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ABSTRACT. A k-configuration of type (d1, . . . , ds), where 1 6 d1 < . . . < ds are integers, is a set of points in
P
2 that has a number of algebraic and geometric properties. For example, the graded Betti numbers and Hilbert

functions of all k-configurations in P
2 are determined by the type (d1, . . . , ds). However the Waldschmidt con-

stant of a k-configuration in P
2 of the same type may vary. In this paper, we find that the Waldschmidt constant

of a k-configuration in P
2 of type (d1, . . . , ds) with d1 ≥ s ≥ 1 is s. Then we deal with the Waldschmidt

constants of standard k-configurations in P
2 of type (a), (a, b), and (a, b, c) with a ≥ 1. In particular, we prove

that the Waldschmidt constant of a standard k-configuration in P
2 of type (1, b, c) with c ≥ 2b + 2 does not

depend on c.
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1. INTRODUCTION

A set of points X in P
2 is called a k-configuration of type (d1, . . . , ds), where 1 6 d1 < . . . < ds are

integers, when there exists a partition of X = X1 ∪ · · · ∪ Xs and s distinct lines L1, . . . , Ls ⊆ P
2 such that,

for each i = 1, . . . , s we have |Xi| = di, Xi ⊆ Li and, for i > 1, Li ∩ (X1 ∪ · · · ∪ Xi−1) = ∅. The last
condition forces a point in X to belong to the set Xi corresponding to the largest index of a line containing it.

The k-configurations were introduced in the 1980s by Roberts and Roitman in [26] and extensively stud-
ied in the literature for their several interesting properties, see for instance [5, 12, 14, 15, 17, 18].

In 1995, Harima [23] extended this definition to P
3, and then in 2001 Geramita, Harima, and Shin [14, 16]

generalized the definition to P
n. Moreover, Roberts and Roitman showed that all k-configurations in P

2 of
type (d1, . . . , ds) have the same Hilbert function, which can be encoded from the type. This result was
generalized again by Geramita, Harima, and Shin [16, Corollary 3.7] to show that all graded Betti numbers
of the associated ideal of a k-configuration in P

n depend on the type only. However, it should be noted that
k-configurations in P

n of the same type can have very different algebraic and geometric properties [6, 7].
In this paper we are interested in the study of the Waldschmidt constant.
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The Waldschmidt constant of a homogeneous ideal I in R = k[x0, x1, . . . , xn] was introduced in [28] as

α̂(I) = lim
t→∞

α(I(t))

t
,

where I(t) is the t-th symbolic power of the ideal I , defined by I(t) =
⋂

P∈Ass(I)(I
tRP ∩R), and α(I(t)) is

the least degree among all minimal homogeneous generators of I(t). In [3, Lemma 2.3.1] it was proved that
this limit exists.

A prolific line of research involves the study of the Waldschmidt constant of zero dimensional schemes
in P

n, see [2, 4, 8, 9, 10, 11, 20, 21, 24, 27] just to cite some papers. In particular, in [5] and in [25], the
authors give some results about the Waldschmidt constant of star configurations.

Note that if IX is the ideal defining a set of distinct points X = {P1, . . . , Ps} in P
n and IPi

is the ideal of

the point Pi, then the t-th symbolic power of IX is I(t)
X

= ItP1
∩· · ·∩ItPs

, that is, I(t)
X

defines a homogeneous

set of fat points supported at X, denoted by tX. If IX is the ideal of a set of points X, instead of “Waldschmidt
constant of IX”, we simply write “Waldschmidt constant of X”.

In [5, Section 3.3] the authors showed that two different k-configurations of the same type may have
different Waldschmidt constants. For an easy example, consider the following two k-configurations X and
Y in P

2 of type (1, 2, 3).

X Y

L3

L2

L1

M1

M2

M3

FIGURE 1. k-configurations X and Y in P
2 of type (1, 2, 3)

Then the Waldschmidt constants of X and Y are different, i.e.,

α̂(IX) =
7

3
and α̂(IY) = 2,

respectively (see [5, 13]).

As we have seen above, k-configurations in P
2 of the same type may have different Waldschmidt con-

stants. Here we extend some results in [5]. In particular we focus on the so called standard k-configurations

in P
2, see Definition 2.4, and we find the Waldschmidt constants of all standard k-configurations of type

(a), (a, b) and (a, b, c), except for type (2, 3, 5), as summarized in Table 1.
The paper is structured as follows.
In Section 2 we recall some definitions and useful tools; in particular we prove, in a more general context,

the existence of irreducible curves in a certain linear system (see Lemma 2.7). In Section 3 we describe a
method to find the Waldschmidt constant of a set X of points, that works in particular when X is supported on
some lines in a specific way, e.g., when X is a k-configuration. In Section 4 we consider particular schemes
with support on lines, when the number of points on each line is bigger than the number of lines. As an
application, we find the Waldschmidt constants of standard k-configurations of type (a) and, for a > 1, of
type (a, b). To complete the case (a, b), we recall the result in [11, Proposition 3.3]. In Section 5, we find the
Waldschmidt constants of standard k-configurations of type (1, b, c). In Section 6, we find the Waldschmidt
constants of standard k-configurations of type (a, b, c), with a > 1, except the type (2, 3, 5).

To lighten the reading load, the proofs of some theorems of Section 5, that are very similar to the proofs
of other theorems in the same section, can be found in the Appendix, where an interested reader will find all
the details.
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The type of X Note α̂(IX) From

(a) 1 Corollary 4.2

(1, b)
2b− 1

b
Remark 4.4

(a, b) a ≥ 2 2 Corollary 4.2

(1, b, b + 1) b even, b ≥ 4
9b− 4

3b
Theorem 5.4

(1, b, c) c even, c ≤ 2b− 4
6b+ 3c− 4

2b+ c
Theorem 5.1

(1, b, c) c odd, b+ 1 < c ≤ 2b− 3
6b+ 3c− 7

2b+ c− 1
Theorem 5.2

(1, b, 2b − 2)
6b2 − 14b+ 6

2b2 − 4b+ 1
Theorem 5.5

(1, b, 2b − 1)
6b2 − 8b+ 1

2b2 − 2b
Theorem 5.6

(1, b, 2b)
6b− 5

2b− 1
Theorem 5.7

(1, b, 2b + 1)
6b2 − 2b− 3

2b2 − 1
Theorem 5.8

(1, b, c) c ≥ 2b+ 2
3b− 1

b
Theorem 5.10

(2, 3, 4)
17

6
Theorem 6.1

(2, 3, 5)
17

6
≤ α̂(IX) ≤

71

24
Remark 6.6

(2, 3, c) c ≥ 6 3 Theorem 6.5

(2, b, c) b ≥ 4 3 Theorem 6.5

(a, b, c) a ≥ 3 3 Theorem 6.7

TABLE 1. The Waldschmidt constant of standard k-configurations of type (a), (a, b), (a, b, c)
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2. PRELIMINARIES

We will work with an algebraic closed field k of characteristic zero. We recall the definition of the Wald-
schmidt constant for an ideal (see [3, Lemma 2.3.1] for the existence of the limit, and [10] where the authors
refer to that limit as "Waldschmidt constant").

