Σ), where Σ is the
correlation matrix of a prespecified structure with pairwise correlation ρ.
The data is replaced with missing values (missing completely at random)
with a specified probability p. The average MSE is obtained from the impu-
tation estimates, using distances (1) and (4) at their corresponding optimal
tuning parameters chosen via cross validation. As an example, the weighted
NN imputation results with an autoregressive type correlation structure Σ
with ρ=0.9, 5% missing for n = 50 (setting 1) and n = 100 (setting 2)
are shown in Figure 2. We use as benchmarks two methods: (i) the func-
tion impute.knn from Bioconductor R package version 1.36.0 (Hastie
et al.), which uses k-nearest neighbors to impute the missing expression
values (ii) the function kNN from the R package VIM (Templ et al. (2013)).
Figure 2 shows that the weighted NN imputation procedure provides the
smaller mean square error. Moreover, the selection of predictors has im-
proved the weighted NN imputation. This selection is more effective when
the sample size is large, e.g., in setting 2 with n = 100, the smallest average
MSE is 0.05, whereas with n=50 the smallest average MSE is obtained at
0.2 as shown in Figure 2.
Next we consider the dependence of MSE on the probability of the oc-
currence of missing data. Therefore, we perform another simulation study
for different predefined simulation settings. To compare the performance of
imputation methods, the mean square error is computed with tuning pa-
rameters chosen by cross validation. As example, the average MSE obtained
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for n = 100 at different percentages of missing data, is shown in Figure 3.
It is obvious that the suggested imputation procedure with weighted dis-
tances performs remarkably well even when the number of missing data is
high. When the probability of missing data is small, the weighted selection
of predictors using L1 and L2 metrics provide nearly similar MSE. This dif-
ference increases as the percent of missing data increases. But ultimately
L2 metric provides the smallest average MSE.

4 Application

As application we use gene expression data on three different types of hu-
man tumor namely, diffuse large B-cell lymphomas (DLBCL), leukemia and
brain tumor. We consider 100 genes f associated with these three types
of tumor. The data can be accessed at http://www.gems-system.org.
The NN imputation techniques were applied to these data after replac-
ing 5% values by missing (MCAR). The missing values were imputed using
weighted kNN with selection of variables. The values of tuning parameters
were selected via cross validation. For the benchmark methods, the num-
ber of the nearest neighbors k was also selected by cross validation. The
cross validation process was repeated 10 times. Table 1 shows the average
of MSE results.

TABLE 1. Application on gene expression data

L1 metric L2 metric Benchmark

DATA opt-c opt-m opt-c opt-m BIO VIM

DLBCL 0.13740 0.12802 0.15443 0.14241 0.15445 0.14278
Brain Tumor 0.18433 0.17274 0.18195 0.16648 0.18996 0.16845
Leukemia 0.07515 0.06602 0.08136 0.06988 0.08946 0.07845
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In all three case studies, the minimum value of MSE is obtained by one
of the suggested imputation methods. For DLBCL data, the minimum,
0.12802, was obtained for the L1 metric with the second convex function
showing better performance. The VIM procedure had an MSE of 0.14278,
and the impute function in Bioconductor package produced the highest
value of MSE, 0.15445. For the brain tumor data, the smallest MSE, 0.16648,
was found for the weighted procedure using the L2-metric and convex func-
tion with optimal m. Similar results are found for the Leukemia. Thus, for
all three case studies the weighted imputation procedure including selection
of variables showed the best performance.

5 Concluding Remarks

The main objective of this study was to find an improved nearest neigh-
bor procedure for imputation of missing values. When the data are missing
completely at random (MCAR), the simulation results, in general, show
that the suggested weighted imputation estimate performs better than un-
weighted approach. The comparison of L1 and L2 metrics in the weighted
imputation of missing data shows L2 metric to be slightly better than L1

metric. For high dimensional data, a weighted selection of predictors for
imputation is suggested that uses cross validation for selection of optimal
tuning parameters. The simulation results show that when the data are
highly correlated, the proposed NN imputation procedure shows promising
results.
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1 Random-effects meta-analysis

Meta analyses are commonly performed using the random effects model.
Parameter estimates from several studies are combined, taking into account
their corresponding standard errors, to yield an overall, joint estimate of
the parameter of interest. Potential discrepancies between study results are
anticipated and accounted for using an additional variance parameter, the
heterogeneity τ . Assuming we have k parameter estimates yi with associ-
ated standard errors σi, the model may be stated as

yi ∼ Normal
(
θ, σ2

i + τ2
)

(1)

i.e., each estimate yi deviates from the true parameter value θ by a mea-
surement error (quantified through a known standard error σi) plus an ad-
ditional offset due to between-study variation, whose expected magnitude
is given through the heterogeneity τ . So for given data (yi, σi, i=1 . . . , k)
there are two unknowns, the overall effect θ, the parameter of primary
interest, and the heterogeneity τ , which constitutes a nuisance parameter.
If the heterogeneity τ was known, the (conditional) maximum likelihood
estimate of θ would be a weighted average

θ̂τ =
1∑
i

1
τ+σi

k∑
i=1

yi
τ + σi

. (2)

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
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The uncertainty in τ however complicates the problem (Hedges and Olkin,
1985; Hartung et al., 2008).

2 The Bayesian approach

2.1 Prior

We assume that the prior proability density may be factored into p(τ, θ) =
p(τ) × p(θ). For the prior on the overall effect, p(θ), we assume either a
uniform or a normal prior, leaving the heterogeneity prior p(τ) unspecified
for the moment.

2.2 Likelihood

The likelihood follows from the random effects model specification (1) as

log
(
p(~y|θ, τ, ~σ)

)
= − 1

2

(
k log(2π)+

k∑
i=1

log
(
τ2+σ2

i

)
+

k∑
i=1

(yi −Θ)2

τ2+σ2
i

)
. (3)

2.3 Marginal likelihood

The likelihood may be marginalized over θ analytically; using an improper
uniform prior over the entire real line for θ we get the marginal likelihood

log
(
p(~y|τ, ~σ)

)
= −1

2

(
(k−1) log(2π) +

k∑
i=1

log
(
τ2+σ2

i

)
+

k∑
i=1

(
yi − θ̂τ

)2
τ2 + σ2

i

+ log

( k∑
i=1

1

τ2+σ2
i

))
, (4)

where θ̂τ is the conditional posterior mean of θ|τ (see eqn. (2)). A similar
expression results when assuming a normal prior distribution for θ.

2.4 Marginal and joint posterior

Having derived the marginal likelihood, the (one-dimensional) marginal
posterior density of τ is

p(τ |~y, ~σ) ∝ p(~y|τ, ~σ)× p(τ). (5)

Integration can now easily be done numerically for arbitrary priors p(τ).
Re-writing the joint posterior as

p(θ, τ |~y, ~σ) = p(θ|τ, ~y, ~σ)× p(τ |~y, ~σ), (6)

it is evident that inference on θ and τ is possible based on the marginal and
conditional posterior distributions of τ and θ|τ . As the conditional posterior
of θ|τ again is normal, computations become relatively straightforward.
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FIGURE 1. Left panel: a forest plot of the data. The estimate, shown at the
bottom in blue, corresponds to the marginal posterior median and 95% confidence
interval. Right panel: the joint posterior density of the two unknowns τ and θ.
Blue lines indicate the marginal posterior medians and 95% credibility intervals of
both parameters. The red contour lines approximately correspond to 50%, 90%,
95% and 99% credibility regions. The green lines show the conditional mean and
95% credibility interval of θ as a function of τ .

3 Application / example

As an example application we will analyze the data by Cochran (1954,
Example 3, p. 199). The data are comprised of 7 estimates with associ-
ated standard errors, which we assume to be precisely known here. For the
following analysis, we assume improper uniform priors on both τ and µ.
Figure 1 illustrates the data along with the joint posterior density of the
two unknowns θ and τ . The joint posterior has its mode at (τ = 8.17,
θ = 157.5), marked by a red cross; for the uniform prior this coincides with
the maximum likelihood estimate. The red contour lines approximately
correspond to credibility regions as labelled in the figure. The solid green
line shows the conditional posterior mean of θ|τ as a function of the het-
erogeneity τ , along with corresponding (conditional) 95% confidence limits
(dashed lines).
Integrating over single parameters then yields the marginal distributions
of θ and τ ; marginalization over the effect τ may be done using the above
formula, and marginalization over θ may be implemented e.g. via a simple
grid approximation, by averaging over the normal conditionals along a dis-
crete set of τ values. Figure 2 shows the two marginal posterior probability
densities for the example data. Dashed lines indicate medians and dotted
lines show the shortest 95% credibility intervals. The same values are also
marked by blue lines in the joint density plot in Figure 1.
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FIGURE 2. Marginal posterior densities of the two unknowns τ and θ. Dashed
lines show marginal posterior medians, and dotted lines indicate the shortest 95%
credibility intervals.

4 Conclusions

A range of “frequentist” approaches are available for combining (possibly)
heterogeneous estimates within the random-effects meta-analysis frame-
work, providing a range of estimates for the two involved parameters (Sidik
and Jonkman, 2007). These usually require the determination of a unique
heterogeneity estimate (possibly involving a significance test) before pro-
ceeding to infer the effect of primary interest.
The Bayesian approach on the other hand leads to unique procedures once
the prior distribution is specified. Marginalization allows to infer single
parameters while accounting for uncertainty in the other. In the random-
effects model, integration may be done semi-analytically, providing coher-
ent results with limited computational effort.
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Abstract: A bioequivalence assessment of two drugs compares their therapeutic
effectiveness. The biological motivation behind this problem often leads to highly
nonlinear mixed-effects models (NLMEMs) with interpretable parameters. How-
ever, most of these models are difficult to fit and frequently involve complex
algorithms, whose convergence depend on the initial values and often requires
data transformation. We propose a flexible alternative to the usual parametric
models, inspired by a Multivariate SuperImposition by Translation and Rota-
tion (MSITAR) model. A fully parametric nonlinear mixed-effects model is also
considered for comparison. To this end we consider a Bayesian approach and il-
lustrate it on a real data set where the interest lies in contrasting the average
bioequivalence of a test and reference formulation of an antihypertensive drug.

Keywords: SITAR model; nonlinear mixed-effects models; bioequivalence.

1 Introduction

The importance of mixed-effects models for analysing longitudinal data
and repeated measurements is unquestionable. For nonlinear mixed-effects
models (NLMEMs), numerical integration is usually required to obtain the
likelihood, as well as iterative algorithms with reasonable initial values and
possibly data transformations. Challenging applications are found in the
pharmacokinetic area, where highly nonlinear models are used to model
the absorption and elimination of a substance in the body.
In this context, compartment models are popular to model the pharmacoki-
netic characteristics of the absorption-elimination process of a substance in
the body. An important application area is assessing the bioequivalence

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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of two drugs. In this respect, regulatory agencies FDA and EMEA recom-
mend the comparison of bioavailability parameters, i.e. the maximum drug
concentration achieved (Cmax) and the area under the drug concentration-
time curve (AUC) (Chen and Huang, 2013). Test and reference drugs are
then considered bioequivalent if the ratio of these parameters for the two
drugs is close to 1 and the uncertainty is small enough to exclude all rel-
evant differences. The most common techniques to assess bioequivalence
are non-compartmental analysis (NCA) and nonlinear mixed-effects mo-
dels (NLMEM). A comparison between these two methods was presented
in Dubois et al. (2010). A semi-parametric Bayesian test for bioequivalence
was proposed by Ghosh and Gönen (2008). More recently, a stochastic
approximation expectation-maximisation (SAEM) algorithm was proposed
by Dubois et al. (2011), as well as a Wald test to assess bioequivalence.
In this paper we propose a Bayesian analysis that is based on template
derived from the median curve of the data, instead of a model that is in-
spired by a biological theory. Our approach is based on the Multivariate
SITAR model, recently proposed by Willemsen et al. (2014) in the con-
text of growth curve modelling problem. This model is an extension of the
SuperImposition by Translation and Rotation (SITAR) model (Cole et al.,
2010). An important advantage of the SITAR model is that it often provide
better fits to the longitudinal data than purely parametric models, which
may lack flexibility. We argue that our approach may also provide a better
fit to the pharmacokinetic profiles and therefore will enjoy a greater relia-
bility of the bioequivalence conclusion. In addition, tests on bioequivalence
may be easily performed by using the (Bayesian) credible intervals for the
bioavailability parameters Cmax and AUC. As a disadvantage, the SITAR
regression parameters are no longer interpretable as in the parametric bi-
ological model.

2 Motivating data set

A crossover randomized study with 24 volunteers was set up to compare
two formulations of the antihypertensive Losartan. The drug concentration
was observed at fixed time points, as shown in Figure 1. Reference and test
formulations of the drug were administered to each individual on separate
days, in a randomised order.

