
 

Assessment Of Driving Stress Through SVM And 

KNN Classifiers On Multi-Domain Physiological 

Data 

Damiano Fruet 

Department of Industrial Engineering 

University of Trento 

Trento, Italy 

damiano.fruet@unitn.it 

Luca Faes 

Department of Engineering 

University of Palermo 

Palermo, Italy 

luca.faes@unipa.it  

Chiara Barà  

Department of Engineering 

University of Palermo 

Palermo, Italy 

chiara.bara@community.unipa.it 

Giandomenico Nollo 

Department of Industrial Engineering 

University of Trento 

Trento, Italy 

giandomenico.nollo@unitn.it  

Riccardo Pernice  

Department of Engineering 

University of Palermo 

Palermo, Italy  

riccardo.pernice@unipa.it

Abstract— We propose an objective stress assessment 

method based on the extraction of features from 

physiological time series and their classification using 

Support Vector Machine and K-Nearest Neighbors 

algorithms. For this purpose, we used an open dataset 

consisting of multiparametric physiological signals 

(electrocardiogram, electromyogram, galvanic skin 

response and breath signal) obtained during the execution 

of a driving route within the city of Boston with restful, 

highway and city driving periods indicative of three 

different stress states. To predict the driver stress level, 

21 features were extracted from 122 chunks of raw signals 

and were subsequently managed by classification 

algorithms. Our analysis showed a prediction accuracy of 

98.4% when all features were used, decreasing when 

signals from specific physiological systems were not 

considered. Our results highlighted that multidomain 

data acquisition by wearable sensors combined with 

appropriate classification models may represent a 

promising strategy to detect drivers’ stress status in an 

unobtrusive and objective way that can in perspective be 

applicable in several other fields such as in the clinics.  
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I. INTRODUCTION 

Mental stress is an indirect physiological indicator of 
various diseases such as hyperextension, sleep disturbances or 
heart rhythm disorders. Stress-related conditions may 
seriously affect the quality of life of an individual by 
influencing the mood, behavior and health. Stress assessment 
is a procedure mainly carried out through visual evaluation [1] 
or questionnaires linked to predefined stress scales [2]. In this 
perspective, contrary to what happens for many clinical 
evaluations (e.g., magnetic resonance, ultrasonography, x-
rays), stress assessment does not require any sophisticated 
technological tool, but results in a subjective and time-
consuming evaluation. 

Thanks to the many wearable devices available, nowadays 
it is possible to collect physiological information from 
different body districts in an unobtrusive and accurate way. 
Interestingly, the correct interpretation of such physiological 

information can lead to an objective evaluation of the stress 
level if appropriate features are used [3]. 

The aim of this study is to apply advanced signal 
processing techniques and classification algorithms to 
different physiological signals, to design a novel algorithmic 
approach to detect stress in an objective and efficient way. 
Several studies have exploited physiological signals to 
evaluate the stress while the user performs different tasks. 
Many of them exploit information from one physiological 
signal, such as the electrocardiogram (ECG) [4], the 
electromyogram (EMG) [5], or the skin conductance signal to 
detect stress in different experiments and conditions [6]. Other 
approaches focused on studying the combination of pairs of 
signals to evaluate the stress, such as ECG and EEG features 
[7] or blood pressure and heart rate to detect the stress during 
work [8]. Fully multiparametric approaches exploiting 
features from several simultaneously collected physiological 
districts are less explored in the literature. 

Our approach is based on the data collected by J.A. Healey 
and made freely available on physionet 
(https://physionet.org/content/drivedb/1.0.0/). Such data 
consist of multiple physiological signals acquired on drivers 
during different stress-related driving conditions: restful, 
highway and city. Specifically, our study presents a stress 
assessment technique based on multiple features extracted 
from different raw physiological signals, i.e. ECG, EMG, 
respiratory, electrodermal activity (from hand and foot). After 
the first phase of feature extraction from raw signals, a 
classification step with Support Vector Machine (SVM) and 
K-Nearest Neighbors (KNN) algorithms was implemented to 
categorize the stress level. The SVM algorithm was already 
used for stress detection in studies starting from the EEG 
signal [9] or from both ECG and EMG, obtaining excellent 
results in terms of accuracy [10]. Other studies used the KNN 
algorithm for stress classification from the EEG signal [11] or 
the ECG signal [12]. In this work, SVM and KNN classifiers 
were compared, evaluating all the features from each signal or 
groups of them. Moreover, a data augmentation algorithm 
consisting in a sliding windows was implemented to increase 
the number of data points and thus increase the accuracy of 
the classifier.  

