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SecureBallot: A Secure Open Source e-Voting System

Vincenzo Agatea, Alessandra De Paolaa,b , Pierluca Ferraroa, Giuseppe Lo Rea,b , Marco Moranaa,b

aDepartment of Engineering, University of Palermo
bCybersecurity National Lab CINI - Consorzio Interuniversitario Nazionale per l'Informatica

Abstract

Voting is one of the most important acts through which a community can make a collective decision. In recent years,
many works have focused on improving traditional voting mechanisms and, as a result, a wide range of electronic voting
(e-Voting) systems have been proposed. Even though some approaches have achieved a proper level of usability, the
main challenges of e-Voting are essentially still open: protect the privacy of participants, guarantee secrecy, anonymity,
integrity, uniqueness, and authenticity of votes, while making e-Voting as trustful as voting. In order to address this
issue, we present SecureBallot, a secure open-source e-Voting system that completely decouples the voter identi�cation
and voting phases by means of proven cryptographic technologies. The e�ectiveness of SecureBallot is demonstrated
both theoretically, by presenting a formal veri�cation of the whole protocol and assessing the security properties of its
software components, and practically, by proposing a case study of university elections that contains all the challenges
of a generic voting process.

Keywords:
e-Voting, Privacy, Data Security

1. Introduction

In democratic countries, elections are the fundamental
mechanism for citizens to express their opinions and choose
their representatives. Since ancient times, voting systems
have been the basis of decision-making within commu-
nities, inevitably re�ecting all societal changes. Indeed,
starting with the counting of raised hands or pebbles, in
ancient Greece, voting systems evolved by introducing vot-
ing booths, paper ballots, punch cards and optical scan-
ning machines.

All these changes were aimed at improving the e�ciency
and security of voting operations. In the modern days,
cyber security techniques can provide a valuable contri-
bution by making the whole process fully transparent and
veri�able, speeding up the voting and counting operations,
ensuring the privacy of users, as well as guaranteeing the
integrity of votes.

Although the terms e-Election and e-Voting are some-
times used interchangeably, they have distinct meanings,
as de�ned by Meier (2012). The former refers to the over-
all electronic procedure for electing representatives of a
community; conversely, e-Voting denotes a generic elec-
tronic procedure used by people to express their opinion
on various topics, whether major or minor.

Email addresses: vincenzo.agate@unipa.it
(Vincenzo Agate), alessandra.depaola@unipa.it (Alessandra De
Paola), pierluca.ferraro@unipa.it (Pierluca Ferraro),
giuseppe.lore@unipa.it (Giuseppe Lo Re),
marco.morana@unipa.it (Marco Morana)

In addition to increased reliability and cost savings, e-
Voting systems can be easily designed to provide support
to users (such as voice assistance for visually impaired peo-
ple) and to achieve better scalability for large elections.

However, despite their undoubted advantages, the use
of e-Voting in real elections is still under debate (Avgerou
et al., 2019; Tonkiss, 2009; Alvarez et al., 2011; Falleti
and Lynch, 2009). The adoption of an e-Voting system,
in fact, involves several challenges. Among these, one of
the most relevant is to authenticate users, so that only
those entitled to vote can do so, while simultaneously pre-
serving their anonymity, thus ensuring complete privacy
and secrecy of votes. To satisfy both of these con�icting
goals, any connection between voters and their vote must
be prevented.

Apart from technological challenges, gaining the trust
of voters seems to be one of the most di�cult problems
to solve. Considering the decisive in�uence of elections
on the a�airs of a community, it is understandable why
people are reluctant to changes, and how they are wary of
anything they cannot directly monitor and verify. After
all, if traditional voting systems have been in place for
centuries, why should we change them now?

For this reason, considering that users' positive percep-
tion of a system is essential, our aim is to create an e-
Voting system that maintains desirable characteristics of
traditional elections, improving their security and usabil-
ity. For example, we decided to retain the necessity of
voting at a physical polling station, albeit digitally. This
allows us to employ certi�ed sta� members that act as
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election officials who securely authenticate users, as well
as ensuring the proper running of all voting operations.
On the other hand, the use of an electronic system allows
voters to freely choose the polling station where to cast
their preferences. Such an operation would be very diffi-
cult in a traditional system, due to the lack of a central
database that keeps track of who has already voted.

To this end, we propose SecureBallot, a secure open
source e-Voting system that leverages state-of-the-art
cryptographic techniques to protect the privacy of partici-
pants and guarantee secrecy, anonymity, integrity, unique-
ness and authenticity of votes. SecureBallot exploits a new
security protocol that ensures all the above requirements
and, at the same time, lets us adopt technologies that are
familiar to users. This, in turn, increases their confidence
in the system and in the concept of e-Voting on the whole,
as we will show in the remainder of the paper. We also test
the validity of our system both theoretically, analyzing its
security properties, and practically, through an extensive
case study of real elections.

A distinctive characteristic of SecureBallot is being open
source. We argue that one of the key reasons for distrust-
ing current e-Voting systems is that many existing solu-
tions are based on proprietary software, which cannot be
analyzed nor verified. On the contrary, open source soft-
ware can be accessed by anyone interested, whether they
are cyber security experts or simple users. We think this
is especially important for e-Voting systems, given their
unique characteristics, as discussed in (Moynihan, 2004).
For this reason, we decided to release the source code of our
e-Voting system, as well as the encryption scheme, making
them publicly available. The code is freely accessible on
GitHub, on our repository1. As a consequence, SecureBal-
lot gets three main benefits: better security, transparency,
and the ability to tailor the system to specific demands. It
is well known that security through obscurity is not a good
policy to adopt. If the security of an e-Voting scheme de-
pends on the secrecy of its protocol, which is then disclosed
to the public, the damage is irreparable. On the contrary,
if a cryptographic scheme is secure despite being publicly
known, it is much more reliable. In addition, transparency
means that open source code can be analyzed by secu-
rity experts from all over the world, who can find bugs
much faster, inevitably leading to a more secure system.
Even those who are unable to verify the code personally,
feel more reassured that the community can continuously
monitor and improve the development of the system.

Finally, as a result of being open source, SecureBallot is
easily extensible and adaptable to the particular needs of
different communities. Considering that voting procedures
may vary even drastically, in different contexts, the ability
to easily modify the voting system is very important and
makes SecureBallot reusable in a wide variety of scenarios.

As stated above, one of the biggest challenges in design-
ing e-Voting systems is preserving voters’ privacy. Our

1https://github.com/ndslab-unipa/SecureBallot

system strictly separates the identification phase from
the voting itself, so that no information about voters is
stored or collected in any way. To this aim, we adopt
a token-based approach (Sampigethaya and Poovendran,
2006; Agate et al., 2020), introducing the idea of virtual
users: polling stations randomly assign temporary iden-
tities to users, allowing them to vote in one of the avail-
able voting booths, which is also randomly chosen. Vir-
tual users’ tokens are constantly reused for different voters,
thus ensuring their privacy.

In order to extensively test our system we have chosen
university elections as a case study. This allowed us to
evaluate the system with different types of elections, in-
volving a variable number of participants, under increas-
ingly challenging conditions. Indeed, elections in a univer-
sity context often involve heterogeneous groups of partic-
ipants, from students to faculty and staff members. We
think that universities are an excellent testing ground for
an e-Voting system, since the digitization of voting oper-
ations would bring many benefits and, at the same time,
the desire to experiment new ways of voting is greater in
universities than in other contexts. This is especially true
today, given the Covid-19 pandemic that has led many
universities to perform lectures, exams and even gradua-
tion cerimonies remotely, exploiting video conference plat-
forms. Given the novel and increasingly urgent necessities
that society has to address in the present times, the use of
an e-Voting system in a university context may represent
an important step forward, and we remark the relevance
of experiments carried out in this scenario.

All this motivates our work and results in the following
novel contributions.

ˆ We propose SecureBallot, a secure e-Voting system
that completely separates the voter’s identification
and voting phases, exploiting well-known and well-
tested security technologies that are familiar to users.

ˆ We introduce a novel secure protocol that guaran-
tees secrecy, anonymity, integrity, uniqueness and au-
thenticity of votes, while using state-of-the-art cryp-
tographic techniques to protect the privacy of users
and ensure the secrecy of votes.

ˆ We formally demonstrate the security of the pro-
posed protocol by using an automatic tool (namely
Casper/FDR), to verify several security properties
such as secrecy and privacy of voting packets and the
mutual authentication between parties involved in the
protocol.

ˆ We have tested SecureBallot thoroughly in the sce-
nario of university elections, in increasingly challeng-
ing conditions. Our system has been extensively used
during a period of six months at the University of
Palermo, both on mock and real elections.

ˆ We have collected and analyzed feedback from hun-
dreds of heterogeneous users across multiple univer-
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sity elections, by administering special questionnaires
to voters.

ˆ We have released the source code of SecureBallot,
which is publicly available and can be tested by se-
curity experts.

The remainder of the paper is organized as follows. Re-
lated work is outlined in Section 2. The system architec-
ture is described in Section 3, while the security properties
of SecureBallot are discussed in Section 4. Section 5 gives
details of our e-Voting system, analyzing the operations
performed before, during and after the voting procedure.
A formal verification of SecureBallot is proposed in Sec-
tion 6. We present the case study of university elections
in Section 7. In Section 8, we discuss the scalability of Se-
cureBallot in the case of large elections. Finally, we draw
the conclusions in Section 9.

2. Related work

The idea of e-Voting systems based on ICT and crypto-
graphic techniques has attracted significant interest from
both the academic community and public authorities
(Carter and Bélanger, 2005; Moynihan, 2004).

The challenge of providing a suitable e-Voting solution
has been addressed by many researchers from different per-
spectives. Two main e-Voting categories can be identified:

ˆ unsupervised voting, also known as remote electronic
voting, which allows users to vote remotely, through
the Internet;

ˆ supervised voting, which requires physical polling sta-
tions monitored by election officials.

Although both categories have been widely explored and
many systems have been tested in real cases with various
degrees of success, existing solutions present some limita-
tions, making the choice of the most suitable system for a
specific scenario very challenging.

Remote e-Voting allows users to vote without being
physically present in supervised environments. This possi-
bility is generally more attractive to users because voting
from home is very convenient. Unfortunately, there are
two main problems with this approach.