3 Nonlinear models with flexible random components

The bioequivalence of drugs is usually assessed by a non-compartmental
analysis (NCA) or NLMEMs. In this section we motivate the first-order
compartment problem with the usual full parametric model. A flexible
multivariate semi-parametric SITAR-type model is proposed as an efficient
alternative.
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FIGURE 1. Measurements of Losartan concentration in 24 volunteers using
two drug formulations, with the measurements of a randomly chosen individual
observation highlighted.

3.1 The first order compartment full parametric model

The problem of modeling absorption and elimination of a substance by
the body is usually tackled with a compartment model, where the body
represents the compartment where the substance is injected and from where
it is naturally eliminated afterwards. A popular pharmacokinetic model for
the median concentration of the substance Y at the time T is

E(Y ) = exp(lKa + lKe − lCl)
[exp(−elKeT )− exp(−elKaT )]

elKa − elKe
,

with parameters that are interpreted as the logarithm of the substance
absorption rate (lKa), the logarithm of the substance elimination rate (lKe)
and the logarithm of plasma clearance (lCl).
Denote by yik = (yi1k, . . . , yimk)> the vector of m observed substance
concentrations in the ith subject after the administration of the kth drug,
for i = 1, . . . , n and k = 1, . . . ,K. In the motivating example, K = 2 since
two different formulations were administered to each individual on different
days. In this case the measurements obtained on the i-th individual of
the reference drug concentration yi1 represent the first vector of responses
while the measurements of the test drug yi2 represent the second vector of
responses. Thus a possible mixed-effects model for the jth response of the
kth drug formulation of the ith individual is given by

yijk = exp(ϕi1k+ϕi2k−ϕi3k)
[exp(−eϕi2kTij)− exp(−eϕi1kTij)]

eϕi1k − eϕi2k
+εijk, (1)

where ϕi1k = lKak + bi1k, ϕi2k = lKek + bi2k and ϕi3k = lClk + bi3k; lKak,
lKek and lClk are the fixed-effects related to the k-th response; bi1k, bi2k and
bi3k are the respective random effects. The usual assumption for the vector
of random effects related to the i-th individual is bi ∼ N(0, Db), where
bi = (b>i1, . . . ,b

>
iK)> and bik = (bi1k, bi2k, bi3k)> is the vector of random

effects related to the k-th response of the i-th individual. The random errors
εijk ∼ N(0, σ2

e) are assumed to be mutually independent and independent
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of the random effects. To assess bioequivalence Cmax and AUC will be
compared. In the Bayesian context, credible intervals for the differences of
Cmax and AUC for both the drugs formulations may be considered.

3.2 The SITAR model

The SITAR model proposed by Cole et al. (2010) provides a versatile tool
for fitting highly non-linear longitudinal data and can be applied to dif-
ferent types of data sets. The original SITAR model is based on vertically
and/or horizontally shifting and/or stretching a mean curve in different
directions. This enables the model to take into account the correlation be-
tween measurements and delivering flexible fitted profiles being guided by
the data variability. A multivariate version of the SITAR (MSITAR) model
was proposed recently by Willemsen et al. (2014). In this paper we propose
a different MSITAR-type model with now two stretch effects (vertical and
horizontal) and one shifting effect.
Namely, a possible model for the kth response at time tij of individual i,
yijk, is:

yijk|γik,βk, σ2
k ∼ N(exp(γi2k)[T>ijkβk], σ2

k)

Tijk = B(exp(γi3k)(tij + γi1k))
(2)

where Tijk is a matrix with bases of cubic splines, γik = (γ1ik, γ2ik, γi3k)>

is the vector of random-effects for the kth response of the ith individual,
i = 1, . . . , N. It is assumed that γi = (γ>i1, . . . ,γ

>
iK)> ∼ N(0, Dγ).

It is important to notice that, although the SITAR-type model fits a model
guided by the data, the parameters are no longer interpretable as for the
popular parametric nonlinear mixed-effects models.

4 Application

The Bayesian approach is considered to fit the parametric and SITAR
models and assess the bioequivalence of the curves. For the full para-
metric nonlinear mixed-effects models, independent vague normal priors
were considered for the fixed-effects parameters βi ∼ N(0, 1000). Fur-
ther, an inverse gamma was assumed for the measurement error variance,
i.e. σ2

e ∼ IG(0.001, 0.001) and an inverted Wishart non-informative prior
was considered for the covariance matrix of the random effects vector,
Db ∼ IW (J × I, J), where J is the dimension of the random effects vector.
For the MSITAR model, the same independent vague normal priors were
considered for the fixed-effects parameters, an inverse gamma was assumed
for the measurement error variance, σ2

k ∼ IG(0.000001, 0.000001) and an
inverted Wishart non-informative prior , Dγ ∼ IW (J ∗ I, J) for the covari-
ance matrix of the random effects vector, where J is the dimension of the
random effects vector. MCMC sampling was used to estimate the parame-
ters, making use of JAGS. The models were compared using the deviance
information criterion - DIC. The parametric fit produced DIC=10645.1
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and the MSITAR model produced DIC = 10268.5, which implies a consid-
erable improvement of the fit for the MSITAR model. For the kth drug,
samples of Cmax,k and AUCk are obtained within the MCMC procedure,
with the estimated median curve with a grid of 200 uniformly-spaced values
for the time. The trapezoidal rule is used to approximate the area under
the curve. Credible intervals for the Cmax ratio, Cmax,1/Cmax,2 and AUC
ratio, AUC1/AUC2 are constructed. The drugs are considered bioequiva-
lent if the value 1 belongs to both of the credible intervals. Figures 2 and
3 illustrate the median fitted curves obtained with parametric and SITAR
fits, respectively.
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FIGURE 2. Median curves obtained by the parametric model fitted to the phar-
macokinetic data.
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FIGURE 3. Median curves obtained by the SITAR model fitted to the pharma-
cokinetic data.

5 Discussion

To assess bioequivalence, we propose in this paper the use of a multivariate
SITAR model. Our approach is data-driven, i.e. the MSITAR model is
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based on a template curve that is obtained from a smooth fit to the data as
opposed to following a parametric form based on biology. Such parametric
models, while having a theoretical basis might provide a poor fit to the data,
but definitely are quite difficult to handle computationally in contrast to
the MSITAR model. A Bayesian approach to the bioequivalence problem
simplified the comparison of the two formulations of the test drug.
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Abstract: Regional Councils in New Zealand (NZ) are responsible for ensuring
that government environmental standards for air quality are met. The standard
for the daily average PM10 is 50µg/m3, with the number of exceedances to be no
more than three per year by 2016, and one by 2020. Currently, emission reduc-
tions are set to ensure an average second or fourth largest concentration per year
meets this standard. This method ignores the uncertainty due to the large inter-
annual meteorological variation and will underestimate the reductions required
to be confident the standards are met. A generalised additive mixed model is
developed to describe the meteorological and historical trends in the PM10 con-
centrations in a large rural township Timaru, New Zealand. A simulation study
using bootstrapped meteorological conditions is implemented to determine the
percentage reductions needed to achieve these future targets with a certain likeli-
hood. The results are used to inform air quality management policy and planning.

Keywords: generalised additive mixed model; block bootstrap; simulation; pol-
lution modelling.

Many of New Zealand’s cities and towns suffer from severe air pollution
over winter, predominantly due to the use of solid fuel burners for home
heating. The concentration of airborne particulate matter of the order of 10
micrometres or less (PM10) regularly exceed the World Health Organisation
(WHO) guideline of a 24 hour average of 50µg/m3. Such air pollution
has a significant impact on health, increases morbidity and has a high
economic cost. Kuschel et al. (2012) estimated the cost to the NZ economy
of the social effects (health, lost work days, premature deaths, etc.) of
anthropogenically sourced air pollution to be over NZ$4 billion (euro 2.5
billion) per annum.
The National Environmental Standards for Air Quality (NESAQ) set tar-
gets for concentrations of many such pollutants. The PM10 target level is
the WHO guideline of a 50µg/m3 with at most 3 exceedances per year
by 1 September 2016 (i.e. end of winter) and at most one exceedance by
1 September 2020, which are equivalent to the fourth and second largest

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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concentration being at most 50µg/m3. The NESAQ specifies that the 24
hour average is defined as midnight to midnight, which is inconsistent with
the typical air pollution generating and dispersal process. Determining the
required reduction in emissions is challenging due to the impact of mete-
orology both on particulate emissions (e.g. influencing burner usage) and
directly on the concentrations, thus leading to substantial intra- and inter-
annual variability in the number of exceedances. The target reductions
must therefore account for the distribution of possible exceedances observ-
able across both ‘good’ and ‘bad’ winters.
An objective statistical basis is outlined for determining the target reduc-
tions in concentrations, in order to meet these future standards with a
prescribed probability. The major source of uncertainty in setting these
target reductions is the meteorological variation. Therefore, the first step
is to develop a generalised additive mixed model (Wood, 2006) to describe
the impacts of meteorology and historical trends on the concentrations,
including capturing a lag one autocorrelated error structure in the resid-
uals. A Monte Carlo simulation study then uses the fitted model, with
block bootstrapped meteorology, to determine the total reduction needed
to achieve the targets with a prescribed likelihood in 2016/2020.

FDM(Quantile)~smooth(WinterIndexDay) for Quantiles

WinterIndexDay (Start Year)
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FIGURE 1. Daily average PM10 concentrations in µg/m3 for Timaru for each
winter 1997 to mid-2012. Missing values are shown in red at zero concentration.
Quantile regression based smooth trends shown by coloured lines.

1 Statistical Modelling and Simulation

A generalised additive mixed model (GAMM) is used to provide a flexi-
ble description of the observed meteorological effects, along with a slowly
varying trend in the historical PM10 concentrations. As the majority of ex-
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ceedances occur in winter, the model is fit to only the May-August concen-
trations which are depicted in Figure 1. The emissions from the non-winter
periods are from different sources, so provide limited information for pre-
dicting meteorological impacts on winter concentrations. Estimated smooth
trends in the quantiles are shown Figure 1 for visualisation purposes.
Alternative GAMM formulations, with different assumed distributions for
the concentrations, meteorological variables and correlated errors were con-
sidered to ensure the results are robust to any specific set of assumptions.
These were fit using the mgcv library in R. The results presented below
assume a normal family with log-link function. The trend is assumed to be
slowly varying in time, described by smooth thin plate splines (Wood, 2003)
which use around 8 degrees of freedom over this time period. Appropriately
transformed meteorological predictors are included as linear terms, as in-
sufficient evidence was found for need for non-linear effects. The residual
autocorrelation is captured well by a lag one autoregressive structure with
estimated coefficient of 0.29. The meteorological predictors were chosen by
stepwise selection, with external validation against variables selected from
regression tree approaches and subject matter experts.

Winter FDM Observed Exceedances and Distribution of Number of Exceedances
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FIGURE 2. Distribution of predicted number of exceedances resulting from
simulated winters assuming that particular day’s trend applies over the whole
year. The mean of the distribution is shown in red. The observed number of
exceedances per year is shown by grey points in middle of year.

The fitted distribution of number of exceedances over time are shown in Fi-
gure 2, with the observed number per year in grey. Note that the observed
number of exceedances in 2012 are low as it was only partially observed in
the available dataset. The Monte Carlo simulations from the GAMM used
to produce the estimated distribution of exceedances (shown by colour
density image), are based on realisations of potential observed winter con-
centrations generated by:
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1. resampling the meteorological conditions for each of the 123 days
of winter using a randomised block size bootstrap using an average
period of 5 days (Davison & Hinkley, 1997);

2. applying fitted GAMM with simulated meteorology and estimated
trend for that day applied over the entire winter period; and

3. simulate observed concentrations from the assumed distribution to
account for residual variation.

In the resampling in step 1, the measurements of all the meteorological
variables within a day are resampled together, thus retaining the joint
dependence between them.
The predicted number of exceedances for the 123 days of winter is ex-
tracted, from 10,000 realised target years to provide the distribution of the
number exceedances. The fitted (conditional) distribution of the number of
exceedances at each timepoint reasonably describes that observed, once the
meteorological variation is accounted for. In particular, the estimated ex-
pected number of exceedances shown in red reasonably follows the observed
number shown in grey.
The Monte Carlo simulations from the fitted GAMM are used to evaluate
the total percentage reduction in the concentrations needed to meet the
future targets with a prescribed probability. The thin plate spline based
trend term in the log-link function of the GAMM only applies over historical
timepoints, so cannot be extrapolated to the future. For setting the targets
and limits detailed below the thin plate smoother is replace with a constant
multiplicative trend on the log-link scale given by:

log(µ) = Xβ + βdatetdate

where X represents the simulated meteorological effects and the corre-
sponding coefficients β are replaced with their estimated values from the
GAMM. The variable tdate is the number of years since mid-winter 2012
and therefore exp(βdate) is the annual reduction in the predicted concentra-
tions. The simulation study determines the value of βdate, or more usefully,
the implied total percentage reduction in the predicted concentrations such
that the standard is achieved in each target year with a prescribed proba-
bility (50% and 95% chance considered below).
Simulated future winter concentrations in each target year (2016 & 2020)
are generated using the above simulation scheme, with the trend estimate
per winter day in step (2) replaced with the estimated target reduction.
Target values for other annual characteristics are obtained, including the
average concentration, number of exceedances, second and fourth largest.
Limits on the possible variation in these annual statistics are also obtained,
which indicate the range of tolerable variation from the annual targets if
the airshed really is on target to meet these future targets.
The estimated total reduction in average PM10 concentrations to achieve
the NESAQ target in 2016 with a 50% chance is estimated to be 51.4% as in
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TABLE 1. Estimated targets for PM10 concentrations assuming a constant an-
nual reduction rate, with 50% and 95% chance of meeting the 2016 target.