Moreover, our study investigates how the different 
features extracted from physiological signals could train a 
classification algorithm able to determine stress status while 
driving. Compared with the study of Healey et al. [13], which 



reported a stress detection methodology on the database we 
considered, our study aims at reaching an higher classification 
accuracy by using a data augmentation algorithm. In addition, 
the comparison between the SVM and K-NN classifiers on all 
the features and on selected physiological districts, may 
represent a promising strategy for an objective stress 
assessment and can open the way for future applications in 
different settings. 

II. METHODS 

A. Dataset description 

The dataset used to extract features useful for the 
classification of a subject’s stress state was collected in [13], 
[14] and consists of multiparametric acquisitions obtained 
during the execution of a driving route within the city of 
Boston, including restful, highway and city driving periods. 
Specifically, the dataset includes synchronous 
electrocardiogram (ECG), breath signal (BREATH), 
electromyogram (EMG) and foot and hand galvanic response 
of the skin (GSR) performed through a system integrated into 
the station wagon Volvo S70 used to perform the test. The 
acquisitions were made on 6 subjects who repeated the driving 
route several times and on 3 subjects who did it only once, for 
a total of 27 acquisitions. At the beginning and at the end of 
the experiment, the drivers underwent a resting phase, during 
which they were sitting in a garage with closed eyes and with 
the car in idle. Subsequently, the drivers exiting the garage 
crossed secondary roads until they reached the main busy 
roads of the city. Finally, there was a phase of driving on the 
highway. At the end of this route, the drivers turned back 
along the same route. Accordingly, each experiment consists 
of two rest phases (low stress), three city driving phases (high 
stress) and two highway driving phases (medium stress) for a 
total duration of 50-90 minutes. During acquisitions, the stress 
events to which the drivers were subjected were different 
(traffic, cyclists, pedestrians) and, in order to reduce 
variability, at the beginning of the experiment they were 
shown the route map and some rules; moreover, all the 
experiments were conducted in the mid-morning or mid-
afternoon, in order to have a light traffic condition on the 
highway. 

During the execution of the driving route, subjects were 
monitored by five sensors. The ECG signal was acquired 
through a modified lead II able to minimize motion artifacts 
and to maximize R peaks; specifically, the negative electrode 
was place near the base of the right clavicle, the positive one 
was place on a floating rib underneath the left armpit and the 
ground electrode was placed symmetrically to the latter. The 
breath signal activity was recorded through an elastic Hall 
effect sensor which, placed around the diaphragm of subjects, 
allowed to follow the movements due to inhalation and 
exhalation. Electromyography was performed using three 
electrodes placed on the right trapezius muscle. Finally, GSR 
signals on hands and feet were acquired via two electrodes 
placed on the middle segments of the first and middle finger 
on the side of the palm of the hand and on the sole of the foot 
at both ends of the arch of the foot, respectively. The sampling 
frequencies of the raw signals included in the database 
allowed an appropriate detection of the physiological 
dynamics (496 Hz for ECG, 31 Hz for BREATH, 15.5 Hz for 
EMG and 31 Hz for GSR). In all cases, the skin was cleaned 
by using alcohol and a conductive gel was applied between 
electrodes and skin. 

In this work, nine acquisitions from 16 subjects were 
considered, as they are complete, including all the above-
mentioned physiological signals and also the temporal 
information regarding the division of the driving phases. 

B. Signal processing and features extraction 

For each acquisition, the analyses were carried out on two 
windows of 300 consecutive heartbeats [15] for each driving 
phase, in order to consider the larger part of the signal for each 
participant. Specifically, 122 windows were selected 
considering all the subjects and the available driving phase 
data (32 windows at rest, 54 during city driving and 36 during 
highway driving). The first window was fixed at the beginning 
of each driving phase while the second was shifted 60 
heartbeats from the start of the first. An example of windows 
selection for a subject is shown in Fig. 1 (a).This method of 
analysis, implemented in order to improve the performance of 
classification algorithms by means of the data augmentation 
technique [16], made it possible to double the number of 
elements of the dataset.  

