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Insights into Topological Spaces: Bounds on the Cardinality of Spaces, Selection
Principles involving Networks, and related Games

by DAVIDE GIACOPELLO

In Chapter 1 we present the theory of cardinal invariants and the research in cardi-
nal upper bounds of topological spaces. Then, we deal with the class of Hausdorff
spaces having a π-base whose elements have an H-closed closure. In 2023, Nathan
Carlson proved that |X| ≤ 2wL(X)ψc(X)t(X) for every quasiregular space X with a π-
base whose elements have an H-closed closure. We provide an example of a space X
having a π-base whose elements have an H-closed closure which is not quasiregular
(neither Urysohn) such that |X| > 2wL(X)χ(X) (then |X| > 2wL(X)ψc(X)t(X)). In the class
of spaces with a π-base whose elements have an H-closed closure, we establish the
bound |X| ≤ 2wL(X)k(X) for Urysohn spaces and we give an example of an Urysohn
space Z such that k(Z) < χ(Z). Lastly, we present some equivalent conditions to the
Martin’s Axiom involving spaces with a π-base whose elements have an H-closed
closure and, additionally, we prove that if a quasiregular space has a π-base whose
elements have an H-closed closure then such a space is Choquet (hence Baire).

In Chapter 2 we introduce some new selection principles involving networks, namely,
M-nw-selective, R-nw-selective and H-nw-selective. We show that such spaces has
countable fan tightness, countable strong fan tightness and the weak Fréchet in
strict sense property, respectively, hence they are M-separable, R-separable and H-
separable, respectively. Also they are Menger, Rothberger and Hurewicz. We give
consistent results and we define trivial R-, H-, and M-nw-selective spaces the ones
with countable netweight having, additionally, the cardinality and the weight strictly
less then cov(M), b, and d, respectively. Since we establish that spaces having cardi-
nalities more than cov(M), b, and d, fail to have the R-, H-, and M-nw-selective prop-
erties, respectively, non-trivial examples should eventually have weight greater than
or equal to these small cardinals. Moreover, using forcing methods, we construct
consistent countable non-trivial examples of R-nw-selective and H-nw-selective spaces.
Additionally, we establish some limitations to constructions of non-trivial examples
and we consistently prove the existence of two H-nw-selective spaces whose prod-
uct fails to be M-nw-selective. Finally, we study some relations between nw-selective
properties and a strong version of the HFD property.

In Chapter 3 we introduce and investigate two new games called R-nw-selective
game and the M-nw-selective game. These games naturally arise from the corre-
sponding selection principles involving networks introduced by Bonanzinga and
Giacopello.
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Chapter 1

Recent studies on the upper
bounds of the cardinality of
topological spaces

In this chapter, we will deal with cardinal functions or invariants. These tools rep-
resent a very powerful instrument in set-theoretic topology. The study of cardinal
functions has opened up the possibility to generalize various topological concepts
and explore the cardinality of particular classes of spaces. All uncited results in
this chapter are either floklore or can be found in [37]. For more details on the set-
theoretical contest and some covering properties see Appendices A and B.

1.1 Introduction to cardinal functions and upper bounds on
the cardinality of spaces

One of the most primary challenge in topology lies in determining whether two
topological spaces are homeomorphic to each other. Explicitly constructing a home-
omorphism between two spaces is frequently a tough task. Moreover, establishing
that there are no homeomorphisms between spaces is equally difficult. The method
of cardinal functions provides some tools to face this problem. Indeed, a cardinal
function (or cardinal invariant) is a functor

φ : TOP → CARD

from the class TOP of topological spaces to the class CARD of cardinal numbers,
such that for every pair of homeomorphic spaces X and Y, it holds that φ(X) =
φ(Y). Therefore, if one finds out that φ(X) ̸= φ(Y) for some cardinal function φ,
then the spaces X and Y are not homeomorphic to each other.
Cardinal functions also provide an extension to arbitrary cardinalities of numer-
ous fundamental notions in general topology, such as: separability; first and second
countability; compactness, and so on. Additionally, they allow for a precise quantita-
tive comparison between sizes of topological objects of a particular space regardless
for their scale.
The introduction of such cardinal invariants began in the 1920s by the Russian school
of topology (Luzin, Suslin, Alexandroff, Urysohn, etc.) but it fully emerged in the
second half of the 1960s with the set-combinatorics theory.
In what follows we will present some cardinal functions. Of course, we cannot pro-
vide a list of all the existing ones, we either choose some functions that generalize
basic concepts in topology, or some more historically relevant ones. However, nu-
merous other cardinal functions have been introduced over this century.
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1.1.1 Definitions of cardinal functions and some relations between them

The first cardinal invariant we consider is the character, which is the function as-
sociated to the concept of local base at one point of a topological space. It exactly
measures the minimum cardinality such that each point of the space has a local base
of that cardinality. Given a space X, the character of X is defined as

χ(X) = min{κ : ∀x ∈ X ∃ a local base Vx such that |Vx| ≤ κ}

Clearly, a space X is first countable iff χ(X) ≤ ω.
This function is hereditary, which means that if χ(Y) ≤ χ(X) whenever Y is a subset
of X. Additionally, it is productive for products that do not exceed the cardinality
of the character of each space, i.e., if {Xα : α < λ} is a collection of spaces such that
χ(Xα) ≤ κ, if λ ≤ κ, χ(∏α<λ Xα) ≤ κ.
Given a space X, a local pseudobase at one point x ∈ X is a collection V of open
neighborhoods of x, such that {x} =

⋂ V . Then the pseudocharacter of a T1 space X is
defined as

ψ(X) = min{κ : ∀x ∈ X ∃ a local pseudobase Vx such that |Vx| ≤ κ}

In general for a T1 space X, ψ(X) ≤ χ(X) and ψ(X) ≤ |X|. As the character, the
pseudocharacter is a hereditary function.
Usually, since these functions describe local properties, they are locally defined which
means χ(x, X) and ψ(x, X), for every point x ∈ X, namely as the minimum of a local
base (or pseudobase, respectively) at x in X. Moreover, if X is a Hausdorff locally
compact space ψ(x, X) = χ(x, X) for every x ∈ X.
The closed pseudocharacter is defined for Hausdorff spaces as

ψc(X) = min{κ : ∀x ∈ X ∃ a family Vx of open neighborhoods of x

such that |Vx| ≤ κ and
⋂

V∈Vx

V = {x}}

In general, ψ(X) ≤ ψc(X) ≤ χ(X) for a Hausdorff space X and ψ(X) = ψc(X) for a
regular space X.

The tightness of a space is another local cardinal invariant. It is defined as

t(X) = min{κ : ∀x ∈ A ∃B ⊆ A such that |B| ≤ κ and x ∈ B}

An important lemma can be proved using this cardinal function.

Lemma 1.1.1. Let X be a space such that t(X) ≤ κ and {Fα : α < λ} be an increasing
sequence of closed subsets of X of lenght λ, with c f (λ) > κ. Then the set F =⋃

α<λ Fα is closed.

Given a space X, a local π-base at x in X is a collection Vx of open neighborhoods
of x, such that for every open neighborhood U of x, exists some V ∈ Vx such that
V ⊆ U. The π-character is defined as

πχ(X) = min{κ : ∀x ∈ X ∃ a local π-base Vx such that |Vx| ≤ κ}

Clearly, πχ(X) ≤ χ(X) for every space X.
The following proposition gives an example of a space in which ψ(X) = ω and χ(X)
is arbitrarily large. Reacall given an uncountable cardinal κ the character of the space
2κ is exactly κ and if D is a dense subset of 2κ its character is still κ.
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Proposition 1.1.2. Let κ be a cardinal number. Then there exists a dense subset D of
2κ such that |D| ≤ κ and ψ(D) ≤ ω.

Proof. For κ ≤ 2ω it is trivial since 2κ is separable. Then assume that κ > 2ω.
Let {sα : α < κ} be an enumeration of finite nonempty partial functions from κ to 2.
Recursively over α construct a sequence of countable partial functions {pα : α ∈ κ}
from κ to 2 such that

(1) pα extends sα, and

(2) p−1
α (1) \ s−1

α (1) is an infinite subset of κ \⋃
β<α p−1

β (1).

Now let fα ∈ 2κ be an extension of pα such that fα(ξ) = 0 for all ξ ̸∈ dom(pα).
It is clear that D = { fα : α < κ} is dense, we claim that it also has countable pseu-
docharacter. Indeed, it follows from (2) that { fα} = D ∩ ⋂{Uξ : pα(ξ) = 1}, where
Uξ = {x ∈ 2κ : x(ξ) = 1}.

The cardinal functions based on the concepts of local base, local Ψ-base, and local
π-base find their global versions in the following cardinal functions.
The weight

w(X) = min{κ : ∃ a base B such that |B| ≤ κ}

The Ψ-weight (pseudo-weight) defined for T1 spaces

Ψw(X) = min{κ : ∃ a Ψ-base B such that |B| ≤ κ}

where a Ψ-base is a family of open subsets such that every point of the space is the
intersection of all the members of the family which contains it.
And the π-weight

πw(X) = min{κ : ∃ a π-base B such that |B| ≤ κ}

where a π-base is a family of open subsets such that every open subset of the space
there exists a member of the family inside.

A family of subset N of a space X is called network if for every point x ∈ X and
every open neighborhood U of x there exists N ∈ N such that x ∈ N ⊆ U. The
network weight (or netweight) is defined as

nw(X) = min{κ : ∃ a network N such that |N | ≤ κ}

Clearly, nw(X) ≤ w(X) for every space X and for locally compact Hausdorff spaces
nw(X) = w(X). Additionally, for T1 spaces |X| ≤ nw(X)ψ(X).

The Lindelöf degree is the invariant that generalize the compactness or the Lin-
delöfness of a space. It is defined as

L(X) = min{κ : ∀ open cover U of X ∃V ⊆ U such that |V| ≤ κ and
⋃

V = X}

The Lindelöf degree is not a hereditarily function in general, but for closed subsets.
Therefore, it is possible to define the hereditary version of this function. The heredi-
tary Lindelöf degree hL(X) = sup{L(Y) : Y ⊆ X}. It is straightforrward to prove that
L(X) ≤ hL(X) ≤ nw(X) holds for any space. Also, the hereditary Lindelöf can be
equivalently defined as hL(X) = sup{L(Y) : Y is an open subset of X}.
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The cardinal function that generalize the concept of separability of a space is the
density. It is defined as

d(X) = min{κ : ∃ a dense subset D such that |D| ≤ κ}

It is straightforward to see that d(X) ≤ nw(X) and d(X) ≤ πw(X) hold for any
space. Moreover, if X is a Hausdorff space, |X| ≤ 2d(X) and |X| ≤ d(X)χ(X) (called
Pospíšil inequality). If a space is regular, then w(X) ≤ 2d(X). The hereditary ver-
sion of the density is defined as hd(X) = sup{d(Y) : Y ⊆ X}. The inequalities
t(X) ≤ hd(X) and hd(X) ≤ nw(X) hold for any space.

The extent of a space is definded as

e(X) = sup{|C| : C is a closed and discrete subset of X}

It is clear that e(X) ≤ L(X).
The hereditary version of the extent is the spread defined as

s(X) = sup{|D| : D is a discrete subset of X}

Clearly, s(X) ≤ hd(X).
A maximal open family of pairwise disjoint subsets of a space is called cellular.

The cellularity of a space is defined as

c(X) = sup{|C| : C is a cellular family in X}

It is easy to see that c(X) ≤ d(X) and c(X) ≤ s(X). Moreover, the hereditary version
of the cellularity is the spread. A space is said to have the countable chain condition
(brifly, ccc) if c(X) = ω.

1.1.2 Cardinal inequalities

In the previous section, we have examined some inequalities among the introduced
cardinal invariants, including some that involve the cardinality of the space. While
the majority were straightforward, others required more detailed proofs. Generally,
a cardinal inequality gives an upper bound on the cardinality of a particular class
of spaces, involving cardinal invariants. Occasionally, we investigate bounds on the
cardinality of a specific cardinal function.
The study of cardinal inequalities, as an indipendent line of research, began with
the following problem posed in 1923 by the one of the fathers of General Topology,
Alexandrov.

Question 1.1.3. Is the cardinality of a first countable compact Hausdorff space less
than or equal to the continuum?

It seemed like a simple and natural question, but it had been unsolved for almost
50 years until 1969 when the Russian topologist Arhangel’skii provided an affirma-
tive answer.

Theorem 1.1.4. [2] Let X be a Hausdorff space. Then |X| ≤ 2χ(X)L(X).

Pol and Shapirovskii improved Arhangel’skii’s inequality by replacing the char-
acter with the product of the pseudocharacter and the tightness, which in general is
less than or equal to the character.
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Theorem 1.1.5. (Pol-Shapirovskii) Let X be a Hausdorff space. Then |X| ≤ 2ψ(X)t(X)L(X).

In 1967, Hajnal and Juhász inspired by the work of Arhangel’skii, proved the
following result.

Theorem 1.1.6. Let X be a Hausdorff space. Then |X| ≤ 2χ(X)c(X).

The previous two result seemed similar to each other and some mathematicians
asked about the possibility to find a common generalization of them. In 1978, Bell,
Ginsburg and Woods succeded in this aim in the class of normal Hausdorff spaces
by introducing the cardinal function weak Lindelöf degree defined as

wL(X) = min{κ : ∀ open cover U of X ∃V ⊆ U such that |V| ≤ κ and
⋃

V = X}

It is straightforward to see that wL(X) ≤ L(X) and wL(X) ≤ c(X).

Theorem 1.1.7. [11] Let X be a normal Hausdorff space. Then |X| ≤ 2χ(X)wL(X).

In the same paper the authors provided an example of a Hausdorff space X of
arbitrarily large cardinality of countable character and weak Lindelöf degree.
Two issues rised after their work: the first is to find, whether is possible, the Bell,
Ginsburg and Woods’inequality under weaker hypotesis. For instance to see if it
holds for regular (completely regular or zero-dimensional) Hausdorff spaces. The
second is to improve the bound using smaller cardinal functions to get more accu-
rate estimates. A possibility could be replacing χ(X) with ψ(X)t(X) as it was done
by Pol and Shapirovskii.
However, Bell, Ginsburg and Woods posed some limits to the research in both these
directions. Indeed, they provided an example of a zero-dimentional Hausdorff (hence
completely regular) space Z such that |Z| > 2ψ(Z)t(Z)wL(Z).

In 1982, Dow and Porter achieved a very powerful result in the class of H-closed
spaces. Recall that a Hausdorff space X is H-closed if for every open cover U of
X there exists a finite subfamily V such that

⋃
V∈V V = X (for further information

about this class of space see in the Appendix A).

Theorem 1.1.8. [33] Let X be an H-closed space. Then |X| ≤ 2ψc(X).

Bella and Carlson, trying to address the Bell, Ginsburg, and Woods’issue, ob-
served that one of the conditions to add to the "weak" separation axioms to obtain
the Bell, Ginsburg, and Woods’inequality is the fact that the space admits a π-base
whose elements have certain properties. Indeed through such π-base, it is possible
to generalize the closing-off argument used to prove this kind of theorems, as we
will see later on in Theorem 1.2.7. For simplicity, if a space has a π-base whose el-
ements have an H-closed (compact) closure, we say that the space has an H-closed
(compact) π-base.

Theorem 1.1.9. [15] Let X be a regular Hausdorff space with a compact π-base. Then
|X| ≤ 2wL(X)t(X)ψ(X)

In [16], Bella, Carlson and Gotchev proved that, replacing the pseudocharac-
ter ψ(X) with the closed pseudocharacter ψc(X), the same inequality holds also for
spaces with a compact π-base. That is,

Theorem 1.1.10. [16] If X is a Hausdorff space with a compact π-base. Then |X| ≤
2wL(X)t(X)ψc(X).



6
Chapter 1. Recent studies on the upper bounds of the cardinality of topological

spaces

Since H-closedness is a natural generalization of compactness, Bella, Carlson and
Gotchev posed the following question.

Question 1.1.11. [16] Let X be a Hausdorff space with a π-base whose elements have
H-closed closures. Is it true that |X| ≤ 2wL(X)t(X)ψc(X)?

In [15], some further investigations on spaces having a π-base with some prop-
erties on the closure of the elements have led to Theorem 1.1.12.

Recall that a a space X is called quasiregular if for every open subset U there
exists another open subset V such that V ⊆ U. Also, given a subset A ⊆ X the
θ-closure (see [71]) of A, clθ(A), is the subset {x ∈ X : U ∩ A ̸= ∅ for every open
neighborhood U of x}. Clearly, A ⊆ clθ(A) for every A ⊆ X. Recall that, given a
space X, the cardinal invariant dθ(X), closely related to the density d(X), is defined
as follows. A subspace D ⊆ X is θ-dense in X if D ∩ U ̸= ∅ for every non-empty
open set U of X. The θ-density dθ(X) is the least cardinality of a θ-dense subspace
of X. Observe that dθ(X) ≤ d(X) for any space X (see [20] and [31] for more details
about θ-density).

Theorem 1.1.12. [15] Let X be a space and B an open π-base. Suppose for all B ∈ B
that B is H-closed, (or normal, or Lindelöf, or has the ccc). Then dθ(X) ≤ 2wL(X)χ(X)

and if X is quasiregular or Urysohn then |X| ≤ 2wL(X)χ(X).

Numerous other studies have been conducted in the field of cardinal inequalities,
including in spaces with very weak separation axioms (non-Hausdorff). For exam-
ple, Bonanzinga introduced a class of non-Hausdorff spaces called n-Hausdorff in
[19] and proved many cardinal inequalities in this class. Recently, these classes of
spaces have been investigated in [22] and [23].

1.2 On spaces with a π-base whose elements have an H-closed
closure

In this section we focus on spaces with an H-closed π-base.
First of all, we provide an example of a space having the property we are dealing
with and does not have a compact π-base.

Example 1.2.1. An example of a non-quasiregular (hence non-regular) Hausdorff
space having an H-closed π-base with no compact π-bases.

Consider the space (R, τQ) where τQ is the topology generated by the open set of
the form {x} ∪ (U ∩ Q), with x ∈ R \ Q and U an open set in the standard topology
on R. Let X = [0, 2] with the topology inherited from (R, τQ). X is a Hausdorff non
regular nowhere locally compact space. Then it does not have a compact π-base.
In [40] Herrlich proved that X is H-closed then it admits a π-base whose elements
have H-closed closures. Now we prove that there is not a π-base whose elements
have quasiregular closure. Suppose that B is a π-base of X having elements with
quasiregular closures. Let’s take the open set (0, 2)∩Q, then there exists U ∈ B such
that U ⊆ (0, 2) ∩ Q, by hypothesis U is quasiregular. Therefore there is V ∈ B such
that V ⊆ V ⊆ U so V ⊆ Q, which is a contradiction. By Corollary 1.2.6 (see below)
follows that X is not quasiregular. △

The following example answer in the negative to Question 1.1.11.

Example 1.2.2. A Hausdorff space X having an H-closed π-base such that |X| >
2wL(X)χ(X) (hence |X| > 2wL(X)t(X)ψc(X)).
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Let κ be a cardinal. Consider the space X = (Q × κ) ∪ (R \ Q). If (q, α) ∈ Q × κ,
a basic open neighborhood is Un(q, α) = {(r, α) : r ∈ Q and |r − q| < 1

n} for each
n ∈ ω. If x ∈ R \ Q, a basic open neighborhood is Un(x) = {x} ∪ {(r, α) : r ∈
Q, α < κ and |r − x| < 1

n}. Clearly, t(X)ψc(X) ≤ χ(X) ≤ ω, moreover wL(X) ≤ c.
The collection {Un(q, α) : n ∈ ω, q ∈ Q and α < κ} is a π-base in X. We prove that
each Un(q, α) is H-closed for each n ∈ ω, q ∈ Q and α < κ. Let U be a basic open
cover of Un(q, α). For each U ∈ U there exists WU which is an open subset of R

in the standard topology such that U = {(q, α) : q ∈ WU ∩ Q} ∪ ((R \ Q) ∩ WU).
Since [q − 1

n , q + 1
n ] is a compact (hence H-closed) subset of R and {WU : U ∈ U}

is an open cover of this interval, there exists a finite subfamily {U1, ..., Uk} such that
[q − 1

n , q + 1
n ] ⊆ ⋃k

i=1 WUi . Therefore Un(q, α) ⊆ ⋃k
i=1 Ui. Considering a cardinal

κ > 2c we have that |X| > 2wL(X)χ(X) (hence |X| > 2wL(X)t(X)ψc(X)). △
Notice that the previous example is not Urysohn not even quasiregular, then we

pose the following questions motivated by these facts and Theorem 1.1.12.

Question 1.2.3. Does the inequality |X| ≤ 2wL(X)t(X)ψc(X) hold for quasiregular Haus-
dorff spaces having an H-closed π-base?

Question 1.2.4. Does the inequality |X| ≤ 2wL(X)t(X)ψc(X) hold for Urysohn spaces
having an H-closed π-base?

We answered Question 1.2.3 in the positive and we proved that the inequality in
Question 1.2.4 is true if we use the cardinal function k(·) in the place of t(·)ψc(·) (see
Theorem 1.2.15).
In order to answer Question 1.2.3, we prove the following results.

Lemma 1.2.5. (Carlson) Let X be a Hausdorff space with a π-base B whose elements
have quasiregular closure. Then X is quasiregular.