Definition 2.1. For a homogeneous ideal J ⊆ k[Pn] we denote by α(J) the initial degree of J , i.e., the least
degree of nonzero elements in J . The Waldschmidt constant of J is the following limit

α̂(J) = lim
t→∞

α(J (t))

t
,

where J (t) is the t-th symbolic power of J .

Note that (see the proof of [3, Lemma 2.3.1])

α̂(J) ≤
α(J (t))

t

for every t > 0.
If IX is the ideal defining a set of distinct points X = {P1, . . . , Ps} in P

n and IPi
is the ideal of the point

Pi, then the t-th symbolic power of IX is I(t)
X

= ItP1
∩ · · · ∩ ItPs

, that is, I(t)
X

defines a homogeneous set of
fat points supported at X, which we will denote by tX.

In this paper we will work with special sets of simple distinct points in P
2. By abuse of notation, we

will refer to [IX]d as the linear system of all the plane curves of degree d containing X, since this is, from a
geometrical point of view, what the forms in [IX]d correspond to, and we simply write dim[IX]d instead of
dimk[IX]d.

We have the following useful lemma.

Lemma 2.2. Let X be a set of simple distinct points in P
2, and let IX be its ideal. Let µ and d be positive

integers such that the initial degree of the scheme of fat points mµX is md for each integer m > 0. Then the

Waldschmidt constant of IX is

α̂(IX) =
d

µ
.

Proof. Since, by definition, α̂(IX) = limt→∞

α(I
(t)
X

)
t

, if we let t = mµ, we have α(I
(t)
X

) = α(ImµX) = md,
and so

α̂(IX) =
md

mµ
=

d

µ
.

�

We now recall the definitions of k-configurations and standard k-configurations.

Definition 2.3 ([14, 15, 26]). Let 1 6 d1 < . . . < ds be integers and let L1, . . . , Ls ⊆ P
2 be distinct lines.

A k-configuration of points in P
2 of type (d1, . . . , ds) is a finite set X of points in P

2 such that:

(1) X =
⋃s

i=1 Xi, where the Xi are subsets of X ;
(2) |Xi| = di and Xi ⊆ Li for each i = 1, . . . , s;
(3) Li (1 < i 6 s) does not contain any points of Xj for all j < i.

In analogy with [14, Section 4] in P
3 and [15, Section 4] in P

n, here we give an explicit definition of
standard k-configurations in P

2, which are special k-configurations of points in P
2 whose coordinates are

integer values.
4



Definition 2.4. Let k[x0, x1, x2] be the homogeneous ring for P2, and let (d1, . . . , ds) be the type of a k-
configuration in P

2. We construct a set of points which realizes this type, and whose points are located in
the following lines Li, where

L1 = {x2 = (s− 1)x0}, L2 = {x2 = (s− 2)x0}, . . . , Ls = {x2 = 0}.

On each of these lines Li we place di points as follows
d1 points on L1 with coordinates [1 : j : s`1] 0 ≤ j ≤ d1`1,
d2 points on L2 with coordinates [1 : j : s− 2] 0 ≤ j ≤ d2 − 1,
...
ds points on Ls with coordinates [1 : j : 0] 0 ≤ j ≤ ds − 1.

If 1 ≤ d1 < · · · < ds, we call the k-configuration of points in P
2 constructed as above a standard k-

configuration of type (d1, . . . , ds).

We conclude this section with two lemmas, that are key tools for the proofs in this paper.
The first one is a technical lemma from our previous paper [5], and it is an application of Bezout’s

Theorem.
The second lemma is useful to compute the Waldschmidt constants of all the standard k-configurations

from type (1, b, 2b − 2) to (1, b, 2b + 1), since for those cases we need the existence of irreducible curves.

Lemma 2.5. Let m1, . . . ,ms and d be positive integers and let P1, . . . , Ps be s points lying on a line L

with s > 1. Let X be the scheme m1P1 + · · ·+msPs. Set

(2.1) µ =

⌈
m1 + · · ·+ms − d

s− 1

⌉
,

and assume [IX]d 6= {0}. Then

(i) µ ≤ d;

(ii) the line L is a fixed component of multiplicity at least µ for the plane curves of degree d defined by

the forms of the ideal [IX]d.

Proof. (i) Since [IX]d 6= {0}, then d ≥ mi for any i, hence

µ =

⌈
m1 + · · · +ms − d

s− 1

⌉
≤

⌈
sd− d

s− 1

⌉
= d;

(ii) follows from [5, Lemma 2.5]. �

Remark 2.6. Note that, as we proved in (i), the condition µ ≤ d follows from the hypothesis [IX]d 6= {0}.
(Hence the condition µ ≤ d among the hypotheses of [5, Lemma 2.5] was redundant).

Lemma 2.7. Let L, M be two distinct lines, and let b be a positive integer. Let P1, . . . , Pb, Q1, . . . , Qb,

R be distinct points such that R 6∈ L ∪ M , and, for any 1 ≤ i ≤ b, Pi ∈ L, Qi ∈ M , and the point

L ∩M 6∈ {P1, . . . , Pb, Q1, . . . , Qb}. Moreover R, Pi, Qj do not lie on a line, for any i and j. Then

(i) the scheme X = P1 + · · · + Pb + Q1 + · · · + Qb + (b − 1)R gives independent conditions to the

curves of degree b (see Figure 2);

(ii) the only curve of degree b in [IX]b is irreducible.

R

L

M

· · ·

· · ·
b

b b b b b

b b
b b

FIGURE 2. The scheme X
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Proof. (i) It is well known that the fat point (b− 1)R gives independent conditions to the curve of degree b.
Consider the following curve Gi of degree b

Gi = L+N1 + · · ·+Ni−1 +Ni+1 · · ·+Nb,

where Nj is the line RQj , j 6= i, so that Gi contains the scheme X − Qi, but it does not contain Qi.
Analogously we can construct a curve of degree b passing through X − Pi, that does not contain Pi. Hence
{P1, . . . , Pb, Q1, . . . , Qb} gives independent conditions to the curves defined by the linear system [I(b−1)R]b,
and thus (i) follows.

(ii) Note that since (
b+ 2

2

)
−

(
b+ b+

(
b

2

))
= 1,

then from (i) there exists only one curve of degree b through X, say C . Now we prove by induction on b that
the curve C is irreducible. Obvious for b = 1, assume b > 1. Assume that

C = C1 + · · ·+ Cr,

where r > 1 and the Ci are the irreducible components of C . Let bi = degCi, and let mi be the multiplicity
of Ci at R.