After the application of a zero-phase passband 
Butterworth filter (cutoff frequencies, cfHP = 0.1 Hz cfLP = 20 
Hz, 4th order) on ECG signals, a modified version of Pan 
Tompkins algorithm was applied to detect R peaks [17], and 
the RR interval (RRI) time series were extracted as the time 
interval between consecutive R peaks. Starting from RRI time 
series, time-domain analysis was performed computing the 
average value (���), the standard deviation (���) and the root 
mean square of successive RRI interval differences 
(RMSSDRR) used to estimate the vagally mediated changes 
reflected in HRV [15]. With regard to frequency-domain 
analysis, after applying a high-pass AR filter (cutoff at 0.0156 
times the sampling rate) and normalizing the series to zero 
mean and unit variance, the power spectrum was obtained 
using the non-parametric Blackman-Tukey method 
(Hamming window, bandwidth of 0.04 Hz). After obtaining 
the RRI spectrum, low-frequency (LF, range 0.04-0.15 Hz) 
and high-frequency (HF, range 0.15-0.4 Hz) spectral power 
were computed to obtain their ratio (LF/HF) which is 
considered a pivotal index of the sympatho-vagal balance 
[15]. Fig. 1(b) reports exemplary RRI time series and power 
spectrum of ECG for a representative window. 

With regard to breathing, after removing the mean value 
from the starting signal, a zero-phase bandpass Butterworth 
filter (cfHP = 0.01 Hz cfLP = 0.6 Hz, 4th order) was applied. In 
order to extract the time-domain indexes, the significant 
minima and maxima of the preprocessed signal were detected. 
Specifically, as significant peaks were considered the ones 
having a temporal distance greater than half of the average 
distance between all peaks and having an amplitude greater 
than half of the average amplitude; each minimum was 
detected as the smallest value between two consecutive 
significant peaks. Once the timing of maxima and minima 
were found, the respiratory rate (����� ) and its variability 
(����� ) were determined as the average and the standard 
deviation values of the inverse of the time distance between 
the maxima to which a 4-sample moving average filter was 
also applied. Moreover, the average inspiration (��	� ) and 
expiration (����) times were determined respectively as the 
average value of rise and fall times of the breathing signal in 
each respiratory act. Also in this case, after performing a 
subsampling of the signal at 2 Hz, the power spectrum was 
obtained using the Blackman-Tukey method (Hamming 
window, bandwidth of 0.04 Hz) and then the power value in 



the HF band (HFRESP, range 0.15-0.4 Hz) was extracted. An 
example of breathing signal and of its power spectrum for a 
subject and in a window are reported in Fig. 1(c). 

For the analysis of the muscle electrical activity, before 
extracting the parameters from the EMG signal, a 
preprocessing pipeline was applied as follows. The raw EMG 
signal was filtered with a zero-phase high pass Butterworth 
filter (cf = 10 Hz, 4th order), then it was rectified and smoothed 
using a zero-phase low pass Butterworth filter (cf = 5 Hz, 4th 
order) and, finally, normalized with respect to the average 
[18], [19]. From the preprocessed signals, the average rectified 
value (ARV) and the root mean square (RMS) were obtained 
as average of EMG absolute values and as the square root of 
the total power contained within the EMG signal [20]. With 
regard to frequency-domain analysis, after obtaining the 
power spectrum using the periodogram method [21], the mean 
(MNF) and the median (MDF) frequencies were used as 
indexes of muscle fatigue [20]. These two measures were 
extracted from 250 ms-long time windows [21], and then the 
indexes obtained for all the consecutive segments present 
within the 300 heartbeats were averaged. An example of EMG 
signal and its power spectrum are shown in Fig. 1(d). 

The GSR signals acquired from hand and foot were 
preprocessed to extract physiological indexes as follows. The 
signal was subsampled at 20 Hz, smoothed by applying a 
moving average filter across a 1 second window to reduce 
artifacts and then normalized [22]. Then, a convex-
optimization-based EDA model (cvxEDA) was applied to 
decompose the signal into phasic (SCR) and tonic (SCL) 
response [23]. After applying a zero-phase low pass 
Butterworth filter (cf = 5 Hz divided by sampling rate of the 

data) on the SCR component, starting from the identification 
of the onsets and offsets of the signals (at 0.01 and 0 µS, 
respectively), significant peaks were detected as maxima 
within onset-offset interval with a duration of at least 1 second 
[22]. The mean value of SCL component (��
� ) and the 
number of peaks of the SCR component ( ��
� ) were 
considered. Before frequency-domain analysis, the GSR 
signal was filtered with a zero-phase low pass Chebyshev 
Type I filter (cf = 0.8 Hz, 8th order), subsampled to 2 Hz and 
then filtered with a zero-phase high pass Butterworth filter (cf 
= 0.01 Hz, 8th order). Power spectrum of GSR signal was 
calculated using the Welch’s periodogram method (Blackman 
window with length of 128 points, 50% data overlap) [24]. 
The GSR spectrum was obtained using windows of 2 minutes, 
and the percentage of power within the range 0.045-0.25 Hz 
(EDASymp) was obtained as average of several power value 
percentages. Fig. 1(e) shows the normalized GSR signal 
acquired on hand, alongside with its components and its power 
spectrum for representative window. 