50% Chance of Meeting 2016 Target

2013 2014 2015 2016

Annual % Reduction 16.5
Cumulative % Reduction 16.5 30.3 41.8 51.4

Target # of Exceedances 21 13 7 3
Values Fourth Largest 75 65 57 50.5

90% Upper # of Exceedances 28 18 11 6
Limit Fourth Largest 83 72 63 56

95% Chance of Meeting 2016 Target

Annual % Reduction 21.6
Cumulative % Reduction 21.6 36.6 51.9 62.3

Target # of Exceedances 18 8 3 1
Values Fourth Largest 71 59 50 44

90% Upper # of Exceedances 24 13 6 3
Limit Fourth Largest 79 66 56 49

Table 1, which is an annual reduction of 16.5%. Notice that the target value
in 2016 is 3 exceedances and the fourth largest concentration is 50.5µg/m3,
as you would expect as observed values of 50.5µg/m3 are rounded to the
nearest integer value which would therefore make the fourth largest just
obtain the definition of an exceedance.
The 90% upper limits are determined from the sample quantile of distribu-
tion of the simulated number of exceedances and fourth largest concentra-
tions per year obtained from the process is on-target to reach the required
reductions. Notice that the upper limits are of course higher then target
levels. Of course the 10% chance of exceedance of these limits is an annual
risk, so the probability of multiple exceedances in consecutive years will be
correspondingly much smaller.
If the chance of meeting the future target is increased to 95% then the
required reductions are higher at 21.6% per year and 62.3% in total by
2016. The target level for the fourth largest in 2016 has also reduced from
50.5µg/m3 to 44µg/m3. Essentially, these provide the required extra mar-
gin to account for meteorological uncertainty in the target years.
Similar behaviour of the targets and limits for the year 2020 are observed
in Table 2. It is also clear that the 2016 NESAQ target is harder to achieve
than the 2020 target, in the respect that a larger annual reduction in the
concentrations is required. Notice in particular that the extra reduction
margin to achieve the 2020 target, of at most one exceedance per year,
with a 95% chance gives a target of no exceedances in 2019 and 2020.
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work on the city of Christchurch. Advice from staff at Environment Can-
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TABLE 2. Estimated targets for PM10 concentrations assuming a constant an-
nual reduction rate, with 50% and 95% chance of meeting the 2020 target.

50% Chance of Meeting 2020 Target

2013 2014 2015 2016 2017 2018 2019 2020

Annual % Reduction 10.8
Cumulative % Reduction 10.8 20.5 29.1 36.8 43.7 49.8 55.2 60.1

Target # Exceed. 26 19 14 9 6 4 2 1
Values Fourth Larg. 88 80 73 67 62 58 54 50.5

90% Up # Exceed. 33 25 19 14 10 7 5 3
Limit Fourth Larg. 99 90 83 76 70 66 61 58

95% Chance of Meeting 2020 Target

Annual % Reduction 15.3
Cumulative % Reduction 15.3 28.3 39.2 48.5 56.4 63.1 66.7 73.5

Target # Exceed. 23 14 8 4 2 1 0 0
Values Fourth Larg. 84 74 65 59 53 49 45 42

90% Up # Exceed. 29 20 13 8 4 3 2 1
Limit Fourth Larg. 95 84 74 66 60 55 52 48
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Abstract: Methods for the identification of Differential Item Functioning (DIF)
in Rasch models are typically restricted to the case of two subgroups. A boosting
algorithm is proposed that is able to handle the more general setting where DIF
can be induced by several covariates at the same time. The covariates can be
both metric and (multi-) categorical. The method works for a general parametric
model for DIF in Rasch models and competes well with traditional DIF methods.
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1 Differential Item Functioning Model

In the binary Rasch model, the probability for a person to score on an item
is determined by a parameter for the latent ability of the person and a
parameter for the item difficulty. In the case of P persons and I items, the
Rasch model is given by

log

(
P (Ypi = 1)

P (Ypi = 0)

)
= θp − βi, p = 1, . . . , P , i = 1, . . . , I, (1)

where Ypi represents the response of person p on item i. It is coded by
Ypi = 1 if person p solves item i and Ypi = 0 otherwise. Both the person
parameters θp and the item parameters βi are unknown and have to be
estimated. For identifiability, we set θP = 0.
In item response models, DIF occurs if an item has different difficulties
depending on characteristics of the participants. This concept can be for-
malized by

log

(
P (Ypi = 1)

P (Ypi = 0)

)
= θp − (βi + xT

pγi), (2)

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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where xT
p = (xp1, . . . , xpm) denotes a person-specific covariate vector of

length m and, again, the restriction θP = 0 is used. This general Differ-
ential Item Functioning Model (DIF model) has been used by Tutz und
Schauberger (2013a). It is an extension of the Rasch model (1) allowing for
person-specific item difficulties βi + xT

pγi.
In the general DIF model (2), one has, additionally to the parameters from
the Rasch model, m · I parameters that describe DIF. Classical estimation
procedures tend to fail or yield extremely unstable estimates. Moreover,
a general assumption of the model is that only some of the items show
DIF. Therefore, only for these items item-specific parameters γi have to
be estimated. It turns out that for this problem boosting procedures with
automatic variable selection (Bühlmann and Hothorn, 2007) are a very
useful tool to obtain efficient estimates.

2 The DIFboost Algorithm

The objective of our approach is to detect DIF by boosting the logistic
DIF model (2). Since the person parameters θp and the item parameters
βi are essential for the interpretability of the model, it is sensible to start
the boosting selection procedure after a basic Rasch model has been fit-
ted. With the estimtates from the Rasch model, for a single observation
a linear predictor η̂pi = θ̂p − β̂i can be calculated. The linear predictors
for all person-item combinations are passed on to the further steps of the
algorithm.
For the boosting steps, the Rasch model (1) is extended to the more gen-
eral DIF model (2). The parameters of the DIF model determine the base
learners that are used. In our case, three types of base learners are useful:

η̃(xp, p, i) =


θ̃p, p = 1, . . . , P − 1

β̃i, i = 1, . . . , I

xT
p γ̃i, i = 1, . . . , I

(3)

In every boosting step, only one of the base learner is updated, namely
the one which yields the strongest reduction of an adequate loss function
L(Ypi, η̃pi), which can be denoted by

η̃∗(xp, p, i) = argmin
θ̃p,β̃i,xTγ̃i

∑
p,i

L(Ypi, η̃pi).

The estimates for the single candidates of the base learner are obtained by
fitting logit models where the linear predictor from the current model fit is
used as known offset and the respective base learner is the only predictor.
Therefore, in every step only the base learner with the highest gain of
information is updated. An additional parameter ν, 0 < ν < 1, regulates
the step size of the parameter updates. It is chosen sufficiently small (ν =
0.1) and is used to prevent overfitting.
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3 Stability Selection

For our goal of variable selection, we use the concept of stability selection
proposed by Meinshausen and Bühlmann (2010). For a predefined number
of replications B, subsamples of

⌊
P
2

⌋
persons are drawn randomly from

the original data set. For each of the subsamples, the boosting algorithm
is executed until a (predefined) number of q different base learners have
been selected. Then, one calculates relative frequencies on how often a
specific base learner was selected at each specific step. The frequencies are
illustrated by so-called stability paths along the boosting steps (see Figure
1). Finally, all base learners with stability paths beyond a certain threshold
value π0 are selected and a final DIF model is fitted with the selected items.

4 Application

The method was applied to data from the Intelligence-Structure-Test 2000
R (I-S-T 2000 R), developed by Amthauer et al. (2001). We considered
a subtest on the topic sentence completion, consisting of 20 items. The
data origin from a test on 273 students from different faculties from the
university of Marburg, Germany, aged between 18 and 39 years. The data
have first been used in Bühner et al. (2006). Three covariates were used
as possibly DIF inducing covariates, gender (0: male, 1: female), age (in
years) and the interaction between gender and age.
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FIGURE 1. Stability paths for all items; dashed line represents the threshold
π0 = 0.9; items 9, 11 and 15 are diagnosed as DIF items

For our analysis, B = 500 subsamples were drawn. Figure 1 shows the
stability paths for DIFboost with stability selection. It is seen, that three
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items (9, 11, 15) are selected in almost all replications and, therefore, are
identified to have DIF.
We illustrate the coefficients of the DIF-items by effect stars (Tutz and
Schauberger, 2013b). Since the logit link is used, the exponentials of the

coefficients represent the effects of the covariates on the odds
P (Ypi=1)
P (Ypi=0) .

The length of the rays correponds to the exponentials of the respective
coefficients. The circle around each star has a radius of exp(0) = 1 and,
therefore, represents the no-effect case. Both gender and age were standard-
ized prior to the analysis so that the size of the coefficient estimates will be
comparable. Figure 2 shows the effect stars for the estimated coefficients.
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Item 11 
 

Age

Gender

Age.Gender
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Item 15 
 

Age

Gender

Age.Gender
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FIGURE 2. Effect stars for the detected DIF items from the subtest sentence
completion

Generally, a ray beyond the circle represents positive coefficients. With
positive coefficients, the difficulty of the respective item is increased if the
corresponding covariate is increased while the probability to solve the item
is decreased. Item 9, for example, has a negative coefficient for gender.
Therefore, this item is easier for female participants as female is encoded by
1. After all, since also the interaction between gender and age is considered,
one has to look at all coefficients at a time. With growing age, the difficulty
increases for female participants.
Figure 3 shows for each DIF-item the effects of both gender and age on
the probability to score on the respective item. Separately for male (solid
lines) and female (dashed lines) participants, the probability to score on
the respective item is depicted along the covariate age. For simplicity, the
plots refer to a person with a ’mean’ ability according to the estimates of
the θ parameters.
Figure 3 clarifies the effect of the interaction term. As the probabilities to
score on an item can intersect, the main effects of age or gender should not
be interpreted separately but always with respect to the interaction term.
The ability to include interaction terms in this manner can be seen as a
big improvement compared to existing methods of DIF detection allowing
for new insights on the occurence of DIF. In extreme cases, both the main
effects for gender and age could be neglectible but the interactions term
could still be influential.
Therefore, item 9 can not generally be assumed to be easier for female
participants. This only holds for participants younger than 30 years while
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FIGURE 3. Probabilities to score on items depending on gender and age for all
DIF-items. Solid lines represent male, dashed lines represent female participants.

it is inversely for older participants. Items 11 and 15 are, in general, easier
for male participants, in particular if they are rather young. For growing
age this difference slowly vanishes, in item 11 the effect is even reversed for
higher age.
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Abstract: We propose an extensive framework for additive regression models for
correlated functional responses, allowing for multiple partially nested or crossed
functional random effects with flexible correlation structures for, e.g., spatial,
temporal, or longitudinal functional data. Additionally, our framework includes
linear and nonlinear effects of functional and scalar covariates that may vary
smoothly over the index of the functional response. It accommodates densely
or sparsely observed functional responses and predictors which may be observed
with additional error and includes both spline-based and functional principal
component-based terms. Estimation and inference in this framework is based on
standard additive mixed models, allowing us to take advantage of established
methods and robust, flexible algorithms. We provide easy-to-use open source
software in the pffr() function for the R-package refund. We evaluate our approach
in simulations and two applications with spatially and longitudinally observed
functional data.

Keywords: Functional data analysis, functional principal component analysis,
P-splines, Smoothing, Varying coefficient models.

