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A B S T R A C T
In recent years, the need of improving safety standards for both existing and new buildings against
earthquake and wind loads has created a growing interest in the use of the so-called tuned mass
dampers, exploited to control, in active or passive way, the dynamic response of structures. To
design and optimize tuned mass damper systems, the effective analytical procedure proposed by
Den Hartog in his seminal work [5] has been widely adopted over the years, without including
damping of the main structure. However, in many cases of engineering interest, the damping
of the primary system plays a key role in the overall mechanical response, with the result of an
increase in complexity of the related optimization problem, which are in fact solved in the vast
majority by means of ad hoc numerical procedures. In the present work, we recover the classical
optimization strategy by Den Hartog and generalize it by including the main system’s damping,
providing new analytical solutions whose results are consistent with the few ones obtained
through alternative mathematical methods by Thompson [38] and Krenk [21] and subsequently
by Fang et al. [11]. In particular, some closed-form solutions and helpful rule-of-thumb formulas
for the optimal setting of the design parameters are derived, by considering two types of incoming
excitations, i.e. the force acting on the main mass and the ground motion input, both of interest
for engineering applications. Finally, theoretical outcomes are compared with consolidated data
from the literature.

1. Introduction
A tuned-mass damper (TMD) is a device –comprising a mass, a spring and a damper– that is attached to a structure

in order to control, in an active or passive way, the dynamic response of the so-called primary system. The main idea
is based on the dissipation of the vibrational energy of the primary oscillator due to the motion of the secondary
mass, through proper calibration of tuning and damping ratios. For design purposes, it is generally assumed that the
mass, stiffness and damping of the primary structure are known, while the mechanical and dynamic parameters of the
secondary system represent the design variables.
TMDs can be helpfully employed for varied mechanical applications. In civil engineering, they allow to improve
the dynamic response of structures undergoing wind and earthquake excitations, resulting very effective in reducing
excessive vibration amplitudes in the former cases [16, 20, 23, 25, 28, 35, 36]. For seismic loads, two main limitations
in the use of TMDs can be in fact recognized in the optimal setting of the TMD design parameters: i) their high
sensitivity with respect to the minimization of the maximum displacement and ii) their high dependence on both
earthquake frequency content and impulsive nature of the seismic excitation [4, 15, 46]. To gain effectiveness and obtain
advantages under seismic actions, TMD systems need to involve large secondary masses. This poses new issues and
challenges for structural engineers and designers. These TMDs should indeed require large space, which is not always
available for their installation [29]. Additionally, since this mass is designed to be in resonance with the supporting
structure, systems capable to accommodate large displacements have to be ad hoc conceived [43].
Several solutions to the above-mentioned issues have been hypothesized in the literature and some of them have been
also actually applied to solve real problems of civil engineering. These solutions are all based on the idea of utilizing
part of the building mass as a giant mass damper, e.g. the Mega-Subcontrol system (MSC) for tall buildings proposed
by Feng and Mita [12] and the Inter-story Isolation System (IIS) [6, 7, 40, 41, 44].
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From the modelling standpoint, for both classical and so-called non-conventional TMDs (characterized by large mass
ratios), the main formulations provided in literature grasp the effect of the design parameters and derive their optimal
values utilize reduced order two-degrees-of-freedom (2-DOF) models.
The concept of the conventional TMD has its root in the dynamic vibration absorbers studied as early as 1909 by
Frahm [13]. Then, Den Hartog [5] proposed the theory of damped dynamic absorbers attached to undamped main
systems, subjected to a sinusoidal excitation. By following the Den Hartog’s strategy, simple expressions for the
optimal tuning ratio and the damping ratio of the mass damper can be derived, starting from the observation that
the curves of the amplification factor of the primary structure, obtained for several values of damping ratios of the
absorber, always intersect at two points, named fixed or invariant points, this allowing to find some minima of the
displacement amplitude of the main system. However, when the damping of the primary system is introduced, some
difficulties in obtaining analytically optimal parameters are met and numerical methods or approximate formulations
are generally called into play. Several scholars indeed employed numerical strategies for damped structures equipped
with a TMD, subjected to harmonic or random excitations[18, 30, 39, 45].
Many works and a large number of optimization approaches with various objective functions have been developed over
the years, to testify the vivid debate on the use of TMDs in civil engineering applications. Villaverde [42] proposed the
application of light TMD for mitigating the seismic response of buildings. Afterwards, Sadek et al. [33] extended the
validity of Villaverde’s study, by selecting the values of the TMD design parameters in order to result approximately
equal to the modal damping ratios for both the primary system and absorber. Furthermore, Moutinho [26] provided an
alternative procedure that solves the problem of the optimal parameters obtained by Sadek et al. [33], which gave rise
to physically implausible optimal design parameters in the case of large mass ratios. The numerical method provided
by Moutinho was based on the direct assignment of the damping ratios of the vibration modes of the two buildings,
once the mass ratio is set a priori, resulting that optimal damping ratios for TMDs are significantly lower than the one
by Sadek et al. [33].
More recently, starting from Lavan [24], Yahyai et al. [47] utilized an optimization process based on two objective
functions, that is the minimization of the frequency response function of the TMD primary structure and the
minimization of the difference between first and second modal damping ratios of the combined 2-DOF system. An
energy-based approach has been instead proposed by Zilletti et al. [49] and then by Reggio and De Angelis [31, 32]
who provided a methodology for optimizing TMDs with very large mass ratios, by assuming a white noise input. The
authors showed that their optimization procedure leads to approximately equal damping ratios in the two complex
modes of vibrations, as observed by Sadek et al. [33].
In the case of damping of the primary system, very few examples of analytical approaches have been however
encountered in the literature. A first attempt to provide a closed-form solution was made by Asami et al. [1], who
analytically characterized the harmonic response of a dynamic vibration absorber, by proposing a series solution for
reducing the magnification factor of the damped main system. Successively, Ghosh and Basu [14] noticed that for
low-to-moderate damping ratios in the primary structure, the fixed points could be still approximately assumed as
independent on the damping ratio of the absorber and so derived, following a Den Hartog approach, an optimal tuning
in closed form. A further strategy has been proposed by Krenk and Høgsberg [22], who investigated the tuned mass
absorber on damped primary structures subjected to random loads with constant spectral density (i.e. white noise),
starting from some previous results by Krenk reported in his seminal work [21]. Therein, by following the procedure
firstly proposed by Thompson [38], the author demonstrated that, in case of vanishing damping of the main structure,
the optimal frequency tuning is obtained when the two complex loci of the two natural frequencies intersect at a
bifurcation point, which corresponds to the maximum modal damping, demonstrating that the optimal value is also
the upper limit of the damping to be introduced in the system. Finally, Fang et al. [11] generalized Krenk’s approach
[21] to the case of damping in the main structure.
With the aim to give a contribution to analytical methods for the optimal tuning of TMDs, this work presents a closed-
form solution for minimizing the amplification of the low-moderate damped primary system subjected to harmonic
excitation. The proposed procedure extends the Den Hartog’s fixed points method to general damped TMDs and low-
moderate damped structures, by considering arbitrary mass ratios. In particular, in the forced case, by minimizing the
displacement amplitude of the main system by means of the proposed procedure, the optimal tuning frequency ratio
already derived by Ghosh and Basu [14] is recovered, additionally obtaining in explicit form the optimal damping
ratio. Furthermore, by considering the ground motion input, new optimal design parameters are analytically derived, in
terms of tuning and damping ratios. In order to show the effectiveness of the proposed strategy, the obtained theoretical
outcomes were also compared to literature formulations dealing with TMDs under harmonic excitation. Rule-of-thumb
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formulas, based on the analytical solutions and to be used in practical TMD design problems, were also given at the end
for both the considered inputs. Finally, insights into the influence of ground motion frequency content on the optimal
parameters were provided, highlighting the way for obtaining further results of practical interest in analytical form.

