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Abstract. We consider a inhomogeneous semilinear wave equation on a non-
compact complete Riemannian manifold (M, g) of dimension N ≥ 3, without
boundary. The reaction exhibits the combined effects of a forcing term with
critical exponent, and of a nonnegative perturbation term. Using a rescaled
test function argument together with appropriate estimates, we show that the
problem (i.e., left open by Zhang in his interesting paper [11]) admits no global
solution. Moreover, in the special case when M = R3, our result improves that
of this author. Namely, our main result is valid without assuming that the
initial values are compactly supported.

1. Introduction

In the general field of partial differential equations, considerable efforts have
been taken to understanding the blow-up structural mechanism for solutions of
evolution equations. For applications, we refer to reaction-diffusion processes
of fluid mechanics and turbolence flows, which are often represented by wave
equations. This research topic continues to attract the interest of both pure
mathematicians and scientistists in applied theories. Clearly, pure mathemati-
cians are not motivated by the applications, but their challenge is to depict the
behavior of solutions and to carry out an asymptotic analysis of solutions near
any kinds of singularities. To understand the meaning of these sentences, we re-
call briefly what is referred as blow-up. Indeed, the problem to establish sufficient
conditions for the existence and non-existence of solutions is crucial. Moreover,
in the time analysis of the evolution equations, we speak about global and lo-
cal results, meaning that the study focuses on the positive real axis (0, T ), with
T ∈ R+ ∪ {+∞} or just on a finite interval [a, b] of the same positive real axis
(with a, b > 0). Now, by a blow-up we mean that a solution function is un-
bounded at some point of the spatial domain (that is, a loss of regularity). This
is the key behavior towards deserving the absence of global solutions to a given
problem (namely, global non-existence results). In addition, we speak about finite
blow-up whenever we consider also the case where the loss of regularity is dictated
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by unboundedness of certain derivative of the solution functions (that is, again
a loss of regularity). As we will show later, the nonlinear reaction term of the
particular wave equation plays a crucial role in the blow-up structural mechanism
of solutions. Strictly controlling the growth of any nonlinearities, then we can
give precise informations on the asymptotic behavior of solutions (mainly near
blow-ups). On this basis, the initial prototype over which we construct this paper
is given by the the classical wave equation

(1.1) utt −∆u = |u|p in (0,∞)× RN , p > 1.

The large-time behavior of solutions to (1.1) has been studied extensively since
four decades, focusing on the role of a “number” named critical exponent, and
denoted by pc(·). This number plays the role of a bifurcation parameter in distin-
guishing between existence and non-existence of solutions, but also in determing
their asymptotic behavior. In view of the preamble, we summarize saying that it
is critical with regard to the occurrence of any blow-ups. The critical exponent
may depend on the geometry of the problem and in particular by the boundary
constraints and additional parameters in the leading equation; basically it de-
pends on the dimension of the domain space. Here, we consider the dimension
N of RN as the main argument of pc(·) (that is, we refer to pc(N)). Now, we
give a short survey of the literature closely related to our finding. Inspired by the
seminal work of John [5] in the three dimensional case, Strauss [9] conjectured
that for all N ≥ 2, there exists a critical exponent pc(N) for the global existence
question to (1.1) with compactly supported initial values, and it should be the
positive root of the polynomial

(N − 1)p2 − (N + 1)p− 2 = 0.

After twenty-five years of efforts, this conjecture is finally showed to be true for
every N ≥ 2, see for instance [2–4,6–8,10,12] and the references therein. Namely,
for N ≥ 2, let

pc(N) =
N + 1 +

√
N2 + 10N − 7

2(N − 1)
.

As a typical result, looking at the literature, we can encounter the following
bifurcation statement:

(a) If the exponent p lies in the interval (1, pc(N)], then for any (u, ut)|t=0

compactly supported with positive average, the solution to (1.1) blows up
in a finite time.

(b) If the exponent p is greater than the critical exponent pc(N), we can find
positive compactly supported initial conditions such that the solution to
(1.1) exists globally in time.

Remark 1.1. The range interval of exponents p in the statement (a) leads to the
conclusion that the critical exponent pc(N) belongs to the blow-up situation.
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In [11], Zhang considered for the first time the problem for inhomogeneous
semilinear wave equation of the form{

utt −∆u = |u|p + w(x) in (0,∞)×M,
(u(0, x), ut(0, x)) = (u0(x), u1(x)) in M.