Proof. Let U be a non-empty open subset of X. There exists V ∈ B such that V ⊆ U
and V is quasiregular. The set V = V ∩ V is open in V. As V is quasiregular,

there exists a non-empty open subset W of X such that ∅ ̸= W ∩ V ⊆ (W ∩ V)
V
=

(W ∩ V) ∩ V ⊆ V.
As W ∩ V ̸= ∅ then W ∩ V ̸= ∅. Furthermore, we have (W ∩ V) ⊆ (W ∩ V) and

(W ∩ V) ⊆ V. Thus (W ∩ V) ⊆ V ⊆ U. As W ∩ V is open in X and non-empty, we
conclude X is quasiregular.

Corollary 1.2.6. A Hausdorff space X has a π-base B whose elements have quasireg-
ular closure if and only if X is quasiregular.

The previous corollary gives us the motivation to place the hypothesis of quasireg-
ularity on the space instead of putting it on the closure of the elements of a π-base.
Recall that, in [14], Bella and Cammaroto proved that |X| ≤ d(X)t(X)ψc(X) for every
Hausdorff space X.

Theorem 1.2.7. (Carlson) Let X be a quasiregular Hausdorff space with an H-closed
π-base. Then |X| ≤ 2wL(X)t(X)ψc(X).

Proof. Let κ = wL(X)t(X)ψc(X) and let B be a π-base of non-empty open sets with
closures that are H-closed and quasiregular. For each B ∈ B, as B is H-closed, by
the Dow-Porter’s result (in [33]) we have that |B| ≤ 2ψc(B) ≤ 2ψc(X) ≤ 2κ. Since
ψc(X) ≤ κ, for each x ∈ X we can fix a collection Vx of open neighborhoods of x
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such that |Vx| ≤ κ and
⋂{V : V ∈ Vx} = {x}. Without loss of generality we may

assume that each Vx is closed under finite intersections.
We will construct by transfinite recursion a non-decreasing chain of open sets

{Uα : α < κ+} such that

(1) |Uα| ≤ 2κ for every α < κ+, and

(2) if X \⋃M ̸= ∅ for some M ∈ [
⋃{Vx : x ∈ Uα}]≤κ, then there is BM ∈ B such

that BM ⊂ Uα+1 \
⋃M.

Let B0 ∈ B be arbitrary. We set U0 = B0. Then |U0| ≤ 2κ. If β = α + 1, for
some α, then for every M ∈ [

⋃{Vx : x ∈ Uα}]≤κ such that X \⋃M ̸= ∅, we choose
BM ∈ B such that BM ⊆ X \⋃M. We define Uβ = Uα ∪

⋃{BM : M ∈ [
⋃{Vx : x ∈

Uα}]≤κ, X \ ⋃M ̸= ∅}. Therefore, by Bella-Cammaroto’s inequality, we have that
|Uβ| ≤ 2κ. If β < κ+ is a limit ordinal we let Uβ =

⋃
α<β Uα. Then clearly |Uβ| ≤ 2κ,

hence |Uβ| ≤ 2κ.
Let F =

⋃{Uα : α < κ+}. Then |F| ≤ 2κ. Since t(X) ≤ κ, F is closed and therefore
F =

⋃{Uα : α < κ+}. Thus, F is a regular-closed set.
We will show that X = F. Suppose that X ̸= F. As X \ F is open, X is quasireg-

ular, and the fact that B is a π-base there exists B ∈ B such that B ⊆ X \ F. Now, fix
x ∈ F. We have B ∩⋂{V : V ∈ Vx} = ∅. We will show that there exists V ∈ Vx such
that V ∩ B = ∅. Suppose by way of contradiction that V ∩ B ̸= ∅ for every V ∈ Vx.
The family W = {V ∩ B : V ∈ Vx} is an open filter base on B as it is closed under
finite intersections. W can then be extended to an open ultrafilter U on B. As B is
H-closed, U must converge to a point p ∈ B. Therefore for every V ∈ Vx we have

p ∈ (V ∩ B)
B
= (V ∩ B) ∩ B ⊆ V ∩ B and thus p ∈ B ∩⋂{V : V ∈ Vx}. But this is a

contradiction as B ∩⋂{V : V ∈ Vx} = ∅.
Therefore for every x ∈ F there exists Vx ∈ Vx such that Vx ∩ B = ∅. Clearly

{Vx : x ∈ F} is an open cover of F. Since wL(X) is hereditary with respect to
regular-closed sets, there exists M ∈ {Vx : x ∈ F}≤κ such that F ⊆ ⋃M. Then
there exists α < κ+ such that M ∈ [

⋃{Vx : x ∈ Uα}]≤κ. As B ∩⋃M = ∅ it follows
that B ⊂ X \ ⋃M, hence X \ ⋃M ̸= ∅. Thus, there exists BM ∈ B such that
∅ ̸= BM ⊆ Uα+1 \

⋃M ⊆ F \⋃M = ∅. Since this is a contradiction, we conclude
that X = F and the proof is completed.

Example 1.2.2 witnesses the fact that the hypothesis of quasiregularity in the
previous theorem is essential.
Recall the following theorem.

Theorem 1.2.8. [16, Theorem 4.18] Let X be a Hausdorff space with an H-closed
π-base. Then dθ(X) ≤ 2wL(X)t(X)ψc(X).

Observe that the same bound cannot hold for the density in all spaces with an
H-closed π-base. Indeed, the Bella-Cammaroto’s inequality |X| ≤ d(X)t(X)ψc(X) for
Hausdorff spaces (see [14]), leads to the inequality |X| ≤ 2wL(X)t(X)ψc(X) for spaces
with an H-closed π-base, which is not true by Example 1.2.2.

We can prove the following result.

Lemma 1.2.9. Let X be a Hausdorff space with a π-base B whose elements have
compact boundaries and F ⊆ X a closed set such that X\F ̸= ∅. Then there is B ∈ B
such that B ∩ F = ∅.
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Proof. There is B ∈ B such that B ∩ F = ∅. We are done if B ∩ F = ∅. Otherwise,
(B\B) ∩ F ̸= ∅ and L = (B\B) ∩ F is compact. Let y ∈ B. As X is Hausdorff, there
are open sets Vy and Wy such that y ∈ V, (B\B) ∩ F ⊆ Wy, and Vy ∩ Wy = ∅. There
is C ∈ B such that ∅ ̸= C ⊆ B ∩ Vy implying C ⊆ B ∩ Vy ⊆ Vy. As C ∩ F ⊆ B ∩ F =

(B\B) ∩ F ⊆ Wy and W ∩ Vy = ∅, it follows that C ∩ F = ∅.

By Lemma 1.2.9 and by Theorem 1.2.7 we obtain the following results.

Corollary 1.2.10. A Hausdorff space with π-base whose elements have compact
boundaries is quasiregular.

Corollary 1.2.11. If a Hausdorff space X has an H-closed π-base whose elements
have compact boundaries, then |X| ≤ 2wL(X)t(X)ψc(X).

In order to answer Question 1.2.4, we start with a well known result that charac-
terizes compactness of the semigularization and we give the proof for sake of com-
pleteness.
Recall that a subset U ⊆ X is called regular closed if U = int(U) and regular open
if U = int(U). It is known that if a space is H-closed every regular closed sub-
set of it inherits the property. Given a space (X, τ), the semiregularization of X,
denoted by Xs, is the space X endowed with the topology generated by the basis
{int(U) : U ∈ τ} of all the regular open sets of X.

Theorem 1.2.12. (Katětov) A space X is Urysohn and H-closed if and only if Xs is
compact Hausdorff.

Proof. Since a space is compact iff it is H-closed and regular it suffices to show that
Xs is regular. Let A be a regular-closed subspace of X and p be a point not in A. For
each q ∈ A, there are disjoint regular-open sets Uq and Vq such that p ∈ Uq, q ∈ Vq,
and Uq and Vq are disjoint. There is a finite subset F of A such that A is contained in
V =

⋃{Vq : q ∈ F}. Let U =
⋂

q∈F Uq. Then U ∩ V = ∅. We have that V is a regular
closed set and that p ∈ X \ V ⊆ X \ A. This completes the proof.

Using the previous theorem, we prove the next result.

Lemma 1.2.13. Let X be a Urysohn space. If there exists an H-closed π-base in X,
then there exists a compact π-base in Xs.

Proof. Let B be an H-closed π-base in X. Since B = int(B) = cls(int(B)), where
cls(A) denotes the closure in the semiregularization Xs, by Theorem 1.2.12, we have
that cls(int(B)) is compact in Xs. We have to prove that {int(B) : B ∈ B} is a π-
base in Xs. Fix a basic open set int(V). There exists B ∈ B such that B ⊆ V. Then
int(B) ⊆ int(V). This completes the proof.

In [1] Alas and Kocinac introduced, for Hausdorff spaces, the cardinal function
k(X) that is the least cardinal κ such that for every x ∈ X there exists a family Vx
of open neighborhoods of x such that |Vx| ≤ κ and for every regular closed subset
U, containing x, there exists V ∈ Vx such that V ⊆ U. It is straightforward that
k(X) ≤ χ(X). The proof of the following lemma is once again direct.

Lemma 1.2.14. [1] k(X) = χ(Xs) for every Hausdorff space X.

Theorem 1.2.15. Let X be a Urysohn space with an H-closed π-base. Then |X| ≤
2wL(X)k(X).
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Proof. From Lemma 1.2.13 it follows that Xs has a compact π-base. Since wL(Xs) =
wL(X) and by Lemma 1.2.14, we have that |X| = |Xs| ≤ 2wL(Xs)χ(Xs) = 2wL(X)k(X).

The following result is assumed without proof in [33]. A proof was given in [22].

Lemma 1.2.16. [33] Let X be an H-closed space. Then χ(Xs) ≤ ψc(X).

Proof. Let κ = ψc(X) and x ∈ X. There is a family U of open neighbourhood of x
of such that x ∈ ⋂

U∈U U ⊆ ⋂
U∈U U = {x} and κ = |U |. Without loss of generality

we can assume that U is closed under finite intersections. We want to show that
{int(U) : U ∈ U} is a neighborhood base of x in X(s). Let T be an open neighbor-
hood of x in X(s). As X(s) is semiregular, we can assume that T = int(U) is regular
open. So, {x} =

⋂
U∈U U ⊆ T and then X\T ⊆ X\⋂

U∈U U =
⋃

U∈U X\U. Thus,
{X\U : U ∈ U} is a family of regular open sets of X that cover X\T. Since X\T
is a H-set (i.e. a regular closed subset in a H-closed space), there is a finite subset
G ⊆ U such that X\T ⊆ ⋃

U∈G X\U =
⋃

U∈G X \ int(U) = X \ ⋂
U∈G int(U). Then,⋂

U∈G int(U) ⊆ T implying x ∈ int(
⋂

U∈G U) ⊆ int(
⋂

U∈G U) =
⋂

U∈G int(U) ⊆ T.
By the arbitrarity of x, we conclude that χ(X(s)) ≤ κ.

Since the relations ψc(X) = ψc(Xs) ≤ χ(Xs) are true for every space X, then we
can say that k(X) = χ(Xs) = ψc(X) holds for H-closed spaces. Then it is natural to
pose the following open question.

Question 1.2.17. Is it true that for Urysohn spaces having an H-closed π-base the
equality k(X) = ψc(X) holds?

The following example shows that Theorem 1.2.15 is an actual improvement of
the bound |X| ≤ 2wL(X)χ(X) for Urysohn spaces having an H-closed π-base (in [15]).

Example 1.2.18. There exist an Urysohn H-closed space Z such that k(Z) < χ(Z).

Consider the space Z = 2ω with the following topology on it: a basic open
neighborhood of a point α is of the form (U \ T), where U is a basic open subset
in 2ω containing α and T is a subset of 2ω such that |T| ≤ ω and α ̸∈ T. Clearly,
Z is Urysohn. We want to show that Z is H-closed. Let U be an open cover of Z
made by basic open sets of the form B \ S. Since 2ω is compact there exist B1, ..., Bk

such that Z = 2ω ⊆ ⋃m
i=1 Bi ⊆ ⋃m

i=1 Bi
2ω

=
⋃m

i=1 Bi \ Si
Z

. This proves that Z is
H-closed. Then every π-base is an H-closed π-base. As an additional remark, we
can say that wL(Z) < ω. It is easy to see that (Z)s = 2ω. Then, by Lemma 1.2.14,
k(Z) = χ(2ω) = ω. It is straightforward to see that χ(Z) = |[2ω]≤ω| = 2ω. △

Recall that the θ-tightness, tθ(X), is the least cardinal κ such that if x ∈ clθ(A),
then there exists B ⊆ A such that |B| ≤ κ and x ∈ clθ(B). If X is Urysohn is possible
to define the θ-pseudocharacter, ψθ(X), that is the least cardinal κ such that for each
point x ∈ X there exists a family Vx of open subsets containing x such that |Vx| ≤ κ
and {x} =

⋂
V∈Vx

clθ(V). Clearly, ψc(X) ≤ ψθ(X) for every Urysohn space X.
It can be easily proved that ψθ(X) ≤ k(X) for every Urysohn space X. Then it is
worthwhile to pose the following question.

Question 1.2.19. Does the inequality |X| ≤ 2wL(X)tθ(X)ψθ(X) hold for every Urysohn
space X with an H-closed π-base?

In [38] Gotchev has shown that if X is Urysohn then |X| ≤ dθ(X)tθ(X)ψθ(X). There-
fore the following proposition gives a partial answer to the previous question.
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Proposition 1.2.20. Let X be a Urysohn space with an H-closed π-base. Then |X| ≤
2wL(X)t(X)tθ(X)ψθ(X)

Proof. By combining Gotchev’s result, Theorem 1.2.8 and the fact that ψc(X) ≤ ψθ(X)
for every Urysohn space we get that

|X| ≤ dθ(X)tθ(X)ψθ(X) ≤ (2wL(X)t(X)ψc(X))tθ(X)ψθ(X) ≤ 2wL(X)t(X)tθ(X)ψθ(X).

1.3 Martin’s Axiom and quasiregular spaces with a π-base
whose elements have an H-closed closure

Recall the topological definition of Martin’s Axiom.

Definition 1.3.1. Given a cardinal κ, ℵ0 ≤ κ < 2ℵ0 , MA(κ) states that for each
compact Hausdorff space X with the ccc, if (Uα : α < κ) is a family of open dense
subsets of X, then

⋂{Uα : α < κ} ̸= ∅.

The following theorem presents a topological and a set theoretic condition equiv-
alent to Martin’s Axiom that are well-known in the literature.

Theorem 1.3.2. [55] Let ℵ0 ≤ κ < 2ℵ0 . The followings are equivalent.

1. MA(κ).

2. For each Hausdorff space X with the ccc such that {x ∈ X : x has a compact
neighborhood} is dense in X, if (Uα : α < κ) is a family of open dense subsets
of X, then

⋂{Uα : α < κ} is a dense subset of X.

3. For each poset (P,≤, 1) with the ccc, if D is a family of dense subsets of P with
cardinality κ then there exists a filter G ⊆ P such that for every D ∈ D one has
D ∩ G ̸= ∅.

The following result provides a statement equivalent to Martin’s Axiom. We
demonstrate that it is possible to replace compactness with a combination of two
weaker concepts: quasiregularity and H-closedness.

Theorem 1.3.3. Let ℵ0 ≤ κ < 2ℵ0 . The following is equivalent to the conditions in
Theorem 1.3.2.

4. For each quasiregular H-closed space X with the ccc, if (Uα : α < κ) is a family
of open dense subsets of X, then

⋂{Uα : α < κ} ̸= ∅.

Proof. 3. =⇒ 4. Let (X, τ) be a quasiregular H-closed space having the ccc. Let
(Uα : α < κ) be a family of open dense subsets of X. Consider the following poset
(P,≤, 1) = (τ \ {∅},⊆, X). For each α < κ construct a family Eα = {U ∈ P : U ⊆
Uα}. For the quasiregularity of X, the families Eα, α < κ, are non-empty and since
Uα is an open dense subset of X, Eα is dense in P in the sense of posets. Then there
exist a filter F ⊆ P, which is an open filter on X such that Eα ∩ F ̸= ∅ for every
α < κ. Then for every α < κ choose Fα ∈ Eα ∩ F . Since X is H-closed the adherence
of F is non-empty, then there exists x ∈ ⋂{F : F ∈ F}. Therefore x ∈ ⋂{Fα : α <
κ} ⊆ ⋂{Uα : α < κ}.

Moreover, it is possible to find some interesting other characterizations involving
the π-bases as the following result shows.



12
Chapter 1. Recent studies on the upper bounds of the cardinality of topological

spaces

Theorem 1.3.4. Let ℵ0 ≤ κ < 2ℵ0 . The followings are equivalent to the statements of
Theorem 1.3.2 and Theorem 1.3.3.

5. For each Hausdorff space X with the ccc such that {x ∈ X : x has a quasireg-
ular H-closed neighborhood} is dense in X, if (Uα : α < κ) is a family of open
dense subsets of X, then

⋂{Uα : α < κ} is a dense subset of X.

6. For each Hausdorff space X with the ccc and a compact π-base, if (Uα : α < κ)
is a family of open dense subsets of X, then

⋂{Uα : α < κ} is dense in X.

7. For each Hausdorff space X with the ccc and a quasiregular H-closed π-base,
if (Uα : α < κ) is a family of open dense subsets of X, then

⋂{Uα : α < κ} is
dense in X.

Proof. 4. =⇒ 5. Let X be a space with the ccc and let D = {x ∈ X : x has a
quasiregular H-closed neighborhood} be a dense subset in X. Let (Uα : α < κ) be
a family of open dense subsets of X. Fix a non-empty open subset W of X, then
there exist x ∈ W ∩ D and a open neighborhood V of x such that V is quasiregular
and H-closed. Therefore Y = V ∩ W is a quasiregular H-closed space with the ccc.
Moreover Uα ∩ (W ∩V), for each α < κ is a non-empty open dense subset of Y. Then
by hypothesis, ∅ ̸= ⋂{Uα ∩ (W ∩ V) : α < κ} ⊆ ⋂{Uα : α < κ} ∩ W.
5. =⇒ 7. Notice that if there exists a quasiregular H-closed π-base B then

⋃B is a
dense subset of X and every point in

⋃B has a quasiregular H-closed neighborhood.
7. =⇒ 6. is trivial.
6. =⇒ 2. Notice that if there exists a compact π-base B then

⋃B is a dense subset of
X and every point in

⋃B has a compact neighborhood.

Martin’s axiom is strictly related to the class of Baire spaces, namely, topological
spaces in which the intersection of any countable collection of open dense sets is also
dense. Baire spaces are significant in analysis and topology, particularly in the study
of spaces of functions. We investigate the connection between quasiregular spaces
having an H-closed π-base and the game associated to the Baire spaces, i.e., the
Banach-Mazur game. Recall that the Banach-Mazur game on the space X is played
by two players ALICE and BOB in ω-many innings. At the beginning of the game,
ALICE chooses a nonempty open set U0 and BOB responds by choosing a nonempty
open set V0 ⊂ U0. At the n-th inning (n > 0), ALICE chooses a nonempty Un ⊂ Vn−1
and BOB responds by choosing a nonempty open set Vn ⊂ Un, and so on. The player
BOB wins if and only if

⋂
n∈ω Vn ̸= ∅. Banach, Mazur and Oxtoby proved that the

space X has the Baire property if and only if ALICE does not have a winning strategy
in the Banach-Mazur game on X. A space X is said Choquet if BOB has a winning
strategy in the Banach-Mazur game on X. Choquet spaces were introduced in 1975
by White who called them weakly α-favorable spaces. Clearly, Choquet spaces are
Baire. A Bernstein subset of reals witnesses that Baire spaces need not be Choquet.
Bella, Carlson and Gotchev proved the following result.

Theorem 1.3.5. [17] A space X with a π-base whose elements have closures that are
compact is Choquet.

It is natural to ask the following question.

Question 1.3.6. Is any space X with an H-closed π-base a Choquet space?

As a corollary of Theorem 1.3.4 we obtain the following.
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Corollary 1.3.7. If X is a Hausdorff space with the ccc and a quasiregular H-closed
π-base, then X is Baire.

Actually we can remove the hypothesis “ccc”and obtain a stronger result that
gives a partial answer to Question 1.3.6. Moreover, by Corollary 1.2.6, we can shift
the hypothesis of quasiregularity to the whole space rather than in the closure of the
elements of a π-base. In particular, we can prove the following.

Theorem 1.3.8. Let X be a quasiregular Hausdorff space with an H-closed π-base.
Then X is a Choquet space.

Proof. Let B be an H-closed π-base on X. We will construct a winning strategy for
BOB in the Banach-Mazur game on X. Let U0 be the first choice of ALICE in the
game. Since X is quasiregular, it is possible to find an element B0 ∈ B such that
B0 ⊆ U0. Then B0 will be the first response of BOB. Let U1 ⊂ B0 be the second
choice of ALICE in the game. Since X is quasiregular, it is possible to find an element
B1 ∈ B such that B1 ⊆ U1. Then B1 will be the second response of BOB, and so
on. The collection {Bn : n ∈ ω} obtained from the iteration is an open filter base
for some open ultrafilter U on B0. Since B0 is a regular closed, notice that if U is an

open subset of B0 then UB0 = U. The subset B0 is H-closed, therefore there exists
x ∈ ⋂{U : U ∈ U}, hence x ∈ Bn for every n ∈ ω. Now we prove that x ∈ ⋂

n∈ω Bn,
this will conclude the proof. Suppose not, then there exists n ∈ ω such that x ̸∈ Bn,
but since x ∈ Bn+1 ⊆ Bn, we get a contradiction.

Corollary 1.3.9. Let X be a quasiregular space with an H-closed π-base. Then X is
Baire.