In summary, for each acquisition and for each window, 21 
parameters were extracted: 6 from ECG (���, ��� , RMSSDRR, 
LF, HF, LF/HF), 5 from RESP ( ����� , ����� , ��	�, ���� , 
HFRESP), 4 from EMG (ARV, RMS, MNF, MDF) and 6 from 
GSR (��
� , ��
�, EDASymp, both for hand and foot). 

C. Machine learning: classification 

The features extracted from the signals were organized in 
a table of 122 rows (one for each element) and 21 columns 
(one for each feature) which, given as input to the built-in 
Classification Learner App of the MATLAB  environment 
[25] together with a vector containing labels ('rest', 'city' and 

 
Fig. 1. Example of selected windows and relative physiological signals for one subject a) Graphical representation of the selected windows during the 

entire acquisition process. Above each pair of windows is indicated the driving condition (rest: restful driving, hw: driving on the highway, city: driving 
in the city). In red are represented the first windows consisting of 300 consecutive heartbeats, in blue the second window shifted of 60 heartbeats from 

the start of the first  b-c-d-e) Example of time and frequency domain representation of physiological signals (b: ECG, c: BREATH, d: EMG, e: GSR) 

related to a single window. 



'hw'), allowed to compare several classification algorithms in 
terms of accuracy, prediction time and training time. We 
focused our attention on two classifiers, the Support Vector 
Machine (SVM) and the K-Nearest Neighbors (KNN). The 
former allows to identify a separation hyperplane between the 
elements of different classes [26]; specifically, a cubic SVM 
for which polynomial kernel degree is fixed to 3 was applied. 
Instead, the latter attributes to each element the class most 
present among its k neighbors [27]; in our analysis, the 
neighbors were identified by means of the Euclidean distance 
and the hyperparameter k was fixed to 1 (fine KNN). Training 
of the classification algorithms was performed using the cross-
validation technique [28], for which the classifier is trained as 
many times as the random partitions identified within the 
dataset and the final result is given by their average. In our 
analyses, the hyperparameter k indicative of the number of 
partitions (or folds) used was first set to 50 and then to 5. 
Subsequently, cubic SVM and fine KNN were evaluated on 
the features extracted from each physiological signal, to 
investigate the contribution given by each single signal to the 
classification. Finally, the performance of classifiers was 
evaluated by subtracting progressively the features obtained 
from the same physiological signal from the whole feature set, 
proceeding at each step to maintain maximum accuracy, until 
a single signal was left. In these cases, the hyperparameter k 
of cross-validation technique was set to 5. Given the random 
nature of the validation technique [28], all learning analyzes 
were performed five times, computing the average accuracy, 
prediction speed and training time. 

III. RESULTS AND DISCUSSION 

Table I shows the results in terms of accuracy, prediction 
speed and training time obtained with the application of cubic 
SVM and fine KNN algorithms on the dataset of 122 elements 
characterized by 21 features. The classifier showing the best 
accuracy (98.4%) was the cubic SVM with the application of 
50 folds for validation. Looking at the several tests performed 
in these conditions, it could be observed that the accuracy 
remained quite constant while the training times and the 
number of objects predicted in one second changed. By setting 
to 5 number of folds, the accuracy also varied across 
acquisitions. It is important to note that in each of the tests 
performed with the cubic SVM, the accuracy always remained 
above 96%, with an average of 97.54%. A high number of k 

partitions identified in the application of cross-validation led 
to a similar training set during the k training phases, therefore 
to a lower variability of results obtained not only between the 
k trainings, but also between the different tests performed on 
the same database [28]. The choice of the optimal number of 
folds for validation is not trivial and strongly depends on the 
variability and collinearity of the database [29]. 

Evident differences were observed in terms of the two 
parameters considered for evaluation of the performance. 
Indeed, using 5 folds rather than 50, the training times 
decreased ~7.7 times and the number of predicted elements 
per second increased ~8.4 times. This observation may be 
relevant for the implementation of learning algorithms for 
real-time stress classification on wearable devices or 
automotive control systems. 

