
Fun Slot Machines and Transformations of Words
Avoiding Factors
Marcella Anselmo #

Dipartimento di Informatica, University of Salerno, Fisciano (SA), Italy

Manuela Flores #

Dipartimento di Informatica, University of Salerno, Fisciano (SA), Italy

Maria Madonia #

Dipartimento di Matematica e Informatica, University of Catania, Italy

Abstract
Fun Slot Machines are a variant of the classical ones. Pulling a lever, the player generates a sequence
of symbols which are placed on the reels. The machine pays when a given pattern appears in the
sequence. The variant consists in trying to transform a losing sequence of symbols in another one,
in such a way that the winning pattern does not appear in any intermediate step. The choice of
the winning pattern can be crucial; there are “good” and “bad” sequences. The game results in
a combinatorial problem on transformations of words avoiding a given pattern as a factor. We
investigate “good” and “bad” sequences on a k-ary alphabet and the pairs of words that witness
that a word is “bad”. A main result is an algorithm to decide whether a word is “bad” or not and to
provide a pair of witnesses of minimal length when the word is “bad”. It runs in O(n) time with a
preprocessing of O(n) time and space to construct an enhanced suffix tree of the word.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words; Theory of
computation → Design and analysis of algorithms; Theory of computation → Formal languages and
automata theory

Keywords and phrases Isometric words, Words avoiding factors, Index of a word, Overlap, Lee
distance

Digital Object Identifier 10.4230/LIPIcs.FUN.2022.4

Funding Partially Supported by INdAM-GNCS Project 2021, FARB Project ORSA218107 of
University of Salerno and TEAMS Project of University of Catania.

1 Introduction

Everybody knows what a slot machine is, some more, some less. In a simple model, there is
a screen where a certain number of symbols appears in a line. Every symbol is placed on
some reel that “spins” when the game is activated. The machine pays out according to the
pattern of symbols displayed when the reels stop spinning, e.g., whether or not it contains a
given factor. One of the first model was composed of three spinning reels containing a total
of five symbols each: horseshoes, diamonds, spades, hearts and a Liberty Bell; the bell gave
the machine its name. Three consecutive bells in a row produced the biggest payoff, ten
nickels. Later on, fruit symbols were placed on the reels besides the original bell to refer to
the fruit-flavoured gums offered.

Recently, the designers of the MMM company, leader in the field of fun machines, have
designed a new machine, called Fun Slot Machine, and they are evaluating the product. The
machine offers a variant to the usual game. After the player has pulled the lever twice without
having found the winning pattern, she/he can take the last two sequences of symbols that
have appeared - both of which do not contain the winning pattern - and try to transform the
first into the second, so that the pattern does not appear this time either in any intermediate
step. When the player succeeds, the slot machine pays a consolation prize. The game has

© Marcella Anselmo, Manuela Flores, and Maria Madonia;
licensed under Creative Commons License CC-BY 4.0

11th International Conference on Fun with Algorithms (FUN 2022).
Editors: Pierre Fraigniaud and Yushi Uno; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manselmo@unisa.it
mailto:mflores@unisa.it
mailto:madonia@dmi.unict.it
https://doi.org/10.4230/LIPIcs.FUN.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Fun Slot Machines

rules to follow. Only the symbols where the two sequences differ can be exchanged and
the exchange must be done step by step, following the sequence of symbols on the reels.
The MMM’s designers claim that this game is not just a gamble. There are “good” and
“bad” patterns, “good” and “bad” numbers of reels. They propose the following examples to
support their claim.

Suppose that the fun slot machine has 6 reels, each with 4 symbols on, A, C, T, G, which
stand for the favourite fruit flavours, Apricot, Cherry, Tamarind, and Grape. The symbols
are placed on each reel in this cyclical order A, C, T, G. Consider the case that the winning
pattern is AGAC and the displayed sequence is AGAAAC the first time and AGATAC the
second time. The player has lost both times, because AGAC has not appeared. Hence, the
player can try the variant to the game, that is, to transform AGAAAC in AGATAC so that
AGAC does not appear either. The sequences differ only in their fourth position, where
the first sequence contains A, while the second one T . In the first step, symbol A can be
swapped either in C or in G, its neighbourhoods on the reel. Unfortunately, for the player
(but not for the owner), in both cases AGAC will be displayed. There is no way to win in
this case.

The situation would have been different if the number of reels was 5, and not 6. If the
displayed sequences were AGAAA and AGATA, the exchange of A in the fourth position
to C, would have yield AGAC, but there is a winning transformation, AGAAA in AGAGA

and then in AGATA.
Consider now a different scenario. The symbols on the reels are as before, but the

winning pattern is AAA. Suppose there are 5 reels and the losing sequences are ACAGA

and AGATA. The player wants to transform ACAGA in AGATA, which differ in their
positions 2 and 4. The swap of G into T in the fourth position is safe, no AAA is displayed.
Then, there are two possibilities to swap C into G in the second position; either through A

or through T . While the first choice would display AAA, the second one would be winning;
the transformation of ACAGA in ACATA, then in ATATA and finally in AGATA, never
let AAA appear, and the player will gain the consolation prize. One can show (and we will
prove it in the sequel) that when the pattern is AAA, for any number of reels and any pairs
of losing sequences, the player has always a possibility to gain.

In some sense, the pattern AAA is “good”, because it always leaves a chance of winning,
while AGAC is “bad”, since, in some situations, it leaves no chance of winning. Now, the
question of the MMM’s designers is: how should the number of reels, the number and the
order of symbols on, and the winning pattern be chosen, whether I am a player or the owner
of the machine?

Bad and good sequences of symbols have been investigated in the literature. They were
introduced in the binary case, that is when only two symbols are available. A binary word
(i.e., a sequence of symbols in a finite set of two symbols) f is called d-good if for any pair of
words u and v of length d which do not contain the factor f , u can be transformed in v by
exchanging one by one the bits on which they differ and generating only words which do
not contain f . It is good if it is d-good for all d. A binary word f is bad if it is not good.
The index of a binary bad word is the threshold d from which the word is no longer d-good,
and a pair of words (u, v) showing that the word is not good is called a pair of witnesses for
the bad word. Recently, good and bad words have been considered in the case of larger sets
of symbols where they are referred to as isometric and non-isometric words; see [1], and [2]
on quaternary words. Also, binary bad words have been considered in the two-dimensional
setting, and bad pictures have been investigated [3].

M. Anselmo, M. Flores, and M. Madonia 4:3

The fun slot machine problem thus concerns transformations of words that avoid a given
factor. Actually, it is not only a problem in combinatorics of words. It can be stated as
a problem on some graphs, called k-ary n-cubes, introduced in [12], and their isometric
sub-graphs. More specifically, it concerns a problem on k-ary n-cube avoiding a k-ary word
f [2].