Recall that, given a family of subsets U and a subset A of a space X; the star of A
with respect to U is the set st(A,U ) = ⋃{U : U ∈ U and U ∩ A ̸= ∅}. The star of a
one-point set {x} with respect to a cover U is denoted by st(x,U ) (for some further
properties with this operator see for example [26]). The n-star of a subset A with
respect to a family U , stn(A,U ), is inductively defined as stn−1(st(A,U ),U ). A space
X has a Gδ-diagonal provided that there exists a sequence (Un : n ∈ ω) of open
covers of X such that

⋂
n∈ω st(x,Un) = {x} for every x ∈ X. Additionally, a space

X has a Gδ-diagonal of rank n provided that there exists a sequence (Un : n ∈ ω) of
open covers of X such that

⋂
n∈ω stn(x,Un) = {x} for every x ∈ X.

In [10] the authors showed that if X is a Hausdorff Baire space with a rank 2-diagonal,
then |X| ≤ wL(X)ω and if X is a Hausdorff Baire space with a Gδ-diagonal, then
d(X) ≤ wL(X)ω. Therefore, as corollaries of these results and Theorem 1.3.8 we
have the following:

Corollary 1.3.10. Let X be a space with a quasiregular H-closed π-base.

(a) If X has a Gδ-diagonal, then d(X) ≤ wL(X)ω.

(b) If X has a rank 2-diagonal, then |X| ≤ wL(X)ω.
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Chapter 2

Recent studies on Selection
Principles

The systematic study of selection principles began with the work on covering prop-
erties by Scheepers [61]. His methodical cataloguing gives rise to the use of this
approach to describe selective properties involving some other topological objects,
not just collections of coverings of some type (see [62, 44, 58, 59, 12, 13, 25]). All
uncited results in this chapter are either trivial remarks or can be found in [24] and
[27]. For more details on covering properties, their relations with particular cardinal
numbers (small cardinals), and a gentle introduction to Forcing methods see Appen-
dices A and C.

2.1 Some old and new Selection Principles

In [61] a systematic approach was considered to describe covering properties. This
type of new approach has led to catalog these properties within so-called “Selection
Principles”. In particular, given two collections A and B of some topological objects
on a space X, Scheepers introduced this notation:

S1(A,B) : For every sequence (Un : n ∈ ω) of elements of A there exists Un ∈ Un, n ∈ ω,
such that {Un : n ∈ ω} belongs to B.

S f in(A,B) : For every sequence (Un : n ∈ ω) of elements of A there exists a finite subset
Fn ∈ Un, n ∈ ω, such that

⋃
n∈ω Fn belongs to B.

U f in(A,B) : For every sequence (Un : n ∈ ω) of elements of A there exists a finite subset
Fn ⊆ Un, n ∈ ω, such that {⋃Fn : n ∈ ω} belongs to B.

Recall that it is called γ-cover of a space X a particular cover such that each point
of X belongs to all but finitely many members of the cover. If one denotes by O and Γ
the family of all open covers and the family of all γ-covers of a space X, respectively,
it follows that the Rothberger property can be expressed by S1(O,O), the Menger
property by S f in(O,O) and the Hurewicz property by U f in(O, Γ).
Inspired by the previous selective variation of Lindelöfness, many mathematicians

(see for instance [62], [13], and [12]) introduced and studied some selection princi-
ples that are strengthening of separability.

We denote by D the family of all dense subsets of a space X and by DΓ the
collection of all families F of subsets such that every nonempty open set inter-
sects all but finitely many members of F . We call R-separable a space satisfying
S1(D,D), M-separable a space sastisfying S f in(D,D), and H-separable a space sat-
isfying U f in(D,DΓ).
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Note that “M-”, “R-”, and “H-”are motived by analogy with Menger, Rothberger,
and Hurewicz properties, respectively.

In [62] it is shown that every space with countable π-weight is R-separable (hence
M-separable). Actually, in [62] it was proved that having countable π-weight is
equivalent to a stronger property that comes from a topological game (we will deal
with in Chapter 3).

Also in [13] it is observed that every space with countable π-weight is H-separable.
In [72] it is introduced the cardinal function strong density, i.e., δ(X) = sup{d(Y) :

Y is dense in X}.

Proposition 2.1.1. [72] d(X) ≤ δ(X) ≤ πw(X) for any space X.

Also, it is straightforward to prove that M-separability implies δ(X) = ω for any
space. Indeed, in an M-separable space every dense subset is separable.
Therefore we have the following implications.

πw(X) = ω M-separable
�
�
��

R-separable

H-separable

@
@@R

@
@@R

�
���

- δ(X) = ω - d(X) = ω

Moreover, Juhasz and Shelah in [42] proved that in the class of compact Haus-
dorff spaces πw(X) = δ(X).
Therefore the following result can be formulated.

Proposition 2.1.2. For a compact Hausdorff space X. The followings are equivalent.

1. πw(X) = ω;

2. X is R-separable;

3. X is H-separable;

4. X is M-separable;

5. δ(X) = ω.

In [13] and [12] it is also shown that

- if δ(X) = ω and πw(X) < d, then X is M-separable (a little stronger version of
this fact in terms of games is estabilished in [62]);

- if δ(X) = ω and πw(X) < cov(M), then X is R-separable (a little stronger
version of this fact in terms of games is estabilished in [62]);

- if δ(X) = ω and πw(X) < b, then X is H-separable.
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We saw that every space having a countable base is M-, R- and H-separable.
However, it is clear that not every space with countable netweight is M-separable:
consider any countable not M-separable space (see, for example, Example 2.14 in
[13]).

Then, it is natural to pose the following question.

Question 2.1.3. Under what conditions must a space with countable netweight be
M-separable?

We introduced and studied the following selection principles involving networks.

Definition 2.1.4. A space X is

M-nw-selective (we read M-network-selective) if nw(X) = ω and for every
sequence (Nn : n ∈ ω) of countable networks for X one can select finite Fn ⊂
Nn, n ∈ ω, such that

⋃
n∈ω Fn is a network for X.

R-nw-selective (we read R-network-selective) if nw(X) = ω and for every se-
quence (Nn : n ∈ ω) of countable networks for X one can pick Fn ∈ Nn, n ∈ ω,
such that {Fn : n ∈ ω} is a network for X.

H-nw-selective (we read H-network-selective) if nw(X) = ω and for every
sequence (Nn : n ∈ ω) of countable networks for X one can select finite Fn ⊂
Nn, n ∈ ω, such that for any x ∈ X and any open neighbourhood U of x, there
exists some κ ∈ ω such that for any n ≥ κ there exists A ∈ Fn with x ∈ A ⊆ U.

Note that if the networks Nn, n ∈ ω, in the previous definitions were uncount-
able then the space must be countable, and the definitions become trivial. Indeed,
in an uncountable space the sequence of networks consisting of all singletons wit-
nesses that the space is not M-nw-selective.

In 1925 Hurewicz [40] proved that a basis property formulated by Menger [51]
in 1924 is equivalent to the Menger’s property. In particular Hurewicz proved the
following proposition (we give the proof for sake of completness). Then, replacing
“countable network”with “base”in the definition of M-nw-selectivity, ones obtain a
property equivalent to the Menger property in the class of metrizable spaces.
Recall that if A is a subset of a space X and B is a family of subsets of X, we say that
A refines B if A is a subset of some element of B; in this case we write A ≺ B.

Proposition 2.1.5. [40] Let X be a metrizable space. X is Menger iff for every se-
quence (Bn : n ∈ ω) of bases for X one can select finite Fn ⊂ Bn, n ∈ ω, such that⋃

n∈ω Fn is a base for X.

Proof. Let (X, d) be Menger and ξ = (Bn : n ∈ ω) a sequence of bases for X. Re-
enumerate ξ as (Bn,m : n, m ∈ ω) . We may assume that Bn,m consist of sets of

diameter <
1
2n . For each n, pick finite Fn,m ⊂ Bn,m, m ∈ ω, such that

⋃
m∈ω Fn,m is a

cover of X. Then
⋃

n,m∈ω Fn,m is a base for X. Indeed, every point is contained in a

set of diameter <
1
2n . Now let (Un : n ∈ ω) be a sequence of open covers of X. For

every n ∈ ω, put Bn = {U : U is an open in X and U ≺ Un}. Then (Bn : n ∈ ω) is a
sequence of bases for X and by hypothesis we conclude the proof.

Since every space with countable netweight is hereditarily Lindelöf, M-nw-selectivity
is a strengthening of the hereditary Lindelöf property. We also prove that M-nw-
(resp., R-nw-, H-nw-)selectivity is a common strengthening of Menger (resp., Roth-
berger and Hurewicz) property and M-(resp., R- and H-)separability.
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Proposition 2.1.6. If X is M-nw-selective, then X is Menger.

Proof. Let X be M-nw-selective and (Un : n ∈ ω) a sequence of open covers of
X. Fix a countable network N for X. For every n ∈ ω, put Nn = {N ∈ N : N
refines Un}. For every n ∈ ω, Nn is a countable network for X (in fact, let W be
an open subset of X and x ∈ W. Since Un covers X, there exists V ∈ Un such that
x ∈ V. Then V ∩ W in an open set containing x. Then there exits N ∈ N such that
x ∈ N ⊂ V ∩W ⊂ V. Hence N ∈ Nn). Then (Nn : n ∈ ω) is a sequence of countable
networks for X. By hypothesis, there exist finite Fn ⊂ Nn, n ∈ ω, such that

⋃
n∈ω Fn

is a network for X. For every N ∈ Fn, pick UN,n ∈ Un such that N ⊂ UN,n and
put An = {UN.n : N ∈ Fn}. Then An, n ∈ ω, is a finite subfamily of Un such that⋃

n∈ω

⋃An = X.

Proposition 2.1.7. If X is R-nw-selective (H-nw-selective), then X is Rothberger (Hurewicz).

Proof. The proof is similar to the proof of Proposition 2.1.6.

The converse of propositions 2.1.6 and 2.1.7 is not true as the following example
shows.

Example 2.1.8. A Rothberger and Hurewicz space which is not M-nw-selective (hence
not R-nw-, H-nw-selective).

In [12, Example 2.14] it is proved the existence of a countable subspace X of
Cp(ωω) which is not M-separable, where Cp(X) denotes the space of all the contin-
uous real functions from X with the pointwise convergence topology on it. By next
Proposition 2.1.13, the space X is not M-nw-selective. Of course, nw(X) = ω and X
is Rothberger and Hurewicz. △

In order to prove that the nw-selective properties implies the M-(R- and H-) sep-
arability we give the following definition of selective properties that are strength-
enings of countable tightness and countable dense tightness. Recall that the dense
tightness, denoted by td(X), is the minimum cardinal κ such that for every point
x ∈ X and every dense subset D ⊆ X there exists a subset A ⊆ D such that |A| ≤ κ
and x ∈ A.

Definition 2.1.9. (see [4], [58], [59], and [12])

A space X has countable fan tightness if for every sequence (An : n ∈ ω) of
subspaces of X with x ∈ An for every n ∈ ω, one can choose finite Fn ⊂ An so
that x ∈ ⋃{Fn : n ∈ ω}.

A space X has countable strong fan tightness if for every sequence (An : n ∈ ω)
of subspaces of X with x ∈ An for every n ∈ ω, one can choose finitea point
xn ∈ An so that x ∈ {xn : n ∈ ω}.

A space X is weakly Fréchet in the strict sence if for every sequence (An : n ∈
ω) of subspaces of X with x ∈ An for every n ∈ ω, there are finite Fn ⊂ An
such that every neighborhood of x intersects all but finitely many Fn’s.

A space X has countable fan tightness with respect to dence subsets if for every
sequence (Dn : n ∈ ω) of dense subspaces of X one can choose finite Fn ⊂ Dn

so that x ∈ ⋃{Fn : n ∈ ω}.
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A space X has countable strong fan tightness with respect to dence subsets if
for every sequence (An : n ∈ ω) of subspaces of X one can choose a point
xn ∈ Dn so that x ∈ {xn : n ∈ ω}.

A space X is weakly Fréchet in the strict sence with respect to dense subspaces
if for every sequence (Dn : n ∈ ω) of dense subspaces of X and every x ∈ X
there are finite Fn ⊂ Dn such that every neighborhood of x intersects all but
finitely many Fn.

We prove the following proposition.

Proposition 2.1.10. If X is M-nw-selective, then X has countable fan tightness.

Proof. Let X be M-nw-selective, M be a countable network for X, x ∈ X and (An :
n ∈ ω) be a sequence of subsets of X such that x ∈ An, for every n ∈ ω. Every space
with countable network is hereditarily separable and thus has countable tightness.
Then we may assume that the sets An are countable. Let Y = {x} ∪ ⋃

n∈ω An. Y is
a countable subset of X and by Proposition 2.1.24, Y is M-nw-selective. For every
n ∈ ω, put Mn = {{y} : y ∈ Y \ {x}} ∪ {{x, a} : a ∈ An}. Since x ∈ An for
every n ∈ ω, (Mn : n ∈ ω) is a sequence of countable networks for Y. Then
one can select finite Fn ⊂ Mn, n ∈ ω, such that

⋃
n∈ω Fn is a network for Y. Put

Bn = {a ∈ An : {x, a} ∈ Fn}, n ∈ ω. Then, for every n ∈ ω, Bn is a finite subset of
An and x ∈ ⋃{Bn : n ∈ ω}.

The converse of the previous result does not hold, as the following example
shows.

Example 2.1.11. A space having countable fan tightness which is not M-nw-selective.

Consider the space Cp(I), where I = [0, 1]. Since a space Cp(X) is Menger iff X is
finite [4], by Proposition 2.1.6, we have that Cp(I) is not M-nw-selective. Arhangel-
skii, ([3], Theorem 2.2.2 in [4]) proved that Cp(X) has countable fan tightness iff all
finite powers of X are Menger. Then Cp(I) has countable fan tightness.

Recall the following

Proposition 2.1.12. [13, Proposition 2.3] Every separable space having countable fan
tightness is M-separable.

Then, by Proposition 2.1.10, we obtain

Proposition 2.1.13. If X is M-nw-selective, then X is M-separable.

The converse of the previous proposition is not true. Indeed, the space Cp(I),
where I = [0, 1] is M-separable [13, Example 2.14] and we have proved that it is not
M-nw-selective.

Also, recall the following

Proposition 2.1.14. [63, Lemma 30] Every separable space having countable strong
fan tightness is R-separable.

We can prove that

Proposition 2.1.15. If X is R-nw-selective, then X has countable strong fan tightness.

Proof. The proof is similar to the proof of Proposition 2.1.10.
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The converse of the previous result is not true as the following example shows.
Recall that iw(X) = min{w(Y) : Y is the continuous bijective image of X} is the
injective weight of X. It is known that iw(X) ≤ nw(X) ≤ w(X), and in the class of
compact Hausdorff spaces iw(X) = nw(X) = w(X) (see [7]).

Example 2.1.16. A space having countable strong fan tightness which is not M-nw-
selective, hence not R-nw-selective.

Consider the space Tychonoff plank T = (ω1 + 1)× (ω + 1). It is known that a
compact space is Rothberger iff it is scattered (see, for a proof, [21, Proposition 34]).
Since a Cp(X) space has countable strong fan tightness iff all finite powers of X are
Rothberger [58], we have that Cp(T) has countable strong fan tightness. However
nw(Cp(T)) > ω, hence Cp(T) is not M-nw-selective. Note that, since Cp(X) is R-
separable iff iw(X) = ω and all finite powers of X are Rothberger [12, Theorem 57],
in fact Cp(T) is not R-separable.

By the previous proposition, we have the following result.

Proposition 2.1.17. If X is R-nw-selective, then X is R-separable.

Proposition 2.1.18. If X is H-nw-selective, then X is weakly Fréchet in the strict
sence.

Proof. The proof is similar to the proof of Proposition 2.1.10.

The converse of the previous result does not hold, as the following example
shows.

Example 2.1.19. A weakly Fréchet in the strict sense space which is not H-nw-
selective.

Consider the space Cp(I). Recall that Cp(X) is weakly Fréchet in the strict sense
iff all finite powers of X are Hurewicz ([47], stated as in [59]) . Then Cp(I) is weakly
Fréchet in the strict sense but is is not M-nw-selective (cfr. Example 2.1.11), hence
not H-nw-selective. △

Proposition 2.1.20. [12, Proposition 35] A separable space is H-separable iff it is
weakly Fréchet in the strict sense with respect to dense subspaces.

Corollary 2.1.21. Every separable weakly Fréchet in the strict sense space is H-
separable.

Then, by Proposition 2.1.18, we have the following.

Proposition 2.1.22. If X is H-nw-selective, then X is H-separable.

Example 2.1.23. A countable space with countable π-weight (hence R-separable, H-
separable, and M-separable), which is not M-nw-selective space (hence not R-nw-
selective, not H-nw-selective).

Consider the product of the usual convergent sequence ω + 1 with the discrete
space ω. The quotient space of it obtained by identifying all non isolated points is
called Fréchet-Urysohn fan space or sequencial fan space. This space, denoted by Sω,
is a typical example of a countable space of countable π-weight having uncountable
fan-tightness, hence Sω does not have the nw-selective properties. △

The following diagram sums up all the implications between the previous prop-
erties.
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Recall that M-, R- and H- separability are not preserved by arbitrary subspaces,
but they are preserved by open subspaces, and by dense subspaces (see [13] for M-
separability).

We prove that M-mw-, R-nw- and H-nw- separability are preserved by arbitrary
subspaces.

Proposition 2.1.24. M-nw-separability is a hereditary property.

Proof. Let X be M-nw-selective and Y ⊂ X. In particular, nw(X) = ω and then
nw(Y) = ω. Let M be a countable network for X. Then (M ∩ Y : M ∈ M) is a
countable network for Y. Let (Nn : n ∈ ω) be a sequence of countable networks
for Y. For every n ∈ ω, put Mn = Nn ∪ {M \ Y : M ∈ M}. Then (Mn : n ∈
ω) is a sequence of countable networks for X. By hypothesis, one can select finite
Hn ⊂ Mn, n ∈ ω such that

⋃
n∈ω Hn is a network for X. For every n ∈ ω, put

Fn = Hn ∩Nn. Then Fn is a finite subset of Nn and
⋃

n∈ω Fn is a network for Y.

Proposition 2.1.25. R-nw-selective and H-nw-selective are hereditary property.

Proof. The proof is similar to the proof of Proposition 2.1.24.

Recall that a space is “analytic”if it is a continuous image of the spaces of irra-
tionals [45]. In [4] the author wrote that Arhangel’skii [3] and J. Calbrix have shown
the following result.

Proposition 2.1.26. Every analytic Menger space is σ-compact.

Now we prove that following.

Proposition 2.1.27. Every analytic subset of a M-nw-selective Tychonoff space is
countable.
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Proof. By contradiction, assume there exists a M-nw-selective space having an un-
countable analytic subspace Y. By Proposition 2.1.24, Y is M-nw-selective and then,
by Proposition 2.1.13, it is Menger. So, by Proposition 2.1.26, Y is σ-compact and
then Y contains an uncountable compact space H. By hypothesis and compactness
of H, we have that w(H) = nw(H) = ω. Then, by Aleksandroff-Urysohn metriza-
tion’s theorem, H is metrizable. Hence, since any uncountable compact metrizable
space contains a copy of the space of irrationals, we have that Y contains a copy of
the space of irrationals. Since irrationals are not Menger, hence by Proposition 2.1.13,
not M-nw-selective, we conclude that Y is not M-nw-selective; a contradiction.

Corollary 2.1.28. Every analytic subset of an R-nw- or H-nw- selective Tychonoff
space is countable.

Proof. The proof is similar to the proof of Proposition 2.1.27 using respectively Propo-
sition 2.1.17 and Proposition 2.1.22 instead of Proposition 2.1.13, and Proposition
2.1.25 instead of Proposition 2.1.24.

Recall the following result.

Theorem 2.1.29. [4, Proposition II.2.11] If X is a compact space of countable weight,
then Cp(X) is an analytic space.

Corollary 2.1.30. If X is a compact space of countable weight, then Cp(X) is not
M-nw-selective.

Using the previous result we can say that, for example Cp(2ω) and Cp(I) are not
M-nw-selective. Recall that Cp(2ω) is H-separable.

Now we provide some results on operations with this classes of spaces and some
questions are posed.
It is well-known that Menger, Rothberger and Hurewicz properties are preserved by
countable unions. In [39] it is proved that M- and R- separability is preserved by
finite unions; it is an open question if H-separability is preserved by finite unions.
We will prove the following results.

Theorem 2.1.31. Let X =
⊕

n∈ω Xn, where
⊕

denotes the direct sum. If Xn is a
M-nw-selective space for every n ∈ ω, then X is a M-nw-selective space.

Proof. Of course, countable network is preserved by countable direct sums. Let (Nk :
k ∈ ω) be a sequence of countable networks for X. For every n ∈ ω consider {N ∩
Xn : N ∈ Nk and k ≥ n} that is a sequence of countable networks for Xn. Since
Xn is M-nw-selective for every n ∈ ω, there exists (Fn,k : k ≥ n) with Fn,k a finite
subfamily of Nk for every k ≥ n such that

⋃
k≥n{F ∩ Xn : F ∈ Fn,k} is a network for

Xn. We put Fk =
⋃{Fn,k : k ≥ n} that is a finite subfamily of Nk for every k ∈ ω. We

can easily see that
⋃

k∈ω Fk is a network for X. This means X is M-nw-selective.

Theorem 2.1.32. Let X =
⊕

n∈ω Xn. If Xn is a R-nw-selective space for every n ∈ ω,
then X is a R-nw-selective space.

