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A B S T R A C T

The tools of kinetic theory allow to describe the dynamics and evolution of a system composed of stochastically
interacting particles. The interaction is modeled by means of two classes of parameters, i.e. interaction
rates and transition probabilities. Therefore, a system of nonlinear ordinary differential equations is derived.
Nevertheless, in general, this structure does not consider the action of an external environment. This paper
aims at providing a new kinetic model where an external action occurs. Specifically, this action over the system
is modeled by introducing an external force field. Then, a new kinetic model is derived, and some analytical
results towards the solution of the related Cauchy problem are provided, in the conservative case: existence,
uniqueness, positivity and boundedness. Finally, an application in the contest of mathematical epidemiology
is given; the new kinetic framework is characterized for three classical compartmental models: SIR, SEIIR and
SEIIRS. Stability results and numerical simulations, in agreement with classical theory, confirm the adherence
to reality of this new model.
1. Introduction

In the last decades the interest towards interacting systems has
been growing in the scientific community, due to the studies regarding
complex systems [1]. This interest is referred to systems composed of
agents, also called particles, such that their interactions follow stochastic
rules. In particular, each interaction is binary and is modeled by some
probabilities. Therefore the evolution of such systems is defined by
these stochastic interactions.

An interacting system is studied at different scales. At microscopic
scale, the interest is focused on each particle, by gaining the related
evolution equation; then the final dynamics is the sum of all these equa-
tions. At macroscopic scale, the overall state of the system is considered,
regarding it as a unique entity. Nevertheless, there is an intermediate
level that allows to study statistically the evolution of the system, by
introducing a distribution function over the system. This is the mesoscopic
scale. At this level, the microscopic state of the systems is defined
by some variables, on whom the distribution function is defined. The
macroscopic state is describe by some moments of the distribution
function itself.

Among others, Kinetic Theory is widely used for the study of a
system at a mesoscopic level, [2–6]. In particular, the microscopic level
is described by classical mechanical variables, i.e. space and velocity,
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whereas there is another real variable, generally called activity, whose
particular meaning depends on the application taken into account. This
real variable attains its value in a continuous or discrete subset of R.
Moreover, the overall system is divided into functional subsystems [7],
such that particles belonging to the same functional subsystem share
the same strategy. On each functional subsystem, a distribution function
is introduced. Then the evolution of the 𝑖th functional subsystem is
described by a suitable integro-differential equation, partial differential
equation or ordinary differential equation, in dependence of the shape
of microscopic variables. One of the most successful aspect of kinetic
theory is the huge versatility of its models and equations. Indeed,
it has been applied to biology [8–12], economy [13–15], opinion
dynamic [16–18], vehicular traffic [19,20], psychology [21,22] and so
on.

In general, kinetic models are closed, that is the dynamics is mod-
eled only by binary and stochastic interactions among the particles.
And so, the action of an external force field is neglected. However,
some applications require these kinds of interactions, otherwise kinetic
equations would be not so realistic. For example, in a ecological model,
the action of external environment is fundamental for the evolution of
the overall system, e.g. rainfall, drought, water levels, climate change.
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Nevertheless, the introduction of an external force field in the sys-
tem of kinetic equations causes some problems. Among others, form
an analytical viewpoint, this could make the system nonconservative,
i.e. the total density is not conserved during the evolution, and so blow-
up phenomena of solutions may appear, [23]. In order to avoid such
critical situations, when external actions are considered, thermostatted
kinetic models have been recently introduced in [24–29].

Firstly, in this paper, a system homogeneous with respect to the
mechanical variables is considered, where the microscopic state is
described by the only activity variable. This variable acquires its values
in a discrete real subset. Nevertheless, the evolution depends not only
on the binary conservative interactions among the particles, but also on
the action of an external force field 𝐅[𝐟 ](𝑡). In this paper there is not the
most general external force field, but it has a particular shape. Indeed,
each component of 𝐅[𝐟 ](𝑡) depends on the density of each functional
subsystem, with some coefficients. But some assumptions on these
coefficients ensure that the total density of the system is conserved,
and then any thermostat is required.

The main novelty of this paper is the introduction of a new discrete
kinetic framework under the action of an external force field, which
has a specific analytical shape. This is not only a theoretical interest
towards kinetic modeling, but it is relevant for the applications, as
widely demonstrated in what follows. Moreover, the action of an
external environment on a stochastically interacting system, with its
consequences, has to depend on the current state of the overall system,
with its components. This motivates the particular analytical shape for
the external force field. Accordingly, this choice ensures some analyti-
cal results towards existence, uniqueness, positivity and boundedness of
the solution, globally in time. The latter property is possible thanks to
conservative assumptions on the external force field. At the best of our
knowledge, this represents a first attempt in the modeling of a kinetic
framework under the action of a specific external force field, whose
components depend on the current state of the system. Furthermore,
the generality of this scheme may represent a new possible approach
for nonconservative interacting systems.

It is worth stressing that the novelty of the introduction of an
eternal force field in a kinetic framework goes beyond the theoretical
viewpoint. Indeed, a specific application is presented, in the contest
of mathematical epidemiology (see [30,31] and references therein).
In the last years, this research area has been growing, with several
new results, [32–38]. Kinetic theory framework has just been applied
in mathematical epidemiology (see [39–43] and references therein),
also thanks to what happened with the recent COVID-19 pandemic.
Nevertheless, the new kinetic framework, here presented, allows to
model recovery process and reinfections, if they occur, as consequences
of external factors, regardless of binary and stochastic interactions. This
is a realistic assumption. Then, the new kinetic model proposed in this
paper is applied with respect to three different compartmental models:
SIR, SEIIR and SEIIRS. This application aims at proving how well this
new kinetic model models fits with classical schemes, also in terms
of some stability results, which are not so common in kinetic theory.
However, analytical and numerical results gained for these models
furnish some interesting novelties and perspectives, among the others,
in terms of bifurcations and statistical viewpoint.

After this brief introduction, the paper is organized in four more
sections. Section 2 presents some tools of kinetic theory, regarding
models homogeneous with respect space and velocity, with discrete
activity variable. In Section 3, the new model with external force
field is presented, with some analytical results. The application to
mathematical epidemiology is shown in Section 4, where some stability
results are proved. Finally, Section 5 discusses final remarks and future
research perspective.
2

2. The kinetic framework

Let consider an interacting system composed of particles (or agents),
that have stochastic interactions. Specifically, the system is divided into
𝑛 ∈ N functional subsystems. The microscopic state of the system is
described by a discrete variable 𝑢 that acquires values in a discrete real
subset, i.e.

𝑢 ∈  = {𝑢1, 𝑢2,… , 𝑢𝑛} ⊆ R.

The distribution function of the 𝑖th functional subsystem is

𝑓𝑖(𝑡) ∶ [0, 𝑇 ] → R+,

and gives the number of particles at time 𝑡 > 0 in the microscopic state
𝑖. Whereas 𝐟 (𝑡) = (𝑓1(𝑡), 𝑓2(𝑡),… , 𝑓𝑛(𝑡)) is the vector distribution function
f the overall system.

The macroscopic state of the system is derived by the introduction of
he 𝑝th-order moment, for 𝑝 ∈ N, related to the distribution function 𝐟 .
pecifically, it defines

𝑝[𝐟 ](𝑡) ∶=
𝑛
∑

𝑖=1
𝑢𝑝𝑖 𝑓𝑖(𝑡).

y acquiring a physical viewpoint, the zeroth-order moment, the first-
rder moment and the second-order moment correspond to density,
inear momentum and global activation energy, respectively.

The stochastic microscopic dynamics of the system is defined by
ome suitable quantities that model the interactions between pairs of
articles. Specifically:

• The interaction rate 𝜂ℎ𝑘, for ℎ, 𝑘 ∈ {1, 2,… , 𝑛}, gives the number of
encounters between particles of the ℎth function subsystem and
particles of the 𝑘th functional subsystem.

• The transition probability 𝐵𝑖
ℎ𝑘, for 𝑖, ℎ, 𝑘 ∈ {1, 2,… , 𝑛}, gives the

probability that a particle of the ℎth functional subsystem falls
into the 𝑖th functional subsystem, after interacting with a parti-
cle of the 𝑘th functional subsystem. Since 𝐵𝑖

ℎ𝑘 is a probability,
hereafter it is assumed that
𝑛
∑

𝑖=1
𝐵𝑖
ℎ𝑘 = 1, ∀ℎ, 𝑘 ∈ {1, 2,… , 𝑛}.

Bearing all above in mind, the evolution of the 𝑖th functional
ubsystem, for 𝑖 ∈ {1, 2,… , 𝑛}, is described by the following system
f kinetic equations:
𝑑𝑓𝑖
𝑑𝑡

= 𝐺𝑖[𝐟 ](𝑡) − 𝐿𝑖[𝐟 ](𝑡)

=
𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑓𝑖(𝑡)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝑡).

(1)

t is a system of nonlinear ordinary differential equations with quadratic
onlinearity. Specifically:

• 𝐺𝑖[𝐟 ](𝑡) ∶=
∑𝑛

ℎ,𝑘=1 𝜂ℎ𝑘𝐵
𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡) is the gain term operator that

gives the number of particles that fall into the 𝑖th functional
subsystem, after interacting with a particle of the 𝑘th functional
subsystem.