(1.2)

In the equation, by ∆ we denote the Laplace Beltrami operator on M, and by
(M, g) we denote a noncompact complete Riemannian manifold of dimension
N ≥ 3, with Riemannian metric g (also known as metric tensor, which defines
a appropriate inner product; see Section 2). In the right hand side, the positive
forcing term |u|p (p > 1) is perturbed by an additional nonnegative term w with
some regularities (that is, the function w = w(x) ≥ 0 is in L1

loc(M)). Moreover,
the initial values condition is a way to fix the geometry of the problem (recall the
above discussion on the arguments of pc(·)).

Let B(x, ρ) be the geodesic ball centered at x with radius ρ, given by

B(x, ρ) = {y ∈M : dM(x, y) < ρ} ,

where dM is the induced distance metric on M, and |B(x, ρ)| denotes the vol-
ume of B(x, ρ). Thus, problem (1.2) was investigated under the following set of
hypotheses (see [11]):

(A1) ui ∈ C(M), i = 0, 1. The possible solutions to (1.2) are classical in the
sense of belonging to C2((0, T )×M) ∩ C([0, T )×M).

(A2) M has nonnegative Ricci curvature. We can find x0 ∈ M with Cx0 = ∅,
where Cx0 means the cut locus of x0. If r denotes the distance from x0
and
√
A denotes the volume density, we impose the restriction∣∣∣∣∣∣

∂
(

ln
√
A
)

∂r

∣∣∣∣∣∣ ≤ C

r
for some C > 0.

(A3) f is a nonnegative function satisfying:

Cf(ρ) ≥ |B(x, ρ)| ≥ C−1f(ρ), for all x ∈M, all ρ > 0, some C > 0,

f(ρ) ∼ ρα for some α > 2 as ρ→∞,

f(ρ) ∼ ρN as ρ→ 0+.

Referring to the above bifurcation statement (see (a) and (b)), Zhang [11]
established a similar result as follows.

Theorem 1.1. If (A1)–(A3) hold, then we distinguish the following situations:

(i) If the exponent p lies in the interval (1, α
α−2) and w 6≡ 0, then problem

(1.2) admits no global solution for all u0, u1.
(ii) When M = R3 (hence p = N

N−2 = 3) and w 6≡ 0, then problem (1.2) admits
no global solution, provided that u0, u1 ∈ C(M) are compactly supported.
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(iii) If the exponent p is greater than α
α−2 , then problem (1.2) admits global

solutions for some u0, u1 ∈ C(M) and some w ∈ L1
loc(M).

Comparing Theorem 1.1(i)-(ii) with (a), we note that Zhang works with the
critical exponent (that is, the value p = α

α−2) only in the case M := R3. So there
is a lack of precise information on the behavior of solutions to (1.2) as p = α

α−2 in

the case M 6= R3. Moreover, Zhang posed this problem in [11, Remark 4]. The
aim of this paper is to solve this situation. Namely, we are concerned with the
critical wave equation{

utt −∆u = |u|p∗ + w(x) in (0,∞)×M,
(u(0, x), ut(0, x)) = (u0(x), u1(x)) in M,

(1.3)

where p∗ := α
α−2 , again under the set of hypotheses (A1)–(A3). Using a rescaled

test function argument together with appropriate estimates, we show that the
critical exponent belongs to the blow-up case. Our main result is given by the
following theorem.

Theorem 1.2. If (A1)–(A3) hold and w 6≡ 0, then problem (1.3) admits no global
solution.

No additional hypotheses on the initial values ui, i = 0, 1, are assumed in
Theorem 1.2. Consequently, in the case M = R3, Theorem 1.2 improves the
corresponding result in Theorem 1.1(ii).

In Section 2 we prove a technical lemma and hence we give the proof of our
main result.

2. Technical Lemma and Proof of Theorem 1.2

Let M be a N -dimensional smooth manifold (that is, C∞-differentiable mani-
fold), TM be the tangent bundle of M, X, Y : M→ TM be two vector fields, and
Γ(TM) be the vector space of vector fields. According to the classical theory of
Riemannian manifolds, we adopt the following notation

〈X, Y 〉g := g(X, Y ) and |X|g :=
√
〈X,X〉, for all X, Y ∈ Γ(TM),

where g is the involved Riemannian metric on M.
Throughout this section, C will denote a positive constant which may change

from line to line. Also, dV will be the standard Riemmanian volume element (that
is, the volume density), dS being the standard Riemmanian surface element.