Note that if bi = 1, i.e., Ci is a line, then mi ≤ 1; if bi > 1, since Ci is irreducible, then mi ≤ bi − 1.
If for each i we have bi > 1, then

b− 1 ≤ m1 + · · ·+mr ≤ (b1 − 1) + · · ·+ (br − 1) = b− r,

hence r ≤ 1, and we get a contradiction.
Otherwise, without loss of generality, we can assume that b1 = 1, that is, C1 is a line.
If R 6∈ C1, then C1 contains at most b simple points of X. So since the curve H = C2 + · · · + Cr

has degree b − 1, and contains the fat point (b − 1)R, then it is union of b − 1 lines through R. Moreover,
recalling that R, Pi, Qj are not collinear for any i and j, and so each line through R contains at most one
point of X − (b − 1)R, then H cannot contains X− (b− 1)R − C1. Hence R ∈ C1 and so C1 contains at
most one other point of X. Hence H = C2 + · · · + Cr is a curve of degree b− 1 through X − C1, that is,
through (b − 2)R and at least 2b − 1 points in the set {P1, . . . , Pb, Q1, . . . , Qb}. We may assume that H

contains P1 + · · · + Pb + Q1 + · · · + Qb−1. By the inductive hypothesis, the only curve of degree b − 1
through (b− 2)R+ P1 + · · ·+ Pb−1 +Q1 + · · ·+Qb−1 is irreducible. Hence H has to be that curve. But
Pb ∈ H , so, by Bezout’s Theorem, L is a component of H , hence, since H is irreducible, we get L = H .
It follows that Q1 ∈ L, a contradiction. �

3. METHOD

In this section we describe the main method that we will use to find the Waldschmidt constant of a
k-configuration X in P

2. Our computation is structured as follows.

Step 1. We look for a curve F of degree d, which contains each point of X with multiplicity exactly µ, so
that, for each m > 0, mF is a curve in the linear system

[
ImµX

]
md

and so
[
ImµX

]
md

6= {0}.

Step 2. We show that
[
ImµX

]
md−1

= {0}, for each m ≥ 1 and we prove it by contradiction. For this
purpose we define

m̄ = min{m|[ImµX]md−1 6= {0}}.

We prove, mostly directly, that m̄ 6= 1. For m̄ > 1, applying Lemma 2.5 several times, we show
that F is a fixed component for the linear system

[
Im̄µX

]
m̄d−1

. Thus, by removing F , we get

dim
[
Im̄µX

]
m̄d−1

= dim
[
Im̄µX−F

]
m̄d−1−d

and, since F contains each point of X with multiplicity exactly µ, we have
[
Im̄µX−F

]
m̄d−1−d

=
[
I(m̄−1)µX

]
(m̄−1)d−1

6



and the contradiction comes from the minimality of m̄.
Step 3. Since the initial degree of

[
ImµX

]
is md, then, by Lemma 2.2 we have

α̂(IX) =
d

µ
.

Note that if X is a standard k-configuration, then the curve F strictly depends on the type of X. In certain
cases F is a union of lines, and in other cases it has irreducible components of higher degrees.

4. WALDSCHMIDT CONSTANTS OF k-CONFIGURATIONS OF TYPE (d1, . . . , ds) WITH d1 ≥ s

In the next lemma we compute the Waldschmidt constant of a set of points X contained in s lines, where
each line contains at least s points of X and no two lines meet in a point of X.

The following lemma will be useful for computing the Waldschmidt constants of both a k-configuration
of type (d1, . . . , ds) and a standard k-configuration of the same type (d1, . . . , ds), when d1 ≥ s.

Lemma 4.1. Let s be a positive integer, and let L1, . . . , Ls be distinct lines. Let Xi be a finite set of di points

on the line Li (1 ≤ i ≤ s), and let X =
⋃s

i=1Xi. If di ≥ s, for each 1 ≤ i ≤ s, and any intersection point

of two lines Li and Lj , for i 6= j, is not contained in X, then the Waldschmidt constant of X is

α̂(IX) = s.

Proof. For s = 1, it is immediate. So we assume s > 1.
Let m be a positive integer. The curve F = L1 + · · ·+ Ls has degree s and passes through the points of

X with multiplicity 1, hence
mF ∈ [ImX]ms.

Now we prove that for each m > 0,
[ImX]ms−1 = {0},

so the initial degree of ImX will be ms and the conclusion will follow from Lemma 2.2.
Assume that for some m, [ImX]ms−1 6= {0}. Note that if [ImX]ms−1 6= {0}, then since each Li contains

di points, and each point has multiplicity m, and the degree we are considering is ms − 1, then by Lemma

2.5, each Li is a fixed component of multiplicity at least
⌈
mdi−(ms−1)

di−1

⌉
for the plane curves of the linear

system [ImX]ms−1.
Now, since di ≥ s ≥ 2, then

(4.1)

⌈
mdi − (ms− 1)

di − 1

⌉
≥ 1,

hence F is a fixed component for the curves defined by this linear system.
Set

(4.2) m̄ = min{m|[ImX]ms−1 6= {0}}.

First observe that m̄ 6= 1. In fact, for m = 1, since degF = s, then [IX]s−1 = {0}. By removing F

from the curves of the linear system [Im̄X]m̄s−1, since any intersection point of two lines Li and Lj is not
contained in X, we get

dim[Im̄X]m̄s−1 = dim[Im̄X−F ](m̄s−1)−s = dim[I(m̄−1)X](m̄−1)s−1,

and by (4.2) this is zero, a contradiction. �

Corollary 4.2. Let X be a standard k-configuration of type (d1, . . . , ds) with d1 ≥ s. Then the Waldschmidt

constant of X is

α̂(IX) = s.

Proof. It follows from the previous lemma. �
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Corollary 4.3. With notation as in Definition 2.3, if X is a k-configuration of type (d1, . . . , ds) with d1 ≥ s,

then the Waldschmidt constant of X is

α̂(IX) = s.

Proof. Let F = L1 + · · ·+ Ls, thus mF ∈ [ImX]ms. Hence

α̂(IX) ≤ s.

Now let X′ be the subset of X that we get after we remove the possible points of X in the intersections
Li ∩Lj , for i 6= j. Let X′

i = X
′ ∩Li. Recalling Definition 2.3 it is easy to show that by Lemma 4.1 we have

α̂(IX′) = s.

Since X
′ ⊆ X, we have α̂(IX′) ≤ α̂(IX). Thus, the conclusion follows from

s = α̂(IX′) ≤ α̂(IX) ≤ s.