• 𝐿𝑖[𝐟 ](𝑡) ∶= 𝑓𝑖(𝑡)
∑𝑛

𝑘=1 𝜂𝑖𝑘𝑓𝑘(𝑡) is the loss term operator that gives the
number of particles that leave the 𝑖th functional subsystem due to
interactions with other particles.

hen the operator

𝑖[𝐟 ](𝑡) ∶= 𝐺𝑖[𝐟 ](𝑡) − 𝐿𝑖[𝐟 ](𝑡)

gives the net flux of particles related to the 𝑖th functional subsystem, for
𝑖 ∈ {1, 2,… , 𝑛}. The framework (1) is conservative since 𝐵𝑖

ℎ𝑘 is a prob-

ability, for all ℎ, 𝑘 ∈ {1, 2,… , 𝑛}, and there is not any nonconservative
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term. Therefore, the density, i.e. the 0th-order moment, of the system is
conserved. Moreover, we require the solution 𝐟 (𝑡), if it exists, to satisfy

E0[𝐟 ](𝑡) =
𝑛
∑

𝑖=1
𝑓𝑖(𝑡) = 1, ∀𝑡 > 0.

Then 𝐟 (𝑡) is a probability distribution, whereas this is not true in a
general framework, where 𝐟 (𝑡) is only a distribution over the system.

3. A kinetic model with an external force term

The conservative kinetic framework (1) is useful to describe the
evolution of systems where interactions among particles are the pre-
dominant elements of the dynamics. Nevertheless, this framework does
not consider external actions. However, in some applications these
external interactions may not be neglected, if a realistic description of
the dynamics is required.

In order to consider such external actions, an external force term is
introduced in the conservative kinetic framework (1). Specifically, the
external force field is modeled by a function

𝐅[𝐟 ](𝑡) ∶ [0, 𝑇 ] → R𝑛, 𝑡 > 0,

where

𝐅[𝐟 ](𝑡) =
(

𝐹1(𝑡), 𝐹2(𝑡),… , 𝐹𝑛(𝑡)
)

.

Then, the kinetic equation for the evolution of the 𝑖th function subsys-
em now is
𝑑𝑓𝑖
𝑑𝑡

=
𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑓𝑖(𝑡)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝑡) + 𝐹𝑖(𝑡). (2)

The structure and analytical properties of the system (2) depend on the
particular shape of the external force field 𝐅[𝐟 ](𝑡), which is related to
the particular application taken into consideration. This paper aims at
deriving and studying kinetic equations for an external force field with
the following analytical shape:

𝐅[𝐟 ](𝑡) =
( 𝑛
∑

𝑘=1
𝛤 𝑘
1 (𝑡)𝑓𝑘(𝑡),

𝑛
∑

𝑘=1
𝛤 𝑘
2 (𝑡)𝑓𝑘(𝑡),… ,

𝑛
∑

𝑘=1
𝛤 𝑘
𝑛 (𝑡)𝑓𝑘(𝑡)

)

, (3)

where 𝛤 𝑘
𝑖 (𝑡) is a continuous real-valued function, for all 𝑖, 𝑘 ∈

{1, 2,… , 𝑛}. Then, the kinetic equation that models the evolution of
the 𝑖th functional subsystem writes

𝑑𝑓𝑖
𝑑𝑡

=
𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑓𝑖(𝑡)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝑡) +

𝑛
∑

𝑘=1
𝛤 𝑘
𝑖 (𝑡)𝑓𝑘(𝑡). (4)

Roughly speaking, the analytical shape (3) of the external force field,
i.e. 𝐹𝑖(𝑡) =

∑𝑛
𝑘=1 𝛤

𝑘
𝑖 (𝑡)𝑓𝑘(𝑡), for 𝑖 ∈ {1, 2,… , 𝑛}, may have the following

physical interpretation. For 𝑖 ∈ {1, 2,… , 𝑛}, 𝐹𝑖(𝑡) gives the number of
particles that enter or leave the 𝑖th functional subsystem due to external
actions that depend on functional subsystems and related densities.
Indeed, the external action 𝛤 𝑘

𝑖 (𝑡)𝑓𝑘(𝑡) on the 𝑖th functional subsystem,
for 𝑖 ∈ {1, 2,… , 𝑛}, related to the 𝑘th functional subsystem, for 𝑘 ∈
{1, 2,… , 𝑛}, is modeled by the time-dependent function 𝛤 𝑘

𝑖 (𝑡), whereas
the dependence of this action with respect to the density of th 𝑘th
functional subsystem is defined by the presence of the distribution
function 𝑓𝑘(𝑡) itself. Therefore, the external force field (3) is a non-
direct interaction among the 𝑖th and the 𝑘th functional subsystem,
since these interactions do not depend on the stochastic interactions
among the particles, that are modeled by parameters 𝜂ℎ𝑘 and 𝐵𝑖

ℎ𝑘, for
𝑖, ℎ, 𝑘 ∈ {1, 2,… , 𝑛}.

Given a suitable initial data 𝐟0 =
(

𝑓 0
1 , 𝑓

0
2 ,… , 𝑓 0

𝑛
)

∈ 𝐑𝑛, the Cauchy
problem related to the new kinetic framework (4) writes

⎧

⎪

⎪

⎨

⎪

⎪

𝑑𝑓𝑖
𝑑𝑡

= 𝐽𝑖[𝐟 ](𝑡) +
∑𝑛

𝑘=1 𝛤
𝑘
𝑖 (𝑡)𝑓𝑘(𝑡), 𝑡 > 0

𝐟 (0) = 𝐟0.

(5)
3

⎩

In general, the action of an external force field makes the system
nonconservative, that is the case of kinetic model (4), presented in this
paper. Indeed, the overall density of the system may change during the
evolution, then the solution 𝐟 (𝑡) of the Cauchy problem (5), if exists,
may not be a probability. Moreover, the nonconservative structure
does not ensure, in general, other analytical properties of solution:
uniqueness, boundedness and positivity.

In order to preserve the analytical properties of conservative case
(1), the following assumptions towards the external force field (3) are
assumed:

A1 The functions 𝛤 𝑘
𝑖 (𝑡) are time-independent, i.e., for all 𝑖, 𝑘 ∈

{1, 2,… , 𝑛}

𝑑 𝛤 𝑘
𝑖 (𝑡)
𝑑𝑡

= 0, 𝑡 ≥ 0.

A2 For all 𝑖 ∈ {1, 2,… , 𝑛},

𝛤 𝑘
𝑖 =

⎧

⎪

⎨

⎪

⎩

≥ 0, 𝑘 ≠ 𝑖

≤ 0, 𝑘 = 𝑖.

A3 The coefficients 𝛤 𝑘
𝑖 are such that, for all 𝑘 ∈ {1, 2,… , 𝑛},

𝑛
∑

𝑖=1
𝛤 𝑘
𝑖 = 0.

The assumption A2 may have the following physical interpretation. For
𝑖 ∈ {1, 2,… , 𝑛}, the 𝑖th functional subsystem can only acquire particles
due to the external actions related to the other functional subsystem,
i.e. 𝛤 𝑘

𝑖 𝑓𝑘(𝑡), for 𝑘 ≠ 𝑖. Whereas, it may only loose particles due to the
part of external force field related to the 𝑖th functional subsystem itself,
i.e. 𝛤 𝑖

𝑖 𝑓𝑖(𝑡). Roughly speaking, the external actions 𝛤 𝑘
𝑖 𝑓𝑘(𝑡), for 𝑘 ≠ 𝑖,

moves particles out of the 𝑖th functional subsystems, whereas 𝛤 𝑖
𝑖 𝑓𝑖(𝑡) is

the only part of 𝐹𝑖(𝑡) that furnishes new particles.
The assumption A3 ensures the conservative structure of the system.

Indeed,

𝑑
𝑑𝑡

𝑛
∑

𝑖=1
𝑓𝑖(𝑡) =

𝑛
∑

𝑖=1

(

𝜂ℎ𝑘𝐵
𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑓𝑖(𝑡)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝑡)

)

+
𝑛
∑

𝑖=1

𝑛
∑

𝑘=1
𝛤 𝑘
𝑖 𝑓𝑘(𝑡) = 0.

Then, the solution 𝐟 (𝑡) of the Cauchy problem (5), if exists, remains a
probability as well as for the conservative model (1).

Bearing all above in mind, the following analytical result holds true.

Theorem 1.
Let consider the Cauchy problem (5), such that

𝑛
∑

𝑖=1
𝐵𝑖
ℎ𝑘 = 1, ∀ℎ, 𝑘 ∈ {1, 2,… , 𝑛}.

Let assume that assumptions A1-A2-A3 hold true. Moreover, there exist two
ositive constants 𝜂, 𝛤 such that:

• 𝜂ℎ𝑘 ≤ 𝜂, for all ℎ, 𝑘 ∈ {1, 2,… , 𝑛}.
• 𝛤 𝑘

𝑖 ≤ 𝛤 , for all 𝑖, 𝑘 ∈ {1, 2,… , 𝑛}.