2. Enhanced Den Hartog’s Model for damped structure-damped absorber
2.1. Statement of the problem for harmonic input

Tuned Mass Dampers can be described through a simplified two-lumped-degree-of-freedom (2-DOF) model: the
degree of freedom representing the main system and the one of the absorber, as sketched in Figure 1.
Mass, stiffness and damping elements of the main system are referred to as 𝑚1, 𝑘1 and 𝑐1, respectively, 𝑚2, 𝑘2 and 𝑐2being the corresponding parameters of the absorber. By considering harmonic excitations of frequency 𝜔 in the form
of a force 𝐹1(𝑡) and a ground motion �̈�𝑔(𝑡), the equations of motion are:

{

𝑚1�̈�1(𝑡) + 𝑐1�̇�1(𝑡) + 𝑘1𝑥1(𝑡) − 𝑐2(�̇�2(𝑡) − �̇�1(𝑡)) − 𝑘2(𝑥2(𝑡) − 𝑥1(𝑡)) = 𝐹1(𝑡) − 𝑚1�̈�𝑔(𝑡)
𝑚2�̈�2(𝑡) + 𝑐2(�̇�2(𝑡) − �̇�1(𝑡)) + 𝑘2(𝑥2(𝑡) − 𝑥1(𝑡)) = −𝑚2�̈�𝑔(𝑡)

(1)

where 𝑥1 and 𝑥2 are the displacements of the two masses.
In the frequency domain, by considering the sole 𝐹1(𝑡) input, the dynamic response of the primary mass 𝑚1 can be
calculated as:

ℱ
[

𝑥1(𝑡)
]

= 𝐻11(𝜔)ℱ
[

𝐹1(𝑡)
]

, (2)
where ℱ represents the Fourier Transform operator, while 𝐻11(𝜔) is the complex-valued frequency response

function (FRF) of the first DOF, given by:

𝐻11(𝜔) =
𝑁11
𝐷11

, (3)

being 𝑁11 and 𝐷11:

𝑁11 = − 𝜔2𝑚2 + 𝑖𝜔𝑐2 + 𝑘2;

𝐷11 =𝑚1𝑚2𝜔
4 − 𝑖𝜔3 (𝑐1𝑚2 + 𝑐2𝑚1 + 𝑐2𝑚2

)

− 𝜔2 (𝑐1𝑐2 + 𝑘1𝑚2 + 𝑘2𝑚1 + 𝑘2𝑚2
)

+ 𝑖𝜔
(

𝑐1𝑘2 + 𝑐2𝑘1
)

+ 𝑘1𝑘2.

(4)

Similarly, the transfer function of the second DOF can be made explicit as:

𝐻21(𝜔) =
𝑁21
𝐷21

, (5)

where 𝑁21 and 𝐷21 are:

𝑁21 =𝑖𝜔𝑐2 + 𝑘2;
𝐷21 =𝐷11.

(6)

By means of some algebraic manipulations, the amplification factors of the main system and of the absorber,
respectively |𝐻11| and |𝐻21|, can be finally written as:
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|𝐻11
(

Ω, 𝜈, 𝜉1, 𝜉2, 𝜇
)

| =

=

√

√

√

√

√

4𝜈2𝜉22Ω2 +
(

𝜈2 − Ω2
)2

4Ω2
[

𝜈
(

𝜈𝜉1 + 𝜉2
)

−
[

𝜉1 + 𝜈𝜉2 (1 + 𝜇)
]

Ω2
]2 +

[

𝜈2 −
[

1 + 𝜈2 (1 + 𝜇) + 4𝜈𝜉1𝜉2
]

Ω2 + Ω4
]2
,

|𝐻21
(

Ω, 𝜈, 𝜉1, 𝜉2, 𝜇
)

| =

=

√

√

√

√

𝜈2
(

𝜈2 + 4𝜉22Ω
2
)

4Ω2
[

𝜈
(

𝜈𝜉1 + 𝜉2
)

−
[

𝜉1 + 𝜈𝜉2 (1 + 𝜇)
]

Ω2
]2 +

[

𝜈2 −
[

1 + 𝜈2 (1 + 𝜇) + 4𝜈𝜉1𝜉2
]

Ω2 + Ω4
]2
,

(7)

where 𝜇 = 𝑚1
−1𝑚2 is the mass ratio, 𝜈 = 𝜔1

−1𝜔2 is the frequency ratio, 𝜔1 and 𝜔2 are the natural frequencies of
the masses 𝑚1 and 𝑚2, Ω = 𝜔1

−1𝜔 is the forced frequency ratio, 𝜉1 = 𝑐1(2𝑚1𝜔1)−1 is the damping ratio of the mass
𝑚1 and 𝜉2 = 𝑐2(2𝑚2𝜔2)−1 is the damping ratio of the mass 𝑚2.
A different set of results are obtained if the dynamic action is represented only by the ground acceleration �̈�𝑔 . In this
case, by adopting the same dimensionless parameters utilized in Equations (7), the amplification factors of the first and
the second DOF, respectively |𝐻1𝑔| and |𝐻2𝑔|, with respect to the ground motion input, are:

|𝐻1𝑔
(

Ω, 𝜈, 𝜉1, 𝜉2, 𝜇
)

| =

=

√

√

√

√

√

4𝜈2𝜉22Ω2(1 + 𝜇)2 +
(

𝜈2(1 + 𝜇) − Ω2
)2

4Ω2
[

𝜈
(

𝜈𝜉1 + 𝜉2
)

−
[

𝜉1 + 𝜈𝜉2 (1 + 𝜇)
]

Ω2
]2 +

[

𝜈2 −
[

1 + 𝜈2 (1 + 𝜇) + 4𝜈𝜉1𝜉2
]

Ω2 + Ω4
]2
,

|𝐻2𝑔
(

Ω, 𝜈, 𝜉1, 𝜉2, 𝜇
)

| =

=

√

√

√

√

√

(

(𝜇 + 1)𝜈2 − Ω2 + 1
)2 + 4Ω2

(

(𝜇 + 1)𝜈𝜉2 + 𝜉1
)

2

4Ω2
[

𝜈
(

𝑣𝜉1 + 𝜉2
)

−
[

𝜉1 + 𝜈𝜉2 (1 + 𝜇)
]

Ω2
]2 +

[

𝜈2 −
[

1 + 𝜈2 (1 + 𝜇) + 4𝜈𝜉1𝜉2
]

Ω2 + Ω4
]2
.