Let us mention such framework in this introduction, while it will be no more considered in
the rest of the paper. The k-ary n-cube, Qk

n, is a graph with kn vertices, each associated to
a word of length n over a k-ary alphabet identified with Zk = {0, 1, . . . , k − 1}. Two vertices
in Qk

n are adjacent whenever their associated words differ in exactly one position, and the
mismatch is given by two symbols x and y, with x = (y ± 1) mod k. Special cases include
rings (when n = 1), hypercubes Qn (when k = 2) and tori. They have been introduced in
[12], in the context of interconnection networks. The binary case (k = 2) has been extensively
investigated [6]. In order to obtain some variants of hypercubes such that the number of
vertices increases slower than in a hypercube, Hsu introduced Fibonacci cubes [7]. They
received a lot of attention afterwards (see [9] for a survey). These notions have been then
extended to define the generalized Fibonacci cube Qn(f) [8]. It is the subgraph of the
hypercube Qn obtained by considering only vertices associated to binary words that do not
contain a given word f as a factor. In this framework, a binary word f is good when, for
any n ≥ 1, Qn(f) can be isometrically embedded into Qn, and bad, otherwise [10]. More
generally, given a k-ary word f , the k-ary n-cube avoiding f , Qk

n(f), is obtained from Qk
n by

elimination of the vertices containing f as a factor. Good and bad words are investigated in
this more general setting in [2], where they are referred to as isometric and non-isometric
words.

Coming back to the fun slot machines, f represents the winning pattern, u and v the
displayed losing sequences, and their length is the number of reels. The goal is to find a
transformation of u in v that changes only the positions where u and v differ and f is never
displayed. If f is good then there is always a chance of winning. If it is bad, in the situation
where the number of reels is greater than or equal to the index, and u and v are witnesses
for f , then there is no chance of winning!

The main result in this paper is an algorithm to test whether a word is good or not.
Further, in case the word is bad, the algorithm provides its index and a pair of witnesses of
length equal to the index. Note that, when k > 4, no good word exists and any bad word has
index equal to its length [1]. Therefore, the computation of the index is given for k = 2, 3, 4.
It is based on the construction of the pairs of witnesses for f given in [1, 2] to show Theorem
4. The construction generalizes to k-ary words the one given for binary words in [13]. We
will revisit it, while highlighting some valuable features and adding some more results. We
will show that the index is the minimal length of the above constructed witnesses. Moreover,
the index of a quaternary word can be directly computed from the word, without going
through its binary representation, as it was in [2].

The algorithm presented in this paper runs in linear time and space, for k-ary words
(with k = 2, 3, 4). This complexity can be achieved thanks to a preprocessing of linear time
and space for computing the suffix tree of the word and enhancing it in order to answer
Lowest Common Ancestor (LCA) queries in constant time. An example of execution of the
algorithm is provided. The first part of the algorithm follows the one provided in a very recent
paper [4] to efficiently check whether a word is isometric. This algorithm is based on the
characterization in [2] and applies some methods of the pattern matching with mismatches.
Note that the algorithm in this paper not only checks whether a word is isometric, but it also
provides its index and a pair of witnesses of minimal length, while keeping the same linear

FUN 2022

4:4 Fun Slot Machines

complexity. A cubic time algorithm for the computation of the index and some related words
was given in [13] for binary words. The algorithm presented here works for k-ary words, with
k = 2, 3, 4, while improving the time complexity.

To conclude, observe that in the previously mentioned examples, AGAC is a bad word, 6
is its index, and AGAAAC and AGATAC are witnesses for AGAC; that’s why there is no
possibility of winning the game. On the other hand, AAA, or more generally a sequence of
(three) equal symbols, is good. Could it have been for this reason that, more than a century
ago, the Liberty Bell machine paid the maximum when three bells in a row were displayed?

2 Fun Slot Machines and Isometric Words

A Fun Slot Machine is composed of d reels that can spin in both directions. Each reel carries
k symbols, s1, s2, ... , sk. Let Σ be the set of all symbols, and s1, s2, ... , sk be the order in
which symbols follow in each reel. This means that when a reel is spinning in a clockwise
direction, si appears after si−1, for i = 2, ..., k, and s1 after sk; vice versa in the opposite
direction. The unique winning pattern is f of length n < d. The player inserts the coin and
then pulls the lever. The displayed sequence u of d symbols is called a word or string over Σ
of length d. The problem is whether the shorter word f is a factor of u or not. If f is not a
factor of u, we say that u is f -free or that u avoids the factor f .

Let us formalize the problem with the terminology of the combinatorics of words. First,
let us recall some preliminary notions.

Let Σ be an alphabet and |Σ| = k. Throughout the paper, Σ will be identified with
Zk = {0, 1, . . . , k − 1}, the ring of integers modulo k. A word (or string) f ∈ Σ∗ of length
n is f = x1x2 · · · xn, where x1, x2, . . . , xn are symbols in Σ. The set of words over Σ of
length n is denoted Σn. Let f [i] denote the symbol of f in position i, i.e. f [i] = xi. Then,
f [i..j] = xi · · · xj , for 1 ≤ i ≤ j ≤ n, is a factor of f . A word s ∈ Σ∗ is said f -free if it does
not contain f as a factor. The prefix of f of length l is prel(f) = f [1..l]; while the suffix of f

of length l is sufl(f) = f [n − l + 1..n]. When prel(f) = sufl(f) then prel(f) is referred to
as an overlap of f of length l.

Let u, v ∈ Σ∗ be two words of the same length. Then, the Hamming distance distH(u, v)
between u and v is the number of positions at which u and v differ. The Lee distance between
two words u, v ∈ Zn

k , u = x1 · · · xn and v = y1 · · · yn is

distL(u, v) =
n∑

i=1
min(|xi − yi|, k − |xi − yi|).

In the sequel, Σ will denote a generic alphabet of cardinality k, while ∆ to denote the
quaternary alphabet ∆ = {A, C, T, G}, referred to as the genetic alphabet. Symbols A and
T (C and G, resp.) will be called complementary symbols, in analogy to the Watson-Crick
complementary bases they represent. The alphabet ∆ will be identified with Z4, in such a
way that A, C, T , and G will be identified with 0, 1, 2, and 3, respectively. Therefore, pairs
of complementary symbols have Lee distance 2, whereas pairs of distinct non-complementary
symbols have Lee distance 1.

Let us now define what we have called “good” and “bad” word in the Introduction. To
be more precise and to avoid ambiguity with similar definitions in other papers, from now on,
“good” and “bad” words will be referred to as “Lee-isometric” and “Lee-non-isometric” words,
respectively. The definitions are based on the process of transforming a word in another one
of equal length, changing one symbol at a time.

M. Anselmo, M. Flores, and M. Madonia 4:5

f :

f :

f [i] f [j]
x y

x′ y′

f [r + i] f [r + j]
r l = n − r r

Figure 1 The word f and its 2-error overlap of length l.

Let f be a word in Σn. A Lee-transformation of length h from u to v is a sequence of words
w0, w1, . . . , wh such that w0 = u, wh = v, and for any i = 0, 1, · · · , h−1, distL(wi, wi+1) = 1.
The Lee-transformation is f-free if for any i = 0, 1, · · · , h, the word wi is f -free. The word
f ∈ Σn is Lee-isometric if for all d ≥ n, and f -free words u, v ∈ Σd, there is an f -free
Lee-transformation from u to v of length equal to distL(u, v). A word is Lee-non-isometric if
it is not Lee-isometric. Note that there exists an f -free Lee-transformation from u to v if
and only if there exists an f -free Lee-transformation from v to u.