Proof. Of course, countable network is preserved by countable direct sums. Let
(Nk : k ∈ ω) be a countable sequence of networks for X. Divide the sequence of
networks into countably many pairwise disjoint sequences of countable networks
(Mk,n : k, n ∈ ω). For every n ∈ ω, (Mk,n : k ∈ ω) is a sequence of countable
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networks of Xn. Since Xn, n ∈ ω is R-nw-selective, there exist Fk,n ∈ Mk,n, n ∈ ω,
such that {Fk,n : n ∈ ω} is a network for Xn. Then {Fk,n : k, n ∈ ω} is a network for
X.

It is natural to pose the following question.

Question 2.1.33. Is the countable (or finite) direct sum of H-nw-selective spaces H-
nw-selective?

In [64] the author proves that Menger property is not finitely productive. In [39]
it is proved that under CH, there is a countable regular maximal space X which is
R-separable but X2 is not M-separable.

Question 2.1.34. Is the product of two M-nw-selective spaces M-nw-selective? (or,
at least, Menger or M-separable?)

In the next section, Theorem 2.2.41 provides a consistent answer to the previous
question by showing that the product of two countable H-nw-selective spaces is not
M-nw-selective.

2.2 Cardinality and weight of M-nw-, R-nw- and H-nw-selective
spaces

The aim of this section is to improve the following easy proposition and establish
which is the wider class of spaces that can satisfy the nw-selective properties.

Proposition 2.2.1. If X is countable second countable space, then X is R-nw-selective.

Proof. Of course, nw(X) = ω. Let X = (xn : n ∈ ω), B = (Bn : n ∈ ω) be a base for
X and (Nn : n ∈ ω) = (Nn,m : n, m ∈ ω) be a sequence of countable networks for X.
For each n, m ∈ ω, if xn ∈ Bm, then take An,m ∈ Nn,m such that xn ∈ An,m ⊂ Bm; if
xn /∈ Bm, then take any An,m ∈ Nn,m. Then (An,m : n, m ∈ ω) is a network for X.

This fact motivated us to pose the following question we will answer thoughout
this section.

Question 2.2.2. [24] Are there uncountable M-nw-selective (R-nw-selective or H-
nw-selective) spaces?

Note that answering Question 3.2.9 allows us to achive another important goal,
i.e., to give a consistent positive answer to the following question.

Question 2.2.3. Are there M-nw-selective spaces which are not R-nw-selective or not
H-nw-selective?

Proposition 2.2.4. Let X be a space such that nw(X) = ω, |X| < d and w(X) < d.
Then X is M-nw-selective.

Proof. Let κ, λ < d be two cardinals such that X = {xα : α < κ} and B = {Bβ : β <
λ} is a base for X. Let ⟨Nn : n ∈ ω⟩ be a sequence of countable networks on X,
where Nn = {Nn

m : m ∈ ω}. For every α < κ and β < λ such that xα ∈ Bβ consider
the function fα,β ∈ ωω defined by fα,β(n) = min{m : xα ∈ Nn

m ⊆ Bβ}. The family
{ fα,β : α < κ, β < λ, xα ∈ Bβ} is not dominating, and hence there exists a function
f ∈ ωω such that f ̸≤∗ fα,β for every α < κ and β < λ such that xα ∈ Bβ. A direct
verification shows that {Nn

m : n ∈ ω, m ≤ f (n)} is a network for X.
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In an analogous way it is possible to prove the following two propositions, for
the first one using Theorem A.0.1.

Proposition 2.2.5. Let X be a space such that nw(X) = ω, |X| < cov(M) and
w(X) < cov(M). Then X is R-nw-selective.

Proposition 2.2.6. Let X be a space such that nw(X) = ω, |X| < b and w(X) < b.
Then X is H-nw-selective.

In what follows we shall call spaces satisfying the assumptions of Proposition 2.2.4,
2.2.6 and 2.2.5 trivial examples of M-nw-selective, H-nw-selective and R-nw-selective
spaces, respectively. The reason for this terminology is that such spaces have these
properties solely due to cardinality considerations, and not because of some specific
structure etc.

Proposition 2.2.7. Let X be a space such that |X| ≥ d. Then X is not M-nw-selective.

Proof. Suppose that nw(X) = ω, pick Y ⊆ X such that |Y| = d and let h : Y → D be
a bijection, where D ⊆ ωω is dominating. Without loss of generality we can assume
that for every f ∈ ωω there exists g ∈ D such that f (n) ≤ g(n) for all n ∈ ω (in what
follows we shall write f ≤ g in such cases). For any n, k ∈ ω put Yn

k = {y ∈ Y :
h(y)(n) = k} and consider the countable cover An = {Yn

k : k ∈ ω} ∪ {X \ Y} of X.
For any n ∈ ω and every Bn ∈ [An]<ω,

⋃
n∈ω

⋃Bn ̸⊇ Y. Indeed, pick g ∈ ωω such
that Bn ⊆ {Yn

k : k ≤ g(n)} ∪ {X \ Y}. Pick y ∈ Y such that h(y)(n) > g(n) for every
n ∈ ω. Then y ̸∈ Yn

k for every k ≤ g(n), so y ̸∈ ⋃
n∈ω

⋃Bn. Let N be a countable
network of X. For each n ∈ ω consider the networks

Nn = N ∧An = {N ∩ A : N ∈ N , A ∈ An}.

It follows that if Fn ∈ [Nn]<ω for each n ∈ ω, then X is not covered by the family⋃
n∈ω Fn, so it cannot be a network for X.

Corollary 2.2.8. Let X be a space with nw(X) = ω and w(X) < d. Then X is M-nw-
selective iff |X| < d. In particular, this equivalence holds for metrizable separable
spaces.

By Propositions 2.2.4 and 2.2.7, it is possible to formulate the following result.

Corollary 2.2.9. The following are equivalent facts.

1. ω1 < d;

2. Every space X with |X| = ω1, w(X) = ω1, and nw(X) = ω, is M-nw-selective.

The following fact is analogous to Proposition 2.2.7, we present its proof for the
sake of completeness.

Proposition 2.2.10. Let X be a topological space such that |X| ≥ cov(M). Then X is
not R-nw-selective.

Proof. Suppose that nw(X) = ω, pick Y ⊆ X such that |Y| = cov(M) and let h :
Y → F′ be a bijection, where F′ ⊆ ωω is such that for every g ∈ ωω there exists
f ∈ F′ such that g(n) ̸= f (n) for all n ∈ ω. Such an F′ exists, e.g., we could
take F satisfying Theorem A.0.1 and set F′ = {z ∈ ωω : ∃ f ∈ F (z =∗ f )}. For
any n, k ∈ ω put Yn

k = {y ∈ Y : h(y)(n) = k} and consider the countable cover
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An = {Yn
k : k ∈ ω} ∪ {X \ Y} of X. For any g ∈ ωω we have

⋃
n∈ω Yn

g(n) ̸⊇ Y.
Indeed, pick f ∈ F′ with f (n) ̸= g(n) for all n ∈ ω, and let y ∈ Y be such that
h(y) = f . Then y ̸∈ Yn

g(n) for every n ∈ ω because y ∈ Yn
f (n) and Yn

f (n) ∩ Yn
g(n) = ∅,

since the family {Yn
k : k ∈ ω} is disjoint by the definition. Let N be a countable

network of X. For each n ∈ ω consider the networks

Nn = N ∧An = {N ∩ A : N ∈ N , A ∈ An}.

It follows that if Nn ∈ Nn for each n ∈ ω, then Y is not covered by the family
{Nn : n ∈ ω}, so it cannot be a network for X.

Corollary 2.2.11. Let X be a space with nw(X) = ω and w(X) < cov(M). Then X is
R-nw-selective iff |X| < cov(M). In particular, this equivalence holds for metrizable
separable spaces.

By Propositions 2.2.5 and 2.2.10, it is possible to formulate the following result.

Corollary 2.2.12. The following are equivalent facts.

1. ω1 < cov(M);

2. Every space X with |X| = ω1, w(X) = ω1, and nw(X) = ω, is R-nw-selective.

By Propositions 2.2.9 and 2.2.12, if ω1 = cov(M) < d holds, each space of cardi-
nality and weight equal to ω1 and countable netweight is M-nw-selective not R-nw-
selective.

As in the case of Proposition 2.2.10, the next fact is also analogous to Proposi-
tion 2.2.7, but we nonetheless present its proof for the sake of completeness.

Proposition 2.2.13. Let X be a space such that |X| ≥ b. Then X is not H-nw-selective.

Proof. Suppose that nw(X) = ω, pick Y ⊆ X such that |Y| = b and let h : Y → B
be a bijection, where B ⊆ ωω is unbounded. Let Yn

k and An be defined in the same
way as in the proof of Proposition 2.2.7. For any n ∈ ω and every Bn ∈ [An]<ω there
exists I ∈ [ω]ω with

⋃
n∈I ∪Bn ̸⊇ Y. Indeed, pick g ∈ ωω such that Bn ⊆ {Yn

k : k ≤
g(n)} ∪ {X \ Y}. Pick y ∈ Y such that h(y)(n) > g(n) for infinitely many n ∈ ω,
and let I be the set of all such n. Then y ̸∈ Yn

k for every k ≤ g(n) and n ∈ I, so
y ̸∈ ⋃

n∈I
⋃Bn. Let N be a countable network of X. For each n ∈ ω consider the

networks Nn defined in the same way as in the proof of Proposition 2.2.7 and note
that if Fn ∈ [Nn]<ω for each n ∈ ω, then y is not covered by the family

⋃
n∈I Fn.

Thus, for every m ∈ ω there exists n ≥ m (namely min(I \ m)) such that no F ∈ Fn
contains y, which implies that X is not H-nw-selective.

Corollary 2.2.14. Let X be a space with nw(X) = ω and w(X) < b. Then X is H-nw-
selective iff |X| < b. In particular, this equivalence holds for metrizable separable
spaces.

By Propositions 2.2.6 and 2.2.13 it is possible to formulate the following result.

Corollary 2.2.15. The following are equivalent facts.

1. ω1 < b;

2. Every space X with |X| = ω1, w(X) = ω1, and nw(X) = ω, is H-nw-selective.
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By Propositions 2.2.9 and 2.2.15, if ω1 = b < d holds, each space of cardinal-
ity and weight equal to ω1 and countable netweight is M-nw-selective not H-nw-
selective. By Propositions 2.2.12 and 2.2.15, if ω1 = cov(M) < b holds, each space
of cardinality and weight equal to ω1 and countable netweight is H-nw-selective
not R-nw-selective. By Propositions 2.2.12 and 2.2.15, if ω1 = b < cov(M) holds,
each space of cardinality and weight equal to ω1 and countable netweight is R-nw-
selective not H-nw-selective. Additionally, Corollaries 2.2.8, 2.2.11 and 2.2.14 al-
low us to find consistent examples of sets of reals distinguishing between the corre-
sponding properties: If cov(M) < d (resp. b < d, cov(M) < b, b < cov(M)), then
any X ∈ [R]cov(M) (resp. X ∈ [R]b, X ∈ [R]cov(M), X ∈ [R]b) is M-nw-selective but
not R-nw-selective (resp. M-nw-selective but not H-nw-selective, H-nw-selective
but not R-nw-selective, R-nw-selective but not H-nw-selective).

However, we do not know of any examples in ZFC distinguishing these proper-
ties, because at the moment it is not even known whether there are in ZFC non-trivial
countable spaces which are M-nw-selective, H-nw-selective, or R-nw-selective. More
precisely, the following question (in fact, each of the 6 subquestions it naturally com-
prises) is still open.

Question 2.2.16. 1. Is there a ZFC example of a non-trivial M-nw-selective (resp.
R-nw-selective, H-nw-selective) space X? What about countable spaces?

2. Is the existence of a non-trivial uncountable M-nw-selective (resp. R-nw-selective,
H-nw-selective) space X consistent with ZFC?

2.2.1 nw-Selectivity of countable subspaces of Cp(X, 2): sufficient condi-
tions and consistent non-trivial examples

For a topological space X we denote by

- B(X) the family of all countable Borel covers of X;

- BΩ(X) the family of all countable Borel ω-covers of X;

- BΓ(X) the family of all countable Borel γ-covers of X.

We omit X from these notations if it is clear from the context.

Theorem 2.2.17. Suppose that X ⊆ 2ω is such that Xn is S1(B,B) for every n ∈ ω.
Let Y ⊆ Cp(X, 2) be a countable subset. Then Y is R-nw-selective. Moreover, if Y is
dense, then w(Y) = |X|.

Proof. Clearly, |X| ≥ w(Y) ≥ χ(Y), and if Y is dense, then additionally we have1

χ(Y) = χ(Cp(X, 2)) = |X|, so in this case w(Y) = |X|.
Let {yj : j ∈ ω} be an enumeration of Y and Nk = {Nk

m : m ∈ ω} ⊂ P(Y) a
countable network for each k ∈ ω. Given a basic open subset of Cp(X, 2) of the form

[⃗x, ϵ⃗] = { f ∈ Cp(X, 2) : f (x0) = ϵ0, ..., f (xn−1) = ϵn−1},

where x⃗ ∈ Xn, ϵ⃗ ∈ 2n, and j ∈ ω, set Aj,⃗ϵ = {x⃗ ∈ Xn : yj ∈ [⃗x, ϵ⃗]}. Let hj,⃗ϵ : Aj,⃗ϵ → ωω

be a function defined by

hj,⃗ϵ(x⃗)(k) = min{m : yj ∈ Nk
m ⊆ [⃗x, ϵ⃗]}.

1This part does not use any additional properties of X like S1(B,B).
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Aj,⃗ϵ satisfies S1(B,B) because this property is hereditary by [65, Theorem 13], and
therefore hj,⃗ϵ[Aj,⃗ϵ] is Rothberger by [65, Theorem 14] because the function hj,⃗ϵ is
clearly Borel. Then R :=

⋃
n∈ω,j∈ω,⃗ϵ∈2n hj,⃗ϵ[Aj,⃗ϵ] is Rothberger, being a countable

union of Rothberger spaces. So there exists h ∈ ωω such that {k ∈ ω : r(k) = h(k)}
is infinite for every r ∈ R. As a result. {Nk

h(k) : k ∈ ω} is a network for Y. Indeed,
pick a basic open set [⃗x, ϵ⃗] and a point yj ∈ [⃗x, ϵ⃗]. Then x⃗ ∈ Aj,⃗ϵ, and therefore there
exists k ∈ ω such that hj,⃗ϵ(x⃗)(k) = h(k), hence

yj ∈ Nk
hj,⃗ϵ(x⃗)(k) = Nk

h(k) ⊆ [⃗x, ϵ⃗],

which completes our proof.

One of the ways to get non-trivial (namely those having size at least cov(M)) ex-
amples of spaces X like in Theorem 2.2.17 is using forcing. This approach is not new
and in a slightly different form was used in [29], so the next fact may be thought of
as folklore. We present its proof since we were unable to find it published elsewhere
in the form we need.

Proposition 2.2.18. Let X = {cα : α < λ} be the set of Cohen generic reals over
the ground model V added by the standard poset Fin(λ × ω, 2) consisting of finite
partial functions from λ × ω to 2, where λ is an uncountable cardinal. Let G be
Fin(λ × ω, 2)-generic filter giving rise to X. Then in V[G], for any k ∈ ω and a
sequence ⟨Bn : n ∈ ω⟩ of countable Borel covers of Xk, for each n ∈ ω there is
Bn ∈ Bn such that Xk ⊆ ⋃

n∈ω Bn. I.e., all finite power of X satisfy S1(B,B).

We shall need the following standard fact whose proof we add for the sake of
completeness.

Lemma 2.2.19. Let λ, G, X be such as in Proposition 2.2.18 and suppose that D ⊂ 2ω

is a Borel non-meager set coded in the ground model V. Then there exists β < λ
such that cβ ∈ D.

Proof. Since D is non-meager, there exist s ∈ 2<ω such that D ∩ [s] is comeager in [s],
i.e., [s] \ D is meager. (Recall that [s] = {z ∈ 2ω : z ↾ |s| = s}.) Fix p ∈ Fin(λ × ω, 2)
and β ∈ λ such that dom(p) ∩ ({β} × ω) = ∅. Let q = p ∪ r, where dom(r) =
{β} × |s| and r(β, j) = s(j) for every j ∈ |s|. Then

q ⊩ cβ ∈ [s] ∧ cβ lies in every comeager set coded in V,

and hence q also forces cβ ∈ D ∩ [s]. Now the statement of the lemma follows by the
density argument.

Proof of Proposition 2.2.18. We will prove it by induction on k. For k = 0 there is
nothing to prove. Assuming that it is true for any natural number ≤ k, we will
prove our statement for k + 1. Consider Bn = {Bn

i : i ∈ ω} ∈ B(Xk+1), for every
n ∈ ω. Let A ∈ [λ]ω be such that ⟨⟨Bn

i : i ∈ ω⟩ : n ∈ ω⟩ is coded in V[{cα : α ∈ A}].
Let ω = I0 ⊔ I1 be a partition into two infinite disjoint sets. The set (2ω)k+1 \ ⋃Bn
is meager in (2ω)k+1 for every n ∈ ω. Indeed, suppose that contrary to our claim
there exists n ∈ ω such that K := (2ω)k+1 \⋃Bn is non-meager. Then Lemma 2.2.19
implies that there exists an injective sequence ⟨βi : i < k + 1⟩ of ordinals in λ \ A
such that ⟨cβi : i < k + 1⟩ ∈ K, which is impossible because Bn covers Xk+1.

For every n ∈ I0 pick in ∈ ω such that
⋃

n∈I0
Bn

in
is comeager in (2ω)k+1. This

could be done in V[{cα : α ∈ A}] as follows: Given an enumeration {⃗sn : n ∈
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I0} of (2<ω)k+1, let in be such that Bn
in
∩ [⃗sn] is non-meager in [⃗sn], n ∈ I0, where

[⃗sn] = ∏j≤k[sn
j ]. Then the union

⋃
n∈I0

Bn
in

is comeager in (2ω)k+1, because its inter-
section with each clopen subset of (2ω)k+1 is non-meager. Fix any mutually different
α0, ..., αk ∈ λ \ A. Then ⟨cα0 , ..., cαk⟩ ∈ ⋃

n∈I0
Bn

in
because any such ⟨cα0 , ..., cαk⟩ lies in

every comeager subset of (2ω)k+1 coded in V[cα : α ∈ A]. From the above we con-
clude that

Y := Xk+1 \
⋃

n∈I0

Bn
in
⊂

{
⟨cα0 , ..., cαk⟩ : ∃j ≤ k (αj ∈ A) ∨ ∃j1, j2 ≤ k (αj1 = αj2)

}
.

Thus Y is covered by a countable union of homeomorphic copies of X j with j ≤ k,
hence by our assumption we can conclude the proof by covering Y with suitably
chosen Bn

in
’s for n ∈ I1. □

Combining the results above and the fact that cov(M) = d = c = λ after adding
λ-many Cohen reals to a ground model of GCH, where λ is a cardinal of uncountable
cofinality, we get a consistent non-trivial example of a R-nw-selective space which is
also a non-trivial example of a M-nw-selective space.

Corollary 2.2.20. Suppose that GCH holds in the ground model V. Let λ be a cardi-
nal of uncountable cofinality and G, X such as in Proposition 2.2.18. Finally, in V[G]
let Y ⊂ Cp(X, 2) be a countable dense subspace. Then Y is a R-nw-selective (and
hence M-nw-selective) and w(Y) = cov(M) = d.

The above corollary motivates the following question, which is related to Ques-
tion 2.2.16.

Question 2.2.21. Is there a consistent example of a countable R-nw-selective space
of weight > cov(M)?

Theorem 2.2.17, Proposition 2.2.18 and Lemma 2.2.19 have their counterparts for
random reals, with “Cohen” and “meager” replaced with “random” and “measure
zero”, respectively. We omit proofs which are completely analogous, i.e., those of
Theorem 2.2.22 and Lemma 2.2.24.

Again, this approach of using random reals could be traced back in some sense
to [29] and hence may be thought of as folklore. We refer the reader to [9, Section 3.1]
for more information about the random forcing.

Theorem 2.2.22. Suppose that X ⊆ 2ω is such that Xn is S1(BΓ,BΓ) for every n ∈ ω.
Let Y ⊆ Cp(X, 2) be a countable subset. Then Y is H-nw-selective. Moreover, if Y is
dense, w(Y) = |X|.

Proposition 2.2.23. Let X = {rα : α < λ} be the set of generic random reals over the
ground model V added by the standard poset B(λ) = Bor(2λ×ω)/Zλ, where Zλ is
the ideal of subsets of 2λ×ω which have measure 0 with respect to the usual product
probability measure on 2λ×ω. Let also G be B(λ)-generic over V giving rise to X.
Then in V[G], for any k ∈ ω and a sequence ⟨Bn : n ∈ ω⟩ of Borel γ-covers of Xk, for
each n ∈ ω there is Bn ∈ Bn such that {Bn : n ∈ ω} is a γ-cover of Xk. I.e., all finite
power of X satisfy S1(BΓ,BΓ).

The key part of the proof of Proposition 2.2.23 relies on the following

Lemma 2.2.24. Suppose that D ⊂ 2ω is a Borel non-measure zero set coded in the
ground model V and G, X are such as in Proposition 2.2.23. Then there exists β < λ
such that rβ ∈ D.
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Proof of Proposition 2.2.23. We will prove it by induction on k that Xk satisfies Ufin(B,BΓ),
which is equivalent to S1(BΓ,BΓ) by [65, Theorem 1].