(8)

Figure 1: Structural 2-DOF TMD model.

It is worth noticing that the above reported expressions for both the amplification factors are dimensionless and
are only functions of dimensionless parameters. For the sake of generality, no constraints were imposed to the range in
which these parameters can vary. However, the results from numerical examples shown in the figures were here obtained
by considering for the above mentioned parameters values consistent with the ones of interest for the applications, e.g.
𝜇 ∈ [0, 2[; 𝜈 ∈ [0, 1]; 𝜉1 ∈ [0, 0.1]; 𝜉2 ∈ [0, 0.1], selecting mass ratios 𝜇 in a sufficiently wide interval to include any
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possible realistic civil engineering problem. In fact, conventional TMDs are characterized by small mass ratios of the
order of 10−3, an example being the steel sphere in Taipei 101, in Taiwan. However, in many IIS buildings, large values
of mass ratios can be found, as for instance occurs in the Japanese Iidabashi First Building and Shiodome Sumitomo
Building, where values of 0.275 and 2.154 were respectively adopted [10], further studies taking into account mass
ratios up to 10 [27, 31, 48]. With respect to the range of values for the damping ratio of the lower structure 𝜉1, they were
chosen to be compatible with the ones used for steel, reinforced concrete and masonry structures (i.e. 0.02 – 0.05),
while values for tuning ratios 𝜈 were assumed in line with the optimal ones adopted in literature for both conventional
and non-conventional TMDs [4, 5, 12, 14, 15, 26, 29, 33, 34, 39, 42, 45, 47].
As an example, the amplification factors |𝐻11| and |𝐻1𝑔| are reported in Figure 2 as a function of Ω, by assuming
two typical values of mass ratios for conventional and non-conventional TMDs, e.g. 𝜇 = 0.05 and 𝜇 = 0.5, setting
𝜉1 = 0.05, 𝜈 = 0.9, and by varying 𝜉2 from 0.01 to 0.20. Figure 2 in particular shows that the curves present two resonant
peaks and intersect at two points, namely P and Q, which are independent from the damping factor, confirming the
validity of the Den Hartog fixed points strategy for low-moderate damping factors, as highlighted by Ghosh and Basu
[14]. In fact, as known, thanks to the existence of fixed points, Den Hartog proposes to minimize the displacement
amplification of the main system subjected to a sinusoidal excitation, by adopting as optimal parameters the tuning
frequency ratio, 𝜈𝑜𝑝𝑡, and the damping ratio of the absorber, 𝜉2,𝑜𝑝𝑡. The amplification factors at the points P and Q are
first equated to derive 𝜈𝑜𝑝𝑡, then the first derivative of |𝐻11(Ω)| with respect to Ω at the points P and Q is set equal to
zero for defining 𝜉2,𝑜𝑝𝑡, as the average of the optimal values obtained at the two fixed points.

In addition, Figure 2 highlights that the peaks of the amplification factors are remarkably sensitive to small
variations of damping 𝜉2, being even more sensitive to perturbations of the damping factor 𝜉1, as reported in Figure 3.
Herein, the amplification factor of the first degree-of-freedom is plotted by considering the same mass ratio values and
tuning ratio of those adopted in Figure 2, by fixing 𝜉2 equal to 0.05, while 𝜉1 varies from 0.00 to 0.10. For these limit
values, the corresponding dimensionless peaks of |𝐻11(Ω)| and |𝐻1𝑔(Ω)| drastically decrease, the marked dependence
of the static displacement of the main system on slight variations of both the damping factors 𝜉1 and 𝜉2 suggesting the
need of an analytical procedure that ensures the accurate definition of optimal parameters, as provided below.
2.2. Closed-form solutions for the optimal design parameters

Observing the strong influence of the peak amplification factor from the damping ratio of the main system, a new
optimized procedure, implemented in Mathematica© [17], is here proposed in order to extend and further generalize
the Den Hartog’s fixed points theory for low-moderate damped system and damped non-conventional TMDs. Under
these assumptions, high damping values of the primary structure are a priori excluded, according to the work by Ghosh
and Basu [14] in which it is shown that damping ratios over 10% are not physically admissible for main systems in
civil engineering applications. In analogy with the Den Hartog’s model, by considering the negligible dependence of
the amplification factor on the damping ratio of the absorber in the neighbourhood of the fixed points, Ghosh and Basu
[14] show that it is possible to calculate the amplification factor |𝐻11(Ω)| for two extreme values of 𝜉2, that is for
𝜉2 → 0 and for 𝜉2 → ∞. In the Appendix 7, the expressions of the amplification factors of the main system for both
the excitations are reported in explicit for these two extreme values. In particular, by equating expressions 19 and 20,
four conjugated solutions have been obtained, the two positive ones representing the abscissas of the two fixed points
P and Q, i.e.:

Ω𝑃 ,𝑄 =

√

√

√

√

√

1 + 𝜈2(1 + 𝜇) ∓
√

1 − 𝜈2
[

2 − 𝜈2(1 + 𝜇)2
]

2 + 𝜇
. (9)

In the same manner, by equating the two expressions (21) and (22), the abscissas of the two points P and Q can be
obtained also in the case of ground motion as:
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Figure 2: Plot of the amplification factors |𝐻11(Ω)| and |𝐻1𝑔(Ω)| by assuming 𝜈=0.9 and 𝜉1 = 0.05 and by varying 𝜉2 for
the two mass ratios.

Ω𝑃 ,𝑄 = 1
2

√

√

√

√

√

√

𝐴Ω𝑃 ,𝑄
∓ 𝐵Ω𝑃 ,𝑄

−2(𝜇 + 2)𝜉21 + 𝜇 + 1

where 𝐴Ω𝑃 ,𝑄
and 𝐵Ω𝑃 ,𝑄

are respectively:
𝐴Ω𝑃 ,𝑄

= 4(𝜇 + 1)4𝜈4 + 16(𝜇 + 1)𝜈2𝜉21
(

4(𝜇 + 1)𝜈2𝜉21 − 2(𝜇 + 1)2𝜈2 + 𝜇 + 2
)

+ 4(𝜇 − 2)(𝜇 + 1)2𝜈2 + (𝜇 + 2)2

𝐵Ω𝑃 ,𝑄
= 8(𝜇 + 1)𝜈2𝜉21 − 2(𝜇 + 1)2𝜈2 − 𝜇 − 2.