The first concerns the need for voters to trust the re-
mote voting software application and to be confident that
their vote is actually counted. Such issue applies to both
remote and supervised e-Voting. Currently, this is some-
times solved by using a mechanism that allows users to ver-
ify that their vote has been counted correctly; for example,
remote e-Voting systems often make use of virtual receipts.
The same problem is solved in some supervised voting sys-
tems, such as direct-recording electronic (DRE) voting ma-
chines (Bederson et al., 2003; Kohno et al., 2004) by means
of Voter-Verified Paper Audit Trail (VVPAT) (Villafiorita
et al., 2009; Hall, 2006; Carroll and Grosu, 2009). While

VVPATs help users to have more confidence that their vote
has been counted correctly, they raise potential privacy
concerns: if there is an association of any sort between the
vote and the voter, users’ privacy may be severely com-
promised. For this reason we do not use VVPATs in any
form, avoiding any connection between voters and votes.
Nobody (not even the users themselves) is able to prove
anything about the votes cast.

The second problem concerns the incoercibility of elec-
tors. All voting systems, whether electronic or paper-
based, must ensure that users can vote freely, without any
external influence. Otherwise, users might be forced to
vote in a certain way, or deliberately decide to sell their
vote to the highest bidder. To guarantee incoercibility, it
is essential that users are not spied on while they are vot-
ing, and that it is impossible for them to provide proof
of their vote to third parties. In fact, if it were possible
for users to prove who they voted for, an external attacker
could force them to show such proof.

Remote e-Voting systems cannot fully guarantee the in-
coercibility of voters. Indeed, for a remote system, it is
impossible to ensure that users are alone at the time of
voting: a third party could witness the vote, unbeknownst
to the e-Voting system. Thus, by definition, it is impossi-
ble to guarantee incoercibility in remote e-Voting systems,
as demostrated by Wang et al. (2017).

On the other hand, remote e-Voting generally guaran-
tees receipt-freeness, i.e. users cannot prove their vote after
having cast it. However, remote e-Voting systems cannot
guarantee users’ privacy during the actual voting, as ar-
gued above. The receipt-freeness property is thus weaker
than incoercibility; the latter implies receipt-freeness, but
the reverse is not true, as shown in (Sampigethaya and
Poovendran, 2006).

Despite these limitations, and given their great conve-
nience, many researchers have focused their efforts on de-
veloping new Internet-based electronic voting schemes that
allow voters to participate remotely (Wu et al., 2014; Rez-
vani and Hamidi, 2010; Agarwal and Pandey, 2014; Tornos
et al., 2013; Yi and Okamoto, 2013), using ad-hoc web ap-
plications.

Civitas (Clarkson et al., 2008) is one of the first elec-
tronic voting systems that allows users to vote securely
from a remote client, while providing anonymity, integrity
and receipt-freeness. To guarantee receipt-freeness, voters
may use their private key and run an algorithm to gen-
erate fake credentials. Voters provide these credentials in
case an attacker tries to influence their votes. However,
the attacker might force users to reveal their credentials,
bypassing this anti-coercion measure.

Helios (Adida, 2008) is one of the most famous Internet-
based remote voting systems that uses a web browser.
Users’ votes are submitted only after being encrypted, so
the secrecy of votes is ensured. Helios makes no attempt
to solve the problem of coercion, so it is only usable for
elections with a low coercion risk. In other works, such
as (Ahmad et al., 2009), web applications are replaced by
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apps running on mobile devices.
The same general structure provided by Helios was re-

cently adopted by Ordinos (Küsters et al., 2020), which
signi�cantly extends the capabilities of its predecessor by
introducing the concept of tally-hiding. The approach pro-
posed by the authors makes it possible to get the results of
an election without revealing the full tally (e.g., revealing
only the winner, a ranking between candidates or the k
best/worst candidates). While these features are indeed
interesting for speci�c contexts, such as in the case of very
small elections where the results may embarrass the partic-
ipants, Ordinos does not �t well in scenarios where trans-
parency about the election results are a prerequisite, e.g.,
political elections. Furthermore, Ordinos still su�ers from
the issues common to any unsupervised voting system.

Incoercibility is hard to guarantee even for supervised
e-Voting systems. Sampigethaya and Poovendran (2006)
further classify e-Voting systems in three categories. In
hidden votesystems, users openly submit encrypted votes;
in hidden voter systems, users anonymously submit plain-
text votes, while in hidden voter with hidden votesystems,
users anonymously submit encrypted votes. The study
shows that incoercibility can only be guaranteed if there
is no link between the vote and the voter, and this can
only occur in supervisedhidden voter with hidden votesys-
tems, as SecureBallot. Indeed, our e-Voting system guar-
antees the incoercibility of voters, as will be demonstrated
in Section 4, making it a more suitable choice than re-
mote e-Voting systems for all elections where user privacy
is paramount.

In the context of supervised e-Voting, two di�erent types
of systems are frequently used: DRE voting machines and
computerized voting systems (Ochoa and Peláez, 2017).

DRE systems depend on proprietary hardware devices,
which are often costly. Plus, it is not uncommon for such
devices to exhibit vulnerabilities that jeopardize secrecy,
privacy and the proper running of elections (Frankland
et al., 2011). The alternative is to use common PCs or
laptops as voting stations, running specially designed soft-
ware. The advantage of using custom-made systems is that
they can be tailored to speci�c needs, and meet any type
of requirement.

The adoption of such solutions is very convenient in
medium or large scale scenarios, where the cost of acquir-
ing new hardware can be amortized over multiple elections.
In a university setting, for instance, this sounds like the
most convenient solution, and the software may be de-
veloped taking into account the peculiar characteristics of
such a scenario.

Bingo Voting (Bohli et al., 2007) is a supervised voting
system that provides users with a receipt that associates
a random number to the chosen candidate. Other candi-
dates on the receipt are assigned di�erent random values
extracted from a pre-calculated codes pool. The user can
then verify that their code is included in the count during
the tallying phase. Di�erently from other systems that
use a receipt, this approach does not provide other more

advanced services and has the disadvantage of not fully
removing the link between the vote and the voter.

Other studies (Volkamer and McGaley, 2007; Neumann,
1993; Gritzalis, 2002) have highlighted standard criteria
of security, privacy, freedom and universality that all e-
Voting systems should guarantee. The formal de�nition of
these criteria, as well as their enforcement, are essential to
design and develop voting systems that can be used in a
real context.

Recently, major research e�orts have focused on the
use of blockchains for the implementation of voting sys-
tems (Hanifatunnisa and Rahardjo, 2017; Kshetri and
Voas, 2018; Hjálmarsson et al., 2018; Mustafa and Wa-
heed, 2020; Aggarwal et al., 2019).

The key idea behind using blockchain technology as the
basis of a voting system is to endow voters with awal-
let. By analogy with �virtual currency�, each voter re-
ceives a singlecoin, representing a voting opportunity, that
can be transferred to the candidate's wallet to express a
vote (Kshetri and Voas, 2018). However, the use of this
technology often raises concerns, since it is still unfamiliar
to users. Moreover, besides the trust issues, blockchains
require a lot of energy to perform essential operations such
as authentication and block validation, and are quite slow.
Therefore, using such a technology for large-scale elections
may not be practical yet (Kshetri and Voas, 2018).

Voatz2 is a proprietary voting system based on mo-
bile phones that leverages a combination of permissioned
blockchain, biometrics, and hardware-supported keystores
to provide end-to-end encrypted, voter-veri�able voting.
Despite Voatz has been used to conduct several real elec-
tions in the US, Specter et al. (2020) highlighted that de-
tails about its implementation were never provided and
discovered several threats that led a Washington county
to abandon its usage.

Zissis and Lekkas (2011) investigated the advantages
and disadvantages of adopting a cloud solution for e-
government information systems. A mixture of cloud com-
puting and encryption techniques can be used to tackle
a number of typical e-Voting system threats: integrity,
con�dentiality, authenticity, and availability of data and
communications. Unfortunately, the use of this technol-
ogy seems to be far from real use as people often do not
trust the management of data in the cloud (Xiao and Xiao,
2012).

The family of Prêt-à-Voter voting systems (Ryan et al.,
2009) focuses on end-to-end veri�ability (Ryan et al.,
2015), i.e., voters can verify at any time if their vote has
been counted correctly, using a receipt. Prêt-à-Voter is
similar to traditional voting systems, and it even uses pa-
per ballot cards. As such, it does not bene�t from some of
the classic advantages of e-Voting. Plus, it presents multi-
ple vulnerabilities, such as voting chains, as shown by Ryan
and Peacock (2010). In these attacks, someone smuggles

2https://voatz.com/
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Table 1: Comparison of the main voting systems proposed in the literature.

Supervised
Hidden voters with

hidden votes
Receipt-freeness Incoercibility Open-source

Bingo Voting X X X X -

Helios - - X - X

Prêt-à-Voter X X X - -

Civitas - X X - -

Ordinos - - X - -

Voatz - X X - -

SecureBallot X X X X X

an unused ballot card out of the polling station and marks
his chosen candidate. Then he passes the �lled-in ballot
paper to the next voter he wants to in�uence. The user
submits the already �lled-in ballot paper, returning the
empty one.

Moreover, such systems need to trust election author-
ities unconditionally with secrets that might undermine
users' privacy. However, even if election o�cials are trust-
worthy, it is always possible that someone may leak infor-
mation during the distribution or storage of ballots, thus
exposing the connection between voters and ballot papers,
and undermining the secrecy of votes.

Other works presented e-Voting systems that o�er a user
experience similar to that of traditional ones, improving
user satisfaction by increasing their perception of integrity,
security, and trust (Yao and Murphy, 2007; Bélanger and
Carter, 2008; Antoniou et al., 2007; Avgerou et al., 2019;
Khamitov et al., 2019). Pomares et al. (2014) carried out a
study of characteristics that may improve user con�dence,
such as the usability of the system. When an e-Voting
system is too di�erent from traditional ones, users may be
wary of the underlying mechanism.

Further information about all the e-Voting systems we
discussed are available in multiple surveys (Wang et al.,
2017; Sampigethaya and Poovendran, 2006; Yumeng et al.,
2012).

Table 1 summarizes the most relevant characteristics of
several voting systems belonging to the categories pre-
viously described, from supervised ones, such as Prêt-à-
Voter, through those that allow users to vote remotely,
ranging from Helios and recent systems like Ordinos, to
blockchain-based applications such as Voatz.