For k = 0 there is nothing to prove. Assuming that it is true for any natural
number ≤ k, we will prove our statement for k + 1. Consider Bn = {Bn

i : i ∈ ω} ∈
B(Xk+1), for every n ∈ ω. Let A ∈ [λ]ω be such that ⟨⟨Bn

i : i ∈ ω⟩ : n ∈ ω⟩
is coded in V[{rα : α ∈ A}]. The set (2ω)k+1 \ ⋃Bn has measure 0 in (2ω)k+1 for
every n ∈ ω. Indeed, suppose that contrary to our claim there exists n ∈ ω such
that L := (2ω)k+1 \ ⋃Bn has positive measure. Then Lemma 2.2.24 implies that
there exists an injective sequence ⟨βi : i < k + 1⟩ of ordinals in λ \ A such that
⟨rβi : i < k + 1⟩ ∈ L, which is impossible because Bn covers Xk+1.

In V[{rα : α ∈ A}], for every n ∈ ω pick in ∈ ω such that ν(
⋃

i≤in
Bn

i ) ≥ 1 − 1
2n

and note that ν(Z) = 1, where ν is the Lebesgue measure on (2ω)k+1 and

Z =
⋃

m∈ω

⋂
n≥m

⋃
i≤in

Bn
i .

Fix any mutually different α0, ..., αk ∈ λ \ A. Then ⟨rα0 , ..., rαk⟩ ∈ Z because any such
⟨rα0 , ..., rαk⟩ lies in every measure 1 subset of (2ω)k+1 coded in V[rα : α ∈ A]. From
the above we conclude that

Y := Xk+1 \ Z ⊂
{
⟨rα0 , ..., rαk⟩ : ∃j ≤ k (αj ∈ A) ∨ ∃j1, j2 ≤ k (αj1 = αj2)

}
.

Thus Y is covered by a countable union of homeomorphic copies of X j with j ≤ k,
hence by our assumption we can find ⟨jn : n ∈ ω⟩ ∈ ωω such that {⋃i≤jn Bn

i : n ∈
ω} ∈ BΓ(Y). Since {⋃i≤in

Bn
i : n ∈ ω} ∈ BΓ(Z) by the choice of ⟨in : n ∈ ω⟩, we

conclude that { ⋃
i≤max{in,jn}

Bn
i : n ∈ ω

}
∈ BΓ(Z ∪ Y) = BΓ(Xk+1),

which completes our proof. □

Combining the results above and the fact that d = ω1 after adding λ-many ran-
dom reals to a ground model of GCH, we get a consistent non-trivial example of a
H-nw-selective space which is also a non-trivial example of a M-nw-selective space.

Corollary 2.2.25. Suppose that GCH holds in the ground model V and λ is an un-
countable cardinal. Let G, X be such as in Proposition 2.2.23. Finally, in V[G] let
Y ⊂ Cp(X, 2) be a countable dense subspace. Then Y is H-nw-selective (and hence
M-nw-selective) and w(Y) = λ = c ≥ d = ω1.

The corollary above among others shows that the counterparts of Question 2.2.21
for H-nw-selective and M-nw-selective spaces have affirmative answers, i.e., there
are consistent examples of countable H-nw-selective (resp. M-nw-selective) spaces
with weight > b (resp. > d).

2.2.2 Various kinds of nw-selectivity of “standard”countable dense sub-
spaces of Cp(X, 2): necessary conditions

In this section we establish some limitations to constructions of non-trivial examples
by the methods developed in Section 2.2.1. More precisely, we consider certain spe-
cific countable dense subspaces of Cp(X) defined before Theorem 2.2.28, where X is
a metrizable separable spaces, and show that these having nw-selectivity properties



30 Chapter 2. Recent studies on Selection Principles

implies X having quite strong combinatorial covering properties with respect to the
family of all countable closed covers.

We start by showing that the properties we consider are equivalent to their local
counterparts in the realm of countable spaces. We call N a network for a space X at
x ∈ X, if for every neighbourhood U ∋ x there exists N ∈ N with x ∈ N ∈ N . Thus,
N is a network for X if and only if it is a network for X at each x ∈ X.

Definition 2.2.26. A space X is

locally M-nw-selective if for every x ∈ X and sequence ⟨Nm : m ∈ ω⟩ of
networks for X at x, there exists a sequence ⟨Lm : m ∈ ω⟩ such that Lm ∈
[Nm]<ω for all m and

⋃
m∈ω Lm is a networks for X at x;

locally R-nw-selective if for every x ∈ X and sequence ⟨Nm : m ∈ ω⟩ of net-
works for X at x, there exists a sequence ⟨Nm : m ∈ ω⟩ such that Nm ∈ Nm for
all m and {Nm : m ∈ ω} is a networks for X at x.

locally H-nw-selective if for every x ∈ X and sequence ⟨Nm : m ∈ ω⟩ of
networks for X at x, there exists a sequence ⟨Lm : m ∈ ω⟩ such that Lm ∈
[Nm]<ω for all m and

⋃
m∈I Lm is a networks for X at x for any I ∈ [ω]ω;

Lemma 2.2.27. 1. If X is locally M-nw-selective (resp. H-nw-selective, R-nw-
selective) and |X| = ω, then it is M-nw-selective (resp. H-nw-selective, R-nw-
selective).

2. If X is M-nw-selective (resp. H-nw-selective, R-nw-selective), then it is locally
M-nw-selective (resp. H-nw-selective, R-nw-selective).

Proof. The first item is rather obvious. For the second one it suffices to note that if
M is a (countable) network for X and N is a (countable) network for X at x ∈ X,
then

N ∪ {M \ {x} : M ∈ M}

is a (countable) network for X.

In what follows we shall call a sequence ⟨Un : n ∈ ω⟩ of finite families of subsets
of X a γfs-sequence2 on X, if for every F ∈ [X]<ω there exists n ∈ ω such that for all
k ≥ n there exists U ∈ Un containing F.

For a subset A of X the characteristic function of A is χA : X → 2 such that χA(x) =
0 iff x ∈ A. Let X be a metrizable separable zero-dimensional space and S a base for
X closed under finite unions and complements of its elements. Then we denote by
YS the set {χS : S ∈ S} ⊂ Cp(X, 2).

Theorem 2.2.28. Let X be a metrizable separable zero-dimensional space and S a
countable clopen base of X closed under finite unions and complements. If Y = YS
is H-nw-selective as a subspace of Cp(X, 2), then for every sequence ⟨Cn : n ∈ ω⟩ of
countable closed ω-covers of X there exists a γfs-sequence ⟨Dn : n ∈ ω⟩ on X such
that Dn ∈ [Cn]<ω.

Proof. Note that the constant 0 function (which we denote by 0) belongs to Y: Given
any S ∈ S , we have that X \ S ∈ S , and hence X = S ∪ (X \ S) ∈ S , which yields
0 = χX ∈ Y.

2“fs” is the abbreviation of finite subsets
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For every C ⊂ X we denote by [C, 0] the set { f ∈ Cp(X) : f ↾ C ≡ 0}. Let
⟨Cn : n ∈ ω⟩ be a sequence of countable closed ω-covers of X. It is easy to check that

Nn :=
{
[C, 0] ∩ Y : C ∈ Cn

}
is a network for Y at 0 for every n ∈ ω. By Lemma 2.2.27 we know that Y is locally H-
nw-selective, and hence there exists a sequence ⟨Dn : n ∈ ω⟩ such that Dn ∈ [Cn]<ω

for all n ∈ ω and
N := {[C, 0] ∩ Y : C ∈ Dn, n ∈ I}

is a network for Y at 0 for any infinite I ⊂ ω.
We claim that ⟨Dn : n ∈ ω⟩ is a γfs-sequence of subsets of X. Indeed, suppose

towards a contradiction, that there exists I ∈ [ω]ω and A ∈ [X]<ω such that A ̸⊂ C
for any C ∈ ⋃

n∈I Dn. Set O = [A, 0]∩Y and note that O is an open neighbourhood of
0 in Y. Thus there exists n ∈ I and C ∈ Dn such that O ⊃ [C, 0] ∩ Y. However, there
exists x ∈ A \ C, and hence there exists S ∈ S with3 C ⊂ S and x ̸∈ S. It follows that
χS ∈ [C, 0] ∩ Y and χS ̸∈ [A, 0] ∩ Y = O, which gives the desired contradiction.

For a topological space X we make the following notation:

• C(X) is the family of all countable closed covers of X;

• CΩ(X) is the family of all countable closed ω-covers of X;

• CΓ(X) is the family of all countable closed γ-covers of X;

• Co(X) is the family of all countable clopen covers of X;

• Co
Ω(X) is the family of all countable clopen ω-covers of X;

• Co
Γ(X) is the family of all countable clopen γ-covers of X.

Recall from [46] that a countable family U of subsets of X is ω-groupable, if there
exists a sequence ⟨Dn : n ∈ ω⟩ of mutually disjoint finite subsets of U such that the
set {n ∈ ω : x ̸∈ ∪Dn} is finite for all x ∈ X. We extend our list of notation for
specific covers of a space X as follows:

• Cω−gp(X) is the family of all closed ω-groupable covers of X;

• Co
ω−gp(X) is the family of all clopen ω-groupable covers of X;

• Bω−gp(X) is the family of all Borel ω-groupable covers of X.

Corollary 2.2.29. Let X be a metrizable separable zero-dimensional space and S a
countable clopen base of X closed under finite unions and complements. If Y =
YS is H-nw-selective as a subspace of Cp(X, 2), then all finite powers of X satisfy
Ufin(O, Γ) (i.e., are Hurewicz) and X satisfies Ufin(B,BΓ) (i.e., is Hurewicz with re-
spect to all countable Borel covers), which is equivalent to S1(BΓ,BΓ).

Proof. Let ⟨Cn : n ∈ ω⟩ be a sequence of countable closed ω-covers of X. Theo-
rem 2.2.28 yields a a γfs-sequence ⟨Dn : n ∈ ω⟩ on X such that Dn ∈ [Cn]<ω. It
follows that {∪Dn : n ∈ ω} ∈ CΓ(X). Thus, X satisfies Ufin(CΩ, CΓ), which is ob-
viously equivalent to Ufin(C, CΓ), i.e., the Hurewicz covering property with respect
to countable closed covers. [30, Theorem 5.2] implies that X satisfies the Hurewicz

3Here we use that Y = YS and not just arbitrary countable dense subset of Cp(X, 2).
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property with respect to countable Borel covers, which is equivalent to S1(BΓ,BΓ)
by [65, Theorem 1].

Finally, to see that all finite powers of X are Hurewicz, note that Theorem 2.2.28
implies that for every sequence ⟨Cn : n ∈ ω⟩ of countable closed ω-covers of X there
exists a γfs-sequence ⟨Dn : n ∈ ω⟩ on X such that Dn ∈ [Cn]<ω and Dn0 ∩ Dn1 = ∅
for any natural numbers n0 ̸= n1. Indeed, for this it is enough replace ⟨Cn : n ∈ ω⟩
with a sequence ⟨C ′

m : m ∈ ω⟩ of countable closed ω-covers of X such that for every
cofinite subset C of some Cn, there exists m ∈ ω with C = C ′

m. Theorem 2.2.28 implies
that there exists a γfs-sequence ⟨D′

m : m ∈ ω⟩ on X such that D′
m ∈ [C ′

m]
<ω. Now

it is easy to see that one can choose a subsequece ⟨Dn : n ∈ ω⟩ of ⟨D′
m : m ∈ ω⟩

consisting of mutually disjoint elements and such that Dn ∈ [Cn]<ω.
Using the consequence of Theorem 2.2.28 established in the paragraph above

for sequences of countable clopen covers of X, and the obvious fact that if a γfs-
sequence ⟨Dn : n ∈ ω⟩ consists of mutually disjoint finite sets, then

⋃
n∈ω Dn is an

ω-groupable cover of X, we conclude that X satisfies Sfin(CΩ, Cω−gp), and hence also
Sfin(Co

Ω, Co
ω−gp). By [46, Theorem 16] all finite powers of X are Hurewicz.

By arguments similarly to (but easier than) those used in the proofs of Theo-
rem 2.2.28 and Corollay 2.2.29, we can also get necessary conditions for countable
dense subsets of Cp(X) of the form YB to be M-nw-selective and R-nw-selective.

Theorem 2.2.30. Let X be a metrizable separable zero-dimensional space and S a countable
clopen base of X closed under finite unions and complements. If Y = YS is M-nw-selective
as a subspace of Cp(X, 2), then X satisfies Sfin(CΩ, CΩ).

Corollary 2.2.31. Let X,S be such as in Theorem 2.2.30. If Y = YS is M-nw-selective as
a subspace of Cp(X, 2), then all finite powers of X are Menger, and also X has the Menger
property with respect to countable closed covers.

Proof. Clearly, Sfin(CΩ, CΩ) implies Ufin(C, C), i.e., the Menger property with respect
to all countable closed covers

Also, Sfin(CΩ, CΩ) implies Sfin(Co
Ω, Co

Ω), which for zero-dimensional spaces is equiv-
alent to all finite powers having the Menger property Ufin(O,O) by [44, Theorem 3.9].

Theorem 2.2.32. Let X,S be such as in Theorem 2.2.30. If Y = YS is R-nw-selective
as a subspace of Cp(X, 2), then X satisfies S1(CΩ, CΩ).

Corollary 2.2.33. Let X,S be such as in Theorem 2.2.30. If Y = YS is R-nw-selective
as a subspace of Cp(X, 2), then all finite powers of X satisfy S1(O,O), i.e., are Roth-
berger, and also X has the Rothberger property S1(C, C) with respect to countable
closed covers.

Proof. By Theorem 2.2.32 we know that X satisfies S1(CΩ, CΩ), and hence it also sat-
isfies satisfies S1(CΩ, C), which is equivalent to S1(C, C) by the same argument as in
the proof of [61, Theorem 17], which asserts that S1(Ω,O) and S1(O,O) are equiva-
lent.

Also, by Theorem 2.2.32 the space X satisfies S1(CΩ, CΩ), and hence also S1(Co
Ω, Co

Ω),
which is obviously equivalent to S1(Ω, Ω) because X is zero-dimensional. Finally,
S1(Ω, Ω) is equivalent to all finite powers being Rothberger, see [58, Lemma, p. 918]
or [44, Theorem 3.8].

The necessary conditions proved above motivate the following question.
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Question 2.2.34. Let X be a metrizable separable zero-dimensional space.

1. Suppose that X is Menger with respect to countable closed covers. Is X Menger
with respect to countable Borel covers?

2. Suppose that X is Rothberger with respect to countable closed covers. Is X
Rothberger with respect to countable Borel covers?

As we have already mentioned in the proof of Corollary 2.2.29, by [30, Theo-
rem 5.2] the answer to the analogous question for the Hurewicz property is affir-
mative. Regarding the Rothberger part of Question 2.2.34, in the Laver model all
Rothberger metrizable spaces are countable, hence the affirmative answer is consis-
tent, which means that this question is interesting in models where the Borel con-
jecture fails, e.g., models of CH. Below we show that also for the Menger part of
Question 2.2.34 the affirmative answer is consistent.

Proposition 2.2.35. In the Miller model, if X ⊂ 2ω satisfies Ufin(C, C), then |X| < d,
and hence X satisfies the Menger property with respect to arbitrary countable covers.

Proof. First we shall show that any G ⊂ X is Menger. Indeed, let ⟨Un : n ∈ ω⟩ be
a sequence of covers of G by open subsets of X. For every n let An be a countable
cover of G by open subsets of X such that for every A ∈ An there exists U ∈ Un with
Ā ⊂ U, the closure being taken in X. Set

ωn = {Ā : A ∈ An} ∪ {Fn}, where Fn = X \ ∪An,

and note that ωn is a countable closed cover of X. The Menger property for countable
closed covers applied to X yields a sequence ⟨ω′

n : n ∈ ω⟩ such that ω′
n ∈ [ωn]<ω

and G ⊂ ⋃
n∈ω ∪ω′

n. Since each Fn is disjoint from G, we get G ⊂ ⋃
n∈ω ∪ω′′

n , where
ω′′

n = ω′
n \ {Fn}. It follows that there exists a finite A′′

n ⊂ An such that ω′′
n = {Ā :

A ∈ A′′
n}. Consequently, there exists a finite U ′′

n ⊂ Un such that

∀A ∈ A′′
n ∃U ∈ U ′′

n (Ā ⊂ U).

Putting all together, we get G ⊂ ⋃
n∈ω ∪U ′′

n , and therefore G is Menger4.
In the Miller model for every Menger space Z ⊂ 2ω and a Gδ-subset H ⊂ 2ω, if

Z ⊂ H, then there is a family K of compact subspaces of H of size |K| ≤ ω1 and
such that Z ⊂ ∪K, see [53, Theorem 4.4]. As a result, if Q ∈ [2ω]ω is disjoint from
Z, then there exists a Gω1-subset (i.e., an intersection of ω1-many open sets) R of 2ω

such that Q ⊂ R and R ∩ Z = ∅.
Since X is hereditarily Menger, we conclude that for every Q ∈ [X]ω there exists

a Gω1-subset R(Q) with R(Q)∩ X = Q. Now a direct application of [73, Lemma 2.5]
gives that there exists a family Q ⊂ [2ω]ω of size |Q| = ω1 and such that

X =
⋃

Q∈Q
(R(Q) ∩ X) =

⋃
Q∈Q

Q = ∪Q,

which yields |X| ≤ ω1 < d. Finally, the fact that any space of size < d has the Menger
property with respect to the family of all countable covers is straightforward.

The next statement is a consequence of [52, Corollary 4.4].

Proposition 2.2.36. In the Laver model, if X ⊂ 2ω satisfies S1(BΓ,BΓ), i.e., is Hurewicz
with respect to the family of countable Borel covers, then |X| < b.

4Let us note that this part did not require any assumptions beyond ZFC.
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As a conclusion we have the following fact showing that countable spaces con-
sidered in Theorems 2.2.28, 2.2.30 and 2.2.32 cannot give non-trivial examples satis-
fying corresponding nw-selectivity properties in ZFC.

Corollary 2.2.37. In the Miller (resp. Laver) model, let X be a metrizable separa-
ble zero-dimensional space and S a countable clopen base of X closed under finite
unions and complements. If YS is M-nw-selective (resp. H-nw-selective or R-nw-
selective), then it is trivial, i.e., w(Y) = |X| ≤ ω1 < d (resp. w(Y) = |X| ≤ ω1 < b or
w(Y) = |X| ≤ ω < cov(M) = ω1).

Even though spaces of the form YS seem to be one’s first inclination to construct
countable dense subspaces of Cp(X, 2), there are also other countable dense sub-
spaces of Cp(X, 2), and we do not have any efficient way of analyzing their nw-
selectivity properties in terms of (covering) properties of X.

Question 2.2.38. Are there ZFC examples of metrizable separable zero-dimensional
spaces X of size ≥ d (resp. ≥ b, ≥ cov(M)) and countable dense subspaces Y of
Cp(X, 2) which are M-nw-selective (resp. H-nw-selective, R-nw-selective)?

The following fact has been established at the beginning of the proof of Propo-
sition 2.2.35 for Menger spaces without using any additional assumptions beyond
ZFC, and the same argument also works in two other cases.

Corollary 2.2.39. Let X be a metrizable separable space. If X satisfies the Menger
(resp. Hurewicz, Rothberger) property for countable closed covers, then it is hered-
itarily Menger (resp. Hurewicz, Rothberger).

In [24] it is provided an example distinguishing countable fan tightness and M-
nw-selectivity which is uncountable, now we can provide a countable one.

Proposition 2.2.40. The space X = Cp(2ω, 2) is countable H-separable and weakly
Fréchet in the strict sense, but it is not M-nw-selective.

Proof. 2ω is not hereditarily Menger since [ω]ω ⊂ 2ω is not Menger being a copy of
the Baire space. Thus, Cp(2ω, 2) is not M-nw-selective by Corollary 2.2.39.

The other properties of Cp(2ω, 2) directly follow from [12, Theorem 40].

2.2.3 Non-preservation by products

This section is devoted to the proof of the following theorem that consistently answer
to Question 2.1.34.

Theorem 2.2.41. It is consistent that there exist two countable H-nw-selective spaces
with non-M-nw-selective product.

We need the following variation of Proposition 2.2.23. Let us note that 2ω =
{0, 1}ω with the operation + of the coordinate-wise addition modulo 2 is a compact
Boolean topological group.

Proposition 2.2.42. Suppose that V is a ground model of CH and {zα : α < ω1} is
an enumeration in V of [ω]ω ⊂ 2ω. Let X = {rα : α < ω1} ⊂ 2ω be the set of generic
random reals over V added by B(ω1). Let also G be B(ω1)-generic over V giving
rise to X. Then in V[G], all finite power of

X1 = {rα + zα : α < ω1} ⊂ 2ω

satisfy S1(BΓ,BΓ).
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Proposition 2.2.42 is a consequence of the following fact which could be estab-
lished in the same way as Lemma 2.2.19, basically replacing “Cohen” and “meager”
with “random” and “measure 0”.

Lemma 2.2.43. We use notation from Proposition 2.2.42. Suppose that D ⊂ 2ω is a
Borel non-measure zero set coded in V. Then there exists β < λ such that rβ + zα ∈
D.

Proof of Theorem 2.2.41. We use notation from Proposition 2.2.42 and work in V[G].
By the definitions of X and X1 we have that

zα = (rα + zα) + rα ∈ X1 + X

for all α ∈ ω1, and hence [ω]ω ∩ V ⊂ X + X1. On the other hand, since for α0 ̸= α1
the sum rα0 + rα1 cannot lie in V, we conclude that X + X1 ⊂ [ω]ω. Thus

[ω]ω ∩ V ⊂ X + X1 ⊂ [ω]ω.