(10)
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Figure 3: Plot of the amplification factors |𝐻11(Ω)| and |𝐻1𝑔(Ω)| by assuming 𝜈=0.9 and 𝜉2 = 0.05 and by varying 𝜉1 for
the two mass ratios.

In order to find the optimal tuning frequency ratio of the TMD, according to the Den Hartog’s procedure, the values
assumed by the amplification functions in P and Q, for both the considered excitations, have to be equated. In this way,
Ghosh and Basu [14] gave the closed-form for the optimal tuning for the sole case of the force applied to the main
structure, by obtaining the following expression:

𝜈𝑜𝑝𝑡(𝐹1) =

√

1 + 𝜇 − 2 (2 + 𝜇) 𝜉12

(1 + 𝜇)3
. (11)

By essentially exploiting the same strategy, an analogous closed-form solution for the optimal tuning can be also
derived for the case of ground motion as follows:
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𝜈𝑜𝑝𝑡(�̈�𝑔) =

√

4 + 𝜇
2(1 + 𝜇)2

−
2 (2 + 𝜇) 𝜉12

(1 + 𝜇)3
− 1

1 + 𝜇 − 4𝜉12
. (12)

Equations (11) and (12) show that the optimal tuning is independent from the damping ratio of the absorber, while
it is a function of mass and damping ratios of the primary system. Moreover, when the damping ratio of the main mass
tends to zero, the expressions (11) and (12) recover respectively the classical Den Hartog’s formula 𝜈𝑜𝑝𝑡 = (1 + 𝜇)−1

[5] and the Warburton’s one 𝜈𝑜𝑝𝑡 = (1 − 𝜇
2 )

1
2 (1 + 𝜇)−1 [45].

Furthermore, the variation of optimal tuning 𝜈𝑜𝑝𝑡 as a function of the mass ratio 𝜇 for selected values of the damping
ratio 𝜉1 is reported in Figure 4 for both the inputs 𝐹1(𝑡) and �̈�𝑔(𝑡).

Figure 4: Optimal tuning frequency ratio 𝜈𝑜𝑝𝑡 vs. the mass ratio 𝜇 by varying the damping 𝜉1 of the main system for
harmonic excitation: (a) 𝐹1(𝑡) input, (b) �̈�𝑔(𝑡) input. In the inset, the conventional TMD range is highlighted.

Figure 4 highlights that the optimal tuning decreases as the mass ratio grows for both the input cases, exhibiting
weak dependence from the damping ratio of the main system when the input is the force (Figure 4a) and resulting
slightly more sensitive to very small variation of damping ratio 𝜉1 in the case of ground motion input (Figure 4b).
It is worth noticing that Ghosh and Basu [14] do not derive an expression for the optimal damping of the absorber if a
force is applied to the primary oscillator. Therefore, to obtain the optimal damping of the absorber, namely 𝜉2,𝑜𝑝𝑡, the
Den Hartog’s procedure is generalized by imposing that |𝐻11(Ω)| and |𝐻1𝑔(Ω)| are stationary at both fixed points P
and Q. After some algebraic manipulations, this leads to the 4th degree equation in 𝜉2:

𝑏0 + 𝑏1𝜉2 + 𝑏2𝜉2
2 + 𝑏3𝜉2

3 + 𝑏4𝜉2
4 = 0, (13)

where the coefficients are provided explicitly in the Appendix 8 for both inputs. By substituting Equations (9) and
(10) respectively into the expressions of the coefficients 𝑏0, ..., 𝑏4 given by (23) and (24) and then using Equation (13)
by assuming 𝜈 equal to 𝜈𝑜𝑝𝑡 for each input (Equations (11) and (12)), four roots in closed-form for each fixed point P
and Q can be obtained by means of Ferrari-Cardano formula. These solutions give 𝜉2,𝑜𝑝𝑡 as a function of 𝜉1 and 𝜇 and
can be hence used to design TMDs characterized by a primary system exhibiting a low-moderate damping excited by
a harmonic vibration.
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The solutions are derived for arbitrary configurations of the 2-DOF TMD. However, if 𝜉 and 𝜇 assume the usual
values found in civil engineering applications, that is they fall respectively into the intervals [0, 10−1] and [0, 2[, one
admissible root for Equation (13) is only determined for the points P and Q. As a consequence, there are two optimal
damping solutions, 𝜉2,𝑜𝑝𝑡(Ω → Ω𝑃 ) and 𝜉2,𝑜𝑝𝑡(Ω → Ω𝑄), as also occurs for the classical case of undamped structure
and damped TMD. Analogously to classical Den Hartog’s approach, the optimal damping factor 𝜉2,𝑜𝑝𝑡 is here evaluated
as the arithmetic mean of 𝜉2,𝑜𝑝𝑡(Ω → Ω𝑃 ) and 𝜉2,𝑜𝑝𝑡(Ω → Ω𝑄). The optimal damping factors 𝜉2,𝑜𝑝𝑡 for both the types
of excitations as a function of the mass ratio 𝜇 is shown in Figure 5, prescribing some values of the damping factor
𝜉1. It can be observed that 𝜉2,𝑜𝑝𝑡 generally increases with the mass ratio. Also, for mass ratio 𝜇 ≤ 0.1 (conventional
TMD), a discrepancy of about 20% between curves obtained setting 𝜉1 equal to 0 and 0.1 is registered, this highlighting
the numerical relevance of the results from exact analytical solutions for slightly damped conventional TMDs as well.
Furthermore, the outcomes show that, for the case of 𝐹1 input (Figure 5a), when 𝜇 ≥ 1, the slope of the curves 𝜉2,𝑜𝑝𝑡decreases and their value decreases as 𝜉1 increases. A different trend is instead observed for the input �̈�𝑔 input. Indeed,
Figure 5b shows that, after a first tract of the curve for 𝜇 ≤ 0.5, the slope of 𝜉2,𝑜𝑝𝑡 grows as the mass ratio increases.
Interestingly, due to the fact that no a priori restrictions on the range in which the design parameters can vary have
been imposed, the optimal damping ratio of the absorber takes values over the unity too, in particular for large mass
ratios, thus leading to overdamped systems that however are generally difficult to reach for civil engineering structures
under ground motion excitations.
It is worth to highlight that the closed-form solution for the optimal damping factor of TMDs with damped main
system is an original result. In fact, scientific works dealing with such damped TMDs, in which the link primary-
to-secondary mass is modelled by means of Kelvin-Voigt models, can be grouped in four main categories. In
the first one, the TMD is optimized by minimizing the magnitude of the amplification factor of the main system
subjected to harmonic excitation or white noise and the related optimal parameters are derived by means of numerical
formulations and fitting procedures, this implying the results to be valid only for restricted ranges of mass ratios
[2, 12, 14, 15, 26, 29, 33, 34, 39, 42, 45, 47]. The second group is essentially related to the paper by Asami et al.
[1] where for the H-∞ optimization a series solution is proposed for the damped primary system both for the force and
the motion excitation, by following the Den Hartog’s approach and by remarking that "[...] when damping is present
in the primary system [...], there is no exact algebraic solution of the H-∞ optimization". For the third group, it can
be mentioned the recent paper of Fang et al. [11], in which the authors provide a closed-form solution by enhancing
the frequency approach suggested by Krenk [21] to include the sole forced case of damped TMD. Although in that
work an analytical solution was proposed, the optimization criterion was based on a strategy different with respect the
Den Hartog’s one. The main results given in the fourth group can be instead referred to the works by Reggio and De
Angelis [4, 31], where a closed-form solution was obtained by means of an energy-based approach, despite the results
were only given in the form of charts.
It is finally highlighted that, in the special case of undamped main systems and by making reference to the expressions
of the coefficients 𝑏𝑖 for the two inputs as reported in Appendix 8, the roots of the equation (13) trace back the already
known Den Hartog optimal damping for the forced system [5], giving in closed-form the solution for the optimal
damping in case of ground motion as well, that is:

𝜉2,𝑜𝑝𝑡(𝐹1)(𝜉1 → 0) =

√

3𝜇
8(𝜇 + 1)

,

𝜉2,𝑜𝑝𝑡(�̈�𝑔)(𝜉1 → 0) =

√

(
√

2
√

𝜇 + 6
)

𝜇 +
√

(

6 −
√

2
√

𝜇
)

𝜇

4
√

2
√

−𝜇2 + 𝜇 + 2
.

(14)

where the second solution in equation (14) is derived consistently with the Den Hartog’s approach1 and differs from
the formulas provided in literature by Warburton [45] and Tsai and Lin [39], who all adopt alternative optimization
procedures.

1Note that Connor [2], starting from the Den Hartog’s approach, also gives an analytical expression for the optimal damping in case of ground
motion, which contains different terms resulting from some approximations employed by the author. However, at least in the range of parameters
usually assumed for applications in civil engineering, the numerical differences between the Connor’s formula and the one proposed in the present
work are not significant.
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Figure 5: Optimal damping ratio 𝜉2,𝑜𝑝𝑡 vs. the mass ratio 𝜇 by varying the damping 𝜉1 of the main system for harmonic
excitation: (a) 𝐹1(𝑡) input, (b) �̈�𝑔(𝑡) input. In the inset, the conventional TMD range is highlighted.

2.3. Optimization and responses of main system and absorber
The enhanced Den Hartog’s theory for the damped main system here proposed leads to a minimization of |𝐻11|and |𝐻1𝑔|. In particular, as an example, in Figure 6 the amplification factor of the main system subjected to a force

excitation, by considering the optimal parameters previously derived, is plotted as a function of the forced frequency
ratio Ω. One can note that the influence of low-moderate damping 𝜉1 cannot be assumed negligible, indeed, at
increasing of damping factor of the first degree-of-freedom, a reduction of the amplification factor is always registered.
Furthermore, as it emerges from the Figure 6, one can observe that increasing mass ratios lead to a greater robustness
of the system, for which the optimal parameters and the damping factor 𝜉1 do not significantly affect the amplification
factor of the main structure.

With respect to the response of the absorber, designed according to the optimal parameters derived from the
proposed procedure, it represents a crucial aspect to focus on. In fact, in non-conventional TMDs with large mass
ratios, such as the cases of Intermediate Isolation Systems [8–10] and Mega-Sub Controlled configurations [12], the
absorber constitutes a part of the building structure, this implying that the behaviour of the second degree of freedom
has to be evaluated when the amplification factor of the first degree of freedom is minimized. More in detail, the
displacement amplitude of the absorber should be assessed with reference to specific limit values, according to safety
and/or serviceability performance requirements.
For conventional TMDs with low mass ratios, the study of the amplification factor of the second degree of freedom
is not generally taken into account. Exceptions are the contributions by Feng and Mita [12], referring to Mega–Sub
configurations (MSC), Reggio and De Angelis, referring to IISs [31], and Yahyai et al. [47]. In particular, Feng and
Mita [12] propose two separate optimization procedures: the first one requires the minimization of the amplification
factor of the first degree of freedom –the main mega-structure– subjected to wind excitation or seismic input, whereas
the second one derives the optimal parameters by minimizing the acceleration of the absorber, which is the secondary
sub-structure. Thus, a joint procedure apt to simultaneously optimize the response of both mega- and the sub-structure
would represent a substantial improvement in order to achieve optimal configurations [12]. The algorithm by Yahyai et
al. [47] provides instead optimum configurations also taking into account the amplitude of the absorber’s acceleration.
However, the displacement amplitude of the second degree of freedom is not analysed. Reggio and De Angelis
[4, 31], consider a 5-DOF model and, by means of a numerical investigation, they evaluate the responses in terms
of displacements, inter-story drifts, accelerations and shear forces of three configurations of IIS systems with different
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Figure 6: Comparison among the optimized amplification factors of the main system |𝐻11| evaluated for the undamped
case with the damped cases proposed by this paper (TP), for different mass ratios 𝜇.

mass ratios and of a fixed-base configuration building taken as term of comparison with the same number of floors. It is
worth recalling that Reggio and De Angelis achieve optimum parameters by maximizing an energy performance index
(EDI) that contemporary accounts for the reduction of the seismic response of both the substructure and the isolated
superstructure. Nonetheless, the incidence of the optimum parameters on the second degree of freedom, by fixing the
mass ratio and varying the damping ratio of the absorber starting from the optimum one, is not investigated. By keeping
in mind all these aspects about the second degree of freedom in TMD problems, first an optimization procedure based
on the minimization of the displacement amplitude of the main system has been here implemented with the aim of
maximizing the effectiveness of the mass damping and then the response of the absorber in terms of displacement is
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controlled. In order to analyse the effect of the optimization procedure on the absorber, as an example, the function
|𝐻21|, evaluated according to the second expression of (7), is plotted in Figure 7 with respect to the optimal parameters
𝜈𝑜𝑝𝑡 and 𝜉2,𝑜𝑝𝑡, by varying the damping ratio 𝜉1 and by considering different mass ratios 𝜇. As shown in Figure 7, a
reduction of the amplification factor of the second degree of freedom also occurs by setting the optimal parameters
and by increasing the damping 𝜉1 if compared to the Den Hartog’s undamped case, although the minimization of the
amplification factor of main structure is only required and no constraints on the static displacement of the absorber are
imposed. Analogous considerations can be made for the function |𝐻2𝑔|.