The following lemma will be used later in the proof of Theorem 1.2.

Lemma 2.1. If (A3) holds, then the estimate

(2.1)

∫
B(x0,R)\B(x0,

√
R)

dM(x0, x)−α dV ≤ C lnR

is true, for sufficiently large R.
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Proof. Hypothesis (A3) allows us to find ρ0 > 0 satisfying

(2.2) |B(x, ρ)| ≤ Cρα, for all x ∈M, ρ ≥ ρ0.

Now, we can find r0 ∈
[
max

{
1, ρ0

2

}
, ρ0 + 1

]
and consider the set R of real-

numbers R := 2`r0, for some ` ∈ N, satisfying the condition R > (ρ0 + 1)2. Next,
for every R ∈ R we have∫

B(x0,R)\B(x0,
√
R)

dM(x0, x)−α dV ≤
∫
B(x0,R)\B(x0,r0)

dM(x0, x)−α dV

=
∑̀
i=1

∫
B(x0,2ir0)\B(x0,2i−1r0)

dM(x0, x)−α dV

≤
∑̀
i=1

(2i−1r0)
−α
∫
B(x0,2ir0)

dV.

By construction, 2ir0 ≥ ρ0 for all i = 1, 2, · · · , ` and, since (2.2) holds, also we
conclude the estimate (2.1). Indeed, we have∫

B(x0,R)\B(x0,
√
R)

dM(x0, x)−α dV ≤ C
∑̀
i=1

(2i−1r0)
−α(2ir0)

α

≤ C`

=
C

ln 2
(lnR− ln r0)

≤ C lnR (recall that r0 ≥ 1).

�

We now develop the proof of Theorem 1.2, whose statement is given at the end
of Section 1. We recall that we will use a rescaled test function argument, and
hence before proving our result we introduce some auxiliary functions:

• Let η ∈ C∞(R) be such that

η ≥ 0, η 6≡ 0, supp(η) ⊂ (0, 1).

• Let F : R→ [0, 1] be a smooth function satisfying

F (s) =

{
1 if s ≤ 0,
0 if s ≥ 1.

• For sufficiently large R, let

ηR(t) = η

(
t

R2

)
, for all t > 0,
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GR(r) = F

 ln
(

r√
R

)
ln
√
R

 , for all r > 0,

FR(x) = GR(dM(x0, x)), for all x ∈M \ {x0}.
Combining appropriately these functions, for α given in (A3) we define the key

test function

(2.3) ϕR(t, x) = ηαR(t)Fα
R(x), for all (t, x) ∈ (0,∞)×M (R large enough),

and involve it in the following proof.

Proof of Theorem 1.2. Fixed R sufficiently large, we set

QR := (0, R2)×B(x0, R).

Now, we prove by contradiction the non-existence of global solution. So, we start
with an eventually global solution to problem (1.3), which we denote by u. We
multiply both the sides of the inhomogeneous semilinear wave equation in (1.3)
by ϕR (see (2.3)). We integrate over the set QR, thus obtaining∫

QR

(utt −∆u)ϕR dV dt =

∫
QR

|u|p∗ϕR dV dt+

∫
QR

w(x)ϕR dV dt,

Integrating by parts, we get∫
QR

u(ϕR)tt dV dt−
∫
QR

u∆ϕR dV dt+

∫
(0,R2)×∂B(x0,R)

〈ν, gradϕR〉g u dS dt

−
∫
(0,R2)×∂B(x0,R)

〈ν, gradu〉g ϕR dS dt

=

∫
QR

|u|p∗ϕR dV dt+

∫
QR

w(x)ϕR dV dt,

where by ν ∈ Γ(T∂B(x0, R)), we mean the outward-pointing normal unit vector
field on ∂B(x0, R).