Since B(ω1) does not add unbounded reals, [ω]ω ∩ V is dominating, where each
infinite subset a of ω is identified with the increasing function in ωω whose range is
a. It follows that X × X1 is not Menger since it has a dominating continuous image in
[ω]ω, namely X + X1. Consequently, [X ⊔ X1]

2 is not Menger because it has a closed
topological copy of X × X1.

Now, by Corollary 2.2.31, if S is a countable clopen base for X ⊔ X1 closed un-
der finite unions and complements, than YS is not M-nw-selective as a subspace of
Cp(X ⊔ X1, 2) = Cp(X, 2)× Cp(X1, 2).

Let S(X) and S(X1) be countable clopen bases closed under finite unions and
complements for X and X1, respectively. Then YS(X) and YS(X1) are countable dense
H-nw-selective subspaces of Cp(X, 2) and Cp(X1, 2) by Theorem 2.2.22, respectively.

On the other hand, set

S = {U ∪ W : U ∈ S(X), W ∈ S(X1)}

and observe that S is a countable clopen base for X ⊔ X1 closed under finite unions
and complements, and hence YS is not M-nw-selective as a subspace of Cp(X ⊔
X1, 2). It remains to note that YS is a homeomorphic copy of YS(X) × YS(X1). Box

The analogous strategy with random reals replaced by Cohen reals does not seem
to give anything interesting: Unlike in the random model, [ω]ω ∩ V is known to
satisfy S1(BΩ,BΩ) in the Cohen model, so the approach above based on [ω]ω ∩ V
being “big” in a suitable sense (e.g., dominating in the random model) does not
work. This motivates the following

Question 2.2.44. Is the existence of two countable R-nw-selective spaces with non-
R-nw-selective (or even non-M-nw-selective) product consistent?

On the other hand, we do not know whether countable spaces like in Theo-
rem 2.2.41 could be constructed in ZFC.

Question 2.2.45. Is it consistent that the product of two countable M-nw-selective
(resp. H-nw-selective, R-nw-selective) spaces is again M-nw-selective (resp. H-nw-
selective, R-nw-selective)?
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2.2.4 HFD’s and R-nw-selectivity

HFD spaces where introduced in order to construct S-spaces, i.e., hereditarily sep-
arable spaces which are not Lindelöf, see [41, 43] and references therein. In this
section we show that stronger version of the HFD spaces are R-nw-selectivity. The
following definition is taken from [41].

Definition 2.2.46. Let λ be an uncountable cardinal. A subset X ⊂ 2λ is called HFD
(abbreviated from Hereditarily Finally Dence) if X is infinite and for every A ∈ [X]ω

there is a B ∈ [λ]ω such that A (i.e., A ↾ (λ\B)) is dense in 2λ\B.

We use the following notation of [43]. Given some ε ∈ Fin(I, 2), where Fin(I, 2)
denotes the collection of all finite partial functions on I to 2, we set [ε] = { f ∈ 2I :
ε ⊂ f }. Thus, [ε] is a standard basic clopen subset of 2I . Now suppose that I is a
set of ordinals, b ∈ [I]<ω, b = {βi : i ∈ n = |b|} is an increasing enumeration, and
ε ∈ 2n. In this case we denote by ε ∗ b the element of Fin(I, 2) which has b as its
domain and satisfies ε ∗ b (βi) = ε(i) for all i ∈ n.

For any infinite cardinal µ and r ∈ ω we denote by Dr
µ(I) the collection of all sets

B ∈ [[I]r]µ such that the members of B are pairwise disjoint. We shall write

Dµ(I) =
⋃{

Dr
µ(I) : r ∈ ω

}
If B ∈ Dµ(I) then n(B) = |b| for any b ∈ B. Now, if B ∈ Dµ(I) and ε ∈ 2n(B) then

[ε, B] =
⋃
{[ε ∗ b] : b ∈ B}

is called a Dµ-set in 2I . The most important instance of the above is µ = ω, in this
case we shall often omit the lower index ω of D, i.e., a D-set in 2I is a Dω-set. Clearly,
any D-set is open dense and has product (Lebesgue) measure 1 in 2I . Recall that a
map F : κ × λ → 2 with κ ⩾ ω, λ ⩾ ω1 is called an HFD matrix (see [43]) if for every
A ∈ [κ]ω, B ∈ Dω1(λ) and ε ∈ 2n(B) there are α ∈ A and b ∈ B such that

fα = F(α,−) ⊃ ε ∗ b.

The latter inclusion means that F (α, βi) = ε(i) for each i < n(B) = |b|, where βi is the
i-th member of b in its increasing enumeration. The following fact was established
in [43].

Proposition 2.2.47. X ⊂ 2λ is an HFD space if and only if there exists an HFD matrix
F : κ × λ → 2 such that X = { fα : α ∈ κ}.

In this case we say that F represents X. Following [43], for an HFD space X ⊂ 2λ

and A ∈ [X]ω we set

J (A) =
{

I ∈ [λ]ω : ∀ε ∈ Fin(I, 2)
(
|A ∩ [ε]| = ω ⇒ A ∩ [ε] is dense in 2λ\I)}.

Proposition 2.2.48. [43] If X ⊂ 2λ is HFD and A ∈ [X]ω then J (A) is closed and
unbounded in [λ]ω.

Proposition 2.2.49. If N is a countable network in a HFD space X ⊂ 2λ, then N ∩
[X]<ω is a network in X as well, and hence X is countable.

Proof. Set A = N ∩ [X]≥ω, i.e., A is a family of all infinite elements of N . For every
A ∈ A fix a countable infinite C(A) ⊂ A and pick J ∈ ⋂

A∈A J (C(A)). Fix any α ∈ J,
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β ∈ λ \ J, x ∈ X and set ϵ0 = {⟨α, x(α)⟩} ∈ Fin(J, 2), ϵ1 = {⟨α, x(α)⟩, ⟨β, 1− x(β)⟩} ∈
Fin(λ, 2), and ϵ2 = {⟨α, x(α)⟩, ⟨β, x(β)⟩} ∈ Fin(λ, 2).

We claim that C(A) ̸⊂ [ϵ2] for any A ∈ A, which would clearly imply that
N ∩ [X]<ω must be a network for X. Fix A ∈ A. If C(A) ̸⊂ [ϵ0] there is nothing to
prove, so assume that C(A) ⊂ [ϵ0]. But then C(A) ∩ [ϵ1] ̸= ∅ because J ∈ J (C(A)),
and hence C(A) ̸⊂ [ϵ2].

Scheepers [62] proved that any HFD is R-separable. Now we show that the fol-
lowing stronger version of HFD spaces introduced in [66] implies R-nw-selectivity.

Definition 2.2.50. A set X ⊂ 2ω1 is a very strong HFD if for each sequence {An : n ∈ ω}
of pairwise disjoint, non-empty finite subsets of X there is β < ω1 such that for all
s ∈ Fin(ω1\β, 2) there are infinitely many n with An ⊂ [s].

Obviously, we get an equivalent notion if we require in the definition above only
that {An : n ∈ ω} ∩ [[s]]<ω ̸= ∅.

Recall that a dense set D ⊆ X is called groupable if it admits a partition A = {An :
n < ω} into finite sets such that every non-empty open subset of X meets all but
finitely elements of A. Every very strong HFD space cannot contain a groupable
dense subset [66]. On the other hand, every H-separable space has a groupable
dense subset. Therefore a very strong HFD space cannot be H-separable (hence not
H-nw-selective).

Theorem 2.2.51. Every countable very strong HFD space X is R-nw-selective.

Proof. Let (Nn,m,k : n, m, k ∈ ω) be an enumeration of countably many networks of
X. By Proposition 2.2.49 there is no loss of generality in assuming that each Nn,m,k
consists of finite subsets of X.

Let ϑ be a large enough regular cardinal and M a countable elementary submodel
of Hϑ which contains X and (Nn,m,k : n, m, k ∈ ω). Set β = M ∩ ω1 and enumerate
Fin(β, 2) as {sn : n ∈ ω}. Let L = {n ∈ ω : [sn] ∩ X ̸= ∅} and for all n ∈ L fix a
(non-necessary injective) enumeration {xn

k : k ∈ ω} of [sn] ∩ X. Given n ∈ L and
k ∈ ω, by induction on m ∈ ω choose Nn,m,k ∈ [[sn]]<ω ∩Nn,m,k such that

• xn
k ∈ Nn,m,k,

• (Nn,m0,k \ {xn
k }) ∩ (Nn,m1,k \ {xn

k }) = ∅ for any m0 < m1, and

• the function m 7→ Nn,m,k is in M.

We claim that {Nn,m,k : n ∈ L, m, k ∈ ω} is a network in X. Indeed, let s ∈ Fin(ω1, 2),
x ∈ [s], and note that s ↾β= sn for some n. Thus n ∈ L. Fix k ∈ ω such that x = xn

k .
The sequence

(Nn,m,k \ {xn
k } : m ∈ ω)

lies in M and consists of mutually disjoint finite subsets of X, so there is βn ∈ M
such that

[[t]]<ω ∩ {Nn,m,k \ {xn
k } : m ∈ ω}

is infinite for all t ∈ Fin(ω1\βn, 2) with x = xn
k ∈ [t]. This is a direct consequence of

X being a very strong HFD. It follows that

[[t]]<ω ∩ {Nn,m,k : m ∈ ω}

is infinite for all t ∈ Fin(ω1\βn, 2) with x = xn
k ∈ [t]. Note that s\sn ∈ Fin(ω1\β, 2) ⊂

Fin(ω1\βn, 2) hence [[s\sn]]<ω ∩ {Nn,m,k : m ∈ ω} ̸= ∅. Since {Nn,m,k : m ∈ ω} ⊂
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[[sn]]<ω we have that [[s]]<ω ∩ {Nn,m,k : m ∈ ω} ̸= ∅ as well. This completes our
proof.

Theorem 2.2.51 motivates the following

Question 2.2.52. Is every countable HFD space R-nw-selectivity?
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Chapter 3

Recent studies on Topological
Games

The first studied topological game was the Banach-Mazur game which appeared in
the Scottish Book (1935-1941), a collection of notes recording the ideas of a group
of mathematicians who gathered in the Scottish Café in Lwów (Poland) to discuss
about various mathematical topics. This game, described in Problem 43 by Banach
and Mazur, provided a new way to explore topological properties using game the-
ory. It became fundamental in understanding concepts like Baire spaces and com-
plete metric spaces.

Maurice René Fréchet and Gustave Choquet further developed the field by in-
troducing the Choquet game, which focused on properties of open sets and bases in
topological spaces, particularly in the context of topological vector spaces.

David Gale and Frank Stewart, in the 1950s, expanded the study of infinite games,
linking these ideas to automata theory and formal languages. Their work provided
a broader understanding of strategic games with infinite moves.

Menger and Hurewicz, in the 1920s and 1930s, explored games involving open
covers, leading to the concepts of Menger and Hurewicz selection properties, which
are closely related to compactness and paracompactness in topology.

Fritz Rothberger introduced the Rothberger game, focusing on the coverage and
selection of dense sets, contributing to the understanding of real number sets.

In recent years, researchers like Scheepers have continued to extend the princi-
ples of selection and analyze infinite games in topology, applying these concepts to
set theory, function spaces, and topology.

In conclusion, topological games are valuable tools for investigating the struc-
tural properties of topological spaces.

All uncited results in this chapter are either trivial remarks or can be found in [5].

3.1 Introduction to topological games related to selection prin-
ciples

Scheepers [61, 62] introduced a systematical study on Topological Games associated
to Selection Principles. Topological games are infinite games played by two differ-
ent players, ALICE and BOB, on a topological space X. We assume that the length
(number of innings) of the games is ω, if it is not differently specified, and the two
players pick in each inning some topological objects of a fixed space. The strategies
of the two players are a priori defined, they are some functions that take care of the
game history. At the end there is only one winner, so a draw is not allowed. This
construction give rise to two properties on a topological space X, fixed a particular
game G: “ALICE has a winning strategy in the game G on X”; “BOB has a winning
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strategy in the game G on X”. Of course, since there is not draw, it is impossible for
a space to have both these properties, but it can be that the negation of both of them
holds. In this case we say that the game G is indeterminate on the space X. Given
two families of topological objects A and B, the followings are two games associated
to selection principles.

G1(A,B) : is played according to the following rules.

– for every n ∈ ω ALICE chooses An ∈ A;

– BOB answers picking bn ∈ An for each n ∈ ω;

– the winner is BOB if {bn : n ∈ ω} ∈ B, otherwise ALICE wins.

G f in(A,B) : is played according to the following rules.

– for every n ∈ ω ALICE chooses An ∈ A;

– BOB answers picking a finite subset Bn ⊆ An for each n ∈ ω;

– the winner is BOB if
⋃{Bn : n ∈ ω} ∈ B, otherwise ALICE wins.

The game G1(O,O) is strictly related to the property S1(O,O) (the Rothberger
property), in fact it is called Rothberger game. Similarly, the game G f in(O,O) is
strictly related to the property S f in(O,O) (the Menger property), in fact it is called
Menger game.

This two games were largely studied and some important characterizations of
“ALICE does not have a winning strategy”and “BOB has a winning strategy”have
been given. Despite this some questions are still open.
We denote by Bob ↑ G on X, the fact that “BOB has a winning strategy in the game G
on X”and by Alice ̸↑ G on X, the fact that “ALICE does not have a winning strategy
in the game G on X”.

Remark 3.1.1. In general the following implications hold.

1. Bob ↑ G1(A,B) =⇒ Bob ↑ G f in(A,B);

2. Alice ̸↑ G1(A,B) =⇒ Alice ̸↑ G f in(A,B);

3. Bob ↑ G1(A,B) =⇒ Alice ̸↑ G1(A,B) =⇒ S1(A,B);

4. Bob ↑ G f in(A,B) =⇒ Alice ̸↑ G f in(A,B) =⇒ S f in(A,B).

For some properties the last two implication of points 3 and 4 are, in fact, character-
izations, that is, Alice ̸↑ G(A,B) ⇐⇒ S(A,B).

The following impications hold:

X is a countable space =⇒ Bob ↑ Rothberger(X) =⇒
=⇒ Alice ̸↑ Rothberger(X) =⇒ X is Rothberger.

As we say in Remark 3.1.1, the viceversa of the third implication of this chain holds.

Theorem 3.1.2. [54] A space X is Rothberger if, and only if, Alice ̸↑ Rothberger(X).

The reader can find the proof of this previous theorem in [68].
Actually, even the first implication of the chain can be reverse in some class of spaces.

Theorem 3.1.3. [70][36] Let X be a space in which each point is a Gδ (equivalently,
ψ(X) ≤ ω). Then Bob ↑ Rothberger(X) if, and only if, X is countable.
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A similar argument is valid for the Menger case. Indeed,

X is a σ-compact space =⇒ Bob ↑ Menger(X) =⇒
=⇒ Alice ̸↑ Menger(X) =⇒ X is Menger.

Theorem 3.1.4. [61][67] A space X is Menger if, and only if, Alice ̸↑ Menger(X).

Theorem 3.1.5. [69] Let X be a metrizable space. Then Bob ↑ Menger(X) if, and only
if, X is σ-compact.

Two topological games G and H are called dual if both

“Alice ↑ G ⇐⇒ Bob ↑ H”and

“Alice ↑ H ⇐⇒ Bob ↑ G”

hold. Sometimes this dual vision could be useful to apply different techniques in
demonstrations. It is known that the following game is the dual of the Rothberger
game for every space. We will see that in some cases it is useful to consider this game
rather than the Rothberger one.

Definition 3.1.6. The point-open game on X (point-open(X)) is played according to
the following rules.

• for every n ∈ ω ALICE chooses xn ∈ X;

• BOB answers picking an open subset Un such that xn ∈ Un for each n ∈ ω;

• the winner is ALICE if {Un : n ∈ ω} is a cover of the space, otherwise BOB

wins.

Replacing “point”with “compact”one obtains the compact-open game.

Theorem 3.1.7. [36] The point-open game and the Rothberger game are dual on
every space.

Remark 3.1.8. By using Theorem 3.1.7, it is straightforward to see that the unit inter-
val of the real line I = [0, 1] is a Menger not Rothberger space. Since I is compact, it
is Menger and it is not Rothberger. Indeed, it is easy to see that Bob ↑ point-open(I)
(BOB just need to pick open subsets whose sum of the measures of them is strictly
less than 1), hence Alice ↑ Rothberger(I). Therefore, by Theorem 3.1.2, I is not Roth-
berger.

The natural observations that one can make is to consider, as dual of the Menger
game, a game in which a finite subset of the space replace the single point in the
point-open game. It is proved that such game (finite-open game) is equivalent to the
point-open then it cannot be the dual of the Menger game. However, the following
theorem shows that the compact-open game could be a good candidate for this goal.

Theorem 3.1.9. [69] The following implications hold on every space X.

1. Alice ↑ compact-open(X) =⇒ Bob ↑ Menger(X);

2. Alice ↑ Menger(X) =⇒ Bob ↑ compact-open(X);

3. if X is regular, then Bob ↑ Menger(X) =⇒ Alice ↑ compact-open(X).

Theorem 3.1.9 allows to prove the following result.
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Theorem 3.1.10. [70] Let X be a regular space in which each point is Gδ (or equiva-
lently, ψ(X) ≤ ω). If Bob ↑ G f in(O,O) on X, then X is σ-compact.

This theorem is a generalization of Theorem 3.1.5, since every metrizable space
is perfectly normal (hence a regular space in which each compact subset is Gδ).

Question 3.1.11. Are the Menger game and the compact-open game dual on every
regular space?

In [6] the authors provided, under CH, a regular example (the Sierpiński set, i.e.,
an uncountable subset of the real line such that every intersection with a zero-set
is countable) in which the compact-open game and the Menger game are not dual,
since Bob ↑ compact-open(X), but Alice ̸↑ Menger(X).
Then the following question is still open.

Question 3.1.12. Is there a ZFC-consistent model in which the compact-open game
and the Menger game are dual on every regular space?

Another important aim in the topological games theory is to study the determi-
nancy of games.
Firstly we ask if the Rothberger game is undeterminate for some subset of the real
line R. By Theorems 3.1.2 and 3.1.3, it is clear that one has to find an uncountable
Rothberger space.

Theorem 3.1.13. [50][49] (CH) There exists a Luzin set, i.e., an uncountable subset
X ⊆ R that has countable intersection with every nowhere dense subset of R.

Proof. R is second countable. Therefore, the cardinality of the topology τ is precisely
the cardinality of the power set of the basis, i.e., 2ω. Assuming CH, we can index
the set of all the nowhere dense closed subsets of R in ω1. Let {Fα : α ∈ ω1} be
this set. Now, for each α ∈ ω1, we choose a point in a set defined recursively as
xα ∈ R \ ({xβ : β < α} ∪ ⋃

β<α Fβ), such a choice is possible because R is a Baire
space (i.e., the union of countably many nowhere dense subsets is co-dense). Thus,
{xα : α ∈ ω1} is the desired Luzin set. Indeed, fix a nowhere dense G, then G = Fα

for some α.

Theorem 3.1.14. [56] Every Luzin set is Rothberger.

Proof. Let X ⊆ R be a Luzin set, and let D = {dn : n ∈ ω} be a countable dense
subset of X. It is always possible to choose a countable dense subset of X since
R is second countable, and this property is hereditary. Therefore, X is also second
countable, hence separable. Fix any sequence {Un : n ∈ ω} of covers of X made by
open sets of R. For each n ∈ ω, choose U2n ∈ U2n such that dn ∈ U2n. Consider
the set A = X \ ⋃

n∈ω U2n. We will show that A is nowhere dense in R. Fix an
open subset U of R such that U ∩ X ̸= ∅ then U ∩ X is open in X and then some
dn ∈ U ∩ X, then ∅ ̸= U ∩ U2n ⊆ U ∩ (R \ A). Therefore R \ A is co-dense in R.
Since X is Luzin, it follows that the set X ∩ A is countable, then it can be trivially
covered by certain Un+1 ∈ Un+1. Thus, we have established that X ⊆ ⋃

n∈ω Un,
therefore X is Rothberger.

Corollary 3.1.15. [6] (CH) There exists a subset X ⊆ R such that the Rothberger
game on X is undetermined.
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Another study on the determinacy of the Rothberger game can be carried out
under the Borel Conjecture, whose definition follows.
Reacall that a subset X ⊆ R is said to have strong measure zero if, for every sequence
{εn}n∈ω of positive real numbers, there exists a sequence {In}n∈ω of intervals in R

such that X ⊆ ⋃
n∈ω In, and for every n ∈ ω, the measure of In is precisely εn.

Definition 3.1.16. [28] The Borel Conjecture states:
“every subset of R with strong measure zero is countable”.

Laver proved the following Theorem.

Theorem 3.1.17. [48] The Borel Conjecture is consistent with ZFC.

Theorem 3.1.18. [57] The following statements are equivalent.

1. Every Rothberger subset of R is countable.

2. The Borel Conjecture holds.

Corollary 3.1.19. [6] The following statements are equivalent.

1. The Rothberger game on X is determined for every X ⊆ R.

2. The Borel Conjecture holds.

Remark 3.1.20. From the results seen in this paragraph, we deduce a significant fact
in Set Theory: in ZFC, we cannot assume the coexistence of the Continuum Hypoth-
esis and the Borel Conjecture. In fact, if we assume both to be true, we would have
that “all Rothberger spaces would be countable" (by the Borel Conjecture), while
we know that the Continuum Hypothesis implies the existence of the Luzin set (a
Rothberger set more than countable).