A pair (u, v) of words u, v ∈ Σd is referred to as a pair of Lee-witnesses for f , if u and v

are f -free words and there does not exist an f -free Lee-transformation from u to v of length
equal to distL(u, v). If f is Lee-non-isometric then its Lee-index, denoted by IL(f), is the
shortest length d of u, v such that (u, v) is a pair of Lee-witnesses for f . The Lee-index of a
Lee-isometric word is defined ∞.

▶ Example 1. Let ∆ be the quaternary genetic alphabet, f = ACT , u = ACCCT , and
v = ACGCT . Observe that distL(u, v) = 2, since they differ in their third position only and
distL(C, G) = 2. The sequences ACCCT, ACACT, ACGCT and ACCCT, ACTCT, ACGCT

are two Lee-transformations from u to v of length equal to distL(u, v) = 2; they are not
f -free. Actually, no f -free Lee-transformation exists from u to v. This shows that ACT is
Lee-non-isometric and that (u, v) is a pair of Lee-witnesses for ACT .

Let us state the following definition (see Figure 1).

▶ Definition 2. Let Σ be a k-ary alphabet, f ∈ Σn, and q be an integer 1 ≤ q ≤ n. The word
f has a q-Lee-error overlap of length l, if distL(prel(f), sufl(f)) = q. Its shift is r = n − l;
its error positions are the m positions where prel(f) differs from sufl(f).

▶ Remark 3. Using the notations in the previous definition, if f has a q-Lee-error overlap of
length l, then m ≤ l, q. In particular, when k = 4 and q = 2, then m = 1 or m = 2. The case
m = 1 holds if prel(f) and sufl(f) differ in exactly one position and the error is given by a
pair of complementary symbols. For example, f = AGAC ∈ ∆4 has a 2-Lee-error overlap of
length l = 2. Indeed, m = 1 and distL(AG, AC) = 2.
If m = 2 then prel(f) and sufl(f) differ in two different positions i and j and the errors are
given by pairs of non-complementary symbols.

Next theorem, proved in [1, 2], provides a characterization of Lee-isometric words, which
is fundamental to test whether a word is Lee-isometric or not. Furthermore, it allows us to
restrict the investigation to k-ary alphabets with k = 2, 3, 4.

▶ Theorem 4 ([1, 2]). Let Σ be a k-ary alphabet and f ∈ Σ∗.
f is Lee-isometric if and only if it has no 2-Lee-error overlap, when k = 2, 3, 4
f is never Lee-isometric, when k > 4.

FUN 2022

4:6 Fun Slot Machines

The proof of Theorem 4 is constructive. In the case that k = 2, 3, 4 and f has a 2-Lee-
error overlap, the proof provides a pair of Lee-witnesses showing that f is Lee-non-isometric.
Applying Theorem 4, one can show that, when k = 2, 3, 4, the Lee-index of a Lee-non-isometric
word f satisfies n + 1 ≤ IL(f) ≤ 2n − 1 [2].

3 Computing the Lee-index of a Lee-non-isometric Word

The Lee-index of a “bad” word has been introduced as a threshold on the length of words that
witness the “badness” of the word. In this section, we are going to show how to compute the
Lee-index of a “bad” - actually, Lee-non-isometric - word. The results prove the correctness
of the algorithm in the next section.

Let Σ = {0, 1, . . . , k − 1}, f = f1f2 · · · fn be a word over Σ, u, v ∈ Σd be f -free words,
and h, j ∈ Σ. The reverse of f is fR = fn · · · f2f1. The h-shift of j is jS(h) = (j + h) mod k,
while the h-shift of f is fS(h) = f

S(h)
1 f

S(h)
2 · · · f

S(h)
n . When k = 2, the 1-shift of f is its

complement. Next result allows us to restrict the domain of strings to be studied.

▶ Lemma 5. Let Σ be a k-ary alphabet and f ∈ Σ∗. Then
f is Lee-isometric if and only if fR is Lee- isometric
for any h ∈ Σ, f is Lee-isometric if and only if fS(h) is Lee-isometric.

Proof. Suppose that f is Lee-isometric and let u, v ∈ Σd be fR-free words, for some
d ≥ n. Clearly, uR, vR ∈ Σd are f -free words and distL(uR, vR) = distL(u, v). Since f is
Lee-isometric, then there is an f -free Lee-transformation from uR to vR of length equal to
distL(uR, vR), say w0 = uR, w1, . . . , wh = vR. Since wi is f -free, for 1 ≤ i ≤ h, then wR

i is
fR-free, for 1 ≤ i ≤ h and wR

0 , wR
1 , . . . , wR

h is an fR-free Lee-transformation from u to v of
length equal to distL(u, v). The same reasoning applied to fR shows that the converse is
true, since (fR)R = f . The second claim can be proved by a similar reasoning, noting that,
for any u, v ∈ Σ∗, distL(u, v) = distL(uS(h), vS(h)) and that u is f -free if and only if uS(h) is
fS(h)-free. ◀

Let us show how to compute the Lee-index of a Lee-non-isometric k-ary word f . Recall
that, when k > 4, any word is Lee-non-isometric and its Lee-index is equal to its length
[1]. Therefore, from now on, all considerations are done only for alphabets of cardinality
k = 2, 3, 4. The computation of the Lee-index is based on the construction of the pairs of
witnesses for f given in [1, 2] to show Theorem 4. The construction generalizes to k-ary
words the one given for binary words in [13]. It will turn out that the Lee-index is the
minimal length of such witnesses. Let us revisit this construction of pairs of witnesses, while
highlighting some valuable features and adding some more results. First, let us state the
following notation. Refer to Figures 2 and 3 for the construction of αr, βr, ηr, and γr.

Notation. Let Σ be a k-ary alphabet and f ∈ Σn have a 2-Lee-error overlap of length l and
shift r = n − l. Let i, j, with 1 ≤ i ≤ j ≤ l, be error positions in f (possibly, i = j). Then,

f (i) is the word obtained from f replacing f [i] by f [r + i]
if r is even, t = j + r/2, and i ̸= j then f (j,t) is the word obtained from f replacing f [j]
with f [r + j], and f [t] by f [i]
f (i,−) is the word obtained from f replacing f [i] with (f [i] − 1) mod k

f (i,+) is the word obtained from f replacing f [i] with (f [i] + 1) mod k

αr(f) = prer(f)f (i) and βr(f) = prer(f)f (j)

α′r(f) = prer(f)f (i,−) and β′r(f) = prer(f)f (i,+)

if r is even, ηr(f) = prer(f)f (i)sufr/2(f)
if r is even, γr(f) = prer(f)f (j,t)sufr/2(f).

M. Anselmo, M. Flores, and M. Madonia 4:7

αr(f) :

βr(f) :

r n

x′ y

x y′

prer(f) f (j)

prer(f) f (i)

Figure 2 The words αr(f) and βr(f).