By comparing SecureBallot with other systems proposed
in the literature, it results that one of the advantages of
our solution is guaranteeing the property of incoercibility.
Table 1 highlights that most other systems underestimate
this important property, meeting only its weaker version
(receipt-freeness). However, we think that this property
is crucial for e-Voting systems where privacy requirements
are strict.

The same table also shows that SecureBallot is one of the
few e-Voting systems that is open source, as Helios. This
point is critical, since one of the reasons why users distrust

e-Voting systems is that applications based on proprietary
software cannot be easily analyzed and veri�ed by experts
and common users alike. A prime example of this problem
is represented by Voatz, whose major security �aws have
been identi�ed through reverse engineering, given the com-
plete lack of source code and proper documentation avail-
able (Specter et al., 2020). In open source systems such as
SecureBallot, continuous analysis of the source code by se-
curity experts would allow detection of potential problems
much earlier, resulting in increased user con�dence.

From a feasibility standpoint, some unsupervised sys-
tems exhibit advantages over supervised ones in terms of
a greater convenience in voting remotely, time saving, as
well as reduced hardware purchases. However, as argued
previously, remote e-Voting systems cannot guarantee the
same strict security properties necessary for the proper
conduct of nationwide elections. Ronald L. Rivest himself
addressed this topic recently, harshly criticizing Internet
voting and blockchain-based systems (Park et al., 2021).

Unlike previous work, SecureBallot focuses on gaining
users' trust, since a system that lacks public con�dence
will never really be used on a large scale. To do this, we
exploit technologies familiar to users, while simultaneously
providing critical security features necessary for elections.
This is con�rmed by our own real-world testing, which will
be presented in Section 7. Taking advantage of the contin-
uous feedback we received from users, we have improved
SecureBallot more and more, until we have reached a very
high degree of satisfaction. On the other hand, many other
e-Voting systems in the literature remain purely theoreti-
cal and have never been tested in the �eld.

3. Architectural overview

In this section we present the hardware and software
components of SecureBallot, and the roles of the users
and sta� members who are involved (i.e., the actors of the
system). SecureBallot belongs to the category of voting
computers or electronic voting machines, which operate
through distributed polling stations connected to a central
virtual ballot box, that collects the preferences expressed by
voters in encrypted form.
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This class of digital voting systems involves the use of
PCs, laptops, tablets and other o�-the-shelf devices. The
proposed solution is also di�erent from remote e-Voting
and web-based applications, since it requires the presence
of sta� members (e.g., representatives of electoral author-
ities) on site, in order to verify both that users have the
right to vote and that voting operations are carried out
correctly. Such a supervised approach makes it possible
to meet more strict security requirements as compared to
remote web-based systems, as we will discuss in the next
sections.

3.1. Actors of the system
In order to present the features of SecureBallot, two dif-

ferent types of actors who interact with the system are
considered: voters and sta� members. Any person who
has the right to vote is a valid voter. All voters are pre-
viously inserted in a centralized list, accessible by sta�
members at any polling station; thus, it is always possible
to check whether a person actually has the right to vote
and whether he has already voted or not.

Sta� members can be categorized into three groups, de-
pending on their role and the election phase they are in
charge of:

ˆ sta� members involved in preliminary operations,
which involve preparing and checking the digital list
of voters, creating the digital voter cards, as well as
generating all secret keys that will be necessary to
activate the voting stations on election day;

ˆ sta� members in charge of physically supervising all
voting operations; their tasks include verifying the
proper functioning of the voting systems, setting up
the voting stations using the previously mentioned se-
cret keys, verifying the identity of users and register-
ing them before they are allowed to vote;

ˆ election supervisor, who oversees the tallying opera-
tions, digitally signs the results and publishes them.

SecureBallot requires that all voting operations are en-
crypted with asymmetric schemes and that the necessary
keys for each election are generated by a public o�cial (e.g.
a notary public or police o�cer) who ensures the proper
conduct of voting operations. The public key of the cur-
rent election is used as aKEK (key encryption key), while
the corresponding private key will be kept secret by the
public o�cial until the tallying phase, so that no one can
interfere with the proper conduct of the election.

3.2. Hardware and software components
SecureBallot can use readily available PCs, laptops and

tablets so as to reduce organizational costs. Each of these
devices is equipped with software developed speci�cally for
the digital voting system.

The overall system includes several software applications
that run simultaneously on multiple physical machines, as

Figure 1: Hardware architecture overview.

shown in Figure 1. In particular, the proposed architecture
involves the use of:

ˆ a software application, calledpolling station, used by
sta� members to monitor voting operations and verify
whether users are entitled to vote;

ˆ a software application installed in each voting booth,
called voting station, that allows users to espress their
preferences by inserting their digital voting card in a
virtual ballot box;

ˆ a centralized software application that acts as avir-
tual ballot box, which collects votes cast by users in
encrypted form.

Voting involves continuous interaction between these
software applications; in order to guarantee a suitable se-
curity level at the network layer we decided to connect all
previously described system components via a dedicated
VPN (Virtual Private Network).

Figure 1-a shows the polling stations and the voting
stations, which, being directly used by voters and sta�
members, require to be user-friendly, resilient and fail-
safe. After the initial identi�cation, each voter receives
a temporary unlocking token, which allows him to unlock
his designated voting station and vote. In SecureBallot,
we used NFC tags as unlocking tokens, but the system is
compatible with similar products that use symmetric en-
cryption to guarantee authentication and data integrity.
Such tokens are completely anonymous and are associated
only with virtual users, as will be explained in Section 5.
SecureBallot does not link tokens to real users in any way,
in order to guarantee their privacy.

Figure 1-b shows the back-end of the system, consisting
of the virtual ballot box that contains all encrypted votes
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and the database with the list of people authorized to vote,
named digital voter list .

The virtual ballot box is the most sensitive component of
the system, as it is responsible for receiving all encrypted
votes sent by the polling stations and storing them se-
curely and reliably till the tallying phase. For this rea-
son, the virtual ballot box adopts state-of-the-art crypto-
graphic tools to ensure the authenticity and con�dentiality
of voting packages, such as symmetric and asymmetric en-
cryption, as will be discussed extensively in Section 5. It
is worth noticing that users can vote only if the connection
between voting station and ballot box is up and running,
because sending a vote and storing it in the ballot box are
considered as a single atomic operation, which is handled
by using distributed database transactions.

In order to ensure the complete anonymity of all voters,
the virtual ballot box does not receive any information
about users. The only data handled by the virtual ballot
box are those relating to anonymous voting cards, that
are encrypted with a symmetric key randomly generated
at runtime, which in turn is encrypted with the election's
public key that serves asKEK .

The digital voter list that contains the list of voters is
intended to maintain consistency between di�erent polling
stations.

4. Security properties

Given the importance of elections, all e-Voting systems
are expected to meet speci�c security properties, as dis-
cussed in (Gritzalis, 2002; Volkamer and McGaley, 2007).
In this section, we show that SecureBallot meets all of
these properties, demonstrating how each one is satis�ed.

Secrecy: one of the most important constraints of any
voting system issecrecy. Votes have to be cast by ensuring
that no one is able to associate the preferences expressed
with the corresponding voter.

In an e-Voting system, this means that even if adver-
saries were able to intercept the payload exchanged be-
tween di�erent system components, it should be impossi-
ble to infer the preferences expressed by speci�c voters.

For these reasons, we use a two step encryption pro-
cess which entails both symmetric and public key cryptog-
raphy, namely Advanced Encryption Standard (AES) in
CBC mode and RSA. At �rst, each vote is encrypted with
a symmetric key, which is randomly generated for each
voting packet. Then, the random key is encrypted with
RSA by using the public key of the current election. At
the beginning of the tallying phase, the election's private
key is used to decrypt each symmetric key and, as a result,
the content of the corresponding voting cards.

Using this encryption mechanism, the only person who
can start the tallying phase is the election supervisor, as-
sisted by a notary who, after the end of the election, o�-
cially discloses the necessary private key.

SecureBallot satis�es the secrecy property, as demon-
strated by the formal analysis presented in Section 6. No-
tably, the full analysis will show that the secrecy of voting
is maintained in all cases, and cannot be violated even if
the attacker is aware of secret keys that should be known
only to the voting station and the central ballot box.

Privacy: users' privacy is guaranteed if it is not pos-
sible in any way to trace a vote back to the voter who
cast it. To ensure that, our system completely decouples
the identi�cation and voting phases and does not collect
any information about users. During the entire voting
process, no system component knows both the identity of
voters and their votes. In the formal analysis we will show
that SecureBallot satis�es this property and that each vote
is completely unrelated to both the voter and the voting
station it was sent from.

At the identi�cation phase, sta� members use the
polling station software to identify users and verify that
they have not already voted. Thus, the polling station
knows the identity of voters, but not the preference they
will express. Conversely, the voting station, which allows
the user to vote and encrypts the resulting voting package,
will have no information about the identity of the voter.

The central ballot box receives encrypted and anony-
mous voting packages, hence it knows neither the identity
of the voters nor the preferences expressed. Finally, dur-
ing the tallying phase, the content of each voting packet is
decrypted, but it is impossible to trace back to the origi-
nal voter, since there is no link between the vote and the
voter.

Eligibility to vote: unlike traditional paper-based sys-
tems, SecureBallot allows users to vote indi�erently in any
polling station while also guaranteeing each entitled per-
son to vote just once. To this aim, a digital list of voters
is checked by sta� members, that are also responsible for
providing valid voters with unlocking tokens (such as NFC
tags), which are required to enable the voting station.

The digital voter list is immediately updated when each
vote is completed and successfully stored in the virtual
ballot box, exploiting distributed database transactions.
By checking this list, all polling stations are able to verify
if users are valid voters, while also preventing them from
voting multiple times (i.e., double voting).

Authenticity: a vote is authentic if it comes from a
reliable source or, in other words, if it is submitted by one
of the authorized voting stations. In order to establish
whether a vote has actually been cast in one of the autho-
rized booths, our system authenticates the voting pack-
age. This ensure that attackers cannot falsify votes. A
genuine voting package is authenticated by the voting sta-
tion through a Hash-based Message Authentication Code
(HMAC) with SHA-256 digest. The secret key required by
HMAC is derived from a passcode entered by sta� mem-
bers when activating each voting station on election day.
Once the virtual ballot box receives the vote package, it
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veri�es the HMAC code attached, discarding forged votes
and storing genuine ones. Moreover, in order to guaran-
tee the authenticity of votes until the tallying phase, the
virtual ballot box digitally signs all vote packages before
storing them. The formal analysis presented later on will
prove that SecureBallot fully meets this property. Indeed,
the analysis shows that the use of HMAC and digital sig-
nature is critical. If they were not used, it would not be
possible to ensure that every vote came from an authentic
voting station and that all encrypted votes saved in the
database are unaltered.