1 Introduction and Model

Scientific studies increasingly collect functional data with correlation struc-
tures. We are motivated by a longitudinal diffusion tensor imaging study
on multiple sclerosis and the benchmark functional data set on weather sta-
tions spatially distributed across Canada. We propose regression models for
functional responses that accommodate general correlation structures via
functional and scalar random effects as well as linear or nonlinear effects
of scalar and functional covariates.
We consider structured additive regression models of the general form

yi(t) =

R∑
r=1

fr(Xri, t) + εi(t), (1)

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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for functional responses yi(t), i = 1, . . . , n, observed over a domain T . Each

term in the additive predictor
∑R
r=1 fr(Xri, t) is a function of a) the index t

of the response and b) a subset Xr of the complete covariate set X including
scalar and functional covariates and (partially) nested or crossed grouping
factors.
We assume εi(t) to be independent N(0, σ2

ε) variables for each t. Functional
random effects bg(t) for a grouping variable g with M levels are modeled
as realizations of a mean-zero Gaussian random process on {1, . . . ,M}×T
with a general covariance function smooth in t.
Most existing work on functional random effects has considered only spe-
cial cases such as the functional random intercept model or a two or three-
level hierarchy. Morris and Carroll (2006) and subsequent work by this
group propose a general Bayesian functional linear mixed model based
on a wavelet transformation of (usually very spiky) data observed on an
equidistant grid. The proposed model includes correlation between different
random effects and heterogeneous residual errors, which we do not. Our ap-
proach, on the other hand, is well suited to smooth underlying curves and
allows a more general mean structure than previous functional linear mixed
models; in particular we are able to estimate smooth nonlinear or linear
effects of scalar and/or functional covariates within the same framework.
In addition, we are able to handle data on non-equidistant or sparse grids.
To the best of our knowledge, our proposal is the first publicly available
implementation that allows such a high level of flexibility for a functional
regression model.

2 Estimation

For notational simplicity, we assume yi(t) to be observed on identical grids
t = (t1, . . . , tT )T , but irregular/sparse grids are naturally accommodated
in the rephrased model formulation given below. Then, model (1) can be
expressed as

yil =

R∑
r=1

fr(Xri, tl)+εil, εil
iid∼ N(0, σ2

ε), i = 1, . . . , n, l = 1, . . . , T. (2)

The smoothness assumption on E(yi(t)) is preserved implicitly by enforcing
smoothness across T for all fr(Xr, t). Let y = (yT11, . . . , y1T . . . , ynT )T and
let Xr denote the vector or matrix with rows of observations Xri. Let f(t) =
(f(t1), . . . , f(tT )) and let f(x, t) denote the vector of evaluations of f for
each combination of rows in x and t. Let 1d denote a d-vector of ones. For
an m× a matrix A and an m× b matrix B denote the row tensor product
by A�B = (A⊗ 1Tb ) · (1Ta ⊗B), with element-wise multiplication ·.
We approximate each fr(Xr, t) as a linear combination of basis functions
on the product space for Xr and t, with corresponding marginal penalties.
We use the versatile row tensor product of marginal bases (Wood, 2006,
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ch. 4.1.8),

fr(Xr, t) ≈ (Φxr � Φtr)θr = Φrθr. (3)

Φxr and Φtr contain the evaluations of suitable marginal bases for the
covariate(s) in Xr and in t, respectively. We choose sufficiently large bases
for flexibility, but use a penalized likelihood approach for regularization.
The corresponding penalty is the Kronecker sum of marginal penalties Pxr
and Ptr (ch. 4.1, Wood, 2006),

pen(θr|λtr, λxr) = θTr (λxrPxr ⊗ IKt + λtrIKx ⊗ Ptr)θr = θTr Pr(λtr, λxr)θr.

Pxr and Ptr are known and fixed positive (semi-)definite penalty matrices
and λtr, λxr > 0 are smoothing parameters controlling the trade-off be-
tween goodness of fit and smoothness of fr(Xr, t) in Xr and t, respectively.
In the following, we motivate and define Φxr,Φtr, Ptr and Pxr for different
effect types. Constant effects over t are associated with Φtr = 1nT and
Ptr = 0, while Φtr and Ptr can be chosen freely for terms varying over t.
For a functional intercept α(t) (i.e., Xr = ∅), Φxr = 1nT and Pxr = 0. For
effects linear in scalar covariates z like fr(z, t) = zδ or fr(z, t) = zδ(t),
the marginal basis reduces to Φxr = z ⊗ 1T where z = (z1, . . . , zn)T , with
penalty Pxr = 0. For nonlinear effects of scalar covariates like fr(z, t) =
γ(z) or fr(z, t) = γ(z, t), Φxr is a suitable marginal spline basis matrix over
z and Pxr is the associated penalty.
For linear effects of functional covariates fr(xi(s), t) =

∫
S xi(s)β(s, t)ds,

we follow Ivanescu et al (2013) and model β(s, t) using tensor product
splines with basis functions Φks(s), ks = 1, . . . ,Kx, over S and a basis over
T , so Φxr = [x diag(w)Φs]⊗1T ≈ [

∫
S xi(s)Φks(s)ds]i=1,...,n;ks=1,...,Kx⊗1T ,

where x = [xi(sh)]i=1,...,n;h=1,...,H , w = (w1, . . . , wH)T contains quadrature
weights for numerical integration over S, and

Φs = [Φks(sh)]h=1,...,H;ks=1,...,Kx .

Pxr is the penalty associated with the Φks(s). By defining suitable weight
matrices wi,l with zero entries for sh < li(tl) and sh > ui(tl) this can be

extended to terms like
∫ ui(t)
li(t)

xi(s)β(s, t)ds. In the limit, this includes the

concurrent model fr(xi(t), t) = xi(t)β(t).
Non-linear function-on-function effects

∫
S F (xi(s), s, t)ds, which generalize

McLean et al (2014) from scalar to functional responses, can be similarly
represented, please see the full paper (Scheipl et al, 2014) for details.
Functional random effects bg(t) are represented as smooth functions in t
for each level m of g. Functional random intercepts are associated with a
marginal basis Φxr = [δg(i)m]i=1,...,n;m=1,...,M ⊗ 1T , where g(i) denotes the
level of g for observation i. This yields an incidence matrix mapping the ob-
servations to the different levels of the grouping variable. For a functional
random slope in z, Φxr = [ziδg(i)m]i=1,...,n;m=1,...,M ⊗ 1T . The marginal
penalty Pxr for functional random effects is a M×M precision matrix that
defines the dependence structure between the levels of g. The full penalty
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induces a mean zero Gaussian process assumption for bg(t). Any combi-
nation of spline basis, smoothness penalty and between-subject correlation
can be used to construct multiple (partially) nested or crossed functional
random effects.
For alternative FPC-based representations of linear or nonlinear function-
on-function effects as well as functional random effects, we refer to the full
paper (Scheipl et al, 2014).
Using the tensor product representation, model (1) can be re-written as

y = Φθ + ε; ε ∼ N(0, σ2
ε InT ), (4)

where Φ = [Φ1| . . . |ΦR] and θ = (θT1 , . . . , θ
T
R)T . To clear up notation, we

assign a sequential index v = 1, . . . , V to the smoothing parameters λxr, λtr.
We pad Ptr ⊗ IKx and IKt ⊗Pxr with rows and columns of zeros, denoting
these matrices P̃v1 and P̃v2 , such that θTr (λtrPtr⊗ IKx +λxrIKt ⊗Pxr)θr =
λv1θ

T P̃v1θ+λv2θ
T P̃v2θ. The penalized likelihood criterion to be minimized

then becomes

1

σ2
ε

‖y − Φθ‖2 +
∑
v

λv
σ2
ε

θT P̃vθ → min . (5)

Let τv = σ2
ε /λv and obtain the solution θ̂ of (5) as the best linear unbiased

predictor in the linear mixed effects model

y ∼ N
(
Φθ, σ2

ε InT
)

; θ ∼ N

0,

(∑
v

τ−1
v P̃v

)− , (6)

where S− denotes the generalized inverse of positive semi-definite covari-
ance matrix S, and N(0, S−) is a partially improper Gaussian distribution.
The smoothing parameters λv = σ2

ε /τv can now be estimated as variance
ratios using restricted maximum likelihood (REML), which has been shown
to be more stable and result in somewhat lower MSE than generalized
cross-validation (GCV) (Reiss and Ogden, 2009). Since the fit criterion
(6) corresponds to that of conventional additive mixed models (AMMs) for
scalar data, confidence intervals, tests, model selection etc. directly transfer.
The full framework for functional AMMs is implemented in the pffr-function
in the refund package for R. The underlying inference engine is the mgcv
package for generalized additive models.

3 Simulation Study

We simulate data with repeated measures for four scenarios including dif-
ferent combinations of functional random intercepts, functional random
slopes, functional and scalar covariates. We vary the number of subjects
M , observations per subject ni, grid points T for t, signal-to-noise ratio
and relative importance of the random effects. We here summarize the
main results.
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Important effects that contribute relevantly to the predictor are estimated
with good to excellent accuracy. Only a single replicate resulted in a relative
integrated mean squared error for y(t) greater than 0.1 - even in the most
challenging data situations with few noisy observations and small group
sizes, our approach is able to reproduce the true structure of the data well.
Our results indicate that estimation accuracy of covariate effects is affected
most strongly by changes in the signal-to-noise ratio and especially the
relative importance of the random effects, and less strongly by changes in
the available number of observations M , ni and T . The patterns of relative
change in accuracy are identical for simple functional regression coefficients,
index-varying smooth effects or effect surfaces for functional covariates. The
estimation accuracy of the functional random effects is affected strongly
by the relative importance of the random effects and the group size ni,
and little by the number of groups M . FPC-based random effects seem to
require a sufficiently large number of groups and low noise level to obtain
usable FPC estimates. Spline-based approaches yielded superior results to
FPC-based and wavelet-based (Morris and Carroll, 2006) approaches, but
it should be noted that the data-generating process for the simulation study
was spline-based itself. Overall, the observed coverage of the approximate
pointwise confidence intervals was very close to the nominal level except
for very small or noisy data.

4 Application: Canadian weather

Due to space, we here do not discuss the longitudinal imaging study, but
focus on results for the Canadian weather data. The Canadian weather
data consists of temperature and precipitation curves, measured as the
monthly averages over several years at 35 Canadian weather stations. The
data has been used extensively in the functional data analysis literature.
As it is available as part of the R-package fda, we can make our analysis
fully reproducible. We will here focus on both the functional relationship
between temperature and precipitation profiles as well as on the spatial
nature of the data, clearly visible from the locations of the weather stations
(Figure 1, middle).
We model log-precipitation yi(t) using a functional intercept αgi(t) per
climate region gi, a linear effect of temperature xi(s) and smooth spatially
correlated residual curves ei(t),

yi(t) = αgi(t) +

∫
xi(s)β(s, t)ds+ ei(t) + εit, εit ∼ N(0, σ2

ε ). (7)

Results in Figure 1 indicate differences between climate zones, with strongest
seasonality in precipitation in the continental region, and remaining spatial
correlation between stations after accounting for region. Higher tempera-
tures in fall and winter go hand-in-hand with higher precipitation levels
throughout the whole year, while the reverse is true for higher tempera-
tures in spring and summer.
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FIGURE 1. Regional mean log-precipitation (left), spatially correlated smooth
residual curves (middle) and temperature effect on log-precipitation (right) for
35 Canadian weather stations.
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Abstract: In the last years expectiles have become a popular alternative to
quantiles. This is partly due to their fast and easy computation based on least
squares. However, for large data sets the estimation is still computationally in-
tensive. Here, we are introducing expectile smoothing for big data. First, we
summarize the data as a two-dimensional histogram and proceed with the mid-
points of the bins as pseudo-observations combined with a set of weights. We
apply discrete smoothing to these data. Our approach is illustrated with an ex-
ample from the field of plant genetics: the relation between the decay of linkage
disequilibrium and the distance of SNPs (single nucleotide polymorphisms) on
chromosomes of maize.

Keywords: Expectiles; SNPs; Big Data; Discrete Smoother

1 Introduction

Expectiles are an interesting and useful alternative to quantiles (Schnabel
and Eilers, 2009). One of their attractions is fast and easy computation us-
ing iteratively asymmetrically weighted least squares. Yet for large datasets
the computational effort might be heavy. In one application from (plant)
genetics we visualize the decay of linkage disequilibrium (LD decay) against
the distance of SNPs on chromosomes. The basic idea is to compute the
correlation between pairs of SNPs. With thousands of SNPs we get millions
of pairs and an equal amount of correlations and distances.
To get acceptable computation times we first summarize the data on a grid
covering the two-dimensional domain of distance and correlation. With a
100 by 100 grid we get a maximum of 104 pseudo-observations, independent
of the number of initial data pairs. In addition, we can use fast matrix
calculations in R. Moreover, we do not need a spline basis, but for further
simplification we can use a discrete smoother.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
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2 Theory and application

Expectile smoothing produces curves that visualize the conditional distri-
bution of data pairs (x, y). The curves are constructed with a generous set
of B-splines and a roughness penalty is used to tune smoothness (Schnabel
and Eilers, 2009). If B is the B-spline basis, the following objective function
is minimized:

Q = (y −Bα)TWp(y −Bα) + λ||Dα||2. (1)

Here Wp is a diagonal matrix with

wii = p if yi > ŷi;
wii = 1− p otherwise,

(2)

where ŷ = Bα̂ are the fitted values. The parameter p (0 < p < 1) is called
the asymmetry. The matrix D forms (second order) differences and with λ
one can tune smoothness. To estimate α, the system

(BTWpB + λDTD)α = BTWpy (3)

is solved repeatedly, updating the elements of Wp after each iteration. This
is the least asymmetrically weighted squares (LAWS) algorithm. It con-
verges quickly to the minimum of Q, which is a convex function of α. For
visualization, one computes and plots the curves for a set of values of p.
This all works well for data sets up to tens of thousands of observations.
For larger data sets computation speed and memory use can become prob-
lematic. Assuming we have a million data points and use 20 B-splines. The
basis matrix B has 20 million elements and the inner product B′WpB has
to be computed about five times for each value of p. To minimize memory
use and computation time, we propose a very simple solution: summarize
the data on a grid as a two-dimensional histogram, and use the midpoints
of the bins as pseudo-data, with prior weights equal to the counts in the
bins.
We could apply “classic” expectile smoothing to these pseudo-data, but
further streamlining is possible. Instead of B-splines we can apply discrete
smoothing immediately. This is equivalent to a B-spline basis of degree
zero (the identity matrix) and one element of α for each bin on the x-axis.
Let the bins be indexed by j (for x) and k (for y) and let U = [ujk] contain
the counts. The vector t = [tk] contains the midpoints of the bins along the
y-axis. Let α̃j be the current approximation to the point on the expectile
curve in bin j. Weights are computed in V = [vjk], with

vjk = p if tk > α̃j ;
vjk = 1− p otherwise.