ηr(f) :

γr(f) :

r n r/2

x′ y z

x y′ x

prer(f) f (j,t)

prer(f) f (i)

sufr/2(f)

sufr/2(f)

Figure 3 The words ηr(f) and γr(f).

The words introduced in the previous notation will constitute the pairs of witnesses
for f . Note that such words are constructed in such a way to be f -free, unless for βr(f).
When βr(f) is f -free then (αr(f), βr(f)) is a pair of witnesses for f . Otherwise, it becomes
necessary to consider the other words as above introduced. It turns out that βr(f) contains
f as a factor if and only if the following Condition+ holds [2].

▶ Definition 6. Let Σ be a k-ary alphabet and f ∈ Σn have a 2-Lee-error overlap of
length l, shift r = n − l and error positions i, j, with 1 ≤ i < j ≤ l. We say that the
2-Lee-error overlap satisfies Condition+ if r is even, j − i = r/2, f [r + i] = f [r + j], and
f [i..i + r/2 − 1] = f [j..j + r/2 − 1].

Let us start considering the case k = 2, 3. In this case, the Lee distance of two words
coincides with the number of positions where they differ. Then, a 2-Lee-error overlap is given
by two distinct error positions. This is no more true when k = 4; the quaternary case will be
treated later.

Consider a Lee-non-isometric word f ∈ Σn, with |Σ| = k and k = 2, 3. Then, f has
a 2-Lee-error overlap. Actually, it may have more than one 2-Lee-error overlap. For any
2-Lee-error overlap, it is possible to construct a pair of witnesses for f as follows.

▶ Proposition 7 ([2]). Let f be a Lee-non-isometric k-ary word, k = 2, 3. Consider a 2-Lee-
error overlap of f , of length l, shift r = n − l, and error positions i, j, with 1 ≤ i < j ≤ l.

1. If the 2-Lee-error overlap does not satisfy Condition+ then (αr(f), βr(f)) is a pair of
witnesses for f

2. If the 2-Lee-error overlap satisfies Condition+ and 1 ≤ i ≤ r/2 then (ηr(f), γr(f)) is a
pair of witnesses for f

3. If the 2-Lee-error overlap satisfies Condition+ and i > r/2 then f has a 2-Lee-error
overlap of shift r′ > r, which does not satisfy Condition+ and (αr′(f), βr′(f)) is a pair
of witnesses for f .

Let us show some examples of the construction in Proposition 7 for a ternary and a
binary alphabet, respectively.

FUN 2022

4:8 Fun Slot Machines

▶ Example 8. Consider the ternary alphabet Σ = {0, 1, 2}. Let f = 021 ∈ Σ3. The word
f has a 2-Lee-error overlap of length 2; here n = 3, r = 1, and n − r = 2. Hence, f = 021
is Lee-non-isometric from Theorem 4. Following the proof of the same theorem, let us
exhibit a pair (α, β) of Lee-witnesses for f . We have that pre2(f) disagrees from suf2(f)
in positions i = 1 and j = 2, and f [i] = 0, f [j] = 2, f [r + i] = 2 and f [r + j] = 1. Then,
αr(f) = prer(f)f (i) = 0221 and βr(f) = prer(f)f (j) = 0011. The words αr(f) and βr(f) are
f -free words and distL(αr(f), βr(f)) = 2. Moreover, there is no f -free Lee-transformation
from αr(f) to βr(f) of length distL(αr(f), βr(f)) = 2. Indeed, if we replace αr(f)[2] with
βr(f)[2] = 0 then f occurs at position 2 of αr(f); if we replace αr(f)[3] with βr(f)[3] = 1
then f occurs at position 1.

▶ Example 9. Consider the binary alphabet B = {0, 1}. Let f = 0011 ∈ B4. The word f

has a 2-Lee-error overlap of length 2. Hence, f = 0011 is Lee-non-isometric from Theorem
4. Note that the 2-Lee-error overlap of f satisfies Condition+. Indeed, we have i = 1,
j = 2, r = 2, f [r + i] = f [3] = 1 = f [4] = f [r + j] and f [i] = 0 = f [j]. Therefore,
following the proof of Theorem 4 in the case that the 2-Lee-error overlap of f satisfies
Condition+ and 1 ≤ i ≤ r/2, let us set t = (r/2) + j = 3 and let us consider the two words
ηr(f) = prer(f)f (i)sufr/2(f) = 0010111 and γr(f) = prer(f)f (j,t)sufr/2(f) = 0001011. The
words ηr(f) and γr(f) are f -free words and distL(ηr(f), γr(f)) = 3. Moreover, there is no
f -free Lee-transformation from ηr(f) to γr(f) of length distL(ηr(f), γr(f)) = 3. Indeed, if we
replace ηr(f)[3] with γr(f)[3] = 0 then f occurs at position 3 of ηr(f); if we replace ηr(f)[4]
with γr(f)[4] = 1 then f occurs at position 1 and if we replace ηr(f)[5] with γr(f)[5] = 0
then f occurs at position 4.

Consider now the case of the quaternary alphabet ∆ = {A, C, T, G}.
The construction of a pair of witnesses for a Lee-non-isometric quaternary word f is

obtained in [2] referring to the binary representation of f . Actually, there is an isomorphism
between quaternary words and binary words of even length. It is given by the map which
associates to A, C, T, G the binary words 00, 01, 11, 10, respectively. Hence, a word f ∈ ∆n

will be possibly denoted as (f)4 to stress its belonging to the quaternary alphabet, while its
binary representation in {0, 1}2n will be denoted as (f)2. The correspondence preserves the
Lee distance.

Let (f)4 ∈ ∆n be a Lee-non-isometric word, r be the shift of a 2-Lee-error overlap of
(f)4 and m the number of its error positions. Recall that m = 1 or m = 2; see Remark 3.
Note that (f)2 has 2-Lee-error overlap of shift 2r. A pair of witnesses for (f)4 is obtained
in [1, 2] considering the pair of witnesses for (f)2, constructed as in Proposition 7, and
representing it in quaternary. Recall that (A)2 = 00, (C)2 = 01, (T)2 = 11, and (G)2 = 10.
For example, if the 2-Lee-error overlap of shift 2r of (f)2 fills case 1 of Proposition 7 then
(α2r((f)2), β2r((f)2)) is a pair of witnesses for (f)2. Thus, the quaternary representation of
this pair of witnesses for (f)2, that is ((α2r((f)2))4, (β2r((f)2))4), is a pair of witnesses for
(f)4.

Next proposition shows that, indeed, the pair of witnesses for (f)4 as just obtained from
a 2-Lee-error overlap can be directly constructed from (f)4, without going through its binary
representation. Therefore, let us simply denote by f the quaternary word. Example 11 shows
both constructions.

▶ Proposition 10. Let f be a Lee-non-isometric k-ary word, k = 4. Consider a 2-Lee-error
overlap of f , of length l, shift r = n − l, and error positions i, j, with 1 ≤ i ≤ j ≤ l (i = j if
m = 1).
1. If m = 1, then (α′r(f), β′r(f)) is a pair of Lee-witnesses for f .