Furthermore, the initial data 𝐟0 ∈ R𝑛 is such that ∑𝑛
𝑖=1 𝑓

0
𝑖 = 1. Then, there

exists a unique, positive and bounded solution 𝐟 (𝑡) ∈ (𝐶∞ ([0, +∞[))𝑛 of the
related Cauchy problem, such that

E0[𝐟 ](𝑡) =
𝑛
∑

𝑖=1
𝑓𝑖(𝑡) = 1, ∀𝑡 ≥ 0.

Proof . The Eq. (4) rewrites, for 𝑖 ∈ {1, 2,… , 𝑛},
𝑑𝑓𝑖 = 𝑃 [𝐟 ](𝑡),

𝑑𝑡 𝑖
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where

𝑃𝑖[𝐟 ](𝑡) ∶=
𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑓𝑖(𝑡)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝑡) +

𝑛
∑

𝑘=1
𝛤 𝑘
𝑖 𝑓𝑘(𝑡)

is an operator on the set of 𝐶∞ functions. Let, now, 𝐟 , 𝐠 ∈ (𝐶∞([0, 𝑇 ]))𝑛,
for 𝑇 > 0, such that they are positive and satisfy ∑𝑛

ℎ=1 𝑓ℎ(𝑡) =
∑𝑛

ℎ=1 𝑔ℎ(𝑡) = 1. Straightforward computations show that

|

|

𝑃𝑖[𝐟 ](𝑡) − 𝑃𝑖[𝐠](𝑡)|| =
|

|

|

|

|

𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑓𝑖(𝑡)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝑡) +

𝑛
∑

𝑘=1
𝛤 𝑘
𝑖 𝑓𝑘(𝑡)

−
𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘𝑔ℎ(𝑡)𝑔𝑘(𝑡) + 𝑔𝑖(𝑡)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑔𝑘(𝑡) −

𝑛
∑

𝑘=1
𝛤 𝑘
𝑖 𝑔𝑘(𝑡)

|

|

|

|

|

,

from which

|

|

𝑃𝑖[𝐟 ](𝑡) − 𝑃𝑖[𝐠](𝑡)|| ≤
|

|

|

|

|

|

𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘

(

𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑔ℎ(𝑡)𝑔𝑘(𝑡)
)

|

|

|

|

|

|

+

|

|

|

|

|

𝑛
∑

𝑘=1
𝜂𝑖𝑘

(

𝑔𝑖(𝑡)𝑔𝑘(𝑡) − 𝑓𝑖(𝑡)𝑓𝑘(𝑡)
)

|

|

|

|

|

+
|

|

|

|

|

𝑛
∑

𝑘=1
𝛤 𝑘
𝑖
(

𝑓𝑘(𝑡) − 𝑔𝑘(𝑡)
)

|

|

|

|

|

.

(6)

By using the assumptions of boundedness, the (6) rewrites

|

|

𝑃𝑖[𝐟 ](𝑡) − 𝑃𝑖[𝐠](𝑡)|| ≤ 𝜂
|

|

|

|

|

|

𝑛
∑

ℎ,𝑘=1

(

𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑔ℎ(𝑡)𝑔𝑘(𝑡)
)

|

|

|

|

|

|

+ 𝜂
|

|

|

|

|

𝑛
∑

𝑘=1

(

𝑔𝑖(𝑡)𝑔𝑘(𝑡) − 𝑓𝑖(𝑡)𝑓𝑘(𝑡)
)

|

|

|

|

|

+ 𝛤
|

|

|

|

|

𝑛
∑

𝑘=1

(

𝑓𝑘(𝑡) − 𝑔𝑘(𝑡)
)

|

|

|

|

|

.

(7)

Since
𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑔ℎ(𝑡)𝑔𝑘(𝑡) = 𝑓ℎ(𝑡)𝑓𝑘(𝑡) − 𝑓ℎ(𝑡)𝑔𝑘(𝑡) + 𝑓ℎ(𝑡)𝑔𝑘(𝑡) − 𝑔ℎ(𝑡)𝑔𝑘(𝑡)

= 𝑓ℎ(𝑡)
(

𝑓𝑘(𝑡) − 𝑔𝑘(𝑡)
)

+ 𝑔𝑘(𝑡)
(

𝑓ℎ(𝑡) − 𝑔ℎ(𝑡)
)

,

the (7) writes

|

|

𝑃𝑖[𝐟 ](𝑡) − 𝑃𝑖[𝐠](𝑡)|| ≤ 𝜂
𝑛
∑

ℎ=1
𝑓ℎ(𝑡)

𝑛
∑

𝑘=1

|

|

𝑓𝑘(𝑡) − 𝑔𝑘(𝑡)|| + 𝜂
𝑛
∑

𝑘=1
𝑔𝑘(𝑡)

𝑛
∑

ℎ=1

|

|

𝑓ℎ(𝑡) − 𝑔ℎ(𝑡)||

+ 𝜂𝑓𝑖(𝑡)
𝑛
∑

𝑘=1

|

|

𝑓𝑘(𝑡) − 𝑔𝑘(𝑡)|| + 𝜂
𝑛
∑

𝑘=1
𝑔𝑘(𝑡) ||𝑓𝑖(𝑡) − 𝑔𝑖(𝑡)||

+ 𝛤
𝑛
∑

𝑘=1

|

|

𝑓𝑘(𝑡) − 𝑔𝑘(𝑡)|| ≤ 4𝜂‖𝐟 (𝑡) − 𝐠(𝑡)‖𝑙1 + 𝛤‖𝐟 (𝑡) − 𝐠(𝑡)‖𝑙1

≤ (4𝜂 + 𝛤 ) ‖𝐟 (𝑡) − 𝐠(𝑡)‖𝑙1 .

(8)

Passing to the sup in the (8) on [0, 𝑇 ], for 𝑇 > 0, it follows

‖𝑃𝑖[𝐟 ](𝑡) − 𝑃𝑖[𝐠](𝑡)‖𝐶∞([0, 𝑇 [) ≤ 𝐶 ‖𝐟 (𝑡) − 𝐠(𝑡)‖𝐶∞([0, 𝑇 [), (9)

where 𝐶 is a positive constant that depends on the parameters of the
system, i.e. 𝜂 and 𝛤 among others. Then, there exists a unique local
solution of the Cauchy problem (5).

In order to prove the positivity of the solution 𝐟 (𝑡), the (4) has to be
rewritten in the following form, for 𝑖 ∈ {1, 2,… , 𝑛},
𝑑𝑓𝑖
𝑑𝑡

+ 𝑓𝑖(𝑡)𝐴𝑖[𝐟 ](𝑡) = 𝐵𝑖[𝐟 ](𝑡), (10)

here

𝑖[𝐟 ](𝑡) =
𝑛
∑

𝑘=1

(

𝜂𝑖𝑘 + 𝛤 𝑘
𝑖
)

𝑓𝑘(𝑡)

𝐵𝑖[𝐟 ](𝑡) =
𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡) + 𝛤 𝑖

𝑖 𝑓𝑖(𝑡).

et now

𝑖(𝑡) =
𝑡
𝐴𝑖[𝐟 ](𝜏) 𝑑𝜏.
4

∫0
hen, straightforward computations show from the (10) that, for 𝑖 ∈
{1, 2,… , 𝑛},

𝑓𝑖(𝑡) = 𝑓 0
𝑖 𝑒

−𝛾𝑖(𝑡) + ∫

𝑡

0
𝑒𝛾𝑖(𝜏)−𝛾𝑖(𝑡)𝐵𝑖[𝐟 ](𝜏) 𝑑𝜏. (11)

Bearing the expression (11) in mind, the positivity of function 𝐟 (𝑡) is
nsured by the positivity of exponential function and assumption A2.

Finally, let consider the integral form of Eq. (4). Then, by integrat-
ng in [0, 𝑡], one has

𝑓𝑖(𝑡) = 𝑓 0
𝑖 + ∫

𝑡

0

(

𝜂ℎ𝑘𝐵
𝑖
ℎ𝑘𝑓ℎ(𝜏)𝑓𝑘(𝜏) − 𝑓𝑖(𝜏)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝜏)

)

𝑑𝜏

+ ∫

𝑡

0

𝑛
∑

𝑘=1
𝛤 𝑘
𝑖 𝑓𝑘(𝜏) 𝑑𝜏. (12)

y summing the (12) on 𝑖 = 1, 2,… , 𝑛 and bearing assumptionA3 in
ind, the following is gained

𝑛

𝑖=1
𝑓𝑖(𝑡) =

𝑛
∑

𝑖=1
𝑓 0
𝑖 + ∫

𝑡

0

𝑛
∑

𝑖=1

(

𝜂ℎ𝑘𝐵
𝑖
ℎ𝑘𝑓ℎ(𝜏)𝑓𝑘(𝜏) − 𝑓𝑖(𝜏)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝜏)

)

𝑑𝜏

+ ∫

𝑡

0

𝑛
∑

𝑖,𝑘=1
𝛤 𝑘
𝑖 𝑓𝑘(𝜏) 𝑑𝜏

= 1.