�

Remark 4.4. From Corollary 4.2, we immediately get that the Waldschmidt constant of a standard k-
configuration of type (d1) is 1, and of type (d1, d2) with d1 ≥ 2 is 2. For the case (1, d2) see [11, Proposition
3.3], where it is proved that if X is a standard k-configuration of type (1, d2), then α̂(IX) =

2d2−1
d2

.

5. WALDSCHMIDT CONSTANTS OF STANDARD k-CONFIGURATIONS OF TYPE (1, b, c)

In this section we compute the Waldschmidt constant of a standard k-configuration X of type (1, b, c) as
in Definition 2.4, for any values of b and c.

It is interesting to note that the Waldschmidt constant stabilizes at c = 2b+ 2, that is,

α̂(IX) =
3b− 1

b
for c ≥ 2b+ 2

(see Theorem 5.10). One could expect that, for each fixed b, the Waldschmidt constant strictly increases with
c until c = 2b+2. But this is not always the case, as shown in Corollary 5.3, since for c ≤ 2b− 3 it behaves
in a similar way as a step function.

We fix the notation of this section, summarized in Figure 3, that will be used in the proofs.

· · ·
· · ·L1

L2

R

Q1 Q2 Qb

P1 P2 P3 P4 Pc

M1 N1 M2 N2 M3

Ti

b

b b b b

b b b b b

FIGURE 3. A standard k-configuration of type (1, b, c)

Let Pi = [1 : i − 1 : 0], for 1 ≤ i ≤ c, Qi = [1 : i − 1 : 1], for 1 ≤ i ≤ b, and R = [1 : 0 : 2] be the
points of X (see Definition 2.4).
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Let
L1 be the line through P1, P2, . . . , Pc;
L2 be the line through Q1, Q2, . . . , Qb;
M1 be the line through P1, Q1, R;
M2 be the line through P3, Q2, R;

...
Mi be the line through P2i−1, Qi, R, for i ≤ b and 2i ≤ c+ 1;
N1 be the line through P2, R;
N2 be the line through P4, R;

...
Ni be the line through P2i, R, for 2i ≤ c;
Ti be the line through Qi, R, for i ≤ b and 2i ≥ c+ 2.

Note that each line Mi contains three points of X, whereas the lines Ni and Ti contain two points of X.

Theorem 5.1. Let X be a standard k-configuration of type (1, b, c). If c is even and c ≤ 2b− 4, then

α̂(IX) =
6b+ 3c− 4

2b+ c
.

Proof. Define

F =
2b+ c− 2

2
L1 +

2b+ c− 2

2
L2 + M1 + · · ·+ M c

2
+ N1 + · · ·+ N c

2
+ T c+2

2
+ · · ·+ Tb.

F is the union of 6b+3c−4
2 lines, and F contains each point of X with multiplicity exactly 2b+c

2 . Hence, for
m > 0,

mF ∈
[
I 2b+c

2
mX

]
6b+3c−4

2
m
.

Now we prove by contradiction that for each m > 0,

dim
[
I 2b+c

2
mX

]
6b+3c−4

2
m−1

= 0,

and the conclusion will follow from Lemma 2.2.
To this aim, we will use Lemma 2.5 many times in order to get a fixed component for the curves defined

by the forms of
[
I 2b+c

2
mX

]
6b+3c−4

2
m

.

So, assume that for some m,
[
I 2b+c

2
mX

]
6b+3c−4

2
m−1

6= {0}, thus by Lemma 2.5, by recalling that c > b,

we get that L1 is a fixed component of multiplicity at least

(5.1)

⌈
2b+c
2 cm− 6b+3c−4

2 m+ 1

c− 1

⌉
=

⌈
((2b+ c− 6)(c− 1) + 4c− 4b− 2)m+ 2

2(c− 1)

⌉
≥

2b+ c− 6

2
m

for the plane curves of the linear system
[
I 2b+c

2
mX

]
6b+3c−4

2
m−1

.

By removing 2b+c−6
2 mL1 from those curves, we get

dim[I 2b+c
2

mX
] 6b+3c−4

2
m−1 = dim[I 2b+c

2
mX−

2b+c−6
2

mL1
] 6b+3c−4

2
m−1− 2b+c−6

2
m
.

If the dimension above is zero, we get a contradiction and we are done. If it is different from zero, by Lemma
2.5, by observing that 6b+3c−4

2 m− 1− 2b+c−6
2 m = (2b+ c+1)m− 1, we get that L2 is a fixed component

of multiplicity at least
(5.2)⌈

2b+c
2 bm− (2b+ c+ 1)m+ 1

b− 1

⌉
=

⌈
((2b+ c− 6)(b− 1) + 4b− c− 8)m+ 2

2(b− 1)

⌉
≥

2b+ c− 6

2
m,

9



for the plane curves of the linear system [I 2b+c
2

mX−
2b+c−6

2
mL1

](2b+c+1)m−1. By removing 2b+c−6
2 mL2 from

those curves, we get
(5.3)
dim[I 2b+c

2
mX−

2b+c−6
2

mL1
](2b+c+1)m−1 = dim[I 2b+c

2
mX−

2b+c−6
2

mL1−
2b+c−6

2
mL2

](2b+c+1)m−1− 2b+c−6
2

m
,

where
2b+ c

2
mX−

2b+ c− 6

2
mL1 −

2b+ c− 6

2
mL2 =

2b+ c

2
mR+

∑

Pi∈L1

3mPi +
∑

Qi∈L2

3mQi.

If the dimension in (5.3) is zero, we get a contradiction and we are done. If it is different from zero, by
Lemma 2.5, by observing that (2b+ c+ 1)m− 1− 2b+c−6

2 m = 2b+c+8
2 m− 1, and

−2b+ 5c− 8 = −2b+ 6c− c− 8 ≥ −2b+ 6c− (2b− 4)− 8 = 4(c − b) + 2c− 4 ≥ 2c,

we have that L1 is a fixed component of multiplicity at least

(5.4)

⌈
3cm− 2b+c+8

2 m+ 1

c− 1

⌉
=

⌈
(−2b+ 5c− 8)m+ 2

2(c− 1)

⌉
≥ m,

for the curves of the linear system
[
I 2b+c

2
mR+

∑
Pi∈L1

3mPi+
∑

Qi∈L2
3mQi

]
2b+c+8

2
m−1

. We now remove mL1

and we get
dim[I 2b+c

2
mR+

∑
Pi∈L1

3mPi+
∑

Qi∈L2
3mQi

] 2b+c+8
2

m−1

= dim[I 2b+c
2

mR+
∑

Pi∈L1
2mPi+

∑
Qi∈L2

3mQi
] 2b+c+8

2
m−1−m

.