Integrity: the integrity of votes is guaranteed at dif-
ferent levels of the architecture. At the communication
level (above TCP), the integrity of all the data trans-
mitted from the voting station to the virtual ballot box
is guaranteed by TLS. This protects the communicating
parties from any attempt to tamper, intercept and falsify
the transmitted packages. The virtual ballot box digitally
signs all received voting packages before storing them in
the database, thus ensuring their integrity. SecureBallot
guarantees this property, as will be demonstrated in the
formal protocol analysis. In particular, the use of a se-
cure communication channel makes the protocol resilient
to attacks even if some of the secret keys are compromised.

Incoercibility: this property requires that users cannot
be in�uenced in any way while voting. External in�uences
include either being compelled to vote for a speci�c can-
didate, or selling one's vote for money.

Note that, as detailed in the related work section, most
e-Voting systems do not meet this property. On the con-
trary, SecureBallot guarantees incoercibility by adopting
the same controls as traditional elections, i.e., sta� mem-
bers supervising the procedure and voting booths that
guarantee users' privacy.

Moreover, incoercibility requires that users cannot prove
to others that they have voted in a certain way (receipt-
freeness). This is guaranteed in SecureBallot by the ab-
sence of receipts. Note that the property of incoercibility
implies receipt-freeness, but the reverse is not true, as ar-
gued by Sampigethaya and Poovendran (2006).

Validity: a major challenge in conventional paper-based
voting systems is handling invalid votes, which can be
caused by voter negligence.

Since SecureBallot guides users during the submission
phase, the voting form is always �lled in a valid and un-
equivocal manner. The user can choose to express the
maximum number of preferences allowed by the voting
card, or leave it deliberately empty. In all cases, Secure-
Ballot asks for con�rmation before actually sending the
vote. Finally, the system also ensures that the vote sub-
mission has been completed successfully, by exploiting dis-
tributed database transactions.

Transparency: maintaining transparency during vot-
ing operations means that voter and sta� members must
have a con�rmation that the vote expressed has been suc-

cessfully and securely stored in the virtual ballot box. To
this aim, the system communicates the completion of the
operation to both the voter and the sta� members. This
is achieved by means of a message displayed on the vot-
ing and the polling stations. Otherwise, the system alerts
both the voter and the sta�, allowing them to repeat the
voting operations.

Accuracy: this property is guaranteed if all the voting
packets are properly counted and never lost. SecureBallot
uses distributed database transactions to group the most
critical operations when submitting votes to the virtual
ballot box. As a result, if any errors occur while voting
(e.g. connection lost), all pending operations are aborted
and the user is allowed to vote again, as speci�ed by the
transparency and validity properties.

Veri�ability: the veri�ability property can be examined
from two di�erent points of view: individual veri�ability
and global veri�ability. Individual veri�ability means that
each voter can be con�dent that his vote has been cor-
rectly stored and, subsequently, counted during the tal-
lying phase. This is guaranteed in SecureBallot by the
ful�lment of two other properties described above, namely
transparency and accuracy.

Global veri�ability ensures that all voters, as a whole,
are con�dent in the proper conduct of electoral operations,
and in particular that all votes cast have been stored and
subsequently counted, and that only those who were enti-
tled to vote actually did so. This is guaranteed in Secure-
Ballot by the ful�lment of three other properties, namely
eligibility to vote, transparency and accuracy.

5. SecureBallot

Ballot procedures can often be very complex, and their
features can vary drastically depending on their intrinsic
electoral rules (i.e., laws or regulations set by the company
or organization in charge of the voting procedure). Di�er-
ences often involve the amount of candidates and elected
people, the type and number of votes expressed by users,
and the way in which candidates may be grouped into
parties and electoral groups. In this section we present
the technical features that allow SecureBallot to handle
all these di�erent demands in a transparent way to users.

5.1. Electoral procedure steps

To deal with the individual characteristics of each elec-
tion, our system operates in three distinct phases, corre-
sponding to the operations performed before, during, and
after the voting procedure, i.e., thesetup, the voting phase
and the tallying.

Setup: any voting system, whether traditional or elec-
tronic, requires a setup, during which the system is con�g-
ured to handle the current election. At this stage, organiz-
ers choose the number and location of the polling stations,
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Table 2: Symbols used in the complete security protocol.

Symbol Description

BB Virtual ballot box

CBC Cipher Block Chaining

ES Election supervisor

H hash value

IV i i-th initial value for CBC

IV i C Encrypted IV i

K SV S j ;BB Symmetric key shared between j-th voting sta-
tion and virtual ballot box

K i i-th symmeytric key, used to encrypt a voting
packet

K i C K i encrypted with K +
E

K -
BB Virtual ballot box's private key

K -
E Election's private key

K -
E C K -

E encrypted

K +
BB Virtual ballot box's public key

K +
E Election's public key

MAC i MAC of the i-th voting package

N i i-th nonce

P KD public key decryption

P KE public key encryption

Sign digital signature

SymD symmetric decryption

SymE symmetric encryption

Vi i-th voting packet

Vi C i-th voting packet, encrypted with K i

V -HMAC MAC veri�cation algorithm

V -Sign digital signature veri�cation

V S Voting station

and ballot cards are created and adapted to the number
and type of candidates.

SecureBallot simpli�es these operations through the use
of a dedicated GUI, which can only be accessed by election
o�cials. In particular, our system allows sta� members
to create and con�gure the voting cards by specifying the
list of candidates and the maximum number of preferences
that may be cast. SecureBallot also allows sta� members
to upload the list of voters to the central database and keep
it synchronized during the voting phase, i.e. updating the
status of those who have already voted.

Other tasks carried out during the setup concern the
con�guration of the voting procedure itself, such as setting
the starting and ending date of the voting operations, and
con�guring the voting stations as nodes of a VPN.

Voting phase: during the voting phase, voters can ex-
press their preferences. Electoral o�cers that are in charge
of the polling station system are directly responsible for
the following tasks:

Figure 2: Interactions between polling stations, virtual users and
voting stations (VS).

ˆ identifying prospective voters according to the regula-
tions of the current electoral procedure (e.g., through
their ID cards);

ˆ verifying whether they are entitled to vote and they
have not previously voted;

ˆ using the polling station software to enable one of the
voting stations;

ˆ o�ering voters the necessary explanations and provid-
ing them with one of the unlocking tokens;

ˆ ensuring that the voting operation has been com-
pleted without any issues, and having the unlocking
token returned to them.

Once authorized by an election o�cer, the voter can
enter the assigned voting booth, unlock the voting station
through the unlocking token, and choose the preferred can-
didates. The vote is then encrypted and sent to the cen-
tral ballot box, anonymously, ensuring the aforementioned
security, integrity and consistency requirements. Finally,
the voter has to return the unlocking token to the election
o�cers to complete the operation.

Tallying: the �nal phase, which takes place after the
conclusion of the elections, concerns the counting of votes.
During this phase, polling stations are shut down, and vot-
ers no longer have the opportunity to express their prefer-
ences.

At this stage, the election supervisor can start the tal-
lying process, in which the votes are deciphered, counted,
and the tallying outcome is saved in XML format and dig-
itally signed by the supervisor. Note that the tallying
phase can only be performed in the presence of a notary,
who holds the election's private key.

The voting and tallying phases will be described in de-
tail in the following sections, analyzing the data �ow, the
operations performed by all actors involved and the proto-
col used to ensure the security properties outlined in Sec-
tion 4. Table 2 explains the symbols used in the remainder
of the paper.
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Figure 3: Security schema of the voting phase.

Figure 4: Voting phase operations.

5.2. Voting phase operations

Once voter's eligibility has been veri�ed, the system no
longer needs information about the user that is voting.
We introduce the idea of virtual users to guarantee the
anonymity of voters, and at the same time ensure that
they can vote only if authorized.

In order to allow only authorized users to vote, the sys-
tem provides that the virtual user vi , who has been given
token tk , will be able to vote only once in the voting sta-
tion VS j . Figure 2 highlights the interactions between
virtual users, polling station and voting stations, showing
a possible association. Each user can vote only once in the
assigned voting station.

Usually there are more virtual users than voting sta-
tions, as in Figure 2. In this way, if many users arrive at
the polling station at the same time, and the voting booths
are all occupied, sta� members can still assign them a tem-
porary identity as virtual users. When a voting booth is
available, a new virtual user can be associated with that
booth. Voting operations can thus happen simultaneously.

However, if the number of virtual users was too high, i.e.,
more than the number of voters, there would be a unique
value (the virtual user id) linked to each user. Although
this value would not be a privacy risk by itself, since it
is not stored in any way, the goal of SecureBallot is to
avoid, by design, any association between vote and voter.
Constantly reusing virtual identities from the same pool
achieves this goal, ensuring the anonymity of users.

In certain electoral procedures, voters are divided into
groups, and depending on the group they are part of, they
will be entitled to vote with one or more of the available
ballot papers. In other words, the number and type of
ballot papers presented to each type of voter may vary.
The use of XML ballot papers allows voting stations to
support all these options without having to be speci�cally
recon�gured for each election. Virtual users are associated
with the type of voter (and therefore with the number
and type of ballot papers). The voting station then shows
the correct ballots to each voter, albeit not knowing his
identity.
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To ensure privacy, votes are cast in dedicated voting
booths. When users enter the booth to which they have
been assigned, they interact with the computer and the
token reader located there. Users can enable the voting
station software by holding the unlocking token they have
received (such as an NFC tag) near the token reader. If
the user is in the correct voting booth, his unlocking token
will be recognized and the voting station will be activated.
Then, voting cards are shown as a form the user can com-
pile and submit. The compiled cards are kept secret and
stored in a XML �le, that also contains other utility �elds
(e.g., info about the polling station or the type of election)
required to provide administrators with statistics on voter
turnout.

Figure 3 shows the security schema of SecureBallot in
the voting phase, highlighting the encryption operations
and the messages exchanged between voting stations and
virtual ballot box, while Figure 4 complements this schema
by showing a �ow chart of the operations performed at a
higher level of abstraction.