(13)

hen, the boundedness of the solution is proved. Moreover, the relation
13) ensures that

0[𝐟 ](𝑡) =
𝑛
∑

𝑖=1
𝑓𝑖(𝑡) = 1, ∀𝑡 ≥ 0.

ince 𝑓𝑖(𝑡) < +∞, for all 𝑖 ∈ {1, 2,… , 𝑛} and for all 𝑡 > 0, then the
lobal existence and uniqueness of a positive solution is gained. This
oncludes the proof. □

emark 1. Theorem 1 ensures that the new kinetic framework with
xternal force field (4), under the assumptions A1-A3, is conservative.
n particular, the assumption A3 is sufficient condition for having a
onservative framework. It is worth stressing that, since E0[𝐟 ](𝑡) = 1,
or all 𝑡 ≥ 0, the solution 𝐟 (𝑡) can be regarded as a probability.

. An application to epidemiology

This Section aims at applying the new kinetic framework with
xternal force field (4), under the assumptions A1-A3, for a disease
preading. The overall population is divided into compartments. Then
he system (4) writes

𝑑𝑓𝑖
𝑑𝑡

=
𝑛
∑

ℎ,𝑘=1
𝜂ℎ𝑘𝐵

𝑖
ℎ𝑘𝑓ℎ(𝑡)𝑓𝑘(𝑡)−𝑓𝑖(𝑡)

𝑛
∑

𝑘=1
𝜂𝑖𝑘𝑓𝑘(𝑡)+

𝑛
∑

𝑘=1
𝑘≠𝑖

𝛤 𝑘
𝑖 𝑓𝑘(𝑡)+𝛤 𝑖

𝑖 𝑓𝑖(𝑡). (14)

In particular, each functional subsystem represents a specific com-
partment. Moreover, the parameters of (14) acquire the following
meaning:

• The interaction rate 𝜂ℎ𝑘, for ℎ, 𝑘 ∈ {1, 2,… , 𝑛}, represents the
number of encounter between agents of the ℎth compartment and
agents of the 𝑘th compartment.

• The transition probability 𝐵𝑖
ℎ𝑘, for 𝑖, ℎ, 𝑘 ∈ {1, 2,… , 𝑛}, represents

the probability that an agent of the ℎth compartment moves to the
𝑖th one after an interaction with an agent of the 𝑘th compartment.

• The coefficient 𝛤 𝑘
𝑖 , for 𝑖 ∈ {1, 2,… , 𝑛} and 𝑖 ≠ 𝑘, models the action

of the external force field related to the 𝑘th functional subsystem,
and in dependence of its density 𝑓𝑘(𝑡), that moves particles inside
the 𝑖th functional subsystem. Otherwise, the coefficient 𝛤 𝑖

𝑖 refers
to the action of the external force field which causes the loss of
particles, in dependence of the density 𝑓 (𝑡) of the 𝑖th functional
𝑖



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 174 (2023) 113801M. Menale and C.F. Munafò

G
r
p
e

∑

t

∑

B
f

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

I
v
t
R
r

(

u

E

G
o

m
e
s

T

A

𝐾

t
f
t

subsystem itself. According to the assumption A2: 𝛤 𝑘
𝑖 ≥ 0, for

𝑖 ≠ 𝑘, whereas 𝛤 𝑖
𝑖 ≤ 0.

iven a suitable initial data 𝐟0 =
(

𝑓 0
1 , 𝑓

0
2 ,… , 𝑓 0

𝑛
)

, the Cauchy problem
elated to the system (14) is obtained. The existence, uniqueness,
ositivity and boundness of solution 𝐟 (𝑡) =

(

𝑓1(𝑡), 𝑓2(𝑡),… , 𝑓𝑛(𝑡)
)

are
nsured by previous Theorem 1. Hereafter, it is assumed that
𝑛

𝑖=1
𝑓 0
𝑖 = 1,

hen the solution 𝐟 (𝑡) is a probability, i.e.
𝑛

𝑖=1
𝑓𝑖(𝑡) = 1, ∀𝑡 ≥ 0.

Moreover, 𝑓𝑖(𝑡) can be seen as the fraction of individuals of the 𝑖
functional subsystem, for 𝑖 ∈ {1, 2,… , }.

In the next Subsections, three different compartmental models for
disease spreading are described by using the new kinetic framework
with external force field (14): SIR, SEIIR, SEIIRS. The related Cauchy
problems are derived. For each model, the basic reproduction number
0 is obtained by employing the method of next generation ma-
trix [44], a first stability analysis is presented by studying equilibria,
and some numerical simulations are performed by using MATLAB
routines for ODE.

4.1. SIR

Firstly, SIR model is considered. The overall population is divided
into three functional subsystems according to the three compartments
of this model: susceptible, infectious and recovered. Then, three distribu-
tion functions over the related functional subsystems are introduced:

• 𝑓1(𝑡) gives the number of susceptible individuals at time 𝑡 > 0;
• 𝑓2(𝑡) gives the number of infectious individuals at time 𝑡 > 0;
• 𝑓3(𝑡) gives the number of recovered individuals at time 𝑡 > 0.

Bearing the assumptions of Theorem 1 in mind, it is assumed that
∑3

𝑖=1 𝑓𝑖(𝑡) = 1, for all 𝑡 ≥ 0, that is the distribution function 𝑓𝑖(𝑡), for
𝑖 ∈ {1, 2, 3}, refers to the fraction of individuals of the 𝑖th functional
subsystem.

According to the previous analytical considerations and some usual
assumptions of compartmental models, the parameters of the system
(14) have some specific properties:

• An individual does not change functional subsystem after an inter-
action with another individual of the same functional subsystem,
that is

𝐵𝑘
𝑖𝑖 =

{

1, 𝑘 = 𝑖
0, 𝑘 ≠ 𝑖.

• The transitions from the infectious group to the recovered one
are modeled by an external force field (3). Specifically, the only
non-zero coefficients 𝛤 2

𝑖 are: 𝛤 2
2 and 𝛤 2

3 . Due to the assumption
A3, one has

𝛤 2
2 + 𝛤 2

3 = 0,

and then

𝛤 2
3 = −𝛤 2

2 .

Since 𝛤 2
2 < 0, then 𝛤 2

3 > 0. If a parameter 𝛤 ≥ 0 is introduced,
then

𝛤 2
3 = 𝛤

𝛤 2 = −𝛤 .
5

2 f
earing all above in mind, the kinetic framework with external force
ield (14) for the SIR model writes

𝑑𝑓1
𝑑𝑡

= −𝜂12𝐵2
12𝑓1(𝑡)𝑓2(𝑡)

𝑑𝑓2
𝑑𝑡

= 𝜂12𝐵2
12𝑓1(𝑡)𝑓2(𝑡) − 𝛤𝑓2(𝑡)

𝑑𝑓3
𝑑𝑡

= 𝛤𝑓2(𝑡).

(15)

n particular, 𝐵2
12 is the transition probability that a susceptible indi-

idual gets infected after the interaction with an infectious one. This is
he only transition probability 𝐵𝑖

ℎ𝑘 that appears explicitly in the system.
oughly speaking, this quantity is a kinetic version of the transmission
ate of epidemiological models.

It is worth stressing that, given a suitable initial data 𝐟0 =
𝑓 0
1 , 𝑓

0
2 , 𝑓

0
3
)

, the Cauchy problem related to the model (15) admits a
nique positive solution 𝐟 (𝑡) such that

0[𝐟 ](𝑡) = 1, 𝑡 > 0.

enerally, in an SIR model, it is assumed that 𝑓 0
3 = 0, i.e. the number

f recovered individuals is zero at initial time 𝑡 = 0.
In order to compute the basic reproduction number 0 for this

odel, the next generation matrix method is applied. Let consider the
quation for the infectious compartment, i.e. the second equation of the
ystem (15)
𝑑𝑓2
𝑑𝑡

= 𝜂12𝐵
2
12𝑓1(𝑡)𝑓2(𝑡) − 𝛤𝑓2(𝑡).

his equation rewrites
𝑑𝑓2
𝑑𝑡

= 𝑓2(𝑡)
(

𝜂12𝐵
2
12𝑓1(𝑡) − 𝛤

)

,

and, at the initial time, one has
𝑑𝑓2
𝑑𝑡

= 𝑓 0
2
(

𝜂12𝐵
2
12𝑓

0
1 − 𝛤

)

. (16)

Then, the Transmission matrix 𝑇 (matrix of second infections) and the
Transition matrix 𝛯 (matrix of change of compartments) are obtained
by separating the events leading to new infections from all other events
of the disease spreading dynamics (for details, see [44] and references
therein). Since 𝑓 0

1 ≃ 1, the matrix 𝑇 and the matrix 𝛯 for this kinetic
model read

𝑇 =
[

𝜂12𝐵
2
12
]

𝛯 = [−𝛤 ] .

ccordingly, the following matrix is derived

𝐿 = −𝑇 ⋅ 𝛯−1 =

[

𝜂12𝐵2
12

𝛤

]

. (17)

The eigenvalues of the previous matrix 𝐾𝐿 (17) allow to derive the
basic reproduction number 0 of this SIR model. In particular, 0 is
the spectral radius of matrix 𝐾𝐿, i.e.