About the study of the determinacy of the Menger game Fremlin and Miller con-
struct a subset of the real line which is Menger not σ-compact.

Given a space X is possible to introduce the games G1(D,D), that we call R-
separable game on X (denoted by R-separable(X)) and G f in(D,D) that we call M-
separable game on X (denoted by M-separable(X)). Clearly, they are related to the
R-separability (S1(D,D)) and to the M-separability (S f in(D,D)) in the sense of Re-
mark 3.1.1.

The following facts are easy to see.

πw(X) ≤ ω =⇒ Bob ↑ R-separable(X) =⇒
=⇒ Alice ̸↑ R-separable(X) =⇒ X is R-separable.

Berner and Juhász [18] introduced the Point-picking game.

Definition 3.1.21. Let α be an ordinal and P be a class of spaces satisfying a certain
property. The Point-picking game on X (denoted by GP

α (X)) is played according to
the following rules.

• for every β < α ALICE chooses an open set Uβ in X;

• BOB answers picking a point xβ ∈ Uβ for each β < α;
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• the winner is ALICE if the collection of points {xβ : β < α} belongs to P ,
otherwise BOB wins.

In the same paper [18], the authors prove some connection between the fact that
the space has a certain π-weight and some point-picking game.
In what follows we consider only this game in the case α = ω, the class P is always
the collection D of all dense subsets of a given space X and we continue call it point-
picking game on X (denoted by GD(X)).

In [62] the author considered the point-picking game and proved the following
result.

Theorem 3.1.22. [62, Theorems 7 and 8] The R-separable game and the point-picking
game are dual on every topological space.

Moreover the author showed the following result.

Theorem 3.1.23. [62, Theorem 3] The following are equivalent for every space X.

1. BOB ↑ R-separable(X);

2. πw(X) ≤ ω.

In Chapter 2, we have seen that the M-and R-nw-selective properties are strictly
stronger than M- and R-separability, respectively. The following example shows that
not even the stronger condition “BOB ↑ R-separable game”implies that the space is
R- or M-nw-selective.

Example 3.1.24. A countable space X such that BOB ↑ R-separable(X) (hence BOB ↑
M-separable(X)), which is not M-nw-selective space (hence not R-nw-selective).

The Fréchet-Urysohn fan space Sω is a typical example of a countable space with
only one non-isolated point the fan-tightness of which is not countable. Then, by
Proposition 2.1.10, Sω is not M-nw-selective. Since, obviously, Sω has countable π-
weight, then BOB ↑ R-separable(X). △

3.2 On some topological games involving networks

In this section we introduce some games related to the selection principles R-nw-
selective and M-nw-selective and we study the behaviour of them. In particular, we
investigate characterizations of the facts that the players have a winning strategy, we
compare the games to each other, and we try to construct a possible dual game for
the “R-”case.

3.2.1 The R-nw-selective game

Definition 3.2.1. Let X be a space with nw(X) = ω. The R-nw-selective game,
denoted by R-nw-selective(X), is played according to the following rules. ALICE

chooses a countable network N0 and BOB answers picking an element N0 ∈ N0.
Then ALICE chooses another countable network N1 and BOB answers in the same
way and so on for countably many innings. At the end BOB wins if the set {Nn : n ∈
ω} of his selections is a network.

Simultaneously we consider the possible dual version of the R-nw-selective game.
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Definition 3.2.2. The (Point, Open)-Set game on a space X, denoted by PO-set(X),
is played according to the following rules. ALICE chooses a point x0 and an open
set U0 containing x0. Then BOB picks N0 a subset of X such that x0 ∈ N0 ⊆ U0. The
game goes ahead in this way for every n ∈ ω and ALICE wins if the set {Nn : n ∈ ω}
of BOB’s choices is a network.

Theorem 3.2.3. Let X be a space. BOB ↑ R-nw-selective(X) if, and only if, the space
X is countable and second countable.

Proof. Clearly, if X is a countable second contable space then it is easy to construct a
winning strategy for BOB in the R-nw-selective game on X.
Let M be the collection of all countable networks of X. Let σ be a winning strategy
for Bob.
First we prove that the space is countable.
Claim 1. |⋂N∈M σ(N )| ≤ 1.
Indeed, suppose that two distinct points points, say x and y, belong to all the clousure
of the possible answers to N , for any N ∈ M. Fix any countable network N and
observe that N ′ = {N ∈ N : {x, y} ∩ N = ∅} ∪ {{x}, {y}} is also a network in X
such that no element of N ′ contains the set {x, y} in its closure. This gives a contra-
diction.
Claim 2. There exists a countable M′ ⊂ M such that

⋂
N∈M′ σ(N ) =

⋂
N∈M σ(N ).

Indeed, if
⋂

N∈M σ(N ) = {x} (it is the same if
⋂

N∈M σ(N ) = ∅), the complements
of all the closures form an open cover of X \ {x} (or X) and then, since having count-
able network implies hereditary Lindelöfness, we can obtain a countable subcover
of X \ {x} (or of the all space X).
Claim 1. and Claim 2. hold for any inning n ∈ ω, that is
Claim 1(n). |⋂N∈M σ(N0, ...,Nn−2,N )| ≤ 1.
Claim 2(n). There exists a countable M′ ⊂ M such that

⋂
N∈M′ σ(N0, ...,Nn−2,N ) =⋂

N∈M σ(N0, ...,Nn−2,N ).
The proof of Claim 1(n). and Claim 2(n). is analogous to the one of Claim 1. and
Claim 2., respectively.
Consider the following tree of possible evolution of the R-nw-selective game on X.
By claim 2. there exists (N n

∅)n∈ω, that is countably many possible choices of ALICE

in the first inning N 0
∅,N 1

∅,N 2
∅, ..., such that

⋂
N∈M σ(N ) =

⋂
n∈ω σ(N n

∅).
Fix, for example, the branch with N 0

∅ then there exists a sequence (N n
<0>)n∈ω such

that
⋂

N∈M σ(N 0
∅,N ) =

⋂
n∈ω σ(N 0

∅,N n
<0>).

Again consider, for example, N 1
<0>, then there exists a sequence (N n

<0,1>)n∈ω such

that
⋂

n∈ω σ(N 0
∅,N 1

<0>,N n
<0,1>) =

⋂
N∈M σ(N 0

∅,N 1
<0>,N ). By Claim 1, each inter-

section is empty or contains only one element. If the intersection
⋂

n∈ω σ(N n
∅) is

non-empty we call this element x∅, otherwise we go on; if
⋂

n∈ω σ(N 0
∅,N n

<0>) is
not empty we call this element x<0>; if the intersection

⋂
n∈ω σ(N 0

∅,N 1
<0>,N n

<0,1>)

is not empty we call this element x<0,1>, and so on. We obtain a subset X0 =
{xs : s ∈ ω<ω} and now we want to prove that X0 = X. By contradiction, as-
sume there exists y ∈ X \ X0. Then y /∈ ⋂

n∈ω σ(N n
∅); hence there exists an el-

ement of the sequence {σ(N n
∅) : n ∈ ω}, say σ(N k0

∅ ), such that y does not be-

long to it. By hypotesis, y /∈ ⋂
n∈ω σ(N k0

∅ ,N n
<k0>

); hence there exists an element

of {σ(N n
<k0>

) : n ∈ ω}, say σ(N k1
<k0>

), such that y does not belong to it. Again,

y ̸∈ ⋂
n∈ω σ(N k0

∅ ,N k1
<k0>

,N n
<k0,k1>

), there exists an element of {σ(N n
<k0,k1>

) : n ∈ ω},

say σ(N k2
<k0,k1>

), such that y does not belong to it. Proceeding in this way we obtain
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a branch consisting of elements that do not contain y; a contradiction, because such
a branch is a network due to the fact that σ is a winning strategy for BOB. Then X is
countable.
Now we prove that X is second countable.
Claim 3. If

⋂
N∈M σ(N ) = {x}, there exists an open set V such that x ∈ V ⊂⋃

N∈M σ(N ).
Indeed, assume by contradiction that for every open set V such that x ∈ V there
exists yV ∈ V \ σ(N ), for every N ∈ M. Let N be a countable network and consider
the family N ′ = (N \ Nx) ∪ {{x, yV} : V ∈ τx}, where τx denotes the family of all
open sets containing x and Nx = {N ∈ N : x ∈ N}. Since X is countable, N ′ is
countable. Now we prove that N ′ is a network. Clearly, for construction N ′ is a
network at x. Let y ∈ X, y ̸= x, and let A be an open set such that y ∈ A. Since X is
T2, there exists an open set B such that y ∈ B and x /∈ B. Then there exists N ∈ N
such that y ∈ N ⊂ A ∩ B. Therefore N ∈ N \Nx.
Claim 4. If

⋂
N∈M σ(N ) = {x}, there exists a countable M′ ⊂ M such that

⋂
N∈M′ σ(N ) =

{x} and also such that
⋃

N∈M′ σ(N ) =
⋃

N∈M σ(N ).
Recall that, by Claim 2 there exists a countable subset M∗ ⊂ M such that

⋂
N∈M σ(N ) =⋂

N∈M∗ σ(N ); further, since X is countable,
⋃

N∈M σ(N ) is countable and then there
exists a countable subset M∗∗ ⊂ M such that

⋃
N∈M∗∗ σ(N ) =

⋃
N∈M σ(N ). Then

M′ = M∗ ∪ M∗∗.
Even Claim 3. and Claim 4. can be given for any inning n ∈ ω, that is
Claim 3(n). If

⋂
N∈M σ(N0, ...,Nn−2,N )) = {x}, there exists an open set V such that

x ∈ V ⊂ ⋃
N∈M σ(N0, ...,Nn−2,N )).

Claim 4(n). If
⋂

N∈M σ(N0, ...,Nn−2,N )) = {x}, there exists a countable M′ ⊂ M

such that
⋂

N∈M′ σ(N0, ...,Nn−2,N )) = {x} and also such that
⋃

N∈M′ σ(N0, ...,Nn−2,N )) =⋃
N∈M σ(N0, ...,Nn−2,N )).

The proof of Claim 3(n). and Claim 4(n). is analogous to the one of Claim 3. and
Claim 4., respectively.
Consider the construction of the tree in the previous part of the proof. We know that
|⋂n∈ω σ(N n

∅)| ≤ 1. If
⋂

n∈ω σ(N n
∅) ̸= ∅, fix V∅ as in Claim 3. If

⋂
k∈ω σ(N n

∅,N k
<n>) ̸=

∅, fix V<n> as in Claim 3 and so on. Now we prove that {Vs : s ∈ ω<ω} is a base.
If it is not true, then there exist x ∈ X and an open set A with x ∈ A such that for
every s ∈ ω<ω such that x ∈ Vs, Vs is not contained in A. In the first inning, we
have a family M′ of countably many networks obtained as in Claim 4. Consider
the intersection

⋂
N∈M′ σ(N ). If

⋂
N∈M′ σ(N ) = ∅, we can pick an N ∈ M′, such

that x /∈ σ(N ). If
⋂

N∈M′ σ(N ) = {y} we have two cases: if y ̸= x, we can pick an
N ∈ M′, such that x /∈ σ(N ); if y = x, then we can pick, if there exists an N ∈ M′,
such that x ̸∈ σ(N ), otherwise by hypothesis and Claim 3 we can pick an N ∈ M′,
such that σ(N ) is not contained in A. Then, proceeding in this way for each inning,
we find a branch of the tree, i.e., our construction provides a winning strategy for
ALICE in the R-nw-selective game on X which is a contradiction.

The following proposition shows that the (Point, Open)-set game is a good can-
didate to be the dual of the R-nw-selective game.

Proposition 3.2.4. Let X be a space. The following implications hold.

1. ALICE ↑ PO-set(X) =⇒ BOB ↑ R-nw-selective(X).

2. ALICE ↑ R-nw-selective(X) =⇒ BOB ↑ PO-set(X).

3. BOB ↑ R-nw-selective(X) =⇒ ALICE ↑ PO-set(X).
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Proof. The proof of Items 1. and 2. is trivial and Item 3. is an easy consequence of
Theorem 3.2.3.

The following question is still open.

Question 3.2.5. Does BOB ↑ PO-set(X) imply ALICE ↑ R-nw-selective(X)?

Now we study the determinacy of the R-nw-selective game.

Proposition 3.2.6. Let X be a space with nw(X) = ω. If |X| < cov(M) and w(X) <
cov(M), then ALICE ̸↑ R-nw-selective(X).

Proof. Suppose, by contradiction, that σ is a winning strategy for ALICE in the R-
nw-selective(X) and fix a base B of cardinality w(X). Construct a countable tree
using the strategy σ in such a way that σ(⟨⟩) = N0; for each N0 ∈ N0 apply the
strategy and so on. Look at this tree as the poset of all finite branches ordered with
the inverse natural extension. The nodes in this tree are the countable networks that
are images under the function σ. Fix x ∈ X and B ∈ B containing x. The set D(x,B) of
all the finite sequences of the tree such that there exists an element of the sequence
that is a σ(⟨..., N⟩) with x ∈ N ⊂ B, is dense in the poset. Since the cardinality of the
family {D(x,B) : x ∈ X and B ∈ B} is less than cov(M) there exists a generic filter
whose union is a branch of the tree that intersects all the dense sets of the family.
This gives us a contradiction because this branch witnesses that there is a play in the
R-nw-selective game on X in which ALICE applies her strategy but BOB wins.

Example 3.2.7. (ω1 < cov(M)) Consider a subspace X ⊂ R of cardinality ω1. By
Theorem 3.2.3 and Proposition 3.2.6 the R-nw-selective game on X is indeterminate.

Question 3.2.8. Is there any ZFC example of a space in which the R-nw-selective
game turns out to be indeterminate?

The following diagram shows all the relations found above.

ALICE ̸↑ R-nw-selective(X)

X is countable + second countable

?

6

BOB ↑ R-nw-selective(X) - -

nw(X) ≤ ω + |X| < cov(M) +
w(X) < cov(M)

R-nw-selective

6

@
@

@
@

@
@I

Question 3.2.9. Does R-nw-selectivity of a space X imply ALICE ̸↑ R-nw-selective(X)?

Using Corollary 2.2.11 it is possible to give a partial answer to Question 3.2.9.

Proposition 3.2.10. Let X be a space with nw(X) = ω and w(X) < cov(M). Then
the following are equivalent.

1. |X| < cov(M);

2. ALICE ̸↑ R-nw-selective(X);

3. X is R-nw-selective.
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Now we will show that if BOB is forced to select a fixed number of elements from
each network, then the respective game is equivalent to the R-nw-selective game for
BOB. Let Nw denote the class of all countable networks of a fixed space X. Let
k ∈ ω and Gk(Nw, Nw) on X be the game played in the following way: ALICE

chooses a countable network N0 and BOB answers picking a subset F0 ⊂ N0 such
that |F0| = k. Then ALICE chooses another countable network N1 and BOB answers
picking a subset F1 ⊂ N1 such that |F1| = k and so on for countably many innings.
At the end BOB wins if the set

⋃{Fn : n ∈ ω} of his selections is a network.

Proposition 3.2.11. BOB ↑ R-nw-selective(X) if, and only if, BOB ↑ Gk(Nw, Nw) on
X.

Proof. It suffices to prove that BOB ↑ Gk(Nw, Nw) on X implies that the space X is
countable and second countable. In fact the proof is similar to the one of Theorem
3.2.3. Let σ be a winning strategy for BOB in the Gk(Nw, Nw) on X and let M be
the collection of all countable networks of the space X. We just need to prove the
following claims.
Claim 1. |⋂N∈M

⋃
σ(N )| ≤ k.

Assume that x0, ..., xk are k + 1 distinct points of X. Take any countable network N
in the space X and observe that the family N ′ = {N ∈ N : xi ̸∈ Nfor everyi =
0, ..., k} ∪ {{x0}, ..., {xk}} is still a network in X and no element of N ′ contains more
than one point of the set {x1, ..., xk} in its closure. Now our claim easily follows.
Claim 2. There exists M′ ⊂ M countable such that

⋂
N∈M′

⋃
σ(N ) =

⋂
N∈M

⋃
σ(N ).

Claim 3. If
⋂

N∈M

⋃
σ(N ) = {x}, there exists an open set V such that x ∈ V ⊂⋃

N∈M

⋃
σ(N ).

Claim 4. If
⋂

N∈M

⋃
σ(N ) = {x}, there exists M′ ⊂ M countable such that

⋂
N∈M′

⋃
σ(N ) =

{x} and also such that
⋃

N∈M′
⋃

σ(N ) =
⋃

N∈M

⋃
σ(N ).

The proof of Claims 2., 3. and 4. are similar to the ones in Theorem 3.2.3.

Also, it is straightfoward to prove the following result.

Proposition 3.2.12. ALICE ↑ Gk(Nw, Nw) on X implies that ALICE ↑ R-nw-selective(X).

Question 3.2.13. Is it true that if ALICE ↑ R-nw-selective(X) then ALICE ↑ Gk(Nw, Nw)
on X?

3.2.2 The M-nw-selective game

Definition 3.2.14. Let X be a space with nw(X) = ω. The M-nw-selective game,
denoted by M-nw-selective(X), is played according to then following rules. ALICE

chooses a countable network N0 and BOB answers picking a finite subset F0 ⊂ N0.
Then ALICE chooses another countable network N1 and BOB answers in the same
way and so on for countably many innings. At the end BOB wins if the set

⋃{Fn :
n ∈ ω} of his selections is a network.

Proposition 3.2.15. (MA[d]) Let X be a space with nw(X) = ω. If |X| < d and
w(X) < d, then ALICE ̸↑ M-nw-selective(X).

Proof. Similar to the proof of Proposition 3.2.6.

Using Corollary 2.2.8 it is possible to give the following equivalences.
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Proposition 3.2.16. (MA[d]) Let X be a space with nw(X) = ω and w(X) < d. The
following are equivalent:

1. |X| < d;

2. ALICE ̸↑ M-nw-selective(X);

3. X is M-nw-selective.

However, it is worthwhile to pose the following question.

Question 3.2.17. Does the M-nw-selectivity of a space X imply that ALICE ̸↑ M-nw-
selective(X)?

Theorem 3.2.18. Let X be a regular space such that BOB ↑ M-nw-selective(X). Then
X is σ-compact.

Proof. Let M be the collection of all countable networks of X and σ a winning strat-
egy for BOB in M-nw-selective(X).
Claim 1:

⋂
N∈M

⋃
σ(N ) is compact.

Indeed, put K =
⋂

N∈M

⋃
σ(N ), let U be a cover made by open sets of X and N ∈ M.

Consider the network N ′ = {N ∈ N : N ⊂ U for some U ∈ U} ∪ {N ∈ N :
N ∩ K = ∅}. Then K ⊂ σ(⟨N ′⟩) and considering the corresponding open sets we
extract from U a finite subcover of K.
Claim 2: There exists a countable subset M′ ⊂ M such that

⋂
N∈M′

⋃
σ(N ) =⋂

N∈M

⋃
σ(N ).

The proof is similar to the one of Claim 2. in Theorem 3.2.3 and, as in there, these
claims are true also for all the other innings.
There exists (N n

∅)n∈ω, that is countably many possible first innings N 0
∅,N 1

∅,N 2
∅, ...,

such that
⋂

N∈M

⋃
σ(N ) =

⋂
n∈ω

⋃
σ(N n

∅).
If Alice chooses N 0

∅, we can find (N n
<0>)n∈ω such that

⋂
N∈M

⋃
σ(N 0

∅,N ) =
⋂

n∈ω

⋃
σ(N 0

∅,N n
<0>).

If then Alice chooses N 1
<0>, we can find (N n

<0,1>)n∈ω such that
⋂

n∈ω

⋃
σ(N 0

∅,N 1
<0>,N n

<0,1>) =⋂
N∈M

⋃
σ(N 0

∅,N 1
<0>,N ). By Claims 1 and 2, each intersection, if it is not empty,

is a compact subset. If the intersection is empty, we do not do anything and if⋂
n∈ω

⋃
σ(N n

∅) is a compact, we call this subset K∅. If
⋂

n∈ω

⋃
σ(N 0

∅,N n
<0>) is a com-

pact subset, we call it K<0>. If
⋂

n∈ω

⋃
σ(N 0

∅,N 1
<0>,N n

<0,1>) is a compact subset, we
call this element K<0,1>, and so on. Consider the set X0 =

⋃{Ks : s ∈ ω<ω}. Now
we prove that X0 = X. By contradiction, assume there exists y ∈ X \ X0. Then
y /∈ ⋂

n∈ω

⋃
σ(N n

∅); hence there exists n0 ∈ ω such that y ̸∈ ⋃
σ(N n0

∅ ). Again, y /∈⋂
n∈ω

⋃
σ(N n0

∅ ,N n
⟨n0⟩); hence there exists n1 ∈ ω such that y ̸∈ ⋃

σ(N n0
∅ ,N n1

⟨n0⟩). Pro-
ceeding in this way we obtain a branch (or an evolution of the M-nw-selective(X))
in which BOB does not win, a contradiction, because σ is a winning strategy. Then X
is σ-compact.

Recall that a space is called σ-(metrizable compact) if it is union of countably
many metrizable compact spaces. Then it is possible to obtain the following corol-
lary.

Corollary 3.2.19. Let X be a regular space in which BOB ↑ M-nw-selective(X). Then
X is σ-(metrizable compact).



50 Chapter 3. Recent studies on Topological Games

Proof. By the previous theorem, X is σ-compact. Put X =
⋃

n∈ω Xn, where each Xn
is compact. Since the space X has countable netweight, then each nw(Xn) = ω for
every n ∈ ω. By compactness of every Xn, each Xn is second countable. Therefore
each Xn is metrizable.