(4)

Let sj =
∑
k ujkvjk and rj =

∑
k ujkvjktk. Then a new α is found by

solving
(S + λDTD)α = r, (5)
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FIGURE 1. Decay of linkage disequilibrium (LD) with distances (Morgan) on
chromosome 7 of maize. Expectile curves (with smoothing parameter λ = 105)
are plotted for seven asymmetries p.

where S = diag(s) and D again is a (second order) difference matrix.
The two-dimensional histogram can be constructed quickly in R. The sim-
plest approach is to just run a loop over all observations. That takes 3 to
5 seconds for one million observations. Compilation to byte code —using
cmpfun in the compiler package— reduces this time by a factor five. The
fastest solution however is to apply the hist function. Let ji and ki be
the row and column indices of observation i. Let hi = ji + nki be a com-
bined index. The one-dimensional histogram of h with n2 bins can be re-
dimensioned to the desired n-by-n matrix. This speeds up the calculations
by another five times.
To illustrate our algorithm, we use the correlations between almost 12000
pairs of SNPs on chromosome 7 of maize. The data is available in the R

package synbreed (Wimmer et al., 2012). This is not a very large data set
as we want to avoid filling the plot with too many data points. Typically
data in plant as well as in animal and human genetics contain much larger
number of SNPs. Figure 1 shows the data and the estimated expectile
curves. In both directions 100 bins were used. Even when using a loop for
forming a histogram, the graphs appears without noticeable delay after the
correlations have been computed.
The density of the dots in Figure 1 is just acceptable. With many more
dots, the plane would be filled completely in many places. An alternative
is the scatterplot smoother (Eilers and Goeman, 2004). It also computes
a two-dimensional histogram, smoothes the counts and shows them as an
image with a color map. As a by-product it delivers the raw histogram,
which can be used directly for expectile smoothing. The resulting expectile
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FIGURE 2. Decay of linkage disequilibrium (LD decay) with distances (Mor-
gan) on chromosome 7 of maize. Expectile curves for seven asymmetries p (with
smoothing parameter λ = 105) are plotted over the scatterplot smoother.

curves can be plotted over the images in a contrasting color (Figure 2).
It is possible to adapt the grid algorithm to the estimation of quantile
curves, using the algorithm of Schlossmacher (1973). Our experiments show
that this works, but that convergence is rather slow, in contrast to the
estimation of expectile curves. Figure 3 shows results.
An alternative approach is to derive conditional densities from the expec-
tiles, as explained by Schnabel and Eilers (2013). The densities can be
used to compute quantiles. Exploration of this approach will be reported
elsewhere.

3 Discussion

We have presented an algorithm to apply expectile smoothing to (very)
large data sets. After construction of the two-dimensional histogram, which
can be done very quickly, the expectile curves are obtained almost instantly.
The construction of the the histogram itself takes less than a second for
ten million observations.
For visualization purposes a grid of 100 bins on the x-axis is fine enough.
The number of bins in the y-direction might need more attention in special
cases. If the data cloud is not horizontal and narrow, it might be covered
locally by only a small number of bins. Then one might need 200 or more
bins for y. An alternative is to first remove the trend, compute expectile
curves for the residuals and combine these with the trend.
Many aspects need further study. One is the automatic choice of λ, e.g.
by cross-validation or variance-components estimation based on the Schall
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FIGURE 3. Decay of linkage disequilibrium (LD) with distances (Morgan) on
chromosome 7 of maize. Seven τ -quantile curves (with smoothing parameter
λ = 106) are displayed.

algorithm (Schnabel and Eilers, 2009). Also we will combine the grid ap-
proach with more advanced expectile smoothing techniques such as the
location-scale model (Schnabel and Eilers, 2013) and expectile sheets (Schn-
abel and Eilers, 2014). On the other hand the need for such extensions,
which were inspired by the problem of crossing expectile curves, is less
when there are many observations.
It will also be useful to introduce shape constraints. It is generally assumed
that LD decays monotonically with distance. In the graphs we see a ten-
dency for the estimated curves to increase at the right end. The desired
behaviour can be realized by adding an asymmetric penalty (Eilers, 2005).
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Abstract: While a simple mean regression attempts to describe the expectation
of a response as a function of the covariates, the results of a quantile regression
offer a much broader view. In principle, a dense set of quantiles allows for an
analysis of the complete conditional distribution of the response. This can lead
to new insight into the dependency between the response and its covariates. In
our work, we allow for additive regression models with nonlinear as well as spatial
effects. Models of this flexibility are previously unavailable to frequentist quantile
regression. We achieve the inclusion of B-splines and Markov random fields, for
example, with their mixed model representation and a LASSO penalty. We also
investigate possible improvements in coverage rates.

Keywords: quantile regression; semiparametric models; mixed models; LASSO

1 Introduction

Quantile regression (Koenker and Bassett, 1978) is on the verge of becom-
ing a standard tool in modern regression analysis. A regression quantile
is normally estimated using linear programming. Although there are some
attempts to provide flexible estimates for nonlinear or spatial effects, quan-
tile smoothing splines (Koenker et al., 1994) and triograms do not provide
the same tempting smooth results as semiparametric models in mean or
expectile regression. Further, the inclusion of a Markov random field is not
possible until now. Different estimation procedures like Bayesian quantile
regression or quantile boosting inherently support the most flexible semi-
parametric models. In this paper, we propose an efficient semiparametric
quantile regression (SPQR) using the fast linear programming procedure
and the asymptotic normality.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Semiparametric Regression

The most flexible regression models include parametric effects as well as
nonparametric effects f(z) for metric covariates and for spatial covariates
or interaction terms. Additionally, random effects can be included. The
regression equation can then be written as

y = β0 +

r∑
j=1

fj(z) + ε. (1)

In order to make all effects available for estimation, we need to parameterise
all unknown functions as fj = Zjβj with a design matrix Z and a vector
of regression coefficients β. This simplifies the regression to

y = β01 + Z1β1 + . . .+ Zrβr + ε.

Overparameterisation is avoided by adding penalty terms K for the coef-
ficient vector. These penalty terms are generally designed to work with a
least squares estimate. We can, however, transform all design matrices Z
such that their penalty has a diagonal form as described in Fahrmeir et
al.(2004). All design matrices have the representation Z = (X,B) with an
unpenalised part X and penalised random effects in B. For any basis ma-
trix Z̃ we receive this representation by calculating Z = Z̃Γ(ΓΓ′)−1 if the
penalty matrix is given by K = Γ′Γ.

3 Quantile Regression

In quantile regression we assume that the τ -quantile of the error distribu-
tion equals zero, i.e.

P (εiτ ≤ 0) = τ.

This implies that the predictor Zβτ corresponds to the τ -quantile of the
response y.
Computationally, regression quantiles with a LASSO penalty for random
effects are obtained by minimising an asymmetrically weighted absolute
residuals criterion

n∑
i=1

wτ (yi,Ziβτ )|yi −Xiατ −Biγτ |+ λ|γτ | (2)

with asymmetric weights

wτ (yi,Ziβτ ) =

{
1− τ yi ≤ Ziβτ

τ yi > Ziβτ ,

a response y and a quantile-specific predictor Ziβτ consisting of the un-
penalised effects Xiατ and the penalised random part Biγτ where the re-
gression coefficients β′ = (α, γ)′. This loss function can be subject to a
linear program as provided by Koenker(2005). Hence, we can now estimate
regression quantiles for all semiparametric models.
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4 Empirical Evaluation

In order to assess the possible gains of the mixed model approach besides
the additional available modelling choices, we compare P-splines and quan-
tile smoothing splines in artificial data scenarios.

4.1 Design

We replicate 1000 data sets drawing a uniform covariate X ∼ U(0, 1) and
heteroscedastic random errors from a normal ε ∼ N(0, (0.2 + |x−0.5|)2) or
an exponential ε ∼ Exp(1/(0.2 + |x− 0.5|)) distribution. The data is then
of the form

y = sin(2(4x− 2)) + 2 exp(−162(x− 0.5)2) + ε.

For the estimation we choose a linear programming quantile regression
with a P-spline basis (SPQR) or quantile smoothing splines (quantreg).
Both times the smoothing parameter is optimised via a grid search for the
lowest BIC. As a further reference we also employ quantile boosting from
the package mboost (Hothorn et al., 2013). The results are compared in
terms of a root mean squared error (RMSE) and the coverage rates along
the covariate. The latter is not available for boosting.

4.2 Results

The error of the estimation in Figure 1 shows the efficient estimates that
come with the use of P-splines in the boosting algorithm, especially in the
outer 5% of the distribution. At the same quantiles, the quantile smoothing
splines of quantreg fail to produce a reliable estimate. However, the combi-
nation of P-splines with the linear programming of quantreg produces the
overall smallest errors for all quantiles.
Based on the asymptotic normality of the quantile regression estimate, we
can compute pointwise confidence intervals for the estimates. Our simula-
tions also show that the use of P-splines and a LASSO penalty provides
a better coverage of the true function than quantile smoothing splines, as
shown in Figure 2. This is also true for the median where the RMSE of the
two approaches was very similar.
We continue our simulations for geoadditive models and try to add a com-
parison with Bayesian quantile regression.
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FIGURE 1. Root mean squared errors for a selected set of 11 quantiles comparing
standard quantreg methods (dark), quantile boosting (med) and the proposed
SPQR (light) for normal and exponential errors.
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FIGURE 2. Coverage rates for quantile smoothing splines by quantreg (dark)
and the proposed SPQR (light) for pointwise 95% confidence intervals along the
covariate. Exemplary for normal errors and quantiles of 10%, 50% and 90%.
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Abstract: Quantitative analysis of FDG uptake is important in oncologic PET
studies in order to determine whether a tissue is malignant or benign, and in
attempting to predict the aggressiveness of an individual tumour. Following in-
jection of the FDG tracer, a series of scans are taken of a biological region of
interest; this provides dynamic information from which we draw inference on
the metabolic parameters describing the evolution of tracer activity and hence
underlying tissue characteristics. However, in certain cases only a single static
scan of a region of interest may be available. A prime example is a “late uptake
scan” where a body region is analysed for only a very brief period, providing an
extremely sparse and potentially noisy data set from which it is difficult to draw
conclusions on underlying tissue characteristics. This article focuses on the im-
pact and benefit of incorporating prior tissue information, via penalty structures
in our data models, to improve prediction outcomes in the presence of limited
uptake information. Specifically, we display that our proposal appears to offer an
extremely promising alternative to existing, competing methodologies.

Keywords: Positron Emission Tomography,Dynamic reconstruction; Nonlinear
Regression; Estimation of Flux.

1 Introduction

In the field of oncologic research, CT or MRI scans are often used in the
detection of anamolous growths or lumps in the body regions of individual
patients. A drawback of these imaging techniques however, is that they
provide very limited information on living tissue characteristics; specifi-
cally, we cannot identify if the anamolous tissue is malignant, requiring
immediate invasive surgical action, or benign, in which case surgery is not
required.