Each �eld of the i-th voting card is encrypted using a
symmetric key, K i , which is automatically generated by
the respective voting station. AES symmetric encryption
is used in CBC mode to keep the voting card encrypted
until the end of the election (Figure 4-a). In our implemen-
tation, we used a 128-bit key for AES, but naturally it is
also possible to exploit longer keys, such as 192 or 256-bit
ones; both block size and initialization vectors (IVs) are
128 bits. SecureBallot generates eachK i and IV i using
a cryptographically secure pseudo-random number gener-
ator. In addition, the K i symmetric key is also ciphered
with the election's public key, K +

E (Figure 4-b). The re-
sulting key, K i C, is sent to the central ballot box together
with the encrypted voting package andIV i . In SecureBal-
lot, we used RSA with Optimal Asymmetric Encryption
Padding (OAEP) exploiting 1024-bit RSA keys.

Please note, once again, that the private key of the cur-
rent election is kept secret and inaccessible to everyone
until the end of the election. Not even the supervisor can
have access to it, and therefore he cannot interfere in any
way with the voting operations. Only during the tally-
ing phase an external authority, such as a notary, o�cially
hands over the private key to the election supervisor, who
can then start the counting of votes.

Figure 4-c shows how the voting package (encrypted
with K i ), the encrypted key K i C, the encrypted initial-
ization vector IV i C, and a nonce, N i , are processed by
the HMAC algorithm using a SHA-256 digest (HMAC-
SHA256), which guarantees their integrity and authentic-
ity:

MAC i = HMAC (K SV S j ;BB ; Vi C jj K i C jj IV i C jj N i ) (1)

The secret keyK SV S j ;BB , shared between the j-th sta-
tion and the central ballot box, is used by the HMAC-
SHA256 algorithm to authenticate the message. Such key
is derived from access codes used to activate each voting

Figure 5: Sequence diagram showing messages exchanged between
VS and BB when a duplicate HMAC is received.

station in the preparatory phase. The nonceN i is used
by SecureBallot to prevent replay attacks. As will be ex-
plained below, by modifying this nonce and keeping the
encrypted Vi C, K i C and IV i C unchanged, the voting sta-
tion can recalculate the HMAC and get a di�erent digest,
if required by the central ballot box.

The complete voting package, sent from a voting station
to the central ballot box, consists of the symmetrically
encrypted vote and the asymmetrically encrypted key, as
well as the corresponding nonce and HMAC digest (Figure
4-d). The content of the voting package can be expressed
as:

E(K i ; Vi ) jj E (K +
E ; IV i jj K i ) jj N i jj MAC i ; (2)

whereMAC i is the HMAC digest calculated in Equation 1.
Although, as already mentioned, the whole network is pro-
tected by IPsec with the creation of the VPN, all commu-
nications between polling stations, voting stations and the
virtual ballot box are further protected by TLS (Figures
4-e and 4-f), in order to guarantee a suitable security level
at the transport layer.

A further security layer is provided by the central ballot
box, at the application level. As shown in Figure 4-g, the
central ballot box checks the HMAC digest of the received
vote packet, as shown in Figure 3:

V-HMAC (HMAC (K SV S j ;BB ; Vi C jj K i C jj IV i C jj N i )) (3)

If the veri�cation is successful, it means that the ballot
box is unaltered and valid. Indeed, only the central ballot
box and the authorized voting stations know theK SV S j ;BB

key, which is needed to correctly calculate the HMAC.
In addition, to prevent replay attacks, the central ballot

box maintains a database of previously received HMAC
digests. If the digest of a new voting package is identical
to another received in the past, two di�erent scenarios may
have happened, namely an attacker is trying to perform a
replay attack, or an HMAC collision occurred.
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Figure 6: Security schema of the tallying phase.

Figure 7: Tallying operations.

In the �rst scenario, an attacker has somehow in-
tercepted a valid voting package, acting asman-in-the-
middle, and is trying to re-send it several times, hoping
to duplicate a valid vote. This might make sense if the
attacker can speculate, with some degree of uncertainty,
about the content of a voting package, even without de-
crypting it. If an attacker knows, from prior knowledge,
that votes cast from a certain polling station PSx have
a high probability of being favorable to candidate Y (due
to bias in voter distribution), he might be interested in
duplicating voting packages from voting stations linked to
PSx , hoping that they are actually in favor of candidate
Y. Duplicating many packages like this, the attacker would
have a good chance (based on the distribution of voters)
to in�uence an election by favoring the chosen candidate.

The second scenario is an HMAC collision between two
di�erent valid voting packages. Although this is a remote
eventuality, it is still possible that such a collision might
occur; hence, SecureBallot provides an interactive proto-
col between voting station and virtual ballot box to resolve
such con�ict. To handle both scenarios, each voting pack-

age includes a random nonce,N i , which is included in the
HMAC calculation, as described above.

Figure 5 shows the messages exchanged between a vot-
ing station and the virtual ballot box when a duplicate
HMAC is received. If the virtual ballot box detects a dupli-
cate digest, the corresponding voting package is rejected,
and the voting station is asked to generate a new random
nonce, N �

i , and recalculate the HMAC digest, obtaining
a new MAC �

i . In order to do this, it is not necessary to
re-encrypt the vote or the symmetric key: modifying the
nonce is su�cient to obtain a new digest, di�erent from
the previous one. The reason why SecureBallot uses a
random nonce, and not a counter, is to avoid associating
a sequence to the votes received, which could a�ect users'
privacy.

If the voting station is legitimate, it will be able to per-
form these operations and generate a new voting package
with the respective digest MAC �

i , as shown in Figure 5.
Conversely, an attacker will not be able to generate a valid
HMAC because he does not possess the necessary symmet-
ric key, K SVS j ; BB .

Indeed, if the HMAC is unique, the virtual ballot box
checks the validity of the digest with respect to the voting
package. If the check is successful, the central ballot box
digitally signs the voting package (Figure 4-h) and stores
it in a database (Figure 4-i) until the end of the election.
At this point, the virtual ballot box sends a con�rmation
to the voting station. As described in Section 3, send-
ing, validating and storing a vote is considered as a single
atomic operation, handled through distributed database
transactions. Finally, no one can modify a vote before the
tallying, since it is digitally signed, nor decipher it, as this
would require the election's private key.

5.3. Tallying phase operations

After the conclusion of the voting session, the election
supervisor starts the tallying process. In a traditional
paper-based system, votes are manually counted by the
electoral sta�, with potential calculation errors, and long
waiting times for the results' di�usion. In SecureBallot,
the tallying process is very simple, secure and immediate.
Figure 6 shows the security schema of the tallying phase,
highlighting the cryptographic operations performed by
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the virtual ballot box and its interactions with the elec-
tion supervisor. Figure 7 illustrates the corresponding �ow
chart explaining the same operations at a higher level of
abstraction.

The only person entitled to start the tallying phase is
the election supervisor, by requiring access to the private
key of the speci�c election. Indeed, till this moment, the
aforementioned private key is maintained secret by a no-
tary or public o�cial, which plays a warranty role. This
�gure, after an accurate check of the request legitimacy
and of the correct election closure, o�cially delivers the
private key K -

E to the election supervisor. Furthermore,
since each voting packet was digitally signed by the virtual
ballot box before being saved, the system checks, for each
vote, that the packet has not been modi�ed and that the
signature is still valid (Figure 7-a), before actually count-
ing it.

The procedure used by the system to decrypt each vot-
ing packet is explained in Figures 7-b and 7-c. Please recall
that voting packets were encrypted with symmetric keys,
K i , one for each voting packet. Then, eachK i was en-
crypted with the current election's public key and stored
in the XML �le, along with the actual vote.

During the tallying phase, each symmetric keyK i is de-
crypted by using the private key provided by the notary,
and then it is used to decrypt the corresponding voting
packet. As shown in Figure 7-d, decrypted voting pack-
ages are used to update the vote count, based on the prefer-
ences speci�ed on the voting card. To ensure the integrity
and authenticity of the entire counting process, then, �nal
results are digitally signed by the election supervisor.

6. Formal Veri�cation of SecureBallot

In this section we present the formal security analysis
of the SecureBallot protocol. Since the security of crypto-
graphic protocols cannot be reasonably veri�ed manually,
we adopted an automatic tool which was proven to be able
to uncover large number of attacks against many security
protocols that were previously thought to be secure (Cre-
mers et al., 2009).

Some of the most widely used techniques for automated
modeling and analysis of security protocols exploit tools
like CSP (Communicating Sequential Processes) and FDR
(Failure-Driven Re�nement). CSP is a formal language
originally proposed by Hoare (1978) for describing inter-
actions between two or more processes, at any level of
abstraction, while FDR is a model checking tool (Gibson-
Robinson et al., 2014).

FDR requires as input the system speci�cation and im-
plementation of a protocol written in CSP and produces
a counterexample, if the protocol is vulnerable to some
kind of attack. FDR uses the state space search tech-
nique to �nd any sequence of messages that may lead to
an attack on the analyzed protocol. CSP and FDR have
been extensively used for discovering attacks in many pro-

tocols (Xu et al., 2008; Raju and Kumari, 2011). Noto-
riously, Lowe (1996) used this approach to �nd an attack
against Needham-Schroeder authentication protocol, �x-
ing it.

Unfortunately, describing security protocols in CSP is a
long and laborious process, which can inevitably lead to
modeling errors. For this reason, a compiler called Casper
was proposed by Lowe (1997). Casper starts from a high-
level description of the security protocol and automatically
produces the corresponding CSP code. FDR is then used
to analyze the protocol and verify its security properties.

In the following, we present the modeling of the Secure-
Ballot protocol exploiting Casper and the resulting analy-
sis performed with FDR.

We will present only relevant sections of the proto-
col description, and defer to Appendix A for the com-
plete code of the model. Casper input �les are di-
vided into several sections; the most signi�cant ones
for understanding how protocol veri�cation is per-
formed are �ve: #Free variables , #Protocol description ,
#Processes, #Specification and #Intruder information .

In the #Free variables section, we de�ne the types of
variables and functions used in the protocol, as shown in
the following excerpt:

#Free variables
V : VStation
B : BBox
S : ESup

ni : Nonce
vi : Vote
ivi : InitializationVector
ki : SymmetricKey
kvb : SessionKey
h: HashFunction

PK : ESup -> PublicKey
SK : ESup -> SecretKey
bbpk : PublicKey
bbsk : PrivateKey

where V, B and S are, respectively, a voting station, the
virtual ballot box and the election supervisor, as described
in previous sections. Other variables' de�nitions follow
the same nomenclature presented in Table 2.PK and SK
are functions that return the public and private keys of
the election, respectively. PK is a function known by all
agents participating in the protocol (potentially also by
attackers), while SK is computable only by the election
supervisor (note that in SecureBallot this private key is
disclosed only by a notary during the tallying phase). The
two variables bbpk and bbsk constitute the public/private
key pair of the virtual ballot box.