So, if the dimension above is zero, we get a contradiction and we are done. If it is different from zero, then,
by Lemma 2.5, by recalling that we have the hypothesis 2b ≥ c+4, and so 4b ≥ 2b+ c+4, we get that L2

is a fixed component of multiplicity at least
(5.5)⌈
3mb− 2b+c+6

2 m+ 1

b− 1

⌉
=

⌈
(4b− c− 6)m+ 2

2(b− 1)

⌉
≥

⌈
(2b+ c+ 4− c− 6)m+ 2

2(b− 1)

⌉
=

⌈
m+

1

(b− 1)

⌉
≥ m,

for the curves of the linear system
[
I 2b+c

2
mR+

∑
Pi∈L1

2mPi+
∑

Qi∈L2
3mQi

]
2b+c+6

2
m−1

.

Hence
dim

[
I 2b+c

2
mR+

∑
Pi∈L1

2mPi+
∑

Qi∈L2
3mQi

]
2b+c+6

2
m−1

= dim
[
I 2b+c

2
mR+

∑
Pi∈L1

2mPi+
∑

Qi∈L2
2mQi

]
2b+c+4

2
m−1

.

If this dimension is different from zero, then we go on and we apply Lemma 2.5 to the lines Mi, Ni, and
Ti. Since
(5.6)⌈

2b+c
2 m+ 2m+ 2m− 2b+c+4

2 m+ 1

2

⌉
=

⌈
2m+ 1

2

⌉
> 1, and

⌈
2b+c
2 m+ 2m− 2b+c+4

2 m+ 1

1

⌉
= 1,

the lines Mi, Ni, and Ti are fixed components for the curves of the linear system
[
I 2b+c

2
mR+

∑
Pi∈L1

2mPi+
∑

Qi∈L2
2mQi

]
2b+c+4

2
m−1

.

Hence, from the computations in (5.1), (5.2), (5.4), (5.5), and (5.6), we get that the following curve

(5.7)
2b+ c− 4

2
mL1 +

2b+ c− 4

2
mL2 + M1 + · · ·+ M c

2
+ N1 + · · · + N c

2
+ T c+2

2
+ · · ·+ Tb

is a fixed component for the curves defined by the linear system
[
I 2b+c

2
mX

]
6b+3c−4

2
m−1

.

Now set

(5.8) m̄ = min{m | [I 2b+c
2

mX
] 6b+3c−4

2
m−1 6= {0}}.
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First observe that m̄ 6= 1. In fact for m = 1, the curve F ′ of degree 6b+3c−8
2

F
′ =

2b+ c− 4

2
L1 +

2b+ c− 4

2
L2 + M1 + · · ·+ M c

2
+ N1 + · · · + N c

2
+ T c+2

2
+ · · ·+ Tb

should be a fixed component for the linear system [I 2b+c
2

X
] 6b+3c−4

2
−1, so

dim[I 2b+c
2

X
] 6b+3c−4

2
−1 = dim[I 2b+c

2
X−F ′ ] 6b+3c−4

2
−1− 6b+3c−8

2
= dim[IP1+···+Pc+Q1+···+Qb

]1 = 0,

a contradiction.
So m̄ > 1. By (5.7), since 2b+c−4

2 m̄ ≥ 2b+c−2
2 , we get that F is a fixed component for the linear system

[I 2b+c
2

m̄X
] 6b+3c−4

2
m̄−1, hence, by recalling that degF = 6b+3c−4

2 and F contains each point of X with

multiplicity 2b+c
2 , we get

dim[I 2b+c
2

m̄X
] 6b+3c−4

2
m̄−1 = dim[I 2b+c

2
m̄X−F

] 6b+3c−4
2

m̄−1− 6b+3c−4
2

= dim[I 2b+c
2

(m̄−1)X] 6b+3c−4
2

(m̄−1)−1,

which is zero by (5.8), a contradiction. �

Theorem 5.2. Let X be a standard k-configuration of type (1, b, c). If c is odd, and b + 1 < c ≤ 2b − 3,

then

α̂(IX) =
6b+ 3c− 7

2b+ c− 1
.

Proof. Let

F =
2b+ c− 3

2
L1 +

2b+ c− 3

2
L2 + M1 + · · ·+ M c+1

2
+ N1 + · · ·+ N c−1

2
+ T c+3

2
+ · · ·+ Tb.

F is the union of 6b+3c−7
2 lines, and F contains each point of X with multiplicity exactly 2b+c−1

2 . Hence,
for m > 0,

mF ∈
[
I 2b+c−1

2
mX

]
6b+3c−7

2
m
.

By Lemma 2.2 it follows that α̂(IX) ≤ 6b+3c−7
2b+c−1 .

Now, by recalling that c − 1 > b, we can consider the standard k-configuration X
′ of type (1, b, c − 1),

which is contained in the standard k-configuration X. Hence α̂(IX) ≥ α̂(IX′). Since c−1 ≤ 2b−4 and c−1

is even, by Theorem 5.1 we have that α̂(IX′) = 6b+3(c−1)−4
2b+(c−1) = 6b+3c−7

2b+c−1 , and the conclusion follows. �

Corollary 5.3. Let X and Y be standard k-configurations of type (1, b, c) and (1, b, c+1), respectively. If c
is even, and c ≤ 2b− 4, then α̂(IX) = α̂(IY).

Proof. By Theorem 5.1 we have that α̂(IX) = 6b+3c−4
2b+c

. Now by applying Theorem 5.2 to Y we get α̂(IY) =
6b+3(c+1)−7
2b+(c+1)−1 = 6b+3c−4

2b+c
= α̂(IX). �

From Theorems 5.1 and 5.2, we can compute the Waldschmidt constants of any standard k-configurations
of type (1, b, c), when c ≤ 2b − 3, except for the configuration X of type (1, b, b + 1) with b even. In the
following theorem we will compute the Waldschmidt constant of this type of configuration, and we will find
that α̂(IX) = 9b−4

3b .
Alternatively we could have considered the subscheme Y = X − Pb+1, and computed the Waldschmidt

constant of Y, and found that α̂(IY) = 9b−4
3b . With this method the conclusion would be followed from a

theorem analogous to Theorem 5.2.
In the next theorem we study the case (1, b, b+1), when b ≥ 4 is even. Note that when b = 2, the formula

in Theorem 5.4 gives 7/3, but the correct answer is α̂(IX) = 9/4 (see Theorem 5.6).

Theorem 5.4. Let X be a standard k-configuration of type (1, b, b + 1). If b ≥ 4 is an even integer, then

α̂(IX) =
9b− 4

3b
.
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Proof. The proof proceeds as in Theorem 5.1. See [Appendix 7, Proof of Theorem 5.4] for more details. �

Now we study the standard k-configurations from type (1, b, 2b − 2) to (1, b, 2b + 1). From our compu-
tations it will emerge that in this range the Waldschmidt constant is strictly increasing. A useful tool for the
proofs is Lemma 2.7. Also even if the method is always the same, we prefer to give some details since the
proof is more tricky than the previous cases.