0 = 𝜌(𝐾𝐿) ∶= max
𝑖
(|𝜆𝑖|).

Finally, the basic reproduction number 0 for the model (15) is

0 =
𝜂12𝐵2

12
𝛤

. (18)

Since
𝑑𝑓2
𝑑𝑡

= 𝛤𝑓2(𝑡)
(

0𝑓1(𝑡) − 1
)

,

hen the value of the basic reproduction number 0 is fundamental
or the outbreak of a disease spreading event. In particular, if 0 < 1,
hen 𝑓2(𝑡) is decreasing and the outbreak does not occur. Otherwise,
or  > 1, the disease event starts. The case  = 1 is critical.
0 0
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Fig. 1. Time evolution of the three distribution functions 𝑓1(𝑡) (blue line), 𝑓2(𝑡) (red line) and 𝑓3(𝑡) (green line), with 𝛽212 = 0.3, 𝛤 = 0.1 and initial condition 𝐟0 = (0.9, 0.1, 0) in two
different scenario for SIR model: (a) for 0 < 1(𝜂12 = 0.2), where the DFE is (0.7966, 0, 0.2034); (b) for 0 > 1(𝜂12 = 1), where the DFE is (0.0524, 0.0005, 0.9471). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Therefore, the kinetic model (15) is in accordance with the known
results of classical epidemiological models.

4.1.1. Equilibrium points
Let consider the region

𝛺 =
{

(𝑓1, 𝑓2, 𝑓3) ∈ R3 ∶ 𝑓1, 𝑓2, 𝑓3 ≥ 0, 𝑓1 + 𝑓2 + 𝑓3 = 1
}

,

which is positively invariant. The equilibrium points of the system (15),
in the region 𝛺, are obtained by equating to zero the right hand side
of the system (15). From the second equation, one gains 𝑓2 = 0. Then,
the equilibrium points are

(𝑝, 0, 1 − 𝑝), with 𝑝 ∈ (0, 1).

Since the compartment of infectious individuals is empty, this point is
called disease free equilibrium point, also known as DFE. In particular,
1−𝑝 is the fraction of recovered individuals, that is individuals infected
during the disease spreading. Therefore, 𝑝 is the final size of susceptible
individuals (see Fig. 1).

Remark 2. The condition 𝑓2 = 0 gives infinity equilibrium points,
i.e. (𝑝, 0, 1 − 𝑝).

4.2. SEIIR

In the previous SIR model, there is not an exposure period to the in-
fection, i.e. an infected individual is immediately infectious. However,
this may not be a realistic assumption in some situations. Therefore, a
fourth compartment, with the related functional subsystem, is consid-
ered: the exposed individuals. An exposed individual is an individual
who is infected but not still infectious. Then, the overall population is
now divided into four compartments: susceptible, exposed, infectious
and recovered. In order to derive a more realistic model, we further
divide the group of infectious individuals, since an infectious individual
may be asymptomatic or symptomatic. Finally, there are five functional
subsystems, with the related distribution functions. Specifically:

• 𝑓1(𝑡) gives the fraction of susceptible individuals at time 𝑡 > 0;
• 𝑓2(𝑡) gives the fraction of exposed individuals at time 𝑡 > 0;
• 𝑓3(𝑡) gives the fraction of asymptomatic infectious individuals at

time 𝑡 > 0;
• 𝑓4(𝑡) gives the fraction of symptomatic infectious individuals at

time 𝑡 > 0;
• 𝑓5(𝑡) gives the fraction of recovered individuals at time 𝑡 > 0.

This is called SEIIR scheme. Following the previous arguments of the
6

SIR scheme, this Subsection aims at modeling the disease spreading of
this compartmental model by using the new kinetic framework with
external force field (14).

Since the system is conservative, one has

E0[𝐟 ](𝑡) = 𝑓1(𝑡) + 𝑓2(𝑡) + 𝑓3(𝑡) + 𝑓4(𝑡) + 𝑓5(𝑡) = 1, ∀𝑡 > 0.

Keeping all above in mind, the kinetic scheme related to the SEIIR
model is gained by assigning specific values to the parameters of frame-
work (14): interaction rates 𝜂ℎ𝑘, for ℎ, 𝑘 ∈ {1, 2, 3, 4, 5}, the transition
probabilities 𝐵𝑖

ℎ𝑘, for 𝑖, ℎ, 𝑘 ∈ {1, 2, 3, 4, 5}, and coefficients 𝛤 𝑘
𝑖 , for

𝑖, 𝑘 ∈ {1, 2, 3, 4, 5}. Therefore, the following assumptions are taken into
consideration:

• An individual does not change functional subsystem after an inter-
action with another individual of the same functional subsystem,
that is

𝐵𝑘
𝑖𝑖 =

{

1, 𝑘 = 𝑖
0, 𝑘 ≠ 𝑖.

• Only infectious individuals can infect susceptible ones, whereas
exposed ones cannot infect. Moreover, a susceptible individual
passes, with some probability, into the exposed group after an
interaction with an infectious individual, symptomatic or asymp-
tomatic. Then the following transition probabilities model the
disease spreading dynamics:

– 𝐵2
13, which is the transition probability that a susceptible in-

dividual passes into the exposed group after the interaction
with an asymptomatic infectious individual;

– 𝐵2
14, which is the transition probability that a susceptible in-

dividual passes into the exposed group after the interaction
with a symptomatic infectious individual.

Moreover, the related interaction rates 𝜂13 and 𝜂14 are assigned.
• Exposed individuals pass into the asymptomatic or symptomatic

infectious group, and infectious individuals into the recovered
one. These dynamics are modeled by an external force field
(3). For the model of the current Subsection, the only non-zero
coefficients 𝛤 𝑘

𝑖 are:

1. 𝛤 2
2 , 𝛤

2
3 , 𝛤

2
4 , which are related to the exposed individuals

that become infectious (asymptomatic or symptomatic);
2. 𝛤 3

3 , 𝛤
5
3 , which are related to the asymptomatic infectious

individuals that recover;
3. 𝛤 4

4 , 𝛤
4
5 , which are related to the symptomatic infectious
individuals that recover.
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Since the assumption A3 holds true, one has

𝛤 2
2 + 𝛤 2

3 + 𝛤 2
4 = 0,

𝛤 3
3 + 𝛤 3

5 = 0,

𝛤 4
4 + 𝛤 4

5 = 0.

and then

𝛤 2
3 + 𝛤 2

4 = −𝛤 2
2 ,

𝛤 3
5 = −𝛤 3

3 ,

𝛤 4
5 = −𝛤 4

4 .

Since 𝛤 2
2 , 𝛤

3
3 , 𝛤

4
4 < 0, then 𝛤 2

3 , 𝛤
2
4 , 𝛤

3
5 , 𝛤

4
5 > 0, according to the

previous analytical considerations. Let 𝛤 , 𝛤𝐴, 𝛤𝑆 , 𝛾𝐴, 𝛾𝑆 ≥ 0. Then

𝛤 2
3 = 𝛤𝐴, 𝛤 2

4 = 𝛤𝑆 𝛤 2
2 = −(𝛤𝐴 + 𝛤𝑆 ) = −𝛤 ,

𝛤 3
5 = 𝛾𝐴, 𝛤 3

3 = −𝛾𝐴,

𝛤 4
5 = 𝛾𝑆 , 𝛤 4

4 = −𝛾𝑆 .

(19)

Then, the kinetic framework with external force field (14) for the
SEIIR model writes

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑓1
𝑑𝑡

= −𝜂13𝐵2
13𝑓1(𝑡)𝑓3(𝑡) − 𝜂14𝐵2

14𝑓1(𝑡)𝑓4(𝑡)

𝑑𝑓2
𝑑𝑡

= 𝜂13𝐵2
13𝑓1(𝑡)𝑓3(𝑡) + 𝜂14𝐵2

14𝑓1(𝑡)𝑓4(𝑡) − 𝛤𝑓2(𝑡)

𝑑𝑓3
𝑑𝑡

= 𝛤𝐴𝑓2(𝑡) − 𝛾𝐴𝑓3(𝑡)

𝑑𝑓4
𝑑𝑡

= 𝛤𝑆𝑓2(𝑡) − 𝛾𝑆𝑓4(𝑡)

𝑑𝑓5
𝑑𝑡

= 𝛾𝐴𝑓3(𝑡) + 𝛾𝑆𝑓4(𝑡).

(20)

he assumptions of Theorem 1 are satisfied. If the initial data 𝐟0 =
𝑓 0
1 , 𝑓

0
2 , 𝑓

0
3 , 𝑓

0
4 , 𝑓

0
5 ) is such that ∑𝑛

𝑖=1 𝑓
0
𝑖 = 1, then there exists a unique,

ositive and bounded solution 𝐟 (𝑡) for the system (20), such that

5
∑

𝑖=1
𝑓𝑖(𝑡) = 1, 𝑡 > 0.