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
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In dynamic mode, Positron Emission Tomography (PET) imaging provides
a solution to this problem. This is a powerful diagnostic imaging technique
that provides a unique opportunity to probe the status of healthy and
pathological tissue by examining how it processes substrates. In the case
of FDG PET imaging, a radioactively laced glucose substrate is ingested
by the patient. The patient is then placed in an imaging machine where
a time sequence of PET images is obtained, allowing us to monitor the
interaction of the tracer molecules with the bodys physiological processes.
For example, malignant cancerous growths will have a high uptake of the
substrate; such tissue regions will “hoard” the radio-laced tracer manifest-
ing as a “hotspot” on a PET image. The nature of these hotspots pose
many additional quantitative questions, chief amongst them being the rate
of influx of a tracer to the tissue, which is an indicator of vigour for the
cancerous growth.
The quality of inferences on tissue characteristics obtained from a PET
scan is proportional to the length of the imaging time; the scanning period
is of the order of 90 minutes. However, in many cases only a “late uptake
scan” is available, where a given tissue region is studied for a 15 minute
period. The output of such an experiment is an extremely sparse and po-
tentially noisy data set from which it is difficult to draw conclusions on
underlying tissue characteristics. In this article we propose the incorpora-
tion of penalty structure in our data model, and illustrate how this can
dramatically improve the quality of inference on metabolic parameters.

2 Data

The available data consists of a set of 34 FDG PET imaging scans, each
of duration 90 minutes, concerning patients identified with brain tumour
lesions. Each 90 minute scan is recorded as a set of 31 images, which consist
of information on the tracer uptake of brain tissue for each of the brain
regions, namely grey matter, white matter and cancerous tissue.

3 Methods

The fundamental equation of dynamic PET radiotracer imaging is:

CT (t) = vBCp(t) +

∫ t

0

R(t− s)Cp(s)ds (1)

where CT (t) represents the accumulated concentration of substrate in a
tissue region at time t, vB the volume of blood in the region and Cp(t) the
concentration of substrate within arterial blood at time t. R(t) represents a
Residue function which models how the subrate is processed metabolically
by the tissue. The 4 parameters governing R(t) (henceforth denoted θ)
provide information on the metabolic activity of the tissue region and are
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used to estimate the rate of influx of tracer subrate, which is the primary
question of interest. Hawe et al. (2012) provide a more formal introduction.
In terms of statistical inference on θ, we assume that observed concentra-
tion of tracer substrate in a tissue region in image k, zk, is approximately
Gaussian distributed with variance proportional to the tracer concentration
at time k.

zk = CT (tk|θ) + wk(θ)εk (2)

We seek to minimise the weighed residual sum of squares:

WRSS(θ) =

N∑
k=1

wk(θ) [zk − CT (tk|θ)]2 (3)

In this article we will consider the case where only 15 minutes of noisy scan
information is available, consisting of 3 observations(as opposed to 31) for
each tissue region. Thus, there are only 3 observations available with which
to estimate the 4 parameters comprising θ of the residue model. The solu-
tion we pose to this ill-posed problem, is to embed the inference procedure
in a Bayesian framework and “borrow” information from “known” tumour
tissue residues. The posterior distribution for the unknown model param-
eters, conditional on the data (Z) and known tissue information, is:

π(θ, σ2|Z,Rr, Cp) ∝ π(Z|θ, Cp, σ2)π(σ2)π(θ|Cp, Rr) (4)

Here σ2 is a parameter governing fidelity to the data, as opposed to weigh-
ing on the prior information, and must also be inferred from the data. Rr
represent reference residue structures obtained by harnessing the best es-
timates of the θ parameters from sample studies, and are assumed known
(subject to quantifiable statistical error). In order to make inference on
the unknown parameters, distributions must be specified for both the data
π(zk|...), as well as priors on both σ2 and the residue parameters π(θ|....).

π(zk|θ, Cp, σ2) ∼ N(vBcp(t) +

∫ t

0

R(t− s)Cp(s)ds, σ2) (5)

We assume that the data distribution is Gaussian, with constant variance
σ2. Whilst the variability in the data is heterogenous, in practice the as-
sumption of contant variance seems appropriate given the relative proxim-
ity of the sample points in time.

π(θ|Cp, Rr) ∼ SkewNormal(f(R(θ))) (6)

The prior on θ is data driven; it is specified on the residue structure implied
by the parameters of θ as opposed to the individual parameters themselves.



344 Quantitative PET Reconstruction

FIGURE 1. Plot of standardised tumour residues, constrained to 1 at time t = 0
and 0 at t = 90.

This prior is derived from the available data; the residue structures are
standardised (R) so as not to impact on the estimated flux values - this is
achieved by constraining the residues to take the value 1 at time t = 90,
and 0 at time t = 0. As illustrated in Figure 1, this constraint induces het-
erogenity in the variability associated with the residue estimates at each
timepoint, and thus a skew Normal distribution is assigned with the me-
dian as it’s centre of location. Finally, σ2 is assigned a flat noninformative
uniform prior.

4 Results

In Figure 2 & Figure 3 we illustrate the potency of the procedure presented
in Equations (4)-(6). Flux values for the cancerous brain tissues of all 34
patients are obtained using the full imaging datasets, with the θ parameters
estimated via maximum likelihood. A subset of the data is then considered,
namely the imaging scans from the period 45-60 mins after the injestion
of tracer substrate. For our novel framework inference procedures are Em-
pirical Bayes’ based; σ2 is optimised across all 34 cases, with optimised
estimates of θ specific to each study also obtained . In Figure 2 we present
the inferred residue curves for a subset of cases; these residue structures
are obtained from just 3 sample data points and appear to match the “un-
observed” values quite well. In Figure 3, the real power of the approach is
illustrated; we compare the flux estimates obtained by our novel approach
to those supplied by a competing methodology (“Hunters method” - see
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FIGURE 2. Estimated residue curves (R), inferred from the 3 sample points
(in bold) available in each study. Omitted datapoint unused for model fitting are
displayed in grey.

Hunter et al. (1996)). The results, displaying less bias and variability than
the competing method, indicate that accurate inferences can be made on
metabolic tissue parameters, even in the presence of limited uptake infor-
mation, via the incorporation of information from known prior studies into
the model framework.
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FIGURE 3. Plot of estimated values of flux for approximate methods.
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hazards can be defined using Gompertz and Weibull formulations. Data from the
English Longitudinal Study of Ageing are analysed to illustrate the methods.
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1 Introduction

The application of interest is change of cognitive function over time in
the older population. Data stem from the English Longitudinal Study of
Ageing (ELSA). The longitudinal response variable is the number of words
remembered in a recall from a list of ten. Of interest is the effect of age and
gender on cognitive change over time when controlling for education. Four
states are defined by the number of words an individual can remember, see
Figure 1. The dead state is the fifth state. The transition times between
the living states are interval-censored, but death times are known.
Using age as the time scale, a continuous-time five-state survival model will
be specified to analyse the data. Parametric time-dependency of the transi-
tion process is approximated piecewise-constantly, and an extension of the
scoring algorithm in Kalbfleisch and Lawless (1985) is used to estimate the
model parameters.
Within one multi-state model, transition-specific hazards can be defined
using Gompertz and Weibull formulations. This flexible parametric mod-
elling and the corresponding scoring algorithm extend current methods for
multi-state analysis of interval-censored data (cf. Jackson 2011).

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Five-state model for longitudinal data in ELSA on number of words
remembered in a recall.

2 The Model

For a continuous-time Markov chain Y (t) on state space S, time-homogeneous
transition probabilities are given by

prs(t) = P
(
Y (t) = s|Y (0) = r

)
,

for r, s ∈ S and t ≥ 0. Matrix P(t) contains these probabilities such that
the rows sum up to 1. The Chapman-Kolmogorov equation is P(u + t) =
P(u)P(t). The transition intensities (or hazards) are given by

qrs = lim
δ↓0

P
(
Y (t+ δ) = s|Y (t) = r

)
δ

,

for r 6= s. The matrix with off-diagonal entries qrs and diagonal entries
qrr = −

∑
r 6=s qrs is the generator matrix Q. Given Q, the solution for P(t)

subject to P(0) = I is P(t) = exp(tQ).
A hazard regression model for transition intensities combines baseline haz-
ards with log-linear regression and is given by

qrs(t) = qrs.0(t) exp
(
β>rsx

)
,

where x is the covariate vector without an intercept. Transition-specific
time dependency can be introduced via the baseline hazards. Parametric
examples are

Weibull: qrs.0(t) = λrsτrst
τrs−1 λrs, τrs > 0

Gompertz: qrs.0(t) = λrs exp(ξrst) λrs > 0 .

Consider the time interval (t1, t2] with observed states at t1 and t2. Working
with constant hazards, Q is defined for time t1 using the regression model,
and the transition matrix P(t2 − t1) is subsequently defined for elapsed
time t2 − t1 using Q. Notation: Q(t1) and P(t1, t2).
In longitudinal data, trajectories consist of repeated observations of the
state. A piecewise-constant approximation of the time dependency can be
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defined as follows. If states are observed at t1, t2, and t3, the transition
matrix for (t1, t3] is given by P(t1, t3) = P(t1, t2)P(t2, t3), where both
matrices at the right-hand side are derived using constant hazards. In this
example, the grid for the piecewise-constant hazards is defined by the data.
Using a similar approach, it is also possible to define an approximation
using an imposed grid which is independent from the data.

3 Maximum likelihood

In the presence of interval-censoring, the likelihood is constructed using
transition probabilities. Let the states by denoted by 1, 2, .., D, with D the
dead state. Consider an individual with observation times t1, ..., tn, where
the state at tn is allowed to be right-censored. The observed trajectory
is the series of states y1, ..., yn. The likelihood contributions for intervals
(tj−1, tj ] are given by

Lij =

{
P (Yj = yj |Yj−1 = yj−1,θ) for j = 2, ..., n− 1
C(yn|yn−1) for j = n ,

(1)

where θ is the vector with all the model parameters. If a living state at tn
is observed, then C(yn|yn−1) = P (Yn = yn|Yn−1 = yn−1,θ). If the state is

right censored at tn, then C(yn|yn−1) =
∑D−1
s=1 P (Yn = s|Yn−1 = yn−1,θ).

In the case of known age at death,

C(yn|yn−1) =

D−1∑
s=1

P (Yn = s|Yn−1 = yn−1,θ) qsD(tn−1|θ).

Given N individuals, the likelihood is given by L =
∏N
i=1

∏ni
j=2 Lij , where

ni is the number of observation times for individual i.
Maximising the likelihood can be undertaken by using a scoring algorithm.
The central part of the algorithm is the first derivative of the log-likelihood,
i.e., the score function. The specification (1) and the theory for the underly-
ing Markov chain shows that the crucial step is to derive ∂P(tij , tij+1)/∂θk.
The important aspects are as follows. (i) Because of the piecewise-constant
approximation, basic formulas for the time-homogeneous case (Kalbfleisch
and Lawless 1985) apply for the constituent intervals with constant hazards.
(ii) By using an eigenvalue decomposition, only the derivatives ∂Q(tij)/∂θk
are needed. (iii) Also for the model with the parametric time-dependency,
these derivatives are straightforward to derive.
The algorithm is implemented in R in such a way that it is easy to vary
transition-specific choices for parametric shapes. An example of such a
model is explored in the application, where Gompertz hazards are defined
for moving between living states, and Weibull models for death.

4 Application

For the current analysis, a random sample is used of 1000 individuals in
ELSA. Measures have been taken by the data provider to prevent identi-
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TABLE 1. State table for the ELSA data: number of times each pair of states
was observed at successive observation times. The four living states are defined
by number of words remembered

To
From 10-7 words 6-5 words 4-2 words 1-0 words Dead

10-7 words 121 104 31 5 3
6-5 words 117 348 196 30 24
4-2 words 36 204 440 82 32
1-0 words 3 26 73 82 29

fication of the individuals. One of those measures is the censoring of age
above 90 years. We remove the six individuals in our sample who are older
than 90 during the follow-up. The resulting sample contains 157 individuals
with only one record. Because these individuals do not provide follow-up
information, their records are also ignored in the analysis. The resulting
sample size is 837.
The interval-censored observations are summarised by the frequencies in
Table 1. The sum of the transitions into the dead state is equal to the
number of deaths in the sample, i.e., 88. The diagonal of the 4 × 4 sub-
table for the living states dominates. This shows that if there is change
over time, then this change is slow relative to the follow-up times in the
ELSA study. Table 1 also shows that the process is mainly progressive in
the sense that the main trend over time is towards the states with fewer
words.
Model estimation is undertaken by using the scoring algorithm. Model se-
lection is bottom-up starting with the time-homogeneous exponential haz-
ard model given by qrs(t) = exp