Theorem 5.5. Let X be a standard k-configuration of type (1, b, 2b − 2). Then

α̂(IX) =
6b2 − 14b+ 6

2b2 − 4b+ 1
.

Proof. Note that from the definition of a standard k-configuration, we have b > 2. Let

Ci be the irreducible curve of degree (b− 1) through P2, P4, . . . , P2b−2, Q1, . . . , Q̂i, . . . , Qb, (b− 2)R
for 1 ≤ i ≤ b− 1 (see Lemma 2.7),

and let

F = (2b2−5b+2)L1+(2b2−6b+4)L2+(b−1)M1+ · · ·+(b−1)Mb−1+(b−2)Tb+C1+ · · ·+Cb−1.

So F is a curve of degree 6b2 − 14b+6 with multiplicity 2b2 − 4b+1 at each point of X. Hence for m > 0

mF ∈ [I(2b2−4b+1)mX](6b2−14b+6)m.

We now prove that for m > 0,

[I(2b2−4b+1)mX](6b2−14b+6)m−1 = {0}.

Then the result follows from Lemma 2.2.

Assume that for some m, [I(2b2−4b+1)mX](6b2−14b+6)m−1 6= {0}. Thus by Lemma 2.5, L1 is a fixed
component of multiplicity at least

(5.9)

⌈
(2b2 − 4b+ 1)(2b− 2)m− (6b2 − 14b+ 6)m+ 1

2b− 3

⌉
≥ (2b2 − 6b+ 3)m

for the plane curves of the linear system [I(2b2−4b+1)mX](6b2−14b+6)m−1. We remove (2b2 − 6b + 3)mL1,
and we get that L2 is a fixed component of multiplicity at least

(5.10)

⌈
(2b2 − 4b+ 1)bm− (6b2 − 14b+ 6− 2b2 + 6b− 3)m+ 1

b− 1

⌉
≥ (2b2 − 6b+ 3)m.

Remove (2b2−6b+3)mL2. Recalling that now we are in degree (6b2−14b+6)m−2(2b2−6b+3)m−1 =
(2b2 − 2b)m − 1, and the points on L1 have multiplicity (2b − 2)m, we get that L1 is a fixed component
of multiplicity at least

(5.11)

⌈
(2b− 2)(2b − 2)m− (2b2 − 2b)m+ 1

2b− 3

⌉
= (b− 2)m+

⌈
(b− 2)m+ 1

2b− 3

⌉
.

Hence L1 is a fixed component of multiplicity at least (2b2 − 6b+ 3)m+ (b− 2)m = (2b2 − 5b+ 1)m.
By removing (b− 2)mL1 we get

dim[I(2b2−4b+1)mX](6b2−14b+6)m−1 = dim[I(2b2−4b+1)mR+
∑

Pi∈L1
bmPi+

∑
Qi∈L2

(2b−2)mQi
](2b2−3b+2)m−1.

If the above dimension is different from zero, then each Mi is a fixed component of multiplicity at least

(5.12)

⌈
(2b2 − 4b+ 1 + b+ 2b− 2)m− (2b2 − 3b+ 2)m+ 1

2

⌉
= (b− 2)m+

⌈
m+ 1

2

⌉
.
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By removing the b− 1 multiple lines (b− 2)mMi, the residual scheme is

Y = (b2 − b− 1)mR +
∑

Pi∈L1, with i odd

2mPi +
∑

Pi∈L1, with i even

bmPi +
b−1∑

i=1

bmQi + (2b− 2)mQb,

and we are left in degree (2b2 − 3b+ 2)m− 1− (b− 1)(b− 2)m = b2m− 1.
Hence

dim[I(2b2−4b+1)mX](6b2−14b+6)m−1 = dim[IY]b2m−1.

If this dimension is still different from zero, then Tb is a fixed component of multiplicity at least

(5.13) (b2 − b− 1 + 2b− 2)m− b2m+ 1 = (b− 3)m+ 1.

By removing (b− 3)mTb we get

dim[I(2b2−4b+1)mX](6b2−14b+6)m−1 = dim[IY−(b−3)mTb
]b2m−1−(b−3)m = dim[IY′ ](b2−b+3)m−1,

where

Y
′ = (b2 − 2b+ 2)mR +

∑

Pi∈L1, with i odd

2mPi +
∑

Pi∈L1, with i even

bmPi +
b−1∑

i=1

bmQi + (b+ 1)mQb.

If H is a curve of the linear system [IY′ ](b2−b+3)m−1, the multiplicity of intersection between each Ci and
H is at least

|Ci · H | ≥ (b− 2)(b2 − 2b+ 2)m+ (b− 1)bm+ (b− 2)bm+ (b+ 1)m = (b3 − 2b2 + 4b− 3)m,

and this number is bigger than the product of the degree of Ci and H , which is (b−1)((b2−b+3)m−1) =
(b3 − 2b2 + 4b − 3)m − b + 1. Hence, by Bézout’s Theorem, each curve Ci is a fixed component for the
curves of [IY−(b−3)mTb

]b2m−1−(b−3)m.
Now let

(5.14) m̄ = min{m| [I(2b2−4b+1)mX](6b2−14b+6)m−1 6= {0}}.

We have m̄ > 1. In fact for m = 1, from (5.10), (5.11), (5.12), (5.13), using also the ceiling parts, by
an easy computation we get that F is a curve of the linear system [I(2b2−4b+1)X]6b2−14b+5. But degF =

6b2 − 14b+ 6, a contradiction.
Hence m̄ > 1.
By the computation above F is a fixed component for the linear system [I(2b2−4b+1)mX](6b2−14b+6)m−1,

hence we have

dim[I(2b2−4b+1)m̄X](6b2−14b+6)m̄−1 = dim[I(2b2−4b+1)m̄X−F ](6b2−14b+6)m̄−1−(6b2−14b+6)

= dim[I(2b2−4b+1)(m̄−1)X](6b2−14b+6)(m̄−1)−1,

which is zero by (5.14 ), a contradiction. �

Theorem 5.6. Let X be a standard k-configuration of type (1, b, 2b − 1). Then

α̂(IX) =
6b2 − 8b+ 1

2b2 − 2b
.

Proof. See [Appendix 7, Proof of Theorem 5.6]. �

Theorem 5.7. Let X be a standard k-configuration in of type (1, b, 2b). Then

α̂(IX) =
6b− 5

2b− 1
.

Proof. See [Appendix 7, Proof of Theorem 5.7]. �
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Theorem 5.8. Let X be a standard k-configuration in of type (1, b, 2b + 1). Then

α̂(IX) =
6b2 − 2b− 3

2b2 − 1
.