The �rst value is known by the ballot box itself and
by the election supervisor, while the private key is known
only by the ballot box and will be used to digitally sign
the encrypted voting packets.

The #Processes section de�nes the roles of agents in the
protocol and their initial knowledge. In our model, the
voting station takes the role of INITIATOR of the protocol,
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the virtual ballot box acts as RESPONDER, and the election
supervisor has the role ofESUPERVISOR.

#Processes
INITIATOR(V, vi, ni, ki, ivi, kvb, S) knows PK \

generates ni, ki, ivi
RESPONDER(B, kvb, bbpk, bbsk, S) knows PK
ESUPERVISOR(S, B, bbpk) knows PK, SK(S)

The #Protocol description section contains all the mes-
sages exchanged by the various agents, with a notation
similar to that commonly used for describing security pro-
tocols.

In the protocol description we have included the whole
life cycle of a single vote, from when it is encrypted and
sent to the virtual ballot box, which accepts it and saves it
in the database, until its decryption and counting during
the tallying phase.

#Protocol description
0. -> V : B
1a. V -> B : {V, ni}{kvb}, {ki}{PK(S)} % kic, \

{ivi}{PK(S)} % ivic, {vi}{ki} % vic
1b. V -> B : h(kvb, {ki}{PK(S)} % kic, \

{ivi}{PK(S)} % ivic, {vi}{ki} % vic, ni)
-- After saving vote into DB
2. B -> V : {ni}{kvb}
-- Vote tallying phase
3a. B -> S : kic % {ki}{PK(S)}, ivic % {ivi}{PK(S)}, \

vic % {vi}{ki}, ni
3b. B -> S : {h(vic % {vi}{ki}, kic % {ki}{PK(S)}, \

ivic % {ivi}{PK(S)}, ni)}{bbsk}
4. S -> B : {ni}{SK(S)}

Message0 is used to start the protocol run. It is assumed
that V receives an initial message from theenvironment,
telling it to run the protocol with B. In Casper, {m}{k} de-
notes that messagemis encrypted with key k. Furthermore,
m % vindicates that the receiver of the message should not
try to decipher the messagem, but should simply store it
in a variable v, and then forward it to another agent, as
shown in message1b. Conversely,v % mindicates that the
sender submits the contents of the previously de�ned vari-
able v, which should be deciphered and interpreted by the
receiver as the messagem, as shown in message3a. Fol-
lowing the suggestion of the authors of Casper, we split
long messages into two parts (e.g.,1a and 1b) in order to
reduce the state space explored by FDR during the anal-
ysis. This does not alter the protocol properties and the
attacks identi�ed by Casper/FDR.

Message1a contains the identity of the voting station
(V) and the nonceni , both encrypted with the session key
known only to V and B, the symmetric key ki and the IV
ivi , both encrypted with the public key of the election,
and the vote encrypted with ki . Message1b contains the
HMAC of the vote, IV, and ki key (all encrypted), com-
puted with the session keykvb. Note that the virtual bal-
lot box cannot decrypt the vote, the IV and the symmetric
key; this is indicated by the %-notation, as stated above.
If the protocol succeeded up to this point, the encrypted
vote is digitally signed and saved in the database. After-
wards, the virtual ballot box sends message2, which is

an acknowledgment. The fact that message2 is encrypted
with kvb assuresV of B's identity.

After the election is over, during the tallying phase, all
encrypted votes are sent to the election supervisor.

In messages3a and 3b the supervisor receives the en-
crypted vote and its digital signature and can verify it
using the public key of the virtual ballot box, bbpk. At
this point the supervisor has the necessary knowledge to
decrypt the vote and count it correctly. Finally, message
4 is an acknowledgement that the previous messages have
been received and the protocol has been successfully com-
pleted. Note that, in our protocol description, we show
the tallying of a single vote vi .

To execute the protocol, Casper needs to instantiate �ac-
tual variables� corresponding to the roles de�ned in the
#Free variables section. In SecureBallot, Alice is a vot-
ing station (V), Bob is the virtual ballot box ( B), Susan is
the election supervisor (S) and Mallory is the intruder with
malicious intentions.

The security requirements of the protocol are de�ned in
the #Speci�cation section:

#Specification
StrongSecret(V, vi, [S]) -- S1
StrongSecret(V, ki, [S]) -- S2
StrongSecret(V, ivi, [S]) -- S3

Agreement(B, V, [ni]) -- A1
Agreement(V, B, [ni]) -- A2
Agreement(B, S, [ni]) -- A3
Agreement(S, B, [ni]) -- A4

-- Custom specification -- C1
if Bob receives message 4 from Susan then previously

Alice sends message 1a to Bob containing vi

The Secret type speci�cation indicates which variables
should remain secret. In our case, the vote, symmetric key,
and IV must remain secret from everyone exceptV and S.
Speci�cally, StrongSecret indicates that the values must
remain secret even in the case of an incomplete run. In
SecureBallot, it is obviously critical that the vote remains
secret at all costs, to preserve user privacy.

Authentication requirements are speci�ed with the
Agreement type speci�cation. We want to ensure that, at
the end of the protocol, V is mutually authenticated with B
and the latter is mutually authenticated with S. Trying to
add an additional Agreement speci�cation betweenV and
S, Casper reports that this is not possible because �S is
not causally linked to V�. This basically con�rms that the
vote is completely unrelated to the voter and to the voting
station it was sent from.

Nevertheless, we added an additional custom speci�ca-
tion to indicate that, if Susan sends the �nal acknowl-
edgment to Bob (message4), then the vote that is be-
ing counted must have been previously sent by an autho-
rized voting station (i.e., by Alice and not by the intruder
Mallory ).

Finally, the #Intruder information section is used to
specify the identity and initial knowledge of the intruder:
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Table 3: Security evaluation of SecureBallot, as described in the
#Specification section of the Casper model.

S1 S2 S3 A1 A2 A3 A4 C1

SecureBallot without TLS X X X X X X X X

SecureBallot X X X X X X X X

Table 4: Security evaluation of SecureBallot in the unrealistic case
where the session key kvb is compromise.

S1 S2 S3 A1 A2 A3 A4 C1

SecureBallot without TLS X X X - - X X -

SecureBallot X X X X X X X X

#Intruder information
Intruder = Mallory
IntruderKnowledge = {Alice, Bob, Susan, Nm, Vm,

Ivm, Km, PK}

In our formal description, the intruder Mallory knows
the identities of Alice , Bob, and Susan in advance. In ad-
dition, she can obtain the public key of other agents (using
PKfunction) and create forged versions of vote, symmetric
key, IV and nonce. Mallory 's goal is to break one or more
of the speci�cations.

Analyzing the output that Casper generates from our
model, FDR does not detect any sequence of messages
that violates the security requirements of SecureBallot.
Note that we have not considered an important security
feature of SecureBallot, namely that all messages are ex-
changed via a secure and authenticated communication
channel, exploiting TLS. Even without this important fea-
ture, FDR does not detect any attack against our proto-
col. This proves the robustness of SecureBallot, despite
the lack of security of the communication channel used.

In the unlikely event that the intruder learns the session
key kvb, some messages could be forged, violating the au-
thentication speci�cations. In particular, if we add kvb to
Mallory 's knowledge, FDR �nds the following attack:

1a. Alice -> I Bob : {Alice, Ni}{KVB}, {Ki}{PK(Susan)},
{Ivi}{PK(Susan)}, {Vi}{Ki}

1b. Alice -> I Bob : h(KVB, {Ki}{PK(Susan)},
{Ivi}{PK(Susan)}, {Vi}{Ki}, Ni)

2. I Bob -> Alice : {Ni}{KVB}

Here the intruder pretends to be Bob and manages to
deceiveAlice , leading the voting station to believe that
the submission protocol has been correctly completed with
the real Bob, although this is not the case.

Additionally, the knowledge of this session key allows
the intruder to perform another elaborate attack, which
we report below:

1a. I Alice -> Bob : {Alice, Nm}{KVB}, {Km}{PK(Susan)},
{Ivm}{PK(Susan)}, {Vm}{Km}

1b. I Alice -> Bob : h(KVB, {Km}{PK(Susan)},
{Ivm}{PK(Susan)}, {Vm}{Km}, Nm)

2. Bob -> I Alice : {Nm}{KVB}

3a. I Bob -> Susan : {Km}{PK(Susan)},
{Ivm}{PK(Susan)}, {Vm}{Km}, Nm

3a. Bob -> I Susan : {Km}{PK(Susan)}, {Ivm}{PK(Susan)},
{Vm}{Km}, Nm

3b. Bob -> I Susan : {h({Vm}{Km}, {Km}{PK(Susan)},
{Ivm}{PK(Susan)}, Nm)}{BBsk}

3b. I Bob -> Susan : {h({Vm}{Km}, {Km}{PK(Susan)},
{Ivm}{PK(Susan)}, Nm)}{BBsk}

4. Susan -> I Bob : {Nm}{SK(Susan)}
4. I Susan -> Bob : {Nm}{SK(Susan)}

Please note that the possibility that the intruder is in
possession of this key is very unlikely, unless she manages
to tamper with one of the voting stations, which are con-
stantly surveilled by the electoral sta�.

Even in this unrealistic case, however, the intruder can-
not violate the StrongSecret speci�cations, so voter pri-
vacy is still preserved. Moreover, as noted above, Secure-
Ballot uses TLS for all communications. We can model
this fact in Casper by adding the security features of the
communication channel:

#Channels
secret
authenticated

Taking into account the secrecy and authentication
properties of the communication channel, FDR no longer
�nds any attack against SecureBallot, even if the session
key kvb is compromised.

Tables 3 and 4 summarize our evaluation of SecureBal-
lot's security speci�cations. Notably, Table 3 shows that
SecureBallot's protocol is always secure, regardless of the
communication channel used. Even in the extreme case
where an intruder managed to tamper with a voting sta-
tion and obtain the kvb key, TLS would allow SecureBallot
to keep all its security properties intact, as shown in Ta-
ble 4.