Figure 7: Comparison among the optimized amplification factors of the secondary system |𝐻21| evaluated for Den Hartog’s
case (DH) and the damped cases proposed by this paper (TP), for different mass ratios 𝜇.
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3. Optimal design and rule-of-thumb formulas
The analytical solution of the 4th degree equation (13) here proposed has been calculated by means of the symbolic

computational software Mathematica© [17], readily deriving the expression of optimal damping, which is not explicitly
reported for sake of brevity. More manageable functions that well fit the analytical solutions of equation (13) for both
the excitation 𝐹1(𝑡) and �̈�𝑔(𝑡) are however given in the following for deriving the optimal damping as a function of 𝜇
and 𝜉1:

𝜉2,𝑜𝑝𝑡(𝐹1) =

√

√

√

√

3𝜇
(

1.1043𝜉0.7268911 + 1
)

8
(

𝜇
(

2.21626𝜉0.7039421 + 1
)

+ 1
)
,

𝜉2,𝑜𝑝𝑡(�̈�𝑔) =

√

√

36 − 2𝜇 + 6
√

1 − 1.11457
√

𝜉1

√

𝜇
(

4.27658𝜉1
𝜇0.470186 + 1

)

4
√

𝜇 + 1
√

−0.629905𝜇𝜉1 − 𝜇 + 2
,

(15)

where the coefficients have been chosen on the basis of a standard error minimization procedure in the physically
reasonable ranges of variability indicated in section 2.1, with a maximum error of 10% in the interval of interest.
The expressions (15), together with the well-established equation (13) with coefficients reported explicitly in (23) and
(24), can be used as design formulas for TMDs characterised by arbitrary mass ratios and any physically reasonable
value (for instance with reference to civil engineering applications) of damping ratio of the main system. In fact, the
optimum parameters provided in the major part of the literature, are usually reported either by means of numerical
tables or through graphical representations, and are frequently referred to a restricted range of mass ratios (generally
taking 𝜇 lower than 1). In some cases, curve-fitting formulations are derived from numerical analyses, thus restricting
their validity to the considered range of values. Moreover, while many literature works assume discrete values of
damping ratio 𝜉1, only few papers account for a continuous variation of the damping of the main structure from 0 to
0.10, such as the ones by Asami et al. [1], Reggio and De Angelis [4, 31] and Fang et al. [11]. As above-mentioned, the
first ones derive a series solution based on the Den Hartog’s approach, Reggio and De Angelis present their outcomes
by means of graphical representation without reporting analytical expressions and Fang et al. provide a closed-form
solution, although their optimization procedure is based on the frequency analysis of the TMD and not directly on
the minimization of the amplification factor. In the present paper, by taking advantage from the consistency of a fully
analytical strategy, a unique formulation is given for each considered excitation, which allows to calculate optimal
damping ratio of the absorber for any 𝜇 and for 𝜉1 covering the vast majority of the actual values to be employed for
real buildings and civil engineering applications.

4. Synoptic comparison between literature procedures and proposed analytical method for
harmonic inputs
In order to compare the proposed procedure with the main literature formulations, several numerical tests have

been carried out by varying the damping factor 𝜉1 and the mass ratio 𝜇 of the simplified 2-DOF model (Figure 1). As
already discussed in section 3, the literature works considered in this study can be somehow categorized on the basis
of the adopted criteria, i.e. the minimization of the displacement amplitude of the main system carried out by means of
analytical or numerical approaches [1, 5, 12, 14, 15, 18, 26, 29, 30, 33, 34, 39, 42, 45, 47], the frequency analyses by
Fang et al. [11] and Krenk [21] and those ones deriving optimum parameters by maximizing the Energy Dissipation
Index (EDI) [4, 31]. However, among the works following the first strategy, the comparison is here performed only
with the ones that consider the minimization of the static displacement of the first degree-of-freedom subjected to
a harmonic input (see the synoptic comparison reported in Table (1). Some of these papers refer to the not-damped
main system case, except for Ioi and Ikeda [18], Randall et al. [30], Tsai and Lin [39], Rana and Soong [29], Asami
et al. [1], Ghosh and Basu [14], Salvi and Rizzi [34] and Fang et al. [11]. In particular, Den Hartog [5] derives a
closed-form solution only for systems with null 𝜉1 subjected to harmonic input. Even if its theory is provided for TMD
with very low mass ratio and low-damped absorber, no limit on the variation of mass ratio and damping ratio 𝜉2 is
imposed. Warburton [45] analyses the 2-DOF system subjected to force and motion excitation modelled as harmonic
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Table 1
Comparison between the optimization procedures provided in literature and the proposed strategy by adopting harmonic
input([5] p1; [45] p2; [18] p3; [30] p4; [39] p5; [29] p6; [21] p7; [1] p8; [14] p9; [34] p10; [11] p11; This Paper p12).

Paper Par. Range Input 𝜈𝐨𝐩𝐭 𝜉𝟐,𝐨𝐩𝐭𝜇 𝜉𝟏

p1 ∀𝜇 0.00 𝐅𝟏(𝐭) closed-form closed-form
- - �̈�𝐠(𝐭) - -

p2 ∀𝜇 0.00 𝐅𝟏(𝐭) closed-form closed-form
]0,2[ 0.00 �̈�𝐠(𝐭) closed-form closed-form

p3 ∀𝜇 ∀𝜉1 𝐅𝟏(𝐭) numerical procedure numerical procedure
- - �̈�𝐠(𝐭) - -

p4 ]0,0.40[ [0,0.5] 𝐅𝟏(𝐭) numerical procedure numerical procedure
- - �̈�𝐠(𝐭) - -

p5 ∀𝜇 ∀𝜉1 𝐅𝟏(𝐭) numerical procedure numerical procedure

]0,2[ ]0,
√

2
2
] �̈�𝐠(𝐭) numerical procedure numerical procedure

p6 0.02, 0.06, 0.10 ]0,0.1] 𝐅𝟏(𝐭) numerical procedure numerical procedure
0.02, 0.06, 0.10 ]0,0.1] �̈�𝐠(𝐭) numerical procedure numerical procedure

p7 ∀𝜇 0.00 𝐅𝟏(𝐭) closed-form closed-form
- - �̈�𝐠(𝐭) - -

p8 ]0,1] [0,0.30] 𝐅𝟏(𝐭) series solution series solution
]0,1] [0,0.30] �̈�𝐠(𝐭) series solution series solution

p9 ∀𝜇 ]0,0.1] 𝐅𝟏(𝐭) closed-form -
- - �̈�𝐠(𝐭) - -

p10 - - 𝐅𝟏(𝐭) - -
]0,0.1] 0.05 �̈�𝐠(𝐭) numerical procedure numerical procedure

p11 ∀𝜇 ∀𝜉1 𝐅𝟏(𝐭) closed-form closed-form
- - �̈�𝐠(𝐭) - -

p12 ∀𝜇 [0,0.1] 𝐅𝟏(𝐭) closed-form closed-form
]0,2] [0,0.1] �̈�𝐠(𝐭) closed-form closed-form