Proof. See [Appendix 7, Proof of Theorem 5.8]. �

Now we will prove that the Waldschmidt constant of a standard k-configuration of type (1, b, c) only
depends on b when c ≥ 2b+ 2. In order to do that, we need the following lemma.

Lemma 5.9. Let L1, L2 be two distinct lines, and let b, c be positive integers, with c ≥ b + 2. Let

P1, . . . , Pc ∈ L1, Q1, . . . , Qb ∈ L2, and R, be distinct points such that R 6∈ L1 ∪ L2, and the point

L1 ∩L2 6∈ {P1, . . . , Pc, Q1, . . . , Qb}. Moreover, assume that R, Pi, Qj do not lie on a line, for any i and j.

Let Yc be the scheme (see Figure 4)

Yc = P1 + · · ·+ Pc +Q1 + · · · +Qb +R.

Then

α̂(Yc) =
3b− 1

b
.

R

L1

L2

P1 P2 Pc

Q1

Q2

Qb

· · ·

· · ·
b

b b b b b

b b
b b

FIGURE 4. The scheme Yc

Proof. If b = 1, Yc is a k-configuration of type (2, c), hence α̂(Yc) = 2 follows from Corollary 4.3. The
proof for b = 2 is analogous to the proof for b > 2, and it is left to the reader, so assume b > 2.

First we prove the lemma for c = b+ 2. For this case, we denote Yb+2 simply by Y. Let Mi be the line
through Qi and R, ( 1 ≤ i ≤ b), and let

F = bL1 + (b− 1)L2 +M1 + · · · +Mb.

Note that degF = 3b− 1 , and F has multiplicity exactly b at all points of Y. Hence for m > 0

mF ∈ [IbmY](3b−1)m.

Now we will show that for m > 0,
[IbmY](3b−1)m−1 = {0},

and the conclusion will follow from Lemma 2.2.
Assume that for some m > 0, [IbmY](3b−1)m−1 6= {0}.
By Lemma 2.5, L1 is a fixed component of multiplicity at least

⌈
b(b+ 2)m− (3b− 1)m+ 1

b+ 1

⌉
≥ (b− 2)m.

So we can remove (b− 2)mL1, and we get that

dim[IbmY](3b−1)m−1 = dim[IbmY−(b−2)mL1
](2b+1)m−1.

If this dimension is different from zero, we get that L2 is a fixed component of multiplicity at least
⌈
b2m− (2b+ 1)m+ 1

b− 1

⌉
= (b− 2)m+

⌈
(b− 3)m+ 1

b− 1

⌉
,
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and then that L1 is a fixed component of multiplicity at least
⌈
2(b+ 2)m− (b+ 3)m+ 1

b+ 1

⌉
= m+

⌈
1

b+ 1

⌉
.

Hence
dim[IbmY](3b−1)m−1 = dim[IbmY−(b−1)mL1−(b−2)mL2

](b+2)m−1

= dim[I∑b+2
i=1 mPi+

∑b
i=1 2mQi+bmR

](b+2)m−1.

Now, by Bezout’s Theorem, each Mi is a fixed component ( 1 ≤ i ≤ b) for [IbmY](3b−1)m−1.
Now let

(5.15) m̄ = min{m|[ImbY]m(3b−1)−1 6= {0}}.

We have m̄ > 1, in fact for m = 1 from the computation above, we have that F is a curve of degree 3b− 1
of the linear system [IbY]3b−2, a contradiction.

Hence m̄ > 1. Now from the equalities above, F is a fixed component for the linear system [Im̄bY]m̄(3b−1)−1,
hence

dim[Im̄bY]m̄(3b−1)−1 = dim[Im̄bY−F ]m̄(3b−1)−1−(3b−1) = dim[I(m̄−1)bY](m̄−1)(3b−1)−1,

which is zero by (5.15), a contradiction.
Now consider the case c > b + 2. Since also in this case mF ∈ [IbmY](3b−1)m, then α̂(Yc) ≤ 3b−1

b
.

Moreover, since Yb+2 ⊂ Yc, then α̂(Yb+2) ≤ α̂(Yc), and the conclusion follows. �

Theorem 5.10. Let X be a standard k-configuration of type (1, b, c) with c ≥ 2b+ 2. Then

α̂(IX) =
3b− 1

b
.

Proof. Let us consider the following curve F of degree (3b − 1) with multiplicities at least b at the points
in X

F = bL1 + (b− 1)L2 + M1 + · · ·+ Mb.

Then, for m > 0, we have mF ∈ [ImbX](3b−1)m. By Lemma 2.2 it follows that

α̂(IX) ≤
3b− 1

b
.

To conclude the proof set Y = X− {P1, P3, . . . , P2b−1}. Then, by Lemma 5.9 and since Y ⊆ X, we get

3b− 1

b
= α̂(IY) ≤ α̂(IX) ≤

3b− 1

b
.

This completes the proof. �

6. WALDSCHMIDT CONSTANTS OF STANDARD k-CONFIGURATIONS OF TYPE (a, b, c), WITH a ≥ 2.

In this section we study the Waldschmidt constant of a standard k-configuration of type (a, b, c), with a ≥
2. We prove that, except for the type (2, 3, 4), and for the type (2, 3, 5) (see Theorem 6.1 and Remark 6.6),
then the Waldschmidt constant is 3. For this section we fix the following notation (see Figure 6).

· · ·
· · ·L1

L2

L3

R1 R2

Q1 Q2 Q3 Qb

P1 P2 P3 P4 Pc

M1 M2 N1 N2

b b

b b b b

b b b b b

FIGURE 5. A standard k-configuration of type (2, b, c)
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Let Pi = [1 : i − 1 : 0], for 1 ≤ i ≤ c, let Qi = [1 : i − 1 : 1], for 1 ≤ i ≤ b, let R1 = [1 : 0 : 2] and
R2 = [1 : 1 : 2] be the points of X, and let

L1 be the line through P1, P2, . . . , Pc;
L2 be the line through Q1, Q2, . . . , Qb;
L3 be the line through R1, R2;
M1 be the line through P1, Q1, R1;
M2 be the line through P2, Q2, R2;
N1 be the line through P3, Q2, R1;
N2 be the line through P4, Q3, R2.

First we compute the Waldschmidt constant of a k-configuration of type (2, b, c) 6= (2, 3, 5).

Theorem 6.1. Let X be a standard k-configuration of type (2, 3, 4). Then the Waldschmidt constant of X is

α̂(IX) =
17

6
.

Proof. Let
C be the conic through P2, P3, Q1, Q3, R1, R2,

and let F be the following curve of degree 17, which contains each point of X with multiplicity 6

F = 3L1 + 2L2 + 3M1 + 2M2 + 2N1 + 3N2 + C .