7. Case study

To test SecureBallot in increasingly challenging condi-
tions, we have chosen a case study that is well suited to
demonstrate the viability of the system. The characteris-
tics we looked for concerned the number and heterogeneity
of potential users, the frequency of elections of di�erent
scale and importance, as well as the prior familiarity of
voters with IT tools.

Considering all these aspects together, university elec-
tions seem like the ideal environment to test SecureBallot.
Di�erent elections are constantly taking place within uni-
versities, for example to renew student and faculty repre-
sentatives, with some of them (especially those involving
students) attracting a large number of voters.

Moreover, university sta� are generally accustomed to
using IT tools, so they are well disposed towards tech-
nological innovations in various areas, including elections.
Likewise, students are mostly digital natives and are used
to interact with technological tools to attend lessons or
take exams.
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(a) Question about possible improvements. (b) Satisfaction comparison between OTP and NFC.

(c) Time spent by users inside the voting booth, from the �rst
interaction with the old OTP-based system to the completion of
the voting operation.

(d) Time spent by users inside the voting booth, from the �rst
interaction with the new NFC-based system to the completion of
the voting operation.

Figure 8: Tests performed during the transition from a preliminary version of SecureBallot that used OTP tokens to the �nal version that
uses NFC.

Traditionally, elections held at the University of Palermo
did not rely on IT technologies. Public polling stations
were located in di�erent areas of the university campus
for voting purposes, but electors could only express their
preferences in the polling station assigned to them. This
prevented a person from showing up at multiple polling
stations to vote more than once, but it also greatly reduced
the convenience and e�ciency of voting operations.

The polling and voting stations were supervised by sta�
members who identi�ed voters and ensured the fairness of
elections. This entailed the involvement of regular sta�
members, who had to temporarily suspend their usual
work activities during elections, slowing down other tasks.

After the identi�cation phase, each voter was given an
indelible pencil and a paper ballot card, which were cre-
ated and printed speci�cally for that election. Voters then
marked the paper ballot card, indicating their preferences,
and returned it to sta� members. The voting operation
ended by entering the ballot card in a special ballot box.
Then, in the tallying phase, voting cards were counted
manually. The �nal results were usually published several
hours after the end of the election.

SecureBallot does not have these limits: voters can

freely choose which polling station to vote at, and elec-
tion results are computed e�ciently in a secure manner.
Furthermore, many universities already possess the ICT
infrastructure required to operate SecureBallot, i.e. reli-
able Internet connections (both wireless and wired) and
PCs that can be easily used as voting stations.

In the proposed case study, we used o�-the-shelf laptop
computers and secure contactless smartcards with NFC
technology as unlocking tokens to enable voting stations.

Each polling station is equipped with an NFC writer and
several readers, one per voting booth. The voter, once au-
thorized, receives one of the NFC tags with a new code
written by the proper NFC writer. This tag will only en-
able the voting station indicated by SecureBallot.

When the user has �nished voting, he returns the NFC
tag, which is then overwritten by sta� members using the
appropriate NFC writer. The same authorization process
can be achieved by means of other kinds of devices, such
as OTP tokens.

7.1. System evaluation

During a period of six months, several tests have been
carried out at the University of Palermo, both on mock
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Figure 9: Question about ease of use.

Figure 10: Question about familiarity with security technologies.

elections and on real ones, to perform a thorough evalua-
tion of SecureBallot and to repeatedly improve it based on
users' feedback. All tests were performed on o�-the-shelf
laptops equipped with Intel 3805U 1.9GHz CPU and 4GB
RAM. Several mock elections were conducted with �c-
tional candidates, employing volunteer students and uni-
versity sta� as voters. SecureBallot has been tested in all
its components in increasingly challenging scenarios, in-
cluding hundreds of voters and multiple polling stations
spread across the campus. After each voting procedure,
participants were given a questionnaire similar to those
proposed in numerous works in the literature in the �eld of
e-Voting systems (Ochoa and Peláez, 2017; Pomares et al.,
2014). The questionnaires were designed to ask voters for
their satisfaction in using the system and to encourage
them to make suggestions for improving SecureBallot.

Most of the feedbacks and requests from both sta� and
voters were related to user interface re�nements and bug
�xes, which we have addressed between successive versions
of the system. Indeed, we have noticed a constant increase
in user satisfaction between versions.

The �rst mock elections were based on a preliminary
version of SecureBallot, which exploited an OTP token
generator for enabling the voting station, instead of NFC
tags. In particular, in order to enable the voting station,
participants had to use the token OTP hardware, pressing
a button and entering the random sequence of numbers
generated.

Figure 11: Question about trust in the e-Voting system.

To check if OTP-based interaction was actually per-
ceived as laborious by users, we asked them what part
of the system they felt needed improvements. For statis-
tical purposes, we asked students about their educational
background, i.e. whether their studies related to scien-
ti�c or humanities areas. As Figure 8a shows, most users,
regardless of the category they belonged to, replied that
the main element to improve was the OTP-based authen-
tication. The percentage of users who reported OTP as
a problem is higher in the sta� members category, which
can be explained by their higher average age compared to
students.

In order to understand the problems presented by OTP
authentication, we asked, through an open question, what
was the main issue. The answers we obtained highlighted
problems related to the digits that were too small to read
on the OTP token display and the di�culty to input them
using the voting station keyboard in a short time. This
was compounded by the time-based nature of OTP au-
thentication, which meant that codes would expire before
some users could type them.

Moreover, in order to measure the actual usability and
ease of use of the system with OTP token generator, we
decided to measure the turnaround time, de�ned as the
time elapsed from the moment the user started to interact
with the voting station, until the completion of the voting
operation.

As Figure 8c shows, the time taken by users with the
�rst version of the system roughly follows a Gaussian dis-
tribution, with an average of 43.57 seconds. Although
most users completed voting operations within a reason-
able timeframe, some voters, being less familiar with dig-
ital technologies, took a relatively long time (almost 80
seconds) and required additional reassurances and expla-
nations from sta� members.

Given these results, we adopted a new authentication
method based on NFC tags, which avoids all the problems
identi�ed since it is not time-based and does not require
small digits to type in.

Using a contactless protocol to transfer a sequence of
data, an NFC tag is equipped with a microchip and an
antenna, and it can be easily read and re-written simply
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Table 5: Real elections setup.

Case study First Second Third

Entitled to vote 416 127 217

Attendance 71% 70% 73%

# voting cards 5 5 15

Multiple preferences - X X

Total preferences 297 116 297

by holding the tag close to compatible NFC readers/writ-
ers. Users can then enable a voting station by holding the
proper NFC tag near a special reader within the booth.

This solution reduced the time spent by users inside the
voting booth by about 18 seconds (40% less), on the av-
erage, as Figure 8d shows. Moreover, as can be inferred
from the comparison between Figures 8c and 8d, the vari-
ance of the time needed for voting was also much smaller
with the new system, which means that authentication via
NFC tag is used with similar results by all voters, levelling
out the di�erences between various types of users.

Finally, to con�rm the e�ectiveness of the new approach,
we asked users which of the two authentication systems
they preferred, between the OTP-based and the NFC-
based one. As Figure 8b shows, all categories of users
con�rmed that they preferred the new system based on
NFC tags.

Figure 9 shows the results collected during the last mock
election. The questionnaire revealed that about 90% of
students with a scienti�c background considered Secure-
Ballot easy to use, as shown in Figure 9. Among humani-
ties students, the percentage is slightly lower, with about
75% positive feedback.

This di�erence is probably due to the greater familiar-
ity of the former with new technologies. Indeed, compar-
ing these results with the answers to the second question
(Figure 10), it is possible to notice a correlation between
voters' familiarity with the adopted technologies and the
perceived ease of use.

University sta� members work daily using security tech-
nologies similar to those employed in SecureBallot, such
as digital signature and weak authentication, as demon-
strated in Figure 10. Unsurprisingly, then, Figure 9 shows
that about 84% of sta� members expressed a favorable
opinion on SecureBallot.

The third question was related to voters' trust in the
use of SecureBallot. In this regard we have obtained the
most surprising results: humanities students, who are less
familiar with the technologies used by SecureBallot, have
a greater con�dence in the new voting system than their
colleagues with a scienti�c background, as shown in Fig-
ure 11. Nevertheless, we can notice that about 90% of
voters, regardless of their studies, trust SecureBallot.

After receiving positive feedback from mock elections
tests, we started to use SecureBallot for real elections at

Table 6: Traditional university voting vs. SecureBallot.

Traditional SecureBallot

Setup time 2-3 days 1-2 hours

Paper wasted Proportional to vot-
ers

Negligible amount

Flexibility Polling station as-
signed to voters

Voters can choose any
polling station

Spoilt votes About 3% None

Tallying time Proportional to vot-
ers (several hours)

Proportional to voters
(milliseconds)

the University of Palermo. Table 5 summarizes voters'
a�uence and other relevant statistics of three real-world
tests we have carried out. We chose to present these par-
ticular elections as they highlight speci�c challenges, and
have allowed us to test SecureBallot in increasingly di�-
cult conditions.

In the �rst real election test, SecureBallot was used by
297 participants (out of 416 entitled to vote), who belonged
to 5 di�erent categories of voters depending on their role
within the university. The test took place in the Engi-
neering Department of the University of Palermo. Each
user was given the opportunity to vote on a single bal-
lot pertaining to his category, choosing one among several
candidates. University sta� members were employed as
election o�cials and multiple polling stations were used,
so that users could decide where to vote.

In the second test, the number of voters was actually
lower than in the �rst one, due to the number of peo-
ple entitled to vote, which was also lower (127 vs. 416,
respectively). However, the second test was also challeng-
ing, because electors could �ll out multiple voting cards.
Indeed, it often happens that multiple elections for the
same community are grouped on a single day for organiza-
tional reasons and voters are asked to cast multiple voting
cards (one for each type of election). In our second test,
people voted to elect representatives from many univer-
sity degree courses. Each person had the right to vote for
representatives of their own course. However, some users
were a�liated with more than one course and they were
therefore able to cast (a single time) multiple voting cards
simultaneously. This type of election was therefore more
complex from an organizational point of view, but Secure-
Ballot e�ciently handled this increased complexity.