Another relevant observation can be made with regard to 
the comparison between the two classifiers taken into account. 
In fact, for both validation techniques, using the fine KNN 
rather than the cubic SVM reduced the accuracy of about 2.5% 
for k = 50 and 2.12% for k = 5, with training times and speed 
of prediction on average lower of 44.95% and greater of 
21.3%, respectively. These advantages in terms of time may 
be ascribed  to the fact that the KNN classifier is among those 
that take the name of “lazy learner”, for which the training 
mechanism does not foresee learning a discriminative 
function of the classes [30]. 

Table II shows the average values of accuracy, prediction 
speed and training time obtained during the five tests 
performed considering separately only the features extracted 
from each physiological signal. The best performance was 
obtained with features extracted from the breathing signal and 
in particular using the fine KNN. For most of the physiological 
signals, the fine KNN led to higher or comparable accuracies 
than those obtained with the cubic SVM, in addition to the 
advantages already highlighted in terms of time; in fact, some 
studies highlighted how, when working with a reduced  
number of features, the KNN classifier allows to achieve a 
greater accuracy than the SVM [31]. 

Our results are in accordance with  previous studies which 
found that the breath signal allows to obtain high classification 
performances for stress detection [32]. On the other hand, our 
results appear different with those found in literature with 

TABLE I.  PERFORMANCE OF CUBIC SVM AND FINE KNN CLASSIFIERS IN TERMS OF ACCURACY, PREDICTION SPEED AND TRAINIG TIME 

CONSIDERING ALL FEATURES FOR FIVE TESTS USING TWO CROSS-VALIDATION APPROACHES (K=50 AND K=5). M= MEAN VALUES OF THE FIVE TESTS 

 
k = 50 k = 5 

Accuracy (%) 
Prediction speed 

(obs/s) 
Training time (s) Accuracy (%) 

Prediction speed 

(obs/s) 
Training time (s) 

1 
cubic SVM 98.4 310 4.045 98.4 1900 0.791 

fine KNN 95.9 370 2.223 95.1 2900 0.495 

2 
cubic SVM 98.4 290 4.981 97.5 3100 0.525 

fine KNN 95.9 330 3.390 97.5 4100 0.269 

3 
cubic SVM 98.4 340 4.172 96.7 2400 0.554 

fine KNN 95.9 380 2.250 95.1 3600 0.295 

4 
cubic SVM 98.4 330 4.450 98.4 2800 0.532 

fine KNN 95.9 390 2.465 94.3 3600 0.283 

5 
cubic SVM 98.4 330 4.642 96.7 3200 0.490 

fine KNN 95.9 440 1.96 95.1 4000 0.261 

M 
cubic SVM 98.4 320 ± 20 4.458 ± 0.37 97.54 ± 0.85 2680 ± 535.72 0.578 ± 0.12 

fine KNN 95.9 382 ± 39.62 2.454 ± 0.56 95.42 ± 1.21 3640 ± 472.23 0.321 ± 0.10 

 



regard to GSR or EMG signals. In fact, although our analyses 
showed how these two signals considered singularly led to 
lower accuracy in the classification of the stress state, some 
studies applied on the same database but with different 
classification algorithms reported accuracies of 95.83% for 
GSR signal [33] and of 96% using EMG signal [34]. This 
result can be explained not only by the choice of the classifier 
but also by the different features that are considered with 
respect to those chosen in our work and which are probably 
less effective for stress detection. 

Fig. 2 reports results obtained by removing, from all the 
available features, those extracted from a specific signal 
chosen to keep the classification accuracy as high as possible; 
this was done for both cubic SVM (top panel) and fine KNN 
(bottom panel). In both cases, the best accuracy was obtained 
using all the five signals and decreased by subtracting the 
features from a given signal. This trend was particularly 
evident using the cubic SVM. It is noteworthy that for KNN 
the accuracy obtained reducing the number of features taken 
into account is higher than the SVM; this could still be 
attributed to the fact that the performances of this classifier are 
better if few features are used [31]. 

Comparing results reported by Table II and Fig. 2, it can 
be observed that the signal that, when considered separately, 
on average has a lower accuracy is not always the one that is 
subtracted from the totality of signals. This result is probably 
related to the curse of dimensionality for which, using higher 
dimensional data, the presence of redundant features may lead 
to lower accuracy and longer processing times [35]. To 
alleviate this problem, it is possible to apply approaches for 
features selection even within the same physiological signal.  