M. Anselmo, M. Flores, and M. Madonia 4:9

2. If m = 2 then
a. if the 2-Lee-error overlap does not satisfy Condition+, then (αr(f), βr(f)) is a pair of

Lee-witnesses for f .
b. If the 2-Lee-error overlap satisfies Condition+ and i ≤ r/2, then (ηr(f), γr(f)) is a

pair of Lee-witnesses for f .
c. If the 2-Lee-error overlap satisfies Condition+ and i > r/2, then f has a 2-Lee-error

overlap of shift r′ > r, which does not satisfy Condition+ and (αr′(f), βr′(f)) is a
pair of Lee-witnesses for f .

Proof. Consider (f)2, the binary representation of f . Since f has a 2-Lee-error overlap
of shift r, then (f)2 has a 2-Lee-error overlap of shift 2r; let i, j, with i < j, be its error
positions.

In the case m = 1, we have that i = j and that f [i] and f [r + i] are two complementary
symbols. Moreover, we have s = 2i−1 and z = s+1 = 2i. Suppose f [i] = A and f [r + i] = T ;
the other cases can be treated analogously. We have (f)2[s] = 0, (f)2[2r + s] = 1, (f)2[z] = 0,
(f)2[2r + z] = 1. Therefore, the quaternary representation of (f)(s)

2 ((f)(z)
2 , resp.) coincides

with the word obtained from f by replacing the symbol A in position i with the symbol
G (C, resp.), that is ((f)(s)

2)4 = f (i,−) (((f)(z)
2)4 = f (i,+)), resp.). Moreover, pre2r((f)2),

represented in the quaternary alphabet, coincides with prer(f). Hence, (α2r((f)2))4 =
prer(f)f (i,−) and (β2r((f)2))4 = prer(f)f (i,+) In [2], it is proved that the quaternary
representation of (α2r((f)2), β2r((f)2)) is a pair of Lee-witnesses for f . Hence the thesis
follows.

In the case m = 2, we have that i < j, f [i] and f [r + i] (f [j] and f [r + j], resp.) differ
because of two non-complementary symbols.

a. If the 2-Lee-error overlap does not satisfy Condition+ then the quaternary representation
of (α2r((f)2), β2r((f)2)) is a pair of Lee-witnesses for f ; see [1]. Suppose f [i] = T ,
f [r + i] = C, f [j] = G and f [r + j] = A; the other cases can be treated analogously. We
have s = 2i − 1 and z = 2j − 1, (f)2[s] = 1, (f)2[2r + s] = 0, (f)2[z] = 1, (f)2[2r + z] = 0.
Therefore, (f)(s)

2 ((f)(z)
2 , resp.), represented in the quaternary alphabet, coincides with

the word obtained from f by replacing T (G, resp.) in position i (j, resp.) with C (A,
resp.), that is ((f)(s)

2)4 = f (i) (((f)(z)
2)4 = f (j), resp.). Moreover, pre2r((f)2), represented

in the quaternary alphabet, coincides with prer(f) and the thesis follows.
b. If the 2-Lee-error overlap of f of shift r satisfies Condition+ and i ≤ r/2 then the 2-Lee-

error overlap of (f)2 of shift 2r satisfies Condition+. The proof is given for f [i] = f [j] = A

and f [r + i] = f [r + j] = C; the other cases can be treated analogously. Then, s = 2i and
z = 2j. Since the 2-Lee-error overlap of f of shift r satisfies Condition+, then r is even,
j − i = r/2. Therefore, z −s = 2(j − i) = r is even and it is equal to the half of 2r, the shift
of the 2-Lee-error overlap of (f)2. Moreover, from f [r + i] = f [r + j] and f [i..i+r/2−1] =
f [j..j + r/2 − 1], it follows f [2r + s] = f [2r + z] and f [s..s + r − 1] = f [z..z + r − 1].
At last, i ≤ r/2, implies s ≤ r. In this case, from [1], η2r((f)2), γ2r((f)2), represented
in the quaternary alphabet, is a pair of Lee-witnesses for f . Recall that η2r((f)2) =
pre2r((f)2)(f2)(s)sufr/2((f)2) and γ2r((f)2) = pre2r((f)2)(f2)(z,t)sufr/2((f)2). Then,
((f)2)(s) will be obtained from (f)2 by replacing (f)2[s] = 0 with (f)2[2r + s] = 1.
Therefore, its quaternary representation coincides with the word obtained from f by
replacing A in position i with C, that is ((f)(s)

2)4 = f (i). Analogous considerations show
that (η2r((f)2))4 = prer(f)f (i)sufr/2(f) and (γ2r((f)2))4 = prer(f)f (j,t)sufr/2(f) and
the thesis follows.

c. This case can be treated as case a. ◀

FUN 2022

4:10 Fun Slot Machines

▶ Example 11. Let (f)4 = AGCT ∈ ∆∗ and, hence, (f)2 = 00100111 ∈ (B2)∗. Then, (f)4
has a 2-Lee-error overlap of length l = 1 and shift r = 3. In this case m = 1 and i = 1 is
the unique error position with (f)4[1] = A and (f)4[4] = T , that is the error is caused by
two complementary symbols. A pair of witnesses for (f)4 can be constructed from a pair
of witnesses for (f)2, as follows. Consider the 2-Lee-error overlap of (f)2 of even length
2l = 2 and shift 2r = 6. It is caused by two different error positions, s = 1 and z = 2, since
(f)2[1] = (f)2[2] = 0, while (f)2[7] = (f)2[8] = 1. Starting from this 2-Lee-error overlap
of (f)2, the pair (α6((f)2), β6((f)2)) of Lee-witnesses for (f)2 can be obtained. The pair is
composed of α6((f)2) = 00100110100111 and β6((f)2) = 00100101100111. In this case, the
2-Lee-error overlap of (f)2 does not satisfy Condition+, since z − s = 1 is different from
r = 3. Therefore, coming back to the quaternary representation, (α3(AGCT), β3(AGCT)) =
(AGCGGCT, AGCCGCT) is a pair of Lee-witnesses for (f)4.
On the other hand, this pair of witnesses for AGCT can be directly constructed from AGCT ,
without going through the binary representation. Following Proposition 10 in the case
m = 1, α3(f) = pre3(f)f (1,−), β3(f) = pre3(f)f (1,+). Observe that f (1,−) = GGCT and
f (1,+) = CGCT . Hence, α3(f) = pre3(f)f (1,−) = AGCGGCT and β3(f) = pre3(f)f (1,+) =
AGCCGCT . Finally, (α3(AGCT), β3(AGCT)) = (AGCGGCT, AGCCGCT) is the same
pair of Lee-witnesses for (f)4, as previously computed using the binary representation.

Let us come back to the computation of the Lee-index in the general case of a k-ary
word with k = 2, 3, 4. Proposition 14 proves that the Lee-index is the minimal length of the
Lee-witnesses as constructed in Propositions 7 and 10.