inputs. By following the Den Hartog’s method and neglecting the damping in the main structure, optimal parameters
are provided in closed-form also for the motion excitation case. In [18, 29, 30, 34, 39] 𝜈𝑜𝑝𝑡 and 𝜉2,𝑜𝑝𝑡 are obtained by
utilizing a curve-fitting formulation and numerical procedures, optimal parameters being finally provided by means of
design tables and graphs. Moreover, while Asami et al. [1] proposed series solutions for both the two excitation types,
Krenk [21] and Fang et al. [11] derived closed-form optimal formulations starting from a frequency analysis of the
TMD. However, although the analytical formulation proposed by Fang et al. [11] considers large ranges of mass ratio
and damping ratio 𝜉1, it is valid only in the forced case, no optimal solution being presented for the motion excitation.
Also referring to the 𝐹1 input, it is worth recalling that Ghosh and Basu [14] derive only 𝜈𝑜𝑝𝑡 in closed-form for any
mass ratio, without taking into account the role of optimal damping. Therefore, as it emerges from the comparative
analysis of the literature, the major part of the optimization procedures is focussed only on a specific type of input or
otherwise limited to study cases in which 𝜉1 is null. As a matter of fact, if damping of the main system is included in
the models and both the two types of excitations are considered, only numerical or approximate solutions can be found
in the literature [1, 29, 39], the proposed analytical formulation thus becoming an effective tool for design purposes

5. Some insights on optimal TMDs by adopting a stochastic approach for the ground
motion input
In the previous sections, the optimization of TMD has been provided by modelling both the two excitations, i.e.

𝐹1(𝑡) and �̈�𝑔(𝑡), as deterministic inputs. However, it is well-known that a ground motion is often considered as a
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stochastic process and generally modelled as a Gaussian random process, with a zero mean, described by a constant
power spectral density (PSD), i.e. a white noise [4, 22, 31, 45]. Despite these processes neglect the dependency on
the excitation frequency content, they are considered as acceptable for deriving optimal parameters in an initial design
phase [4]. For more faithfully grasping the seismic excitation, Kanai-Tajimi model [19, 37] can be for instance employed
for filtering the white noise ground acceleration with the actual stiffness and damping characteristics of the soil deposit,
thus leading to a non-uniform PSD of the ground motion signal. With the aim to explore how the optimization procedure
presented above can be adapted to consider the frequency content in �̈�𝑔 , the Den Hartog’s problem can be reformulated
by requiring to minimize the following integral:

∫

Ω2

Ω1

𝜙(Ω) ||
|

𝐻1𝑔(Ω)
|

|

|

2
𝑑Ω, (16)

where 𝜙(Ω) is a weight function that describes the frequency distribution of the seismic excitation and |𝐻1𝑔(Ω)|is the amplification factor of the main structure (8). The design variables of the minimization procedure are again the
tuning ratio 𝜈 and the damping ratio of the absorber 𝜉2, while 𝜇 and 𝜉1 are the varying parameters. When 𝜙(Ω) is a
unitary constant function and Ω1 and Ω2 tend respectively to −∞ e +∞, the provided optimization method degenerates
into the minimization of the variance of the displacement of the primary system subjected to a white noise input [3].
By then considering a unitary weight function 𝜙(Ω), the indefinite integral in (16) can be found in explicit form and
written in the following compact way:

∫ |𝐻1𝑔(Ω)|𝑑Ω = −
4
∑

𝑖=1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝐺𝑖
(

𝑎1 + 𝐺𝑖
)

+ 𝑎0
]

tanh−1
(√

Ω
𝐺𝑖

)

√

𝐺𝑖

4
∏

𝑗=1

[

𝐺𝑖 −
(

1 − 𝛿𝑖𝑗
)

𝐺𝑗
]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(17)

where 𝐺𝑖,𝑗 are the four poles of the amplification factor |𝐻1𝑔| (8), 𝛿𝑖𝑗 is the Kronecker delta and 𝑎𝑖 have the
following expressions:

𝑎0 = 𝜈4(1 + 𝜇)2;

𝑎1 = 2𝜈2 (1 + 𝜇)
(

2 (1 + 𝜇) 𝜉22 − 1
)

.
(18)

By imposing that the design variables assume only non-negative values, thanks to the analytical expression (17),
standard numerical minimization algorithms –here implemented in the Mathematica© [17] environment– can be
applied to provide the optimal parameters 𝜈𝑜𝑝𝑡 and 𝜉2,𝑜𝑝𝑡 as functions of 𝜇 and 𝜉1. Figure 3 shows that the range of
the dimensionless frequency ratios Ω, where the two peaks of the amplification factor |𝐻1𝑔| occur, varies between
Ω = 0.25 and Ω = 1.5, the results of the numerical optimization strategy in this frequency interval being illustrated in
Figure 8.

Note that, when the whole frequency range is considered, i.e.Ω1 → −∞ andΩ2 → +∞, the optimization procedure
consistently falls into the minimization of the root mean square of the displacement of the main structure subjected to
a white noise signal with unitary PSD, as shown in Figure 9.

The comparison among results in Figures 8 and 9 with those shown in Figures 4b and 5b also highlights that
optimal parameters are significantly influenced by the approach adopted for optimizing TMD systems when subjected
to ground accelerations.

6. Conclusions
The increasing need to improve safety standards of existing buildings and enhance the performance of modern civil

structures is stimulating a vivid debate on how to conceive and design systems to integrate with these constructions
and capable to control their dynamic response under different types of actions. To this aim, growing attention has
been paid in the last years for optimizing TMD configurations, the vast majority of the proposed solutions being based
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Figure 8: Results of the minimization of the definite integral (16) with Ω1 = 0.25 and Ω2 = 1.5: optimal tuning ratio 𝜈𝑜𝑝𝑡
(a) and optimal damping ratio 𝜉2,𝑜𝑝𝑡 (b) vs. the mass ratio 𝜇 by varying the damping 𝜉1 of the main system.

Figure 9: Results of the minimization of the definite integral (16) with Ω1 → −∞ and Ω2 → +∞: optimal tuning ratio 𝜈𝑜𝑝𝑡
(a) and optimal damping ratio 𝜉2,𝑜𝑝𝑡 (b) vs. the mass ratio 𝜇 by varying the damping 𝜉1 of the main system.