The next generation matrix method allows to compute the basic repro-
duction number 0 for the SEIIR framework (20). Firstly, the following
system is considered

𝑑𝑓2
𝑑𝑡

= 𝜂13𝐵
2
13𝑓1(𝑡)𝑓3(𝑡) + 𝜂14𝐵

2
14𝑓1(𝑡)𝑓4(𝑡) − 𝛤𝑓2(𝑡)

𝑑𝑓3
𝑑𝑡

= 𝛤𝐴𝑓2(𝑡) − 𝛾𝐴𝑓3(𝑡)

𝑑𝑓4
𝑑𝑡

= 𝛤𝑆𝑓2(𝑡) − 𝛾𝑆𝑓4(𝑡).

(21)

he system (21) is obtained by considering only infected individuals
i.e. exposed, asymptomatic, symptomatic). Indeed, the production of
ew infections and changes of compartments for infected individuals
re considered for applying the next generation matrix method. Follow-
ng the same considerations of SIR model, the Transmission matrix 𝑇
i.e. that one of second infections) and the Transition matrix 𝛯 (i.e. that
ne of changes of compartments) are obtained by separating the events
eading to new infections from all other events of the disease spreading
ynamics. Specifically, each element 𝑇𝑖𝑗 is the rate at which an infected
ndividual, 𝑗 ∈ {2, 3, 4}, leads to new infections in the infected state
7

∈ {2, 3, 4}. Therefore, the matrix 𝑇 and the matrix 𝛯 write

𝑇 =
⎡

⎢

⎢

⎣

0 𝜂13𝐵2
13𝑓

0
1 𝜂14𝐵2

14𝑓
0
1

0 0 0
0 0 0

⎤

⎥

⎥

⎦

,

𝛯 =
⎡

⎢

⎢

⎣

−𝛤 0 0
𝛤𝐴 −𝛾𝐴 0
𝛤𝑆 0 −𝛾𝑆

⎤

⎥

⎥

⎦

.

(22)

Moreover, the inverse matrix of 𝛯 reads

𝛯−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1
(𝛤𝐴 + 𝛤𝑆 )

0 0
−𝛤𝐴

𝛾𝐴(𝛤𝐴 + 𝛤𝑆 )
−1
𝛾𝐴

0
−𝛤𝑆

𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )
0 −1

𝛾𝑆

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (23)

Keeping the shape of matrices 𝑇 (22) and 𝛯−1 (23) in mind, the final
matrix 𝐾𝐿 is

𝐾𝐿 = −𝑇 ⋅ 𝛯−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂13𝐵2
13𝛤𝐴

𝛾𝐴(𝛤𝐴 + 𝛤𝑆 )
+

𝜂14𝐵2
14𝛤𝑆

𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )
𝜂13𝐵2

13
𝛾𝐴

𝜂14𝐵2
14

𝛾𝑆

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(24)

In order to computer the eigenvalues of the previous matrix 𝐾𝐿 (24),
ne has

𝑒𝑡(𝐾𝐿 − 𝜆𝐼) =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝜂13𝐵2
13𝛤𝐴

𝛾𝐴(𝛤𝐴 + 𝛤𝑆 )
+

𝜂14𝐵2
14𝛤𝑆

𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )
− 𝜆

𝜂13𝐵2
13

𝛾𝐴

𝜂14𝐵2
14

𝛾𝑆

0 −𝜆 0

0 0 −𝜆

|

|

|

|

|

|

|

|

|

|

|

|

|

|

= 𝜆2
(

𝜂13𝐵2
13𝛤𝐴

𝛾𝐴(𝛤𝐴 + 𝛤𝑆 )
+

𝜂14𝐵2
14𝛤𝑆

𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )
− 𝜆

)

.

(25)

Straightforward computations on (25) show

𝜆1,2 = 0, 𝜆3 =
𝜂13𝐵2

13𝛤𝐴

𝛾𝐴(𝛤𝐴 + 𝛤𝑆 )
+

𝜂14𝐵2
14𝛤𝑆

𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )
.

hen, the basic reproduction number 0 of the SEIIR scheme (20),
odeled by using the new kinetic framework with external force field

14), is gained by computing spectral radius of the matrix 𝐾𝐿, that is

0 = 𝜌(𝐾𝐿) ∶= max
𝑖
(|𝜆𝑖|).

inally, some algebraic computation show that

0 =
𝜂13𝐵2

13𝛤𝐴

𝛾𝐴(𝛤𝐴 + 𝛤𝑆 )
+

𝜂14𝐵2
14𝛤𝑆

𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )
. (26)

The (26) gives the basic reproduction number 0 for the SEIIR frame-
work (20). In particular, it is the sum of two term, both related to
interactions among susceptible individuals and infectious ones (asymp-
tomatic or symptomatic). The former is related to the contribution of
asymptomatic individuals, i.e. agents of the 3rd functional subsystem.
The latter is the contribution of symptomatic individuals, i.e. agents of
the 4th functional subsystem.

4.2.1. Equilibrium points
Let consider the region
{ 5 }
𝛺 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5) ∈ R ∶ 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 ≥ 0, 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 = 1 ,
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Fig. 2. Time evolution of the five distribution functions 𝑓1(𝑡) (blue line), 𝑓2(𝑡) (yellow line), 𝑓3(𝑡) (red line), 𝑓4(𝑡) (black line) and 𝑓5(𝑡) (green line), with 𝛽213 = 0.3, 𝛽214 = 0.7, 𝛤𝐴 =
0.1, 𝛤𝑆 = 0.2, 𝛾𝐴 = 0.25, 𝛾𝑆 = 0.15 and initial condition 𝐟0 = (0.9, 0.04, 0.01, 0.05, 0) in two different scenario for SEIIR model: (a) For 0 < 1(𝜂13 = 0.1, 𝜂14 = 0.2), where the DFE
is (0.7631, 0, 0, 0, 0.2370); (b) For 0 > 1(𝜂13 = 1, 𝜂14 = 1), where the DFE is (0.0287, 0, 0, 0, 0.9713). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
that is positively invariant. Therefore, by standard procedure (see [45]
and references therein), one derive that, starting from and initial data
𝐟0 ∈ 𝛺, the solution 𝐟 (𝑡) still remains in 𝛺, for all 𝑡 > 0, by regarding
the analytical shape of equations of the system (20).

The equilibrium points of the system (20) are obtained by equating
to zero the right hand side of the system (20). The DFE (disease free
equilibrium) is gained, and reads

(𝑝, 0, 0, 0, 1 − 𝑝) with 𝑝 ∈ (0, 1),

where 1−𝑝 is the fraction of recovered individuals, that is individual in-
fected during the disease spreading, and 𝑝 is the final size of susceptible
individuals (see Fig. 2).

Remark 3. The condition 𝑓2 = 0, 𝑓3 = 0, 𝑓4 = 0 gives infinity
equilibrium points, i.e. points of the form (𝑝, 0, 0, 0, 1 − 𝑝).

Remark 4. As well as for the SIR scheme, the results gained for the
SEIIR framework (20), modeled by the new kinetic framework (14), are
in agreement with the ones of the classical epidemiological models.

4.3. SEIIRS

Let now consider an SEIIR model where reinfections occur. We call
this model SEIIRS. The related kinetic scheme is gained by consider-
ing the model of the previous Subsection with the following further
assumption:

• Reinfection process is also modeled by the external force field (3).
Specifically, the coefficients 𝛤 5

1 and 𝛤 5
5 describe the recovered in-

dividuals that loose their immunity and return into the susceptible
group. Due to the assumption A3, one has

𝛤 5
1 + 𝛤 5

5 = 0,

and then

𝛤 5
1 = −𝛤 5

5 .

Therefore, if 𝜈 > 0, let

𝛤 5
1 = 𝜈

𝛤 5
5 = −𝜈.
8

Then, the kinetic framework with external force field (14) for the
SEIIRS model writes

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑓1
𝑑𝑡

= −𝜂13𝐵2
13𝑓1(𝑡)𝑓3(𝑡) − 𝜂14𝐵2

14𝑓1(𝑡)𝑓4(𝑡) + 𝜈𝑓5(𝑡)

𝑑𝑓2
𝑑𝑡

= 𝜂13𝐵2
13𝑓1(𝑡)𝑓3(𝑡) + 𝜂14𝐵2

14𝑓1(𝑡)𝑓4(𝑡) − 𝛤𝑓2(𝑡)

𝑑𝑓3
𝑑𝑡

= 𝛤𝐴𝑓2(𝑡) − 𝛾𝐴𝑓3(𝑡)

𝑑𝑓4
𝑑𝑡

= 𝛤𝑆𝑓2(𝑡) − 𝛾𝑆𝑓4(𝑡)

𝑑𝑓5
𝑑𝑡

= 𝛾𝐴𝑓3(𝑡) + 𝛾𝑆𝑓4(𝑡) − 𝜈𝑓5(𝑡).