These results highlight the potential of classifiers such as 
SVM, but even more of KNN, to distinguish different stress 
conditions by starting from signals acquired from multiple 
physiological districts, but also from a single one. The results 
obtained are relevant from the point of view of implementing 
stress detection algorithms on wearable devices or systems 
integrated within the car. Despite the advantages shown in the 
above results, one of the main limitations of the KNN 

classifier is related to its time advantage. In fact, since the 
KNN classifier does not require a real training step, large 
memories that allow to store all available data before starting 
the training step are needed [36]. Furthermore, as already 
pointed out, although simple and widely used, the KNN 
classifier does not maintain high performance when dealing 
with large datasets [31], [36]. 

IV. CONCLUSIONS 

This work presented a method to assess stress level during 
driving in an objective way by using information from 
different physiological districts brought by several wearable 
physiological sensors. The process of feature extraction has a 
strong influence on the classification performance and 
consequently on the evaluation of the stress level. We 
compared our results with the ones obtained by other studies 
where different patterns of features were extracted on the same 
dataset, reporting an accuracy of 97% using all the signals [33] 
and an accuracy of 95.83% and 97% respectively when 
considering only the GSR signal or the EMG [34].  

Therefore, our approach, also including data 
augmentation, proved its efficacy by reaching an accuracy of 
98.4% when considering all features representative of 
different physiological responses. Feature analysis revealed 
how each physiological district may influence the 
classification performance, thereby identifying the most 
relevant ones. In addition, the use of a 60 heartbeat sliding 
window resulting in a larger dataset, allowed higher training 
performance and consequently a better prediction of the stress 
level. The comparison between the two classification 
algorithms in terms of relative accuracy and training time 
suggested that our approach could be possibly implemented 
for real time stress evaluation. The described approach 

TABLE II.  PERFORMANCE OF CUBIC SVM AND FINE KNN 

CLASSIFIERS IN TERMS OF AVERAGE ACCURACY, PREDICTION SPEED AND 

TRAINING SPEED, CONSIDERING SEPARATELY ONLY THE FEATURES 

EXTRACTED FROM EACH SIGNAL WITH CROSS VALIDATION K=5 

 
Accuracy (%) 

Prediction 

speed (obs/s) 

Training time 

(s) 

ECG  

cubic SVM 67.7 ± 4.73 2920 ± 268.33 0.54 ± 0.05 

fine KNN 67.38 ± 2.92 4540 ± 384.71 0.28 ± 0.05 

EMG  

cubic SVM 64.62 ± 2.40 3120 ± 327.11 0.76 ± 0.05 

fine KNN 70 ± 1.69 4740 ± 313.05 0.25 ± 0.01 

RESP  

cubic SVM 76.06 ± 4.17 3180 ± 178.89 0.52 ± 0.07 

fine KNN 87.36 ± 2.52 4500 ± 380.79 0.25 ± 0.02 

handGSR  

cubic SVM 70.66 ± 1.43 3240 ± 207.36 0.71 ± 0.29 

fine KNN 71.32 ± 3.07 4860 ± 541.30 0.27 ± 0.06 

footGSR  

cubic SVM 64.92 ± 0.93 3340 ± 181.66 0.94 ± 0.25 

fine KNN 64.26 ± 2.49 4840 ± 288.10 0.26 ± 0.02 

 

 
Fig. 2. Comparison of the accuracy of (a) cubic SVM and (b) fine KNN 
classifiers starting from a training performed with all the features and 

then removing, at each iteration, the indicated group and all the 

previous ones; for example, in the cubic SVM plot, /EMG at the fourth 
tick refers to a training performed with all the features except those 
related to the hand GSR, foot GSR and EMG signals. 



represents a promising tool for future studies on objective 
stress level detection not only during driving, but also in 
relation to other activities. 

Despite the promising results obtained in this study, the 
feature selection step remains a supervised and time 
consuming approach and strongly affects the final outcome of 
the procedure for stress assessment. A more in-depth study on 
the role of features on performance could ensure an improved 
classification performance by reducing the classification time.  

Our method is based on physiological data collected on 

drivers during different stress related activity; to extend the 

potentiality of our approach it would be meaningful to 

enlarge the range of the collected data to other activities and 

physiological districts. An unsupervised learning approach 

allowing a direct processing of raw physiological signals 

should be investigated in order to make the system suitable for 

real-time applications.  
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