▶ Remark 12. Let f ∈ Σ∗ and let u, v ∈ Σ∗ be two f -free words. Consider any f -free
Lee-transformation from u to v of length equal to distL(u, v). Then, only symbols in the
positions where u and v differ are modified in this transformation. Moreover, at each step of
the Lee-transformation, a symbol x can be replaced by y only if distL(x, y) = 1. Hence, each
position i such that distL(u[i], v[i]) = d is replaced exactly d times.

▶ Remark 13. Let f ∈ Σ∗ be a Lee-non-isometric word and (u, v) be a pair of Lee-witnesses
for f with u, v ∈ Σd be f -free words. Let h = distL(u, v) and suppose h to be minimal. Let
V = {i1, i2, . . . , im}, with 1 ≤ i1 < i2 < · · · < im ≤ d, be the set of all the positions where u

and v differ; m ≤ h. Consider a Lee-transformation of length h, u = w0, w1, . . . , wh = v.
Then, for any j = 1, 2, . . . , h − 1, wj has f as a factor. Moreover, for any error position i ∈ V ,
and any Lee-transformation of u in v of length h which starts changing u[i] (cfr. Remark 12),
the word obtained after this first replacement contains an occurrence of f including position
i.

▶ Proposition 14. Let f be a Lee-non-isometric k-ary word, k = 2, 3, 4. Then, the Lee-index
of f , IL(f), is the minimum length of words αr(f), ηr(f), or α′r(f), as appropriate, where r

is taken over the shifts of all 2-Lee-error overlaps of f .

Proof. Let f be a Lee-non-isometric k-ary word and |f | = n. Let (u, v) be the pair of
witnesses of minimal distance dL(u, v) among all witnesses of minimal length. Note that
(u, v) is also of minimal distance. Then, IL(f) = |u|. Let V be the set of all error positions.
The minimality of the distance of u and v implies that, when changing in u the symbol in any
position i ∈ V , as in a Lee-transformation from u to v, then an occurrence fi of f appears
as a factor; see Remark 13. This fi covers i and another error position (the same, if |V | = 1).
The minimality of the length of u implies that the occurrences of fi for all i ∈ V completely
cover u. Hence, let fi1 be the occurrence that covers position 1 and fi2 be the occurrence
that covers position n.

M. Anselmo, M. Flores, and M. Madonia 4:11

If fi1 and fi2 contain both positions i1 and i2, then f has a 2-Lee-error overlap of shift
r = |u| − n and error positions i1 and i2. Then, u will eventually be αr(f), α′r(f), βr(f), or
β′r(f), and the claim is proved.

Otherwise, there is another error position i3 ∈ V and a corresponding intermediate
occurrence fi3 of f . Each occurrence of f must contain two of these error positions. Observe
that if an occurrence of f contains the first and the last error position (in non-decreasing
order) then it also contains the second one. Then, there are two occurrences of f , say fi and
fj which contains both error positions i and j; note that i and j cannot be the first and the
last error position in this case. Then f has a 2-Lee-error overlap with error positions i and j;
let r be its shift. Consider the pair (αr(f), βr(f)), if i ̸= j, or (α′r(f), β′r(f)), if i = j. The
length of such words is strictly less than |u|. Then, this pair cannot be a pair of witnesses
for f , because of the minimality of the length of u. This means that βr(f) (β′r(f), resp.) is
not f -free. Hence, Condition+ holds for the 2-Lee-error overlap with shift r and f occurs
at position r/2 in βr(f) (β′r(f), resp.). Further, the shortest pair of witnesses that can be
constructed in such situation with three occurrences of f covering u is (ηr(f), γr(f)) and
finally u = ηr(f) or u = γr(f). ◀

Proposition 14 suggests to compute the Lee-index of a word considering all its 2-Lee-error
overlaps, obtaining for each 2-Lee-error overlap the corresponding pair of witnesses as in
Proposition 7 (if k = 2, 3) or in Proposition 10 (if k = 4), and then computing the minimal
length of a so obtained witness. The algorithm in next section will analyse the possible
2-Lee-error overlaps in increasing order of their shift. Nevertheless, note that it is not possible
to stop at the first found 2-Lee-error overlap. The 2-Lee-error overlap that corresponds to
the witnesses of minimal length can be a subsequent one, as shown in Example 15.

▶ Example 15. Consider the ternary alphabet Σ = {0, 1, 2}. For any h ≥ 0, let w = 2h

and f = 0w0w1w1, with |f | = n = 3h + 4. It can be observed that, for any h ≥ 0, f

has two 2-Lee-error overlaps, one of length h + 2, for which dL(0w0, 1w1) = 2 and one
of length h + 1, for which dL(w0, 1w) = 2. Then, for any h ≥ 0, f is Lee-non-isometric
applying Theorem 4. The first pair of Lee-witnesses for f can be constructed starting from
the 2-Lee-error overlap of length l = h + 2 and shift r = n − l = 2h + 2, following the proof of
Theorem 4. This overlap satisfies Condition+ and the corresponding pair of Lee-witnesses
for f is (ηr(f), γr(f)), with ηr(f) = 0w0w(1w0w1w1)w1 and γr(f) = 0w0w(0w1w0w1)w1.
The length of this pair of Lee-witnesses is |ηr(f)| = |γr(f)| = 6h + 7. The second pair of
Lee-witnesses for f can be constructed starting from the 2-Lee-error overlap of length h + 1,
following the proof of Theorem 4 again. This overlap does not satisfies Condition+ and the
corresponding pair of Lee-witnesses for f is (αr(f), βr(f)), with αr(f) = 0w0w1(2w0w1w1)
and βr(f) = 0w0w1(02h−110w1w1). The length of this pair of Lee-witnesses is |αr(f)| =
|βr(f)| = 5h + 7. Thus, the 2-Lee-error overlap that corresponds to the witnesses of minimal
length is the second one and then it provides the Lee-index IL(f) = 5h + 7.

4 The Algorithm

In this section, the results provided in Section 3 are applied to design an algorithm that
computes the Lee-index of a word and yields a pair of Lee-witnesses of minimal length.
It is assumed that Σ is a k-ary alphabet, with k ≤ 4 and f ∈ Σ∗ is a finite sequence
f [0]f [1] · · · f [n − 1] of symbols in Σ, where n is the length of f and f [i]’s are its symbols.
Note that now the indices of f start from 0, and not 1, in view of an implementation of the
algorithm in the main programming languages. Recall that if f is Lee-isometric then its

FUN 2022

4:12 Fun Slot Machines

Lee-index is ∞, else it is the minimal length of two words u, v, such that (u, v) is a pair of
Lee-witnesses for f . Observe that an algorithm to compute the Lee-index and its witnesses
is given for binary alphabet in [13]; it runs in O(n3) time. The algorithm designed in this
section runs in O(n) time and space. Finally, note that this algorithm can be easily modified,
without changing its complexity, to compute the index and related witnesses of a word,
referring to Hamming distance, as considered, for example, in [13], or to other distances,
instead of Lee one.