(27)

The assumptions of Theorem 1 are satisfied. Let 𝐟0 = (𝑓 0
1 , 𝑓

0
2 , 𝑓

0
3 , 𝑓

0
4 , 𝑓

0
5 )

be a suitable initial data, such that ∑5
𝑖=1 𝑓

0
𝑖 = 1, then there exists a

unique, positive and bounded solution 𝐟 (𝑡) for the system (20), such
that
5
∑

𝑖=1
𝑓𝑖(𝑡) = 1, 𝑡 > 0.

The next generation matrix method shows that the basic reproduction
number 0 for the current SEIIRS framework (27) is equal to the 0
(26) of SEIIR model. Indeed,

0 =
𝜂13𝐵2

13𝛤𝐴

𝛾𝐴(𝛤𝐴 + 𝛤𝑆 )
+

𝜂14𝐵2
14𝛤𝑆

𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )
=

𝜂13𝐵2
13𝛾𝑆𝛤𝐴 + 𝜂14𝐵2

14𝛾𝐴𝛤𝑆

𝛾𝐴𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )
, (28)

4.3.1. Equilibrium points
Let consider the region

𝛺 =
{

(𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5) ∈ R5 ∶ 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 ≥ 0, 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 = 1
}

.

that is positively invariant, for the same reasons of the previous case.
The equilibrium points of the system (27) are obtained by equating

to zero the right hand side of the system (27). Specifically, the DFE
(disease free equilibrium) reads

(1, 0, 0, 0, 0).
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Moreover, the Jacobian matrix of the system (27) writes

𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝜂13𝐵2
13𝑓3(𝑡) − 𝜂14𝐵2

14𝑓4(𝑡) 0 −𝜂13𝐵2
13𝑓1(𝑡) −𝜂14𝐵2

14𝑓1(𝑡) 𝜈

𝜂13𝐵2
13𝑓3(𝑡) + 𝜂14𝐵2

14𝑓4(𝑡) −(𝛤𝐴 + 𝛤𝑆 ) 𝜂13𝐵2
13𝑓1(𝑡) 𝜂14𝐵2

14𝑓1(𝑡) 𝜈

0 𝛤𝐴 −𝛾𝐴 0 0

0 𝛤𝑆 0 −𝛾𝑆 0

0 0 𝛾𝐴 𝛾𝑆 −𝜈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(29)

where 𝐽 = 𝐽 (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5). Towards the stability of the DFE, the
following theorem holds true.

Theorem 2. Let consider the system (27). If 0 < 1, the DFE is globally
asymptotically stable. If 0 > 1, the DFE is unstable.

Proof. Let 0 < 1. We apply the method developed in [46]. Let

𝐱 =
(

𝑓1(𝑡), 𝑓5(𝑡)
)

𝐈 =
(

𝑓2(𝑡), 𝑓3(𝑡), 𝑓4(𝑡)
)

.

The system (27) is divided into two parts, i.e.

𝑑𝐱
𝑑𝑡

= 𝐹 (𝐱, 𝐈), (30)

𝑑𝐈
𝑑𝑡

= 𝐺(𝐱, 𝐈), 𝐺(𝐱, 𝟎) = 𝟎. (31)

pecifically,

1(𝐱, 𝐈) = −𝜂13𝐵2
13𝑓1(𝑡)𝑓3(𝑡) − 𝜂14𝐵

2
14𝑓1(𝑡)𝑓4(𝑡) + 𝜈𝑓5(𝑡)

𝐹2(𝐱, 𝐈) = 𝛾𝐴𝑓3(𝑡) + 𝛾𝑆𝑓4(𝑡) − 𝜈𝑓5(𝑡),

and

𝐺1(𝐱, 𝐈) = 𝜂13𝐵
2
13𝑓1(𝑡)𝑓3(𝑡) + 𝜂14𝐵

2
14𝑓1(𝑡)𝑓4(𝑡) − 𝛤𝑓2(𝑡)

𝐺2(𝐱, 𝐈) = 𝛤𝐴𝑓2(𝑡) − 𝛾𝐴𝑓3(𝑡)

𝐺3(𝐱, 𝐈) = 𝛤𝑆𝑓2(𝑡) − 𝛾𝑆𝑓4(𝑡).

Let 𝐔0 = (𝐱∗, 𝟎) be the DFE of the system, where 𝐱∗ = (1, 0). In order
to apply the method of [46], the following two assumptions need to be
satisfied:

H1 For 𝑑𝐱
𝑑𝑡

= 𝐹 (𝐱, 𝟎), 𝐱∗ is globally asymptotically stable;

2 𝐺(𝐱, 𝐈) = 𝐴𝐈 − 𝐺̂(𝐱, 𝐈), where 𝐺̂(𝐱, 𝐈) ≥ 0 for (𝐱, 𝐈) ∈ 𝛺, and
𝐴 = 𝐷𝐼𝐺(𝐱∗, 𝟎) is an M-matrix.

Now, since 𝐅(𝐱, 𝟎) =
(

−𝜂13𝐵2
13𝑓1(𝑡)𝑓3(𝑡) − 𝜂14𝐵2

14𝑓1(𝑡)𝑓4(𝑡) + 𝜈𝑓5(𝑡),

𝛾𝐴𝑓3(𝑡) + 𝛾𝑆𝑓4(𝑡) − 𝜈𝑓5(𝑡)
)

, the system 𝑑𝐱
𝑑𝑡

= 𝐹 (𝐱, 𝟎) rewrites

𝑑𝑓1
𝑑𝑡

= 𝜈𝑓5(𝑡)

𝑑𝑓5
𝑑𝑡

= −𝜈𝑓5(𝑡).

Then, the point 𝐱∗ = (1, 0) is globally asymptotically stable for this
ystem, and the assumption H1 is satisfied.

Bearing the Jacobian matrix (29) in mind, one has

= 𝐷𝐼𝐺(𝐱∗, 𝟎) =

⎡

⎢

⎢

⎢

⎢

⎢

−𝛤 𝜂13𝐵2
13 𝜂14𝐵2

14

𝛤𝐴 −𝛾𝐴 0

⎤

⎥

⎥

⎥

⎥

⎥

. (32)
9

⎣𝛤𝑆 0 −𝛾𝑆 ⎦
hen,

𝐈 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝛤𝑓2(𝑡) + 𝜂13𝐵2
13𝑓3(𝑡) + 𝜂14𝐵2

14𝑓2(𝑡)

𝛤𝐴𝑓2(𝑡) − 𝛾𝐴𝑓3(𝑡)

𝛤𝑆𝑓2(𝑡) − 𝛾𝑠𝑓4(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

ince 𝐺(𝐱, 𝐈) = 𝐴𝐈 − 𝐺̂(𝐱, 𝐈), then 𝐺̂(𝐱, 𝐈) = 𝐴𝐈 − 𝐺(𝐱, 𝐈). Therefore,

̂ (𝐱, 𝐈) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

1 − 𝑓1(𝑡)
) (

𝜂13𝐵2
13𝑓3(𝑡) + 𝜂14𝐵2

14𝑓4(𝑡)
)

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

rivially, 𝐺̂(𝐱, 𝐈) ≥ 𝟎, for (𝐱, 𝐈) ∈ 𝛺, as 𝑓1(𝑡) ≤ 1. Then

(𝐱, 𝐈) = 𝐴𝐈 − 𝐺̂(𝐱, 𝐈).

he matrix 𝐴 is trivially an M-matrix, that is the off-diagonal ele-
ents are non-negative. The condition H2 is satisfied too. The global

symptotic stability for 0 < 1 is thus gained.
Let now 0 > 1. The Jacobian matrix (29) at DFE reads

(1, 0, 0, 0, 0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 −𝜂13𝐵2
13 −𝜂14𝐵2

14 𝜈

0 −(𝛤𝐴 + 𝛤𝑆 ) 𝜂13𝐵2
13 𝜂14𝐵2

14 𝜈

0 𝛤𝐴 −𝛾𝐴 0 0

0 𝛤𝑆 0 −𝛾𝑆 0

0 0 𝛾𝐴 𝛾𝑆 −𝜈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (33)

f we prove that, at least, one of the eigenvalues of the matrix (29) has
ositive real part, then the proof is concluded. In order to get this aim,
he characteristic polynomial of the matrix, that is (29) is considered

(𝜆) = −𝜆(−𝜆 − 𝜈) 𝑔(𝜆), (34)

here

(𝜆) = 𝑎3𝜆
3 + 𝑎2𝜆

2 + 𝑎1𝜆 + 𝑎0. (35)

Specifically, the coefficients of 𝑔(𝜆), after straightforward computa-
ions, write

3 = −1,

2 = −(𝛾𝐴 + 𝛾𝑆 + 𝛤𝐴 + 𝛤𝑆 ),

1 = 𝜂13𝐵
2
13𝛤𝐴 + 𝜂14𝐵

2
14𝛤𝑆 − 𝛾𝐴(𝛤𝐴 + 𝛤𝑆 ) − 𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 ) − 𝛾𝐴𝛾𝑆 ,

0 = 𝜂13𝐵
2
13𝛾𝑆𝛤𝐴 + 𝜂14𝐵

2
14𝛾𝐴𝛤𝑆 − 𝛾𝐴𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 )

= (0 − 1)𝛾𝐴𝛾𝑆 (𝛤𝐴 + 𝛤𝑆 ).