Hypothesis (A2), recall that Cx0 = ∅, gives us the smoothness of

r : x 7→ dM(x0, x)

on M \ {x0}, thus obtaining that the test function ϕR is smooth too. On the
other hand, by the definition of the function ϕR (see (2.3)), we deduce that
FR|∂B(x0,R) ≡ 0 implies the following two relations on (0, R2)× ∂B(x0, R):

〈ν, gradϕR〉g = ηαR〈ν, gradFα
R〉g = ηαR〈ν, αFα−1

R gradFR〉g = 0

and

〈ν, gradu〉g ϕR = ηαR 〈ν, gradu〉g F
α
R = 0.
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Taking these relations into account, we obtain the following identity∫
QR

|u|p∗ϕR dV dt+

∫
QR

w(x)ϕR dV dt =

∫
QR

u(ϕR)tt dV dt−
∫
QR

u∆ϕR dV dt,

which yields to the inequality
(2.4)∫
QR

|u|p∗ϕR dV dt+
∫
QR

w(x)ϕR dV dt ≤
∫
QR

|u||(ϕR)tt| dV dt+
∫
QR

|u||∆ϕR| dV dt.

By appealing to the Young inequality, we provide the estimates to the two addends
in the right hand side of (2.4) as follows:
(2.5)∫

QR

|u||(ϕR)tt| dV dt ≤
1

2

∫
QR

|u|p∗ϕR dV dt+ C

∫
QR

ϕ
−1
p∗−1

R |(ϕR)tt|
p∗
p∗−1 dV dt

and

(2.6)

∫
QR

|u||∆ϕR| dV dt ≤
1

2

∫
QR

|u|p∗ϕR dV dt+ C

∫
QR

ϕ
−1
p∗−1

R |∆ϕR|
p∗
p∗−1 dV dt.

We combine (2.4), (2.5) and (2.6), thus obtaining

(2.7)

∫
QR

w(x)ϕR dV dt ≤ C (I1(ϕR) + I2(ϕR)) ,

where we use the notations

(2.8) I1(ϕR) :=

∫
QR

ϕ
−1
p∗−1

R |(ϕR)tt|
p∗
p∗−1 dV dt

and

(2.9) I2(ϕR) :=

∫
QR

ϕ
−1
p∗−1

R |∆ϕR|
p∗
p∗−1 dV dt.

Taking (2.3) into account, we deduce that

ϕ
−1
p∗−1

R |(ϕR)tt|
p∗
p∗−1 = Fα

R(x)η
−α
p∗−1

R (t)
∣∣(ηαR)′′ (t)

∣∣ p∗
p∗−1 , for all (t, x) ∈ QR.

This fact, together with (2.8), leads to the identity

(2.10) I1(ϕR) =

(∫ R2

0

η
−α
p∗−1

R (t)
∣∣(ηαR)′′ (t)

∣∣ p∗
p∗−1 dt

)(∫
B(x0,R)

Fα
R(x) dV

)
.

A simple calculation is carried out which gives us the inequality∣∣(ηαR)′′ (t)
∣∣ ≤ CR−4ηα−2R (t), for all t ∈ (0, R2),
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thus obtaining ∫ R2

0

η
−α
p∗−1

R (t)
∣∣(ηαR)′′ (t)

∣∣ p∗
p∗−1 dt

≤ CR
−4p∗
p∗−1

∫ R2

0

η
α− 2p∗

p∗−1

R (t) dt

= CR2(1−α)
∫ 1

0

ηα−
2p∗
p∗−1 (t) dt (by a change of variables)

= CR2(1−α).(2.11)

Hypothesis (A3), together with the definition of the function FR, implies that∫
B(x0,R)

Fα
R(x) dV ≤

∫
B(x0,R)

dV

= |B(x0, R)|
≤ CRα.(2.12)

Merging (2.10), (2.11), and (2.12), we obtain the estimate

(2.13) I1(ϕR) ≤ CR2−α.

Similarly it is possible to estimate I2(ϕR). Again, the definition of the function
ϕR leads to

ϕ
−1
p∗−1

R |∆ϕR|
p∗
p∗−1 = ηαR(t)F

−α
p∗−1

R (x) |∆(Fα
R)(x)|

p∗
p∗−1 , for all (t, x) ∈ QR.

This time, using (2.9) we deduce that

(2.14) I2(ϕR) =

(∫ R2

0

ηαR(t) dt

)(∫
B(x0,R)

F
−α
p∗−1

R (x) |∆(Fα
R)(x)|

p∗
p∗−1 dV

)
.

To provide more information about the first integral in the right hand side of
(2.14), we get∫ R2

0

ηαR(t) dt =

∫ R2

0

ηα
(
t

R2

)
dt

= R2

∫ 1

0

ηα(s) ds (by a change of variables),

that is,

(2.15)

∫ R2

0

ηαR(t) dt = CR2.