(
βrs.0

)
, for (r, s) ∈ {(1, 2), (1, 5), (2, 1),

(2, 3), (2, 5), (3, 2), (3, 4), (3, 5), (4, 3), (4, 5)}. This intercept-only model with
10 parameters has AIC = 5016. Convergence of the scoring algorithm was
reached after 12 iterations, using starting values βrs.0 = −3 for all the
parameters.
The age scale is transformed by subtracting 31 years, which results in 1
being the minimal age in the sample. There is limited information on back-
ward transitions. Mortality information is also limited because only 10.5%
of the individuals end up in the dead state during follow-up. For this rea-
son, the model is extended by adding parameters for progressive transitions
only, and by imposing parameter constraints.
Using the piecewise-constant approximation, a Gompertz model is fitted
with restrictions on the parameters for the effect of age. The grid for
the piecewise-constant approximation is defined by individually observed
follow-up times. The model is given by

qrs(t) = exp
(
βrs.0 + ξrst

)
, (2)

where ξ21 = ξ32 = ξ43 = 0 and ξ15 = ξ25 = ξ35 = ξ45. This model has
14 parameters, and needs 16 scoring iterations when using starting values
βrs.0 = −3 and ξrs.0 = 0 for all the relevant (r, s)-combinations. The model
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has AIC = 4909. Covariate information is added for those transitions that
represent a decline in cognitive function. For this, model (2) is extended by

qrs(t) = exp
(
βrs.0 + ξrst+ βrs.1sex+ βrs.2education

)
, (3)

where sex is 0/1 for women/men, and education represents highest edu-
cational qualification with 1 for NVQ2/GCE O-Level equivalent or higher,
and 0 otherwise. In the UK, O-Levels are qualifications of formal education
up to the age of 16 years. For the transitions into the dead state, the con-
straints on the coefficients for sex are β15.1 = β25.1 = β35.1 = β45.1, and for
education we set βr5.2 = 0 for r = 1, 2, 3, 4. This model has AIC = 4831.
Variants of model (3) were investigated which include both Gompertz and
Weibull hazard formulations. To summarise, according to the AIC the best
model (AIC 4830) is the one with Gompertz hazards for the forward tran-
sitions between the living states and Weibull hazards for death. This model
is given by

qrs(t) = exp
(
βrs.0 + ξrst+ βrs.1sex+ βrs.2education

)
for (r, s) ∈ {(1, 2), (2, 3), (3, 4)}

qrs(t) = exp
(
βrs.0)

for (r, s) ∈ {(2, 1), (3, 2), (4, 3)}
qrs(t) = τDt

(τD−1) exp
(
βrs.0 + βD.1sex

)
,

for (r, s) ∈ {(1, 5), (2, 5), (3, 5), (4, 5)}, (4)

Most of the point estimates are according to expectation. For example,
the effect of getting older is associated with decline of cognitive function
ξ̂12, ξ̂23, ξ̂34 > 0. For transitions 1 → 2 and 2 → 3 more education is
associated with a lower risk of moving.

Long-term transition probabilities

Covariance of a function of model parameters can be estimated by using the
multivariate delta method, or by using simulation. An important example
of such a function is the matrix with the transition probabilities for a
specified time interval. Let V̂θ denote the estimated covariance matrix of
the maximum likelihood estimate θ̂.
Of interest is the estimation of P(t1, t2) for arbitrary t1 and t2 > t1. Let the
grid for the piecewise-constant approximation be defined by uj+1 = uj + h
for j = 1, ..., J such that u1 = t1 and uJ = t2. Using the multivariate delta
method, the variance of estimated P(t1, t2) is given by(

∂P(t1, t2)

∂θ

∣∣∣∣
θ=θ̂

)>
V̂θ

(
∂P(t1, t2)

∂θ

∣∣∣∣
θ=θ̂

)
.

where P(t1, t2) = P(u1, u2)×·· ·×P(uJ−1, uJ). The chain rule can be used
to derive ∂P(t1, t2)/∂θ using the derivatives for the constituent parts.
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FIGURE 2. Estimated ten-year transition probabilities for men aged 60 with
higher level of education, and in state 1 at baseline. Grey lines for delta method,
black for simulation method. (Dashed lines for 95% confidence band.)

An alternative to the delta method is to use simulation. In that case, a
parameter vector θ(b) is draw from N(θ̂, V̂θ), for b = 1, ..., B, and for each
sampled θ(b), P(t1, t2) is calculated. Summary statistics such as mean and
covariance can be derived easily from the B realisations of P(t1, t2).
Ten-year transition probabilities are estimated for men in state 1, aged 60
with the higher level of education. The grid is defined by h = 1/2 years. The
estimation is shown in Figure 2 for both the delta method and the simula-
tion method (B = 1000). For long-term prediction, the difference between
the methods is most striking when 95% confidence bands are compared for
the probability of dying at a certain age.
Because transition probabilities are restricted to [0, 1], using simulation is
recommended. The delta method does not take the restriction into account
and this has a substantial knock-on effect for long-term prediction.
Figure 2 concurs with the expectations. For example, given the progressive
trend of the process, it is to be expected that probability of being in state
2 increases in the first years, but then decreases in the later years as being
in states 3, 4, and 5 becomes more likely due to increased age.
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1 Introduction

In very high energy gamma astronomy, Cherenkov telescopes record images
of so-called air showers, induced by highly energetic cosmic particles. A
classification has to be done to separate the signal observations from the
dominating background consisting of many irrelevant particles. It is known
that the signal to background ratio in this problem is about 1:1000 (Weekes,
2003), so that a very high specificity of the classification is crucial to get
rather clean signal samples. For the classification, variables constructed
from the recorded images are used. These variables are based on moment
analysis parameters and are called Hillas parameters (Hillas, 1985).
Our interest is whether the classification through the currently used Hillas
variables can be improved by the construction of new variables. To answer
this question, we connect the Hillas variables to statistical modelling. We
observe that not all information known about signal observations is used
by Hillas variables and extend them by new variables, based on fitting
bivariate distributions to the recorded images and using distance measures
for densities.

2 Hillas variables

The idea of Hillas variables is to fit an ellipse to a shower image and use the
parameters of the ellipse as variables for classification. The first two Hillas

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Some Hillas variables from fitting an ellipse.
(source: http://ihp-lx.ethz.ch/Stamet/magic/parameters.html)

variables are the center coordinates of the ellipse, also known as the center
of gravity, CoGX and CoGY. Then there are the Width and Length of the
fitted ellipse, that is the lengths of the two semiaxes, where the shorter one
is always considered as Width. Another Hillas parameter directly calculated
from the fitted ellipse is Area = π · Width · Length, the area of the fitted
ellipse. The remaining two ellipse parameters are angles. The first is δ,
the angle between the longer semiaxis of the ellipse and the x-axis of the
camera. The second is α, which describes the angle between the longer
semiaxis of the ellipse and the line between the center of the camera and the
center of the ellipse. Besides, there are seven further Hillas variables mainly
based on pixel brightnesses and ratios between them. Some Hillas variables
and the underlying MAGIC telescope camera (MAGIC collaboration, 2014)
can be seen in Figure 1.

3 Gaussian Fit

Fitting an ellipse as done for the Hillas variables corresponds to fitting a
contour line of a bivariate elliptic distribution. The most popular example
of such a distribution is a bivariate Gaussian, which can be fitted by min-
imizing a χ2-distance between the observed and the expected frequencies
in the hexagonal telescope image. This allows to include information not
only on the boundaries of the ellipse, but also on the values in the interior.
The relation between the parameters of the ellipse and the fitted Gaussian
is as follows: Let µ ∈ R2 and Σ ∈ R2x2 be the parameters of the fitted
bivariate Gaussian distribution. The fitted distribution is thus N2(µ,Σ).
We look at the spectral decomposition of Σ:

Σ = U∆UT
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where

• ∆ = diag (λ1, λ2) is a diagonal matrix with the sorted eigenvalues of
Σ: λ1 > λ2.

• U = (u1, u2) is an orthogonal matrix containing the corresponding
eigenvectors u1 ∈ R2 and u2 ∈ R2.

• UT denotes the transposition of the matrix U .

With this notation, we can describe the relationship between the fitted

Gaussian and the other Hillas variables: µ =

(
CoGX

CoGY

)
, λ1 = c ·Length, λ2 =

c · Width, where c is some constant, Area = πλ1λ2, δ is the angle between
the x-axis and u1 and α is the angle between µ and u1.
Note that the Hillas variables contain the full information about the pa-
rameters of the fitted Gaussian distribution. However, it is known that the
signal has a more regular shape than the background. For example, sig-
nal is known to be unimodal, while background can have several peaks.
This information cannot be evaluated by fitting a single ellipse, but can
be used by fitting a distribution, for example through the use of goodness
of fit measures. Fitting a Gaussian instead of an ellipse allows to incor-
porate information on the shape of signal images. The left hand side of
Figure 2 shows a sample image on the underlying FACT telescope camera
(The FACT collaboration, 2014) and a fitted bivariate Gaussian. It can
be expected that a bivariate Gaussian fits better to signal images than to
background images, because of the more regular shape of signal images.
We thus use distance measures between the observed image and the fitted
Gaussian distribution in our classification, as these tend to take smaller
values for signal events. As distance measures we use the χ2-distance (e.g.
Greenwood & Nikulin, 1996)

Qn =

m∑
i=1

(ni − npi)2

npi
,

the Kullback-Leibler divergence (Kullback & Leibler, 1951)

Dk(P,Q) =
∑
x

p(x) log

(
p(x)

q(x)

)
and the Hellinger distance (Nikulin, 2001)

Dh(P,Q) = 1−
∑
x

√
p(x)q(x).

4 Including Information on Skewness or Alignment

Fitting Gaussian distributions for constructing variables for classification
can possibly be further improved. Signal images seem to be roughly ellip-
tical, but not exactly. It is known that signal showers are skewed in one
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FIGURE 2. Contour lines of a normal (left) and skew-normal (right) distribution
fitted to a random shower image. Only a part of the camera is shown.

direction (de Naurois & Rolland, 2009). Because of this, an elliptical fit or
fitting a Gaussian distribution can neither describe signal observations nor
background observations very well. As the aim of our analysis is to find
differences between signal and background, it makes sense to fit a distri-
bution to the images which describes signal images well. Fitting a skewed
distribution to the images, instead of a Gaussian, seems therefore to be
mandatory.
In a second step, we extend the idea of fitting a Gaussian distribution by
fitting a distribution which fits better to the information we have about
signal images, especially that signal images are known to be skewed. The
family of bivariate skew-normal distributions (Azzalini & Dalla Valle, 1996)
reflects the skewness of signal events. The right hand side of Figure 2 shows
a sample image on the underlying FACT telescope camera (FACT collab-
oration, 2014) with a fitted bivariate skew-normal distribution.
Another extension is to incorporate the alignment of signal events to the ori-
gin in the modelling. As we know that signal events are aligned to the source
(here the camera center), we force the fitted distribution to be aligned, too.
In the case of the bivariate Gaussian, we fit the distribution under the con-
straint that at least one of the eigenvectors u1 or u2 has the same direction
as µ, that is, one of the semiaxes of the elliptical contour lines is aligned to
the camera center.
After fitting a distribution in this way, we can apply the same distance
measures as described above.

5 Application to FACT Data

We apply the variable construction described above to simulated data from
the FACT telescope. This allows us to assess the quality of the classification
with and without the new features.
We fit a bivariate Gaussian distribution, a Skew-normal distribution and a
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what we call aligned normal distribution, which includes information about
the alignment of signal observations, to the shower. We then evaluate the
distance between the observed image and the fitted distributions by using
the three distance measures described above.
It can be seen in Table 1 that using the new features leads to significant
improvements in the classification errors.
Investigations on the Importance of each variable using the Mean Gini
Decrease measured by a random forest showed that especially the aligned
skew-normal together with the Kullback-Leibler divergence led to good
improvements of the classification.

TABLE 1. The ratio of falsely classified signal and background with standard
deviations when using only Hillas variables and combined with the newly con-
structed variables on a test sample with signal to background ratio of 1:1000.

Signal Background
Error sd Error sd

Hillas 0.281 0.005 0.0220 0.0002
Hillas+new 0.263 0.006 0.0098 0.0001

6 Conclusion & Outlook

In this paper, we have established a connection between Hillas variables
and bivariate Gaussian distributions. We have seen that Hillas variables
alone cannot include all information available about signal events and have
extended the idea of fitting an ellipse to fitting a bivariate distribution.
Although the information on a Gaussian fit is fully given by the Hillas
variables, the Gaussian fit allows construction of some additional variables
based on distance measures for densities. The additional variables lead
to significant improvements in the classification of signal and background
events, which is important for further analysis of the signal events. Ongoing
work addresses the inclusion of information on both alignment and skewness
at the same time by fitting a skew-normal distribution with fixed alignment.
Also, variable selection methods might work well in this context, as some of
the newly constructed variables and also some of the Hillas variables may
be redundant or unimportant for the classification.
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Abstract: We introduce a novel method for the analysis of spatially distributed
data from an exponential family distribution, able to efficiently deal with data
occurring over irregularly shaped domains. The proposed generalized additive
framework can handle all distributions within the exponential family, including
binomial, Poisson and gamma outcomes, hence leading to a very broad applica-
bility of the model. Specifically, we maximize a penalized log-likelihood function
where the roughness penalty term involves a suitable differential operator of the
spatial field over the domain of interest. Space-varying covariate information can
also be included in the model in a semiparametric setting. The proposed model
exploits advanced scientific computing techniques and specifically makes use of
the Finite Element Method, that provide a basis for piecewise polynomial sur-
faces.