(36)

ow, the Routh–Hurwitz criterion [47,48] is applied. Indeed, some
omputations prove that there is a change of sign in the coefficients
f the first column of Routh’s matrix. Trivially one has that 𝑎3, 𝑎2 < 0.
ince 0 > 1, then 𝑎0 > 0. Now, one has

2 = −

|

|

|

|

|

𝑎3 𝑎1
𝑎2 𝑎0

|

|

|

|

|

𝑎2
=

𝑎0 + 𝑎1𝑎2
𝑎2

𝑏1 = −

|

|

|

|

|

𝑎3 0
𝑎2 0

|

|

|

|

|

𝑎2
= 0

𝑐1 = −

|

|

|

|

|

𝑎2 𝑎0
𝑏2 0

|

|

|

|

|

𝑏2
= 𝑎0.
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Fig. 3. Time evolution of the five distribution functions 𝑓1(𝑡) (blue line), 𝑓2(𝑡) (yellow line), 𝑓3(𝑡) (red line), 𝑓4(𝑡) (black line) and 𝑓5(𝑡) (green line) for SEIIRS model with
parameters 𝛽213 = 0.8, 𝛽214 = 0.7, 𝛤𝐴 = 0.1, 𝛤𝑆 = 0.2, 𝛾𝐴 = 0.25, 𝛾𝑆 = 0.15, 𝜈 = 0.1. Two scenarios are considered for the initial condition: (a)–(b) 𝐟0 = (0.9, 0.04, 0.01, 0.05, 0); (c)–(d)
𝐟0 = (0.7, 0.1, 0.08, 0.12, 0). Specifically, the left panels refer to the case 0 < 1(𝜂13 = 0.1, 𝜂14 = 0.2), whereas the right panels to the case 0 > 1(𝜂13 = 1, 𝜂14 = 1). The endemic
equilibrium point 𝐸∗ is: (𝑓 ∗

1 , 𝑓
∗
2 , 𝑓

∗
3 , 𝑓

∗
4 , 𝑓

∗
5 ) = (0.2394, 0.1327, 0.0531, 0.1769, 0.3980) for case (b), and (𝑓 ∗

1 , 𝑓
∗
2 , 𝑓

∗
3 , 𝑓

∗
4 , 𝑓

∗
5 ) = (0.2394, 0.1326, 0.0531, 0.1769, 0.3980) for case (d). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The first column of the Routh matrix is the vector

𝐯 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎3
𝑎2
𝑏2
𝑐1

⎤

⎥

⎥

⎥

⎥

⎦

,

with

𝑎3 < 0

𝑎2 < 0

𝑏2 =
𝑎0 + 𝑎1𝑎2

𝑎2
𝑐1 > 0.

Since 𝑎2 and 𝑐1 have opposite sign, this ensures that a change of sign
occurs, regardless of value of the coefficient 𝑏2. Then, there exists at
least one eigenvalue with positive real part. This ensures that the DFE
is unstable for 0 > 1. □

Since reinfections occur in this framework, then endemic equilibrium
points may appear. Therefore, the following result holds true (see
Fig. 3).

Theorem 3. Let consider the framework (27). If 0 > 1, the system has
an endemic equilibrium point. Otherwise, the DFE is the unique equilibrium
point.

Proof . The equilibrium points of system are obtained by equating to
zero the right hand side of the system (27). Beyond the DFE, the further
10
equilibrium point 𝐸∗ is obtained, that is

𝐸∗ = (𝑓 ∗
1 , 𝑓

∗
2 , 𝑓

∗
3 , 𝑓

∗
4 , 𝑓

∗
5 ), (37)

where

𝑓 ∗
1 =

𝛾𝐴𝛾𝑆
(

𝛤𝐴 + 𝛤𝑆
)

𝜂13𝛽213𝛤𝐴𝛾𝑆 + 𝜂14𝛽214𝛾𝐴𝛤𝑆
= 1

0

𝑓 ∗
2 =

𝛾𝐴
𝛤𝐴

𝑓 ∗
3

𝑓 ∗
4 =

𝛾𝐴𝛤𝑆
𝛾𝑆𝛤𝐴

𝑓 ∗
3

𝑓 ∗
5 =

𝛾𝐴(𝛤𝐴 + 𝛤𝑆 )
𝜈𝛤𝐴

𝑓 ∗
3 .

Since 𝑓 ∗
1 + 𝑓 ∗

2 + 𝑓 ∗
3 + 𝑓 ∗

4 + 𝑓 ∗
5 = 1, then

𝑓 ∗
3 =

𝜈𝛾𝑆𝛤𝐴

𝜈𝛾𝑆𝛤𝐴 + 𝛾𝐴
[

𝜈𝛤𝑆 + 𝛾𝑆 (𝜈 + 𝛤𝐴 + 𝛤𝑆 )
]

(

1 − 1
0

)

.

Finally, some straightforward computations show

𝐸∗ =
(

1
0

,
𝜈𝛾𝐴𝛾𝑆
𝑊

(

1 − 1
0

)

,
𝜈𝛾𝑆𝛤𝐴
𝑊

(

1 − 1
0

)

,

𝜈𝛾𝐴𝛤𝑆
𝑊

(

1 − 1
0

)

,
𝛾𝐴𝛤𝑆 (𝛤𝐴 + 𝛤𝑆 )

𝑊

(

1 − 1
0

))

,

where

𝑊 = 𝜈𝛾𝑆𝛤𝐴 + 𝛾𝐴
[

𝜈𝛤𝑆 + 𝛾𝑆 (𝜈 + 𝛤𝐴 + 𝛤𝑆 )
]

.

Nevertheless, if 0 < 1, then 1 − 1
0

< 0, and the point 𝐸∗ has not an
epidemiological meaning, that is no endemic equilibrium point occurs.
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

Moreover, for 0 = 1, the point 𝐸∗ coincides with the DFE. Finally, for

0 > 1, the equilibrium point 𝐸∗ has sense and it does not coincide
with the DFE. This concludes the proof. □

5. Conclusion and perspectives

A realistic description of a stochastically interacting systems needs
to consider the effect of external actions. Indeed, in several context
the evolution is not only the consequence of binary internal stochastic
interactions, but also of an external action on the overall system, or
related to each functional subsystems.

The main novelty of the current paper is the derivation of the
framework (14), that models the evolution of a kinetic system under
the action of an external force field 𝐅[𝐟 ](𝑡), with a specific analytical
shape, that is 𝐹𝑖[𝐟 ](𝑡) =

∑𝑛
𝑘=1 𝛤

𝑘
𝑖 (𝑡)𝑓𝑘(𝑡), for 𝑖 ∈ {1, 2,… , 𝑛}. Specifically,

each component of the external force field depends on two quantities:
the densities of functional subsystems and on the coefficients 𝛤 𝑘

𝑖 (𝑡).
Roughly speaking, the former ensures that the action of the external
force fields depends on the current state of each functional subsystem,
whereas, the latter is the part of action regardless of the current state.
Moreover, in the conservative case, some analytical results are gained,
such that existence, uniqueness, positivity and boundedness of solution
are ensured globally in time.

This new model is applied in the contest of mathematical epidemi-
ology, by improving three typical compartmental schemes: SIR, SEIIR
and SEIIRS. Here, among the others, the external force field mod-
els recovery process and reinfections. Firstly, some analytical results
have been gained towards equilibria and stability, and these are in
agreement with the classical ones of dynamical systems, present in
literature. Analogously, some numerical simulations are provided in
order to show the long-time behavior of solutions, still in agreement
with classical theory. Nevertheless, this application highlights some
interesting things. For instance, the expression of the basic reproduction
number 0 (i.e. (18), (26) and (28)) depends, among the others, on the
parameters that model binary and stochastic interactions. Therefore,
this may be seen as a statistical description of 0, and it may be useful
from an application viewpoint. Moreover, the derivation of stability
results is of great interest in the contest of kinetic theory.

Bearing all above in mind, the analytical and numerical results
of this paper, as well as in the mathematical epidemiology contest,
confirm the generality and versatility of the new framework (4). There-
fore, this paper may be seen as a general scheme in order to derive
nonconservative kinetic frameworks, under the action of external force
fields.

However, the current work represents a first step for the devel-
opment of kinetic models under the action of an external force field.
Firstly, the analysis towards time-dependent coefficients 𝛤 𝑘

𝑖 (𝑡) is a
future research perspective. From an application viewpoint, this is
important since several models require parameters that are not constant
in time. In particular, this may lead to nonautonomous nonconservative
models, which are more realistic for some applications. Moreover,
the epidemiological models, in particular SEIIRS (27), highlight the
impact of this framework for stability studies. Indeed, according to
the classical theory, a kinetic analysis towards the value 0 = 1 is
required, since this value could represent a bifurcation case. Finally,
the analysis of kinetic models with general shape of external force field
𝐅[𝐟 ](𝑡) is another research perspective in order to have a wider field
of applicability. Specifically, it is of prominent interest the research
of analytical assumptions on the external force field and interaction
parameters that ensure the global existence of a unique, positive and
bounded solution of the related Cauchy problem.
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