Let us sketch an algorithm which inputs a k-ary non-empty word f of length n, with
k = 2, 3, 4, and outputs an integer I, that is the Lee-index of f , and a pair (u, v) of Lee-
witnesses for f of length I. Its pseudo-code is given by Algorithm 1 and an example follows.
The algorithm starts looking for all 2-Lee-error overlaps of f and saving them into a list.
This is done by function TwoErrorOverlaps which can be computed in time and space
O(n), thanks to a preprocessing step which uses an enhanced suffix tree to answer Lowest
Common Ancestor (LCA) queries in constant time. If there are not 2-Lee-error overlaps,
then the algorithm sets the Lee-index I to ∞. Otherwise, for each 2-Lee-error overlap, it
constructs a pair of Lee-witnesses calling the function WitnessesConstructor. According
to Propositions 7 and 10, the construction depends on whether the Condition+ is satisfied;
function CondPlus checks this. Then, it outputs the Lee-index I as the minimal length
of all these pairs of Lee-witnesses, following Proposition 14. It also outputs a pair (u, v) of
Lee-witnesses of length I. Note that the Lee-index of f is upper bounded by IL(f) ≤ 2n − 1
in [2]; then I can be initialized as I = 2n (in Line 6). Since the 2-Lee-error overlaps are at
most n − 1 , there are O(n) calls to WitnessesConstructor, each running in time O(1).
The overall time and space complexity of Algorithm 1 is thus O(n).

▶ Proposition 16. Let Σ be a k-ary alphabet, with k ≤ 4 and f ∈ Σn be a non-empty word
of length n. The Lee-index of f and a pair of Lee-witnesses of minimal length for f can be
computed in time O(n) with additional O(n) space.

Proof. Let us analyse the main functions in Algorithm 1.
TwoErrorOverlaps inputs the word f and outputs all lengths of its 2-Lee-error overlaps
in the list 2eolens and all corresponding error positions in the list allerrpos. It is similar
to Algorithm 3 in [4], with the difference that Algorithm 3 in [4] checks only if a word f

has at least one 2-Lee error overlap, while this function finds all 2-Lee error overlaps of
f and stores their lengths in the list 2eolens. Further, it stores all corresponding error
positions in the list allerrpos, which is, therefore, a list of lists. It is based on a technique
called the Kangaroo method [5, 11], used in designing efficient pattern matching with
mismatches algorithms. It computes the number of mistakes in a given alignment by
“jumping” from one error to the next. It allows to check, for a given position i in f ,
whether f has a 2-Lee-error overlap of length n − i in time O(1). To do this, it first
computes in time and space O(n) the suffix tree of f enhanced to answer to Lowest
Common Ancestor (LCA) queries in time O(1). A call to LCA(i, j) returns the length of
the longest common prefix between the suffix of f starting from position i and the one
starting from position j. The function TwoErrorOverlaps checks whether the suffix
starting at i has two mismatches with its prefix of the same length. It uses a variable l

which gives the length of the current overlap and a variable d which contains the current
Lee distance. They are increased when a mismatch has been found. Since there are at
most two LCA queries for a given i, this can be done in O(1) time. Thus, the time and
space complexity of TwoErrorOverlaps is O(n).

M. Anselmo, M. Flores, and M. Madonia 4:13

Algorithm 1 Computing the Lee-index and Lee-witnesses for f .

Input: a k-ary non-empty word f of length n, with k ≤ 4
Output: an integer I, Lee-index of f , and a pair of words (u, v), Lee-witnesses for f of length I

1 (2eolens, allerrpos)← TwoErrorOverlaps(f);
2 (u, v)← (empty, empty);
3 if 2eolens is empty then
4 I ←∞;
5 else
6 I ← 2(len(f));
7 for i← 0 to len(2eolens)− 1 do
8 (utmp, vtmp)← WitnessesConstructor(f, 2eolens[i], allerrpos[i]);
9 if len(u) < I then

10 I ← len(u);
11 (u, v)← (utmp, vtmp);
12 return I, (u, v);

13 function TwoErrorOverlaps(f):
14 (2eolens, allerrpos, n)← ([], [], len(f));
15 for i← 1 to n− 1 do
16 (l, d, allerrpostmp)← (0, 0, []);
17 while d ≤ 2 do
18 l← l + LCA(l, i + l);
19 if l < n− i then
20 allerrpostmp.append(l + 1);
21 if d = 2 and l = n− i then
22 2eolens.append(l);
23 allerrpos.append(allerrpostmp);
24 if d < 2 and l < n− i then
25 l← l + 1;
26 d← d + dL(f [l], f [i + l]);
27 else
28 BREAK
29 return (2eolens, allerrpos);
30 end function

31 function WitnessesConstructor(f, l, errpos):
32 (n, r, i)← (len(f), n− l, errpos[0]);
33 if len(errpos) = 1 then
34 (falfa1, fbeta1)← (f, f);
35 alfa1[i] = (falfa1[i]− 1) mod 4;
36 beta1[i] = (fbeta1[i] + 1) mod 4;
37 u← prer(f) + falfa1;
38 v ← prer(f) + fbeta1;
39 else
40 j ← errpos[1];
41 cplus← CondPlus(f, r, errpos[0], errpos[1]);
42 if cplus = False then
43 (falfa, fbeta)← (f, f);
44 falfa[i] = f [r + i];
45 fbeta[j] = f [r + j];
46 u← prer(f) + falfa;
47 v ← prer(f) + fbeta;
48 else
49 if i ≤ r/2 then
50 (feta, fgamma)← (f, f);
51 feta[i] = f [r + i];
52 fgamma[j] = f [r + j];
53 fgamma[r/2 + j] = f [i];
54 u← prer(f) + feta;
55 v ← prer(f) + fgamma;
56 return (u, v);
57 end function

58 function CondPlus(f, r, i, j):
59 (cond1, cond2, cond3)← (False, False, False);
60 if r mod 2 = 0 then
61 if j − i = r/2 then
62 cond1← True;
63 if f [r + i] = f [r + j] then
64 cond2← True;
65 if LCA(i, j) ≥ r/2 then
66 cond3← True;