on the pioneering strategy suggested by Den Hartog in 1947. Despite a large number of models implementing this
strategy, their use is partially still limited by some difficulties, for example the possibility to have at one disposal
formulas to predict optimal setting of TMD parameters in cases in which the damping ratio of both primary and
absorber systems have to be taken into account or both force and motion excitations can expected. To contribute in
overcoming these limitations and give insights into optimized design of tuned mass dampers in presence of damping of
the primary system, in the present work we generalized the Den Hartog’s method extending it to the optimization of low-
moderate damped structures and non-conventional damped TMDs, also including ground motion inputs. This purpose
is achieved by considering an effective 2-DOF model and thus providing a fully analytical strategy for evaluating
optimal parameters, finally obtaining closed-form solutions that give optima in terms of tuning frequency and damping,
for a wide range of mass ratios values of possible interest in civil engineering applications. This analytical strategy,
which avoids the use of fully numerical procedures that in some cases could risk to obscure the role of the design
variables in the TMD optimization process, can be in fact seen as design tool, as benchmark for other numerical
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procedures or as an alternative method to ones based on the root locus analysis of the TMD first proposed by Thompson
[38], then by Krenk [21] and finally enhanced by Fang et al. in 2019 for the damped main system case [11]. Furthermore,
the proposed generalized Den Hartog approach allows to analytically derive optimal parameters also for the motion
excitation modelled as a deterministic input, which is not considered in the above-mentioned papers [11, 21, 38]. As
ancillary result, it is in fact shown that the method also allows to trace back optimal findings obtained through both
analytical and numerical strategies by other scholars. The robustness of the proposed approach has been in particular
demonstrated by providing several numerical examples that are designed according to the optimum parameters, starting
from the object function of minimizing the amplification factor of the main system. Relevance is also given to the
displacement amplitude of the second degree of freedom since involving high values of mass ratios implies to face
important problems related to absorbers that usually constitute a large part of a structure, as in the cases of IIS buildings
and MSC configurations for tall buildings.
At the end, the validation of the proposed approach is also provided through the direct comparison with other
optimization procedures, showing that the optimal parameters theoretically found by means of the present approach
are capable to trace back all the configurations obtained in the literature and large ranges of variation of parameters for
both types of inputs.
Additionally, by utilizing a stochastic approach for modelling seismic excitations, a further analytical optimization
strategy was implemented in order to show how optimal parameters can be strongly affected by the frequency content
of the ground acceleration input.
It must be finally underlined that, by recovering and extending the Den Hartog methodology, a linear model was
considered for both the two degrees of freedom of the main system and the absorber. Although non-linear tuned mass
dampers are currently investigated and exploited, the authors believe that the analysis of the linear behaviour and the
use of simple (analytical) expressions of the optimal parameters are still indispensable tools for sizing the structures at
the initial design phase and for predicting key features of their dynamic response.
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7. Appendix A.
The expressions of the amplification factors |𝐻11| and |𝐻1𝑔| at the two extreme values, 𝜉2 → 0 and 𝜉2 → ∞ are

here provided:

|𝐻11,𝜉2−1 | = |𝐻11(𝜉2 → 0)| =

√

√

√

√

√

(

𝑣2 − Ω2
)2

4Ω2
(

𝑣2𝜉1 − 𝜉1Ω2
)2 +

[

𝑣2 −
[

1 + 𝑣2 (1 + 𝜇)
]

Ω2 + Ω4
]2
, (19)

|𝐻11,𝜉2−2 | = |𝐻11(𝜉2 → ∞)| =
√

1
1 − 2

(

1 + 𝜇 − 2𝜉12
)

Ω2 + (1 + 𝜇)2Ω4
, (20)

|𝐻1𝑔,𝜉2−1 | = |𝐻1𝑔(𝜉2 → 0)| =

√

√

√

√

√

(

Ω2 − (𝜇 + 1)𝜈2
)2

(

−Ω2
(

(𝜇 + 1)𝜈2 + 1
)

+ 𝜈2 + Ω4
)2 + 4𝜉21Ω

2
(

Ω2 − 𝜈2
)2

, (21)
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|𝐻1𝑔,𝜉2−2 | = |𝐻11(𝜉2 → ∞)| =

√

√

√

√

(𝜇 + 1)2
(

(𝜇 + 1)Ω2 − 1
)2 + 4𝜉21Ω

2
. (22)

8. Appendix B.
The coefficients of Equation (13) for 𝐹1 input particularize as:

𝑏0 = −2Ω
(

𝜈2 − Ω2) [−Ω6 (−1 + 2𝜉12 + Ω2)+

𝜈4Ω2 (3 + 𝜇 − 6𝜉12 − 3Ω2 − 3𝜇Ω2) + 𝜈2Ω4 (−3 + 6𝜉12 + (3 + 𝜇) Ω2)+

+ 𝜈6
[

−1 + 2𝜉12 + Ω2 + 𝜇2Ω2 + 𝜇
(

−1 + 2Ω2)]];

𝑏1 = −8𝜈𝜇𝜉1Ω5 (3𝜈4 − 4𝜈2Ω2 + Ω4) ;

𝑏2 = 4𝜈2Ω3[2𝜈2Ω2 (−4 − 3𝜇 + 8𝜉12 + 4Ω2 + 6𝜇Ω2 + 2𝜇2Ω2)+

− Ω4 [−4 + 8𝜉12 +
(

4 + 2𝜇 + 𝜇2)Ω2]+

− 4𝜈4
[

−1 + 2𝜉12 + Ω2 + 𝜇2Ω2 + 𝜇
(

−1 + 2Ω2)]];

𝑏3 = −64𝜈3𝜇𝜉1Ω7;

𝑏4 = 32𝜈4Ω5 [1 + 𝜇 − 2𝜉12 − (1 + 𝜇)2Ω2] ,

(23)

while the coefficients for �̈�𝑔 input are:

𝑏0 = −4Ω
(

𝜈2 (1 + 𝜇) − Ω2) (−Ω6 (−1 + 2𝜉12 + Ω2)+

+ 𝜈2Ω2 (𝜇 + 𝜇
(

−3 + 6𝜉12
)

Ω2 + 3𝜇Ω4 + 3Ω2 (−1 + 2𝜉12 + Ω2))+

+ 𝜈6 (1 + 𝜇)
(

−1 + 2𝜉12 + Ω2 + 𝜇2Ω2 + 𝜇
(

−1 + 2Ω2))+

− 𝜈4
(

𝜇 + 𝜇(−5 + 8𝜉12
)

Ω2 + 6𝜇Ω4 + 3Ω2 (−1 + 2𝜉12 + Ω2)+

𝜇2Ω2 (−2 + 3Ω2)));

𝑏1 = −16𝜈𝜇𝜉1Ω5 (3𝜈4(1 + 𝜇)2 − 4𝜈2 (1 + 𝜇) Ω2 + Ω4) ;

𝑏2 = −32𝜈6(1 + 𝜇)2Ω3 (−1 + 2𝜉12 + Ω2 + 𝜇2Ω2 + 𝜇
(

−1 + 2Ω2))+

+ 16𝜈4 (1 + 𝜇) Ω5(4
(

−1 + 2𝜉12 + Ω2) + 𝜇2 (−1 + 4Ω2)+

𝜇
(

−5 + 4𝜉12 + 8Ω2))+

− 8𝜈2Ω5(4Ω2(−1 + 2𝜉12 + Ω2) + 2𝜇(1 + (−4 + 8𝜉12)Ω2 + 4Ω4)+

𝜇2(1 + (−4 + 8𝜉12)Ω2 + 4Ω4));

𝑏3 = −128𝜈3𝜇(1 + 𝜇)2𝜉1Ω7;

𝑏4 = 64𝜈4(1 + 𝜇)2Ω5 (1 + 𝜇 − 2𝜉12 − (1 + 𝜇)2Ω2) .

(24)
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