The third test involved 217 people entitled to vote,
which could also cast multiple voting cards. In this test,
however, the number of di�erent voting cards was much
higher (15 vs. 5 in the previous cases). Plus, depending
on electors' categories, some users could �ll out only 1 or
2 voting cards, while others could �ll out up to 5 di�er-
ent ones. This meant that the possible �voter-voting card
combinations� were signi�cantly more than in the �rst two
cases, and required an improved user interface of the soft-
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ware used by sta� members in the preparatory phase. Vot-
ers in the real elections �lled in questionnaires similar to
those used in the mock elections. The results obtained are
in line with those collected previously, which proves the
validity of the system.

Finally, Table 6 presents some considerations on the use
of SecureBallot compared to the corresponding traditional
voting system.

In particular, during the preparatory phase, setup time
is drastically reduced in SecureBallot (a couple hours vs.
multiple days), and e-Voting systems in general are ob-
viously signi�cantly more eco-friendly in terms of paper
waste.

In the voting phase, SecureBallot's �exibility allows
users to choose the polling station where to vote, unlike
traditional systems. As mentioned, SecureBallot also en-
sures that all votes cast by users are valid. On the con-
trary, in our university, we have recorded about 3% of
spoilt votes in past elections that exploited a paper-based
voting system.

Finally, the time needed to count the votes is propor-
tional to the number of voters, both in traditional sys-
tems and in SecureBallot. However, the tallying phase in
SecureBallot only lasts a few milliseconds, while in tradi-
tional systems it could take several hours, or even days.

8. Discussion

SecureBallot exploits well known cryptographic tech-
niques (e.g., RSA and AES) and secure protocols such as
TLS. These techniques have been chosen because they rep-
resent the state-of-the-art in the cryptography �eld, and
ensure user privacy and voting secrecy, in addition to all
the other security properties discussed in Section 4. In this
section we present a discussion of other aspects of Secure-
Ballot, and speci�cally those related to scalability.

Indeed, scalability is a critical aspect of an e-Voting sys-
tem, given that, potentially, millions of voters can partic-
ipate in a single election. From an organizational stand-
point, e-Voting systems are at an advantage over tradi-
tional ones. As the electoral pool increases, the bene�ts of
a non-paper-based system become more obvious (e.g., not
having to print and distribute millions of paper ballots).

Computational e�ciency is a di�erent matter alto-
gether. The use of computationally expensive crypto-
graphic techniques could greatly reduce the e�ciency of
an e-Voting system and, in more severe cases, even cause
it to be unfeasible for elections with a large user base. This
aspect is even more prominent when considering remote e-
Voting, in which heterogenous users' devices (e.g., smart-
phones, tablets, outdated PCs) are demanded to perform
some processing tasks.

SecureBallot is a supervised system and the election or-
ganizers can choose in advance the devices to employ as
voting and polling stations, as well as the hardware com-
ponents needed to support the backend operations. Nev-
ertheless, in order to understand the requirements of such

devices, it is interesting to analyze the computational com-
plexity of the most time-consuming operations performed
by SecureBallot. This will also let us verify whether our
system can be implemented on resource-constrained de-
vices, and if it is indeed scalable when the user base is
signi�cantly larger than that of university elections.

Certain tasks, such as the generation of session keys used
to calculate the HMAC, are performed only once during
the preparatory phase of the election and therefore do not
impact the e�ciency of voting operations. As regards the
encryption of each vote, which is performed by voting sta-
tions, the most costly cryptographic technique involved is
asymmetric encryption, performed with RSA. However, in
SecureBallot we don't employ RSA to encrypt the whole
vote, but rather to encrypt the AES symmetric key that
will be used as KEK (key encryption key). Since the length
of the AES key is �xed, the amount of data encrypted with
RSA for each vote does not depend on the number of users,
so that such encryption operation is performed in constant
time.

Likewise, the size of the vote packet that is encrypted
with AES and authenticated with HMAC is also essen-
tially �xed, as it can vary negligibly based only on the
characteristics of the speci�c election.

Afterwards, the virtual ballot box veri�es the HMAC
of a �xed size voting packet and digitally signs it if it is
accepted. Thus, the computational complexity of all cryp-
tographic operations performed during the voting phase is
constant because it does not depend in any way on the
number of users and votes cast.

During the tallying phase, the operations carried out to
decrypt individual votes (i.e., verifying the digital signa-
ture, decrypting the KEK with RSA, and decrypting the
actual vote with AES) also exhibit constant complexity be-
cause they are all performed on data blocks of �xed size.
Since all votes must be decrypted, the total complexity of
the tallying phase will thus be proportional to the number
of votes cast.

Technically, tallying is the only operation that is not
performed in constant time, but it is worth noticing that
decryption is performed by back-end devices, which can be
chosen in advance depending on the scale of the election.
From our tests, the entire tallying phase is completed in
milliseconds, even when using relatively dated hardware.
If necessary, however, the tallying operations could be eas-
ily parallelized, since the decryption of a single vote is ob-
viously independent from that of the others.

As shown in Figure 8d, the average time it takes users
to cast a single vote is about 30 seconds. On the other
hand, the time it takes a voting station to encrypt a single
vote is on the order of a few milliseconds on the laptops
we used in the case study. The encryption time is negligi-
ble compared to the total voting time, which means that
SecureBallot could easily operate even on low-cost PCs
or other resource-constrained devices. Ultimately, from a
cryptographic perspective, SecureBallot is highly scalable
and perfectly usable even for large elections.
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Given that the computational complexity of the crypto-
graphic operations carried out by SecureBallot is negligi-
ble, compared to the total time needed to cast a vote, in
order to estimate the overall scalability of the system it is
worth discussing organizational aspects as well. Obviously,
organizing a nationwide election, with millions of voters, is
quite different from organizing a university election. The
number of voting and polling stations must be carefully
chosen by the administrators to avoid long queues. Based
on our experience, voter registration, which generally in-
volves ID verification, is often the most time-consuming
step, and therefore we suggest using an appropriate num-
ber of polling stations for the expected voter turnout.

9. Conclusions

In this work we proposed SecureBallot, a new electronic
voting system suitable to any supervised election and ex-
tensively tested it in the scenario of university elections.
Given the great variability of such elections, it was pos-
sible to perform multiple tests that highlighted the high
user satisfaction of voters that used SecureBallot.

SecureBallot meets all the security properties necessary
to ensure the privacy of users and the fairness of elections.
To this end, the identification and voting phases are com-
pletely decoupled, and no information about users is col-
lected. The use of state-of-the-art encryption techniques
guarantees the secrecy of votes. The whole protocol has
been formally verified by using Casper/FDR, demonstrat-
ing that SecureBallot is always secure, regardless of the
communication channel used.

One of the main drawbacks of traditional elections is
undoubtedly the high operating costs. Adopting Secure-
Ballot can make electoral procedures more cost effective,
because the costs incurred initially can be amortized over
the years in numerous elections.

In addition to making electoral procedures more conve-
nient in terms of resources and personnel involved, saving
time and money, the adoption of SecureBallot also improve
vote counting, which is one of the most critical phases of
all elections, with a substantial time gain. Automating
this process has the added benefit of avoiding inconsisten-
cies typical of tallying phases in traditional voting systems.
Finally, our tests demonstrated that using technologies fa-
miliar to voters greatly increases user satisfaction and trust
in digital voting systems, and consequently in electronic
elections themselves.

Ultimately, the feasibility of using electronic voting sys-
tems is still debated around the world today. SecureBallot
aims to gain the trust of voters and be used in elections
of all complexities. To this end, SecureBallot guarantees
strict security properties such as incoercibility, which is
critical in most elections. Moreover, since SecureBallot
is totally open-source, security experts from all over the
world can analyze its source code and verify its robust-
ness.

Appendix A. Formal verification of SecureBallot

In this section, we present the full code of the Casper
model, which can be used to reproduce the tests of the
formal verification described in Section 6.

#Free variables
V : VStation
B : BBox

5 S : ESup

ni : Nonce
vi : Vote
ivi : InitializationVector

10 ki : SymmetricKey
kvb : SessionKey
h: HashFunction

PK : ESup -> PublicKey
15 SK : ESup -> SecretKey

bbpk : PublicKey
bbsk : PrivateKey

InverseKeys = (PK, SK), (kvb, kvb), (ki, ki), (bbpk, bbsk)
20

#Processes
INITIATOR(V, vi, ni, ki, ivi, kvb, S) knows PK generates ni

, ki, ivi
RESPONDER(B, kvb, bbpk, bbsk, S) knows PK
ESUPERVISOR(S, B, bbpk) knows PK, SK(S)

25

#Protocol description
0. -> V : B
1a. V -> B : {V, ni}{kvb}, {ki}{PK(S)} % kic, \

{ivi}{PK(S)} % ivic, {vi}{ki} % vic
30 1b. V -> B : h(kvb, {ki}{PK(S)} %kic, \

{ivi}{PK(S)} % ivic, {vi}{ki} % vic, ni)
-- Save vote into DB
2. B -> V : {ni}{kvb}
-- Vote tallying

35 3a. B -> S : kic % {ki}{PK(S)}, ivic % {ivi}{PK(S)}, \
vic % {vi}{ki}, ni

3b. B -> S : {h(vic % {vi}{ki}, kic % {ki}{PK(S)}, \
ivic % {ivi}{PK(S)}, ni)}{bbsk}

4. S -> B : {ni}{SK(S)}
40

#Specification
StrongSecret(V, vi, [S])
StrongSecret(V, ki, [S])
StrongSecret(V, ivi, [S])

45

Agreement(B, V, [ni])
Agreement(V, B, [ni])
Agreement(B, S, [ni])
Agreement(S, B, [ni])

50

if Susan receives message 3a from Bob containing Vi for vi
then previously Alice sends message 1a to Bob
containing Vi for vi

#Actual variables
Alice, Mallory : VStation

55 Susan : ESup
Bob : BBox
Ni, Nm : Nonce
Vi, Vm : Vote
Ivi, Ivm : InitializationVector

60 Ki, Km : SymmetricKey
KVB : SessionKey
BBpk : PublicKey

20



BBsk : PrivateKey

65 InverseKeys = (KVB, KVB), (Ki, Ki), (Km, Km), (BBpk, BBsk)

#Functions
symbolic PK, SK

70 #System
INITIATOR(Alice, Vi, Ni, Ki, Ivi, KVB, Susan)
RESPONDER(Bob, KVB, BBpk, BBsk, Susan)
ESUPERVISOR(Susan, Bob, BBpk)

75 #Intruder information
Intruder = Mallory
IntruderKnowledge = {Alice, Bob, Susan, Nm, Vm, Ivm, Km, PK

}
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