67 return (cond1 and cond2 and cond3);
68 end function

FUN 2022

4:14 Fun Slot Machines

WitnessesConstructor inputs the word f , the length l of a 2-Lee error overlap of f , its
corresponding error positions in the list errpos and outputs a pair (u, v) of Lee-witnesses
for f . This function constructs the pair (u, v), according to Proposition 10, in two different
ways, following that the 2-Lee-error overlap is caused by two complementary symbols
(i.e., m = 1 and the list errpos has only one element) or by two non-complementary
symbols (i.e., m = 2 and the list errpos has two elements). Note that the first case may
occur only if the alphabet cardinality is k = 4. In this case, the function constructs u by
appending to the prefix of f of length r = n − l the word f (i,−) as defined in the list of
Notation given in Section 3. Similarly, it constructs v, this time appending f (i,+). The
second case follows case m = 2 in Proposition 10. It has other two subcases following
that the function CondPlus returns False or True. In the first subcase, the pair (u, v)
may be constructed according to case 2.a of Proposition 10. In the second case, if i ≤ r/2,
it may be constructed as case 2.b. Otherwise, it is case 2.c, and there is nothing else to
do because it is proved that f always has another 2-Lee-error overlap of (even) length
smaller than l, and thus the pair (u, v) will be constructed as in case 2.a in a subsequent
call of the function. Since CondPlus runs in O(1) time, all these instructions can be
executed in constant time. Thus, the time complexity of WitnessesConstructor is
O(1).
CondPlus inputs the word f , the integers r, i and j, where i and j are the error
positions in the 2-Lee-error overlap of shift r. This function outputs True if Condition+

is verified, False, otherwise. Recall that Condition+ is defined in the list of Notation in
Section 3. Note that Condition+ may be True only if r is even. If r is even, then the
function checks the other conditions in cond1, cond2, and cond3. In particular, cond3
is True iff f [i..i + r/2 − 1] = f [j..j + r/2 − 1]. This check is done in O(1) time testing
if LCA(i, j) ≥ r/2, rather than in O(r) time comparing all the symbols. Thus, all the
instructions of CondPlus can be done in O(1) time.

In summary, the overall time complexity of Algorithm 1 can be obtained as the sum of the
cost of TwoErrorOverlaps and at most n−1 times the cost of WitnessesConstructor.
Thus, it is O(n) + O(n) = O(n). The space complexity of Algorithm 1 is due to
TwoErrorOverlaps, thus it is O(n). ◀

▶ Example 17. Let us run Algorithm 1 to compute the Lee-index and a pair of Lee-witnesses
for f = f [0]f [1] · · · f [5] = AGATAC. It starts calling the function TwoErrorOverlaps
with input f = AGATAC. This function finds two 2-Lee-error overlaps. The first one is of
length 4, where the errors are in positions 1, 3 and are caused by non-complementary symbols;
in fact, f [1] = G ≠ f [3] = T and f [3] = T ̸= f [5] = C. The second one is of length 2, and
has a unique error position 1; in fact, f [1] = G ̸= f [5] = C and further distL(G, C) = 2, since
G and C are complementary symbols. Thus, TwoErrorOverlaps outputs 2eolens = [4, 2]
and allerrpos = [[1, 3], [1]].

Then, coming back to Line 3 of the main algorithm, because 2eolens is not empty, the
algorithm initializes the output variable I = 12. For i = 0 to 1 the algorithm calls twice the
function WitnessesConstructor.

The first call takes as input (AGATAC, 4, [1, 3]) and sets n = 6, r = 2, i = 1. Because
len(errpos) = 2, then j = 3 and cplus = False after calling CondPlus(AGATAC, 2, 1, 3).
Thus, the function WitnessesConstructor computes and outputs u = AGATATAC and
v = AGAGACAC, obtained as αr(f) and βr(f); they have two error positions containing
non-complementary symbols. Since len(u) = 8 < I = 12, the algorithm updates I = 8 and
(u, v) = (AGATATAC, AGAGACAC).

M. Anselmo, M. Flores, and M. Madonia 4:15

The second call to WitnessesConstructor takes as input (AGATAC, 2, [1]) and sets
n = 6, r = 4, i = 1. Because len(errpos) = 1, then the function outputs u = AGATAAATAC

and v = AGATATATAC, obtained as αr(f) and βr(f); they have one error position
containing complementary symbols. Since len(u) = 10 is greater then I = 8 the algorithm
does not update neither I nor (u, v).

Therefore, the main algorithm outputs the Lee-index I = 8 and the pair of Lee-witnesses
(u, v) = (AGATATAC, AGAGACAC).

References
1 Marcella Anselmo, Manuela Flores, and Maria Madonia. On k-ary n-cubes and isomet-

ric words. Preprint, 2021. URL: https://docenti.unisa.it/uploads/rescue/385/8179/
afm-k-aryisometricwords.pdf.

2 Marcella Anselmo, Manuela Flores, and Maria Madonia. Quaternary n-cubes and isometric
words. In Thierry Lecroq and Svetlana Puzynina, editors, Combinatorics on Words, pages
27–39, Cham, 2021. Springer International Publishing.

3 Marcella Anselmo, Dora Giammarresi, Maria Madonia, and Carla Selmi. Bad pictures:
Some structural properties related to overlaps. In Galina Jirásková and Giovanni Pighizzini,
editors, DCFS 2020, volume 12442 of Lect. Notes Comput. Sci., pages 13–25. Springer, 2020.
doi:10.1007/978-3-030-62536-8_2.

4 Marie-Pierre Béal and Maxime Crochemore. Checking whether a word is hamming-isometric
in linear time. arXiv preprint arXiv:2106.10541, 2021.

5 Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches. ACM SIGACT
News, 17(4):52–54, 1986.

6 Frank Harary, John P. Hayes, and Horng-Jyh Wu. A survey of the theory of hypercube
graphs. Computers & Mathematics with Applications, 15(4):277–289, 1988. doi:10.1016/
0898-1221(88)90213-1.

7 W. . Hsu. Fibonacci cubes-a new interconnection topology. IEEE Transactions on Parallel
and Distributed Systems, 4(1):3–12, 1993. doi:10.1109/71.205649.

8 Aleksandar Ilić, Sandi Klavžar, and Yoomi Rho. Generalized fibonacci cubes. Discrete
Mathematics, 312(1):2–11, 2012. doi:10.1016/j.disc.2011.02.015.

9 Sandi Klavžar. Structure of fibonacci cubes: A survey. Journal of Combinatorial Optimization,
25, May 2013. doi:10.1007/s10878-011-9433-z.

10 Sandi Klavžar and Sergey V. Shpectorov. Asymptotic number of isometric generalized
Fibonacci cubes. Eur. J. Comb., 33(2):220–226, 2012.

11 Gad M. Landau and Uzi Vishkin. Efficient string matching in the presence of errors. In 26th
Annual Symposium on Foundations of Computer Science, pages 126–136. IEEE, 1985.

12 Weizhen Mao and David M. Nicol. On k-ary n-cubes: theory and applications. Discrete
Applied Mathematics, 129(1):171–193, 2003. doi:10.1016/S0166-218X(02)00238-X.

13 Jianxin Wei. The structures of bad words. Eur. J. Comb., 59:204–214, 2017.

FUN 2022

https://docenti.unisa.it/uploads/rescue/385/8179/afm-k-aryisometricwords.pdf
https://docenti.unisa.it/uploads/rescue/385/8179/afm-k-aryisometricwords.pdf
https://doi.org/10.1007/978-3-030-62536-8_2
https://doi.org/10.1016/0898-1221(88)90213-1
https://doi.org/10.1016/0898-1221(88)90213-1
https://doi.org/10.1109/71.205649
https://doi.org/10.1016/j.disc.2011.02.015
https://doi.org/10.1007/s10878-011-9433-z
https://doi.org/10.1016/S0166-218X(02)00238-X

	1 Introduction
	2 Fun Slot Machines and Isometric Words
	3 Computing the Lee-index of a Lee-non-isometric Word
	4 The Algorithm