Keywords: Generalized additive models, spatial regression, finite elements, pe-
nalized regression

1 The model and estimation problem

We develop a model that deals with spatially distributed realizations having
a distribution within the exponential family. Consider a bounded regular
domain Ω ∈ R2 and spatial locations p1, . . . ,pn scattered over Ω. Let yi
be the variable of interest observed at pi with an associated q-vector of
covariates xti. Assume y1, . . . , yn have a distribution within the exponential
family with canonical parameter θi = g(µi), where µi = E[yi] and g is the
canonical link function associated with the distribution of interest (hence,
the canonical and natural parameter coincide in this case). Assume the
following semiparametric generalized linear model:

θi = g(µi) = xtiβ + f(pi)
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tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
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where β ∈ Rq contains regression coefficients and the real valued smooth
function f , defined over the domain Ω, accounts for the spatial structure
of the phenomenon.
We propose to estimate the regression coefficients β and the spatial field f
by maximizing the following penalized log-likelihood function (see Wilhelm
(2013)):

Lp(β, f) = L(β, f)− 1

2
λ

∫
Ω

(∆f)2 (1)

where L denotes the log-likelihood of the considered distribution. Since the
Laplacian of f , ∆f , is a measure of local curvature, the second term in (1)
penalizes the roughness of the estimated spatial field. In the special case
where the considered distribution is the Gaussian, this estimation problem
is equivalent to penalized least square error problem considered in Sangalli
et al. (2013). For distributions other than normal, in order to maximize the
penalized log-likelihood (1), we develop a functional generalization of the
Penalized Iterative Reweighed Least Squares (PIRLS) algorithm (see e.g.,
Wood, 2006). The choice of the smoothing parameter can be performed
using the GCV criterion (see, e.g., Wahba, 1990).
Likewise in Ramsay (2002) and Sangalli et al. (2013), the function f is
approximated using a basis expansion provided by finite elements. This
makes the model computationally highly efficient and allows to comply
with complex domains and prescribed boundary conditions on f . The good
performances of the proposed model are illustrated via simulation studies.
We apply our model to the estimation of the crime intensity in the city of
Portland, Oregon, USA.
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Abstract: The Vuong test for non-nested models is being widely misused as
a test of zero-inflation. We show that such use of is erroneous and incorrectly
assumes that the distribution of the log-likelihood ratios of zero-inflated models
versus their non-zero-inflated counterparts is normal. We see that this stems
from a mis-understanding of what is meant by the term “non-nested model”,
and investigate other approaches for determining zero-inflation
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1 The Vuong Test for Strictly Non-Nested Models

Zero-inflated models are those based upon mixtures of a zero and a count
distribution f(y; Θ):

f(y; Θ) = γ + (1− γ)f(0; Θ) y = 0; (1− γ)f(y; Θ) y = 1, 2, 3, . . . (1)

The “Vuong Test for Non-Nested Models” test was introduced by Vuong
(1989), as a test for “strictly non-nested models”. In slightly simplified
form, it states that under the null hypothesis that two non-nested models
Fθ and Gγ fit equally well, i.e. that the expected value of their log-likelihood
ratio equals zero, then under H0 the asymptotic distribution of the log-
likelihood ratio statistic, LR, is normal. In particular, (under H0):

LRn(θ̂n, γ̂n)/ω̂n
√
n −→ N(0, 1) (2)

where ω denotes the variance of LRn and n the sample size. Vuong (1989)
also presents tests for nested and overlapping models, and shows that, given
certain conditions, their log-likelihood ratios are related to χ2 distributions.
Due to the simplicity of its calculation, the test has become popular among
statistical practitioners in various disciplines and is implementable in Stata,
and the R-package pscl (Jackman, 2012).
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tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
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2 The Misuse of the Vuong Test

The Vuong test for strictly non-nested models is being widely misused as a
test of zero-inflation. For example the help page associated with the vuong
command in pscl states: “The Vuong non-nested test is based on a com-
parison of the predicted probabilities of two models that do not nest. Exam-
ples include comparisons of zero-inflated count models with their non-zero-
inflated analogs (e.g., zero-inflated Poisson versus ordinary Poisson, or
zero-inflated negative-binomial versus ordinary negative-binomial).” Des-
marais and Hardin (2013) state that:“researchers commonly use the Vuong
test (Vuong 1989) to determine whether the zero-inflated model fits the data
statistically significantly better than count regression with a single equation”
and cite ten references to publications that have used the Vuong test for
this purpose. That this is an incorrect use of the Vuong test for non-nested
models is clearly illustrated by Figure 1. The left histogram illustrates the
observed distribution of the log-likelihoods obtained when a one-covariate
zero-inflated Poisson (ZIP) model and a Poisson model are fitted to 100, 000
samples of size n = 100. Clearly the distribution is non-normal. The 97.5th
percentiles of the observed distribution is 3.45. The right hand histogram
is produced using exactly the same software code that produced the left
hand histogram, but here the data is simulated from data that is Pois-
son distributed on variables x1, x2, x3 and x4 where each xi is uniformly
distributed, and the “competing” models are on x1 + x2 and x3 + x4 re-
spectively, and hence are strictly non-nested according to the definition of
Vuong (1989). (Here the observed 97.5th percentile is 1.969).

Simulated Distribution of the Vuong Statistic 
 H0:Poisson vs. H1 ZIP

Data Simulated from a Poisson Distribution, One Covariate
Value of Vuong Statistic, min value=−0.00082
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FIGURE 1. Distributions of the Log-likelihood Ratios of ZIP versus Poisson and
Strictly Non-Nested Models

Desmarais and Hardin (2013) extensively discuss AIC and BIC type adjust-
ments to the distribution of the log-likelihood ratios, and present evidence
that this improves the power of the Vuong test; it should be noted that
these adjustments are, for any given comparison of models, constants, and
hence only effect the mean of the distribution, not its shape.
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2.1 The Cause of The Confusion

The misuse of the test stems from misunderstanding of what is meant
by the term “non-nested model”. This term, along with “nested model”
abounds in statistical literature. As is the case with many frequently used
terms their meanings are approximately understood by many, but precisely
understood by few. Clarke (2001) observes that “Defining the concept of
‘non-nested’ precisely is not an easy task. Definitions are often imprecise
and uncomplicated or precise and complicated.” A statement that applies
equally well to nested models. (Indeed one category is not the complement
of the other, there exists a third, “inbetween” category of what Vuong
(1989) refers to as overlapping models.) Simple definitions of nested model
include that of Davison (2003): “Two models are said to be nested if one
reduces to the other when certain parameters are fixed.” Vuong (1989) de-
fines a model Gγ to be nested in a model Fθ by: “Gγ is nested in Fθ if
and only if Gγ ⊂ Fθ.
The distribution of the log-likelihood ratios of non-nested models being nor-
mal is dependent however on six assumptions presented elsewhere in Vuong
(1989), these refer to various topological and measure theoretic properties.
In particular whilst the standard formulation of the probability distribu-
tion function (see equation (1)) of a zero inflated Poisson distribution with
zero-inflation parameter γ, where 0 ≤ 0 ≤ 1, reduces to that of a Poisson
distribution when γ = 0, −2×LR fails to be χ2 distributed as γ = 0 is at
the boundary of the parameter space, failing to meet Vuong’s prerequisite
that it should be interior to the parameter space, this in turn results in
non-normality of the sampling distribution of the zero-inflation parame-
ter; as Vuong’s subsequent theoretical development of the distributions of
log-likelihood ratios (not only of non-nested models, but of nested and over-
lapping models also), depends upon normality of the sampling distribution
of the model parameters, clearly his theory is not applicable.

2.2 Models Fitted Using Link Functions

Zero-inflated models are usually fitted using a logit link to model the ex-
pected proportion of perfect zeros. Whilst it is true that the logistic func-

tion: exp(t)
1+exp(t) 6= 0 for all t ∈R, and hence in some sense this formulation

of the ZIP and Poisson are non-nested, lim
t→−∞

exp(t)

1 + exp(t)
= 0, thus this for-

mulation of the zero-inflated model fails to meet Vuong’s prerequisite that
the parameter space is a compact subset of Rp, and, similar to the scenario
presented in the previous section the sampling distribution of the zero-
inflation parameter, and hence the distribution of the log-likelihood ratios,
is non-normal. Similar statements hold if probit or complementary log-log
links are used. It is worth noting that there is confusion in the literature
about models being nested if one reduces to the other if certain parameters
are fixed, many authors apparently taking this to mean fixed at zero. For
example, Desmarais and Harden (2013) state: “the count regression f is
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not nested in the zero-inflated model, because the model does not reduce
to f (the count model) when γ = 0, in which case the probability of a 0
is inflated by 0.50”, apparently alluding to the fact that the value of the
logistic function = 0.5 when t = 0.

2.3 The Null Hypothesis of Vuong’s Test

Consistent with a test of zero-inflation, the simulated distribution of the
Vuong statistic presented in the left hand side of Figure 1 is derived by
resampling from non-zero-inflated data. As stated in Section 1 the null
hypothesis of Vuong’s test for non-nested models is that the expected value
of their log-likelihood ratios equals zero, this implies that under the null
hypothesis both models are “equally far away” from the data that is being
modelled. If we temporarily ignore the issue of whether zero-inflated models
and their non-zero-inflated counterparts are non-nested or otherwise, and
consider them non-nested, to appropriately simulate the distribution of
the log-likelihood ratios it would be necessary to resample from data that
was somehow equidistant from zero-inflated and non-zero-inflated data,
it is difficult to envisage the nature of such data. More importantly, non-
rejection of the null hypothesis of Vuong’s test for non-nested models, where
the (supposedly) non-nested models are, say, the zero-inflated Poisson and
standard Poisson model would mean that there is no evidence to conclude
that either model fits the data better than the other, not that there is
no evidence to support zero-inflation, and its rejection simply implies that
either the zero-inflated Poisson model fits the data better than the Poisson
model, or vice-versa, not that zero-inflation is present or absent.

3 Other Approaches

Distributional Methods: Early research by the author indicates that if
negative values of the log-likelihood ratio that are very close to zero are con-
sidered as zeros, then the distribution of ZIP versus Poisson log-likelihood
ratios, where the zero inflation parameter is only modelled by an intercept,
is a mixture of a point mass at zero and a χ2

1 distribution, the weighting
of the mixture being dependent on the number of covariates. If the zero-
inflation parameter is modelled, a mixture of a zero point mass and some
other distribution still occurs; whilst the nature of this other distribution
is yet to be determined, a weighted mixture of χ2 distributions is certainly
a candidate, this being consistent with Vuong’s theory of overlapping mo-
dels, but further research is necessary. Note that when the value of γ is
allowed to be both positive or negative fitted values of γ do not “pile up”
close to zero, and the distribution of zero-modification parameter is normal
and hence a non-zero-inflated model is nested in its zero-inflated counter-
part, and hence a Vuong test for nested models could be used as a test
of zero-inflation/deflation. Wilson (2010) presents a method of adapting
zero-deflated data so that zero-modified models may be fitted via standard
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FIGURE 2. Fitted Probabilities under both models plotted against each other.

software for fitting zero-inflated models. The lack of software for fitting
zero-modified models is due to the fact that the standard link-functions
employed to fit zero-inflated models are incompatible with zero-deflation.
Dietz and Böhning (2000) proposed a link function that allowed for zero-
deflation, and more recently Todem, Hsu and Kim (2012) have proposed
a score test that incorporates a link function that allows for both zero-
inflation and deflation.

Graphical Methods: Many statistical tests for determining normality (or
otherwise) of data exist, practitioners nearly invariably rather use a “nor-
mal QQ plot” to assess normality. A parallel here would be to plot the
individual fitted probabilities (contributions to the likelihood) of the ob-
served data under the zero-inflated and the non-zero inflated model against
each other, if the points lie approximately along the line x = y, then zero-
inflation is not indicated. Examples are shown in Figure 2, the left-hand
diagram where 150 data have been simulated from a Poisson(1) distribu-
tion, and the lower diagram where 150 data have been simulated from
zero-inflated Poisson data with Poisson mean 1.5 and zero-inflation param-
eter 0.3. “Jitter” has been applied in both diagrams. We see that in the
top diagram the points fall approximately along the line x = y, consistent
with lack of zero-inflation, whereas in the lower diagram, where the zero-
inflated model is appropriate, this is not the case. Another approach would
be to plot contributions to the log likelihood under both models against
each other.

4 Conclusion

It is beyond doubt that the widespread practice of using Vuong’s test
for non-nested models as a test of zero-inflation is erroneous. The mis-
use is rooted in a misunderstanding of what is meant by the term “non-
nested model”. The derivation of the distribution of the log-likelihood ra-
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tios of zero-inflated versus non-zero inflated models is not straightforward,
and possible alternative approaches are to develop tests based upon zero-
modified models where the zero-“inflation” parameter may be negative, or
to develop graphical methods.
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