Next, starting from the identity

∆(Fα
R) = αFα−1

R ∆FR + α(α− 1)Fα−2
R |∇FR|2g,
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we deduce that

|∆(Fα
R)|

p∗
p∗−1 = |∆(Fα

R)|
α
2

≤ C

(
F

(α−1)α
2

R |∆FR|
α
2 + F

(α−2)α
2

R |∇FR|αg
)
,

which leads to the inequality

F
−α
p∗−1

R |∆(Fα
R)|

p∗
p∗−1 = F

−α(α−2)
2

R |∆(Fα
R)|

α
2

≤ C
(
F

α
2
R |∆FR|

α
2 + |∇FR|αg

)
≤ C

(
|∆FR|

α
2 + |∇FR|αg

)
.

Taking the definition of the function FR into account, we obtain
(2.16)∫

B(x0,R)

F
−α
p∗−1

R |∆(Fα
R)|

p∗
p∗−1 dV ≤ C

∫
B(x0,R)\B(x0,

√
R)

(
|∆FR|

α
2 + |∇FR|αg

)
dV.

Recalling that FR is radial, we deduce that

∆FR(x) = G′′R(r) +
N − 1

r
G′R(r) +G′R(r)

∂
(

ln
√
A
)

∂r
,

for all x ∈ B(x0, R) \B(x0,
√
R), r = dM(x0, x). Next, we use hypothesis (A2) to

conclude that

|∆FR(x)| ≤ C

(
|G′′R(r)|+ 1

r
|G′R(r)|

)
.

Simple and elementary calculations allow us to obtain the estimates

|G′′R(r)| ≤ C

r2 ln
√
R

and |G′R(r)| ≤ C

r ln
√
R
.

It follows that, for all x ∈ B(x0, R) \B(x0,
√
R), we have

(2.17) |∆FR|
α
2 + |∇FR|αg ≤

C

rα(ln
√
R)

α
2

.

Using (2.16) together with (2.17), we get∫
B(x0,R)

F
−α
p∗−1

R |∆(Fα
R)|

p∗
p∗−1 dV ≤ C

(ln
√
R)

α
2

∫
B(x0,R)\B(x0,

√
R)

dM(x0, x)−α dV.

At this point we use Lemma 2.1, thus obtaining

(2.18)

∫
B(x0,R)

F
−α
p∗−1

R |∆(Fα
R)|

p∗
p∗−1 dV ≤ C (lnR)1−

α
2 .

Returning to (2.14), and using (2.15), and (2.18), we find

(2.19) I2(ϕR) ≤ CR2 (lnR)1−
α
2 .
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Next we work with the perturbation term w. The choice of the test function ϕR
(see (2.3)) together with (2.15), lead to the following estimate∫

QR

w(x)ϕR dV dt =

(∫ R2

0

ηαR(t) dt

)(∫
B(x0,R)

w(x)Fα
R(x) dV

)
≥ CR2

∫
B(x0,

√
R)

w(x) dV

≥ CR2.(2.20)

In order to obtain this result, we take into account the assumption that w is
nonnegative and it is positive somewhere (recall w 6≡ 0). Combining all the
obtained estimates (that is merging (2.7), (2.13), (2.19) and (2.20)), we arrive at
the following inequality

(2.21) 0 < C ≤ R−α + (lnR)1−
α
2 .

In the limit asR goes to infinity, (2.21) leads to contradiction. It follows that there
isn’t any global solution u, and hence problem (1.3) admits no global solution. �

3. Conclusions

The qualitative analysis of different forms of wave equations on (compact, non-
compact, complete, connected) Riemannian manifolds is less carried out than the
analogous analysis on Euclidean spaces. The interest for manifolds, originates
from the fact that the manifold can contain key information and details about
wave processes arising in many different contexts of structural and fluid mechan-
ics. Of course, it is well-known that the points of a manifold can be mapped to a
subset of Euclidean space via local charts (that is, set of continuous functions with
continuous inverses). However, working on the geometry of the manifold with and
without boundary conditions, it is possible to develop sharp conditions useful in
observing, controlling, and hence stabilizing system dynamics (see, for example,
the work of Bardos-Lebeau-Rauch [1], for the case of manifold with boundary).
Here we established a non-existence result for a inhomogeneous semilinear wave
equation in the critical exponent case, on a manifold without additional boundary
condition.
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