The following is a consistent example showing that the M-nw-selective game can
be indeterminate.

Example 3.2.20. (MA[d] + ω1 < d) Consider a subset X of the irrational numbers
having cardinality ω1. By Proposition 3.2.15, ALICE ̸↑ M-nw-selective(X). Since X
is not σ-compact, by Theorem 3.2.18 we have that BOB ̸↑ M-nw-selective(X).

We prove the following result.

Proposition 3.2.21. If X is a countable space in which BOB ↑ M-nw-selective(X).
Then X is second countable.

Proof. Similar to the the proof of Theorem 3.2.3 replacing Claims 3. and 4. with the
following.
Claim 3′. If

⋂
N∈M

⋃
σ(N ) = {x}, there exists an open set V such that x ∈ V ⊂⋃

N∈M

⋃
σ(N ).

Claim 4′. If
⋂

N∈M

⋃
σ(N ) = {x}, there exists M′ ⊂ M countable such that

⋂
N∈M′

⋃
σ(N ) =

{x} and also such that
⋃

N∈M′
⋃

σ(N ) =
⋃

N∈M

⋃
σ(N ).

The next result uses the previous proposition to state that in the class of countable
spaces the M-nw-selective and the R-nw-selective games are equivalent for BOB.

Corollary 3.2.22. Let X be a countable space. The following are equivalent.

1. BOB ↑ R-nw-selective(X);

2. BOB ↑ M-nw-selective(X);

3. X is second countable.
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Appendix A

Introduction to set-theoretic
topology

The modern study of Set Theory started with a single paper in 1874 by Georg Can-
tor: “On a Property of the Collection of All Real Algebraic Numbers”, for this reason
Cantor is commonly considered the founder of this theory.
The non-formalized systems investigated during this early stage go under the name
of “naive set theory”. After the discovery of paradoxes within naive set theory
(such as Russell’s paradox, Cantor’s paradox and the Burali-Forti paradox), vari-
ous axiomatic systems were proposed in the early twentieth century, of which Zer-
melo–Fraenkel set theory (with or without the axiom of choice) is still the best-
known and most studied.

Many mathematicians had struggled with the concept of infinity, for instance
Zeno of Elea in the West and Indian mathematicians in the East. Modern under-
standing of infinity began in 1870–1874, and was motivated by Cantor’s work in
real analysis. In Set Theory two important cardinals associated with ω are ω1 and
c, respectively the successor of ω and the cardinality of P(ω) or, equivalently, of
ωω. Cantor proved that ω1 ≤ c, Cohen and Gödel showed that both ω1 < c and
ω1 = c are consistent in ZFC. One can define other cardinals associated with ω and
each one lies between ω1 and c. Of course the interest of these cardinals is purely
set-theoretical and it is surprising the relations that they have with topological prop-
erties.
Consider the Baire space ωω and introduce the order relations “≤∗" and “≤" defined
as follows. For f , g ∈ ωω, denote with f ≤∗ g the fact that f (n) ≤ g(n) for all but
finitely many n and f ≤ g means f (n) ≤ g(n) for all n ∈ ω.
A subset B ⊆ ωω is called bounded if there is g ∈ ωω such that f ≤∗ g for every
f ∈ B.
A subset D ⊆ ωω is called dominating or cofinal if for each g ∈ ωω there is f ∈ D
such that g ≤∗ f .
Now one can introduce two cardinal numbers: the bounding number b and the dom-
inating number d, based on the previous definitions. b is the minimal cardinality of
an unbounded subset of ωω and d is the minimal cardinality of a dominating subset
of ωω. It is proved that the value of d does not change if one considers the relation
≤ instead of ≤∗ [32, Theorem 3.6].
Let’s denote by M the family of all meager subsets of R. cov(M) is the minimum
of the cardinalities of subfamilies U ⊆ M such that

⋃U = R. However, another
description of the cardinal cov(M) is the following one.

Theorem A.0.1. ([8] and [9, Theorem 2.4.1]) cov(M) is the minimum cardinality of
a subset F ⊂ ωω such that for every g ∈ ωω there is f ∈ F such that f (n) ̸= g(n)
for all but finitely many n ∈ ω.
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Thus if F ⊂ ωω and |F| < cov(M), then there is g ∈ ωω such that for every
f ∈ F, f (n) = g(n) for infinitely many n ∈ ω.
For a topological property K, let’s denote with non(K) the minimum cardinality of
a subspace of R that does not have property K. It is well known that non(Menger)
= d, non(Hurewicz) = b, non(Rothberger) = cov(M) (see [35, 44, 60]).

Proposition A.0.2. If X is a Lindelöf space of cardinality strictly less than d, then X
is Menger.

Proof. Suppose by contradiction that X is not Menger. Let (Un : n ∈ ω) be a sequence
of open covers witnessing the fact that X is not Menger. Since X is Lindelöf one can
suppose that each cover is countable, then Un = {Un

m : m ∈ ω}. For every x ∈ X
and n ∈ ω define fx(n) = min{m ∈ ω : x ∈ Un

m}. Put D = { fx : x ∈ X} and
prove that it is dominating. Fix g ∈ ωω, for each n ∈ ω, g(n) = mn. One have that⋃

n∈ω

⋃mn
i=0 Un

i ⊊ X, then there exists x ∈ X such that x ̸∈ ⋃
n∈ω

⋃mn
i=0 Un

i . Therefore
for every n ∈ ω and i = 0, ..., mn, x ̸∈ Un

i . Hence fx(n) > mn = g(n) for every n ∈ ω.
Since ϕ : X → ωω, defined by ϕ(x) = fx, is a function and the image of ϕ is D, then
|X| ≥ |D| ≥ d, a contradiction.

Proposition A.0.3. If X is a Lindelöf space of cardinality strictly less than b, then X
is Hurewicz.

Proof. Suppose by contradiction that X is not Hurewicz. Let (Un : n ∈ ω) be a se-
quence of open covers witnessing the fact that X is not Hurewicz. Since X is Lindelöf
one can suppose that each cover is countable, then Un = {Un

m : m ∈ ω}. For every
x ∈ X and n ∈ ω define fx(n) = min{m ∈ ω : x ∈ Un

m}. Put B = { fx : x ∈ X} and
prove that it is unbounded. Fix g ∈ ωω, for each n ∈ ω, g(n) = mn. For every n ∈ ω
put Vn = {Un

m : m ≤ mn}, then there exists x ∈ X such that x ∈ ⋃ Vn for finitely
many n ∈ ω. Then fx(n) > g(n) for every but finitely many n ∈ ω. Hence g ≤∗ fx.
Since ϕ : X → ωω, defined by ϕ(x) = fx, is a function and the image of ϕ is B, then
|X| ≥ |B| ≥ b, a contradiction.

Proposition A.0.4. If X is a Lindelöf space of cardinality strictly less than cov(M),
then X is Rothberger.

Proof. Suppose by contradiction that X is not Rothberger. Let (Un : n ∈ ω) be a
sequence of open covers witnessing the fact that X is not Rothberger. Since X is
Lindelöf one can suppose that each cover is countable, then Un = {Un

m : m ∈ ω}.
For every x ∈ X and n ∈ ω define fx(n) = min{m ∈ ω : x ∈ Un

m}. Put F = { fx :
x ∈ X} and prove that |F| ≥ cov(M), by using Theorem A.0.1. Fix g ∈ ωω, for each
n ∈ ω, g(n) = mn. One have that

⋃
n∈ω Un

mn
⊊ X, then there exists x ∈ X such that

x ̸∈ ⋃
n∈ω Un

mn
. Therefore for every n ∈ ω, x ̸∈ Un

mn
. Hence fx(n) ̸= mn = g(n) for

every n ∈ ω. Since ϕ : X → ωω, defined by ϕ(x) = fx, is a function and the image
of ϕ is F, then |X| ≥ |F| ≥ cov(M), a contradiction.
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Variations of compacteness

For a subset A of a topological space X we will denote by [A]<λ ([A]λ) the family of
all subsets of A of cardinality < λ (= λ). A space is called H-closed if it is Hausdorff
and it is closed in every Hausdorff space in which it is embedded. Moreover, a more
operative characterization of H-closedness of a space X is given by the following
statement: “for every open cover U of X there exists a finite subfamily V ∈ [U ]<ω

such that
⋃ V = X”. This defininition makes clear why this property is a generaliza-

tion of compactness.
Two other characterizations of H-closed spaces are that each open filter (open ultra-
filter) on the space has a nonempty adherence (convergers, respectively). Clearly, a
space is H-closed iff wL(X) < ω (consult [55] for more details on H-closed spaces).

Recall that a space is feebly compact if every locally finite family of open sub-
sets is finite. Equivalently, if every countable cover has a finite subfamily whose
union is dense. It is know that in the class of Tychonoff spaces feebly compactness
and pseudo-compactness are equivalent properties. Actually, in [34] the definition
of pseudo-compactness includes the Tychonoffness of the space, so that pseudo-
compactness and feebly compactness are exatly the same properties. However, some
authors simply call pseudo-compact a space whose image through any continuous
real valued function is bounded.

The following diagram sums up the connections between these properties.

Compact

Countable
Compact

H-closed

Feebly
Compact

Pseudo-compact-
�

Normal

-
�

Tychonoff

-
�

Regular

?

6

Lindeöf

?

6

Lindeöf

In general covering properties represent a class widely studied in topology, in
fact they are particularly used to characterize other properties and also there are
amazing connections and relations between them and some well know “small”cardinal
numbers in Set Theory. Popular among such properties are the Menger, Hurewich
and Rothberger ones.
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Definition B.0.1. A space X is Menger if for every sequence (Un : n ∈ ω) of open
covers of X one can select finite Fn ⊂ Un, n ∈ ω, such that

⋃
n∈ω Fn covers X.

Definition B.0.2. A space X is Rothberger if for every sequence (Un : n ∈ ω) of open
covers of X one can select Fn ∈ Un, n ∈ ω, such that {Fn : n ∈ ω} covers X.

Definition B.0.3. A space X is Hurewicz if for every sequence (Un : n ∈ ω) of open
covers of X one can select finite Fn ⊂ Un, n ∈ ω, such that for every x ∈ X, x ∈ ⋃Fn
for all but finitely many n.

It is well known that these properties lie between two famous and basic covering
properties: Compactness and Lindelöfness.

Compact Menger

Rothberger

Hurewicz

Lindelöf
@

@@R

@
@
@R

�
�
��

-
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Appendix C

A gentle introduction to Forcing

Let (P,≤, 1) be a poset, i.e. a partially ordered set. The element 1 is the maximum
with respect to the relation ≤. Sometimes, when there is no reason to specify we
omitt ≤ or 1.

• D ⊆ P is a dense subset (in the sense of posets) if for every p ∈ P there exists
d ∈ D such that d ≤ p.

• p, q ∈ P are called compatible (p ̸⊥ q) if there exists r ∈ P such that r ≤ p and
r ≤ q, otherwise they are called incompatible (p ⊥ q).

• A poset (P,≤, 1) is said to have the countable chain condition (ccc is the sense
of posets) if every antichain (subset of P having pairwise incompatible ele-
ments) is countable.

• A subset G ⊆ P is called a filter if

(a) the maximum 1 belongs to G;

(b) for every p, q ∈ G there exists r ∈ G such that r ≤ p and r ≤ q;

(c) for each p, q ∈ P, if p ∈ G and p ≤ q, then q ∈ G.

• Let ⟨P,≤⟩ be a poset and let D be a family of dense subsets of P. We say that
a filter G in P is D-generic if G ∩ D ̸= ∅ for all D ∈ D.

The partial orders used in the context of D-generic filters will often be called forcings.
Also, if ⟨P,≤⟩ is a forcing then elements of P are called conditions. For conditions
p, q ∈ P we say that p is stronger than q provided p ≤ q.

Theorem C.0.1. (Rasiowa-Sikorski lemma)Let ⟨P,≤⟩ be a poset and p ∈ P. If D is
a countable family of dense subsets of P then there exists a D-generic filter G in P

such that p ∈ G.

Proof. Let D = {Dn : n < ω}. We define a sequence ⟨pn : n < ω⟩ by induction on
n < ω. We start by picking p0 ∈ D0 such that p0 ≤ p. We continue by choosing
pn+1 ∈ Dn+1 such that pn+1 ≤ pn. Now let E = {pn : n < ω} and put G = {p ∈ P :
∃q ∈ E(q ≤ p)}. Then G is a filter in P intersecting every D ∈ D.

The Rasiowa-Sikorski lemma is one of the most fundamental facts in the theory
of forcing. Its importance, however, does not come from its complexity. It rather
gives us the language of forcing.
More precisely, a poset P used to construct an object will usually be built on the
basis of an attempted inductive construction of the object. That is, conditions will
be chosen as a “description of the current stage of induction”. The inductive steps
will be related to the dense subsets of P in the sense that the density of a particular
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set Dx = {p ∈ P : φ(p, x)} will be equivalent to the fact that at an arbitrary stage
q of the inductive construction we can make the next inductive step by extending
the condition q to p having the property φ(p, x). In particular, the family D of dense
subsets of P will always represent the set of all inductive conditions of which we
have to take care, and a D-generic filter in P will be an “oracle”that “takes care of
all our problems”, and from which we will recover the desired object. Evidently, if
the number |D| of conditions we have to take care of is not more than the number
of steps in our induction, then usually the (transfinite) induction will be powerful
enough to construct the object, and the language of forcing will be redundant. Con-
sider a transitive set M. For every formula ψ of the language of set theory we define
a formula ψM, called its relativization to M. It is obtained by replacing in ψ each
unbounded quantifier ∀x or ∃x with its bounded counterpart ∀x ∈ M or ∃x ∈ M.
For example, if ψ0 is a sentence from the axiom of extensionality

∀x∀y[∀z(z ∈ x ↔ z ∈ y) → x = y]

then ψM
0 stands for

∀x ∈ M∀y ∈ M[∀z ∈ M(z ∈ x ↔ z ∈ y) → x = y].

In particular, if ψ (x1, . . . , xn) is a formula with free variables x1, . . . , xn and t1, . . . , tn ∈
M then ψM (t1, . . . , tn) says that ψ (t1, . . . , tn) is true under the interpretation that all
variables under quantifiers are bound to M. In other words, ψM (t1, . . . , tn) repre-
sents the formula ψ (t1, . . . , tn) as seen by a “person living inside M".

For a transitive set M and a formula ψ (with possible parameters from M) we say
that “ψ is true in M" and write M |= ψ if ψM is true.

Forcing consistency proofs will be based on the following fundamental principle.
Forcing principle: In order to prove that the consistency of ZFC implies the con-

sistency of ZFC + “ψ" it is enough to show (in ZFC) that every countable transitive
model M of ZFC can be extended to a countable transitive model N of ZFC + “ψ".

Cohen Reals
A Cohen real is a type of real number added to a model V of set theory through

Cohen forcing. The Cohen forcing is defined on the partial order P of finite subsets of
2<ω, the set of finite functions from ω to 2. Formally, P is the set of partial functions
p : ω → 2 with finite domain, ordered by reverse inclusion:

p ≤ q ⇐⇒ p ⊇ q.

A Cohen generic filter G ⊆ P is a set of conditions such that for every dense set
D ⊆ P in V, G ∩ D ̸= ∅. The addition of a Cohen real corresponds to adding a new
object x : ω → 2 such that x =

⋃
G for G a generic filter. This new real x satisfies

that no function f ∈ V with domain ω is such that f = x, ensuring that the real x
does not belong to the original model V.

Random Reals
A random real is a real number added via random forcing. The random forcing

is constructed using the space B, the Borel algebra of subsets of [0, 1] with positive
Lebesgue measure, along with the inclusion relation:

p ≤ q ⇐⇒ µ(p) ≤ µ(q).
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Here, µ denotes the Lebesgue measure. A generic filter G ⊆ B is such that for
every dense set D ⊆ B, G ∩ D ̸= ∅. The element r generated, r =

⋂
G for a generic

filter G, is a real number such that for every null set in the ground model V, r does
not belong to that set.

Cohen forcing uses the set P of finite functions from ω to 2, while random forcing
uses the Borel algebra B on subsets of [0, 1]. Cohen reals avoid countable dense sets
in the ground model, whereas random reals have statistical properties similar to a
random sequence with respect to the Lebesgue measure. A Cohen real does not
belong to any countable dense subset of the ground model V, while a random real
is constructed to be "random" with respect to any preexisting measure in V.
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Kočinac. Vol. 18. Quaderni di Matematica. 2007, pp. 195–225.

[60] M. Sakai. “The sequence selection properties of Cp(X)”. In: Topology and its
Applications 154 (2007), pp. 552–560.

[61] M. Scheepers. “Combinatorics of open covers (I): Ramsey theory”. In: Topology
and its Applications 69 (1996), pp. 31–62.

[62] M. Scheepers. “Combinatorics of Open Covers (VI): Selectors for sequences of
dense sets”. In: Quaestiones Mathematicae 22 (1999), pp. 109–130.

[63] M. Scheepers. “Remarks on Countable Tightness”. In: Topology and its Applica-
tions 161 (2014), pp. 407–432. DOI: 10.1016/j.topol.2013.11.001.

[64] M. Scheepers. “The length of some diagonalizations games”. In: Archive for
Mathematical Logic 38 (1999), pp. 103–122. DOI: 10.1007/s001530050117. URL:
https://doi.org/10.1007/s001530050117.

[65] M. Scheepers and B. Tsaban. “The combinatorics of Borel covers”. In: Topology
and its Applications 121 (2002), pp. 357–382. DOI: 10.1016/S0166- 8641(01)
00078-5.

[66] D. T. Soukup, L. Soukup, and S. Spadaro. “Comparing weak versions of sepa-
rability”. In: Topology and its Applications 160 (2013), pp. 2538–2566.

[67] P. Szewczak and B. Tsaban. “Conceptual proofs of the Menger and Rothberger
games”. In: Topology and its Applications 273 (2020), pp. 1–14.

[68] P. Szewczak and B. Tsaban. “Preliminary notes on the Menger and Rothberger
games”. In: (). unpublished.

[69] R. Telgársky. “On games of Topsø”. In: Mathematica Scandinavica 54 (1984).

[70] R. Telgársky. “Spaces defined by topological games”. In: Fundamenta Mathe-
maticae 88 (1975).

[71] N. Velichko. “H-closed topological spaces”. In: Matematicheskii Sbornik (N.S.)
70.112 (1996), pp. 98–112.

[72] J.H. Weston and J. Shilleto. “Cardinalities of dense sets”. In: Gen. Top. Appl. 6
(1976), pp. 227–240. URL: https://doi.org/10.1016/0016-660X(76)90035-0.

[73] L. Zdomskyy. “Products of Menger spaces in the Miller model”. In: Advances
in Mathematics 335 (2018), pp. 170–179.

https://doi.org/10.2307/2046816
https://doi.org/10.1016/j.topol.2013.11.001
https://doi.org/10.1007/s001530050117
https://doi.org/10.1007/s001530050117
https://doi.org/10.1016/S0166-8641(01)00078-5
https://doi.org/10.1016/S0166-8641(01)00078-5
https://doi.org/10.1016/0016-660X(76)90035-0


63

Index

Ψ-weight, 3
π- character, 2
π-base, 3
π-weight, 3
θ-closure, 6
θ-density, 6
θ-pseudocharacter, 10
θ-tightness, 10

analytic, 21

Baire spaces, 12
Banach-Mazur game, 12

cellularity, 4
character, 2
Choquet spaces, 12
closed pseudocharacter, 2
countable fan tightness, 19
countable fan tightness with respect

to dence subsets, 19
countable strong fan tightness, 19
countable strong fan tightness with

respect to dence subsets, 19

dense tightness, 18
density, 4

extent, 4

H-closed, 5
H-nw-selective, 17
H-separable, 16
hereditary Lindelöf degree, 3
HFD, 36
Hurewicz, 15

Lindelöf degree, 3

M-nw-selective, 17
M-nw-selective game, 48
M-separable, 16
M-separable game, 43
Martin’s Axiom, 11
Menger, 15
Menger game, 40

nerwork weight, 3

point-picking game, 43
pseudocharacter, 2

quasiregular, 6

R-nw-selective, 17
R-nw-selective game, 44
R-separable, 16
R-separable game, 43
Rothberger, 15
Rothberger game, 40

semiregularization, 9
spread, 4
strong density, 16

tightness, 2

very strong HFD, 37

weak Lindelöf degree, 5
weakly Fréchet in the strict sence, 19
weakly Fréchet in the strict sence with

respect to dense subspaces, 19
weight, 3


	Declaration of Authorship
	Abstract
	Acknowledgements
	Recent studies on the upper bounds of the cardinality of topological spaces
	Introduction to cardinal functions and upper bounds on the cardinality of spaces
	Definitions of cardinal functions and some relations between them
	Cardinal inequalities

	On spaces with a -base whose elements have an H-closed closure
	Martin's Axiom and quasiregular spaces with a -base whose elements have an H-closed closure

	Recent studies on Selection Principles
	Some old and new Selection Principles
	Cardinality and weight of M-nw-, R-nw- and H-nw-selective spaces
	nw-Selectivity of countable subspaces of Cp(X,2): sufficient conditions and consistent non-trivial examples
	Various kinds of nw-selectivity of ``standard''countable dense subspaces of Cp(X,2): necessary conditions
	Non-preservation by products
	HFD's and R-nw-selectivity


	Recent studies on Topological Games
	Introduction to topological games related to selection principles
	On some topological games involving networks
	The R-nw-selective game
	The M-nw-selective game


	Introduction to set-theoretic topology
	Variations of compacteness
	A gentle introduction to Forcing
	Bibliography
	Index