Hence, for m > 0,
mF ∈ [I6mX]17m.

The conclusion will follows from Lemma 2.2, if we prove that for each m > 0,

dim[I6mX]17m−1 = 0.

As usual, assume that for some m, [I6mX]17m−1 6= {0}. By Lemma 2.5, L1 is a fixed component of
multiplicity at least

⌈
24m−17m+1

3

⌉
=

⌈
7m+1

3

⌉
≥ 2m for the plane curves of the linear system [I6mX]17m−1.

By removing 2mL1 and assuming that the residual linear system is not empty, by Lemma 2.5, we get that
L2 is a fixed component of multiplicity at least

⌈
3m+1

2

⌉
, and M1, M2, N1, N2 are fixed component of

multiplicity at least
⌈
m+1
2

⌉
. Let

(6.1) m̄ = min{m|[I6mX]17m−1 6= {0}}.

Now we claim that for m = 1, 2, 3, [I6mX]17m−1 = {0}. This claim can be proved directly, with the usual
method. It follows that m̄ ≥ 4.

From the computation above, and recalling that M1, M2, N1, N2 are fixed components of multiplicity
at least

⌈
m̄+1
2

⌉
≥ 3, then F is a fixed component for the linear system [I6m̄X]17m̄−1, hence

dim[I6m̄X]17m̄−1 = dim[I6m̄X−F ]17m̄−1−17 = dim[I6(m̄−1)X]17(m̄−1)−1,

which is zero by (6.1), a contradiction. �

We need the following lemma to find out the Waldschmidt constant of a standard k-configuration of
type (2, 3, 6).

Lemma 6.2. Let L1, L2 be two distinct lines, and let P1, . . . , P6 ∈ L1, and Q1, Q2, Q3 ∈ L2 be distinct

points such that L1 ∩ L2 6∈ Y, where

Y = P1 + · · ·+ P6 +Q1 + · · ·+Q3.

Let m be a positive integer. Then the curve 2mL1 + mL2 is a fixed component for the linear system

[I3mY]9m−1.
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Proof. Set

M = {m′ | 2m′L1 +m′L2 is a fixed component for the linear system [I3mY]9m−1}.

Since by Lemma 2.5, L1 and L2 are fixed components of multiplicity at least
⌈
18m−9m+1

5

⌉
≥ 2, and⌈

9m−9m+1
2

⌉
= 1, respectively, then 2L1 + L2 is a fixed component for [I3mY]9m−1, and so 1 ∈ M . Let

m̄ = maxM.

If m̄ ≥ m we are done, so assume that m̄ < m. By the definition of m̄, we have that 2m̄L1+ m̄L2 is a fixed
component for the linear system [I3mY]9m−1. Hence

[I3mY]9m−1 = H · [I3mY−2m̄L1−m̄L2 ]9m−1−3m̄ = H · [I∑6
i=1 Pi(3m−2m̄)+

∑3
i=1(3m−m̄)Qi

]9m−1−3m̄,

where H is a form representing the curve 2m̄L1 + m̄L2 . Now, by Lemma 2.5, we get that, for the curve of
the linear system [I3mY−2m̄L1−m̄L2 ]9m−1−3m̄, L1 is a fixed component of multiplicity at least

⌈
6(3m − 2m̄)− (9m− 1− 3m̄)

5

⌉
=

⌈
9m− 9m̄+ 1

5

⌉
≥ 2,

and L2 is a fixed component of multiplicity at least
⌈
3(3m− m̄)− (9m− 1− 3m̄)

2

⌉
= 1.

Recalling that [I3mY]9m−1 = H · [I3mY−2m̄L1−m̄L2
]9m−1−3m̄, it follows that 2(m̄+ 1)L1 + (m̄+ 1)L2 is

a fixed component for the curves of the linear system [I3mY]9m−1. A contradiction, since m̄ = maxM. �

Theorem 6.3. Let X be a standard k-configuration of type (2, 3, 6). Then

α̂(IX) = 3.

Proof. Let F be the following curve of degree 9, which contains each point of X with multiplicity 3,

F = 3L1 + 3L2 + 3L3.

Hence, for m > 0,
mF ∈ [I3mX]9m.

The conclusion will follow from Lemma 2.2, if we prove that for each m > 0,

dim[I3mX]9m−1 = 0.

Assume that for some m, [I3mX]9m−1 6= {0}. By Lemma 6.2, 2mL1 + mL2 is a fixed component for
[I3mX]9m−1, hence

dim[I3mX]9m−1 = dim[I3mX−2mL1−mL2
]9m−1−3m = dim[I∑6

i=1 mPi+
∑3

i=1 2mQi+
∑2

i=1 3mRi
]6m−1.

Now if we prove that this last dimension is zero, we get a contradiction.
Claim.

dim[I∑6
i=1 mPi+

∑3
i=1 2mQi+

∑2
i=1 3mRi

]6m−1 = 0, for each m ≥ 1.

We prove the claim by induction on m. It is easy to verify that it is true for m = 1, so assume m > 1. If this
dimension is not zero, by Bezout’s Theorem, L1, L2, L3 are fixed components, hence

dim[I∑6
i=1 mPi+

∑3
i=1 2mQi+

∑2
i=1 3mRi

]6m−1 = dim[I∑6
i=1(m−1)Pi+

∑3
i=1(2m−1)Qi+

∑2
i=1(3m−1)Ri

]6m−4.

If this dimension is still not zero, by Lemma 2.5, L2 and L3 are fixed components of multiplicity at least⌈
6m−3−(6m−4)

2

⌉
= 1, and

⌈
6m−2−(6m−4)

1

⌉
= 2, respectively. Hence

dim[I∑6
i=1(m−1)Pi+

∑3
i=1(2m−1)Qi+

∑2
i=1(3m−1)Ri

]6m−4

= dim[I∑6
i=1(m−1)Pi+

∑3
i=1 2(m−1)Qi+

∑2
i=1 3(m−1)Ri

]6(m−1)−1,

and this is zero by the inductive hypothesis. �
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Theorem 6.4. Let X be a standard k-configuration of type (2, 4, 5). Then the Waldschmidt constant of X is

α̂(IX) = 3.

Proof. Let F be the following curve of degree 6, which contains each point of X with multiplicity 2,

F = 2L1 + 2L2 + 2L3.

Hence, for m > 0,

mF ∈ [I2mX]6m.

Now, as usual, we have to prove that for each m > 0, dim[I2mX]6m−1 = 0. It is true for m = 1, so assume
m > 1. Assume that for some m, [I2mX]6m−1 6= {0}, and let

m̄ = min{m|dim[I2m̄X]6m̄−1} 6= 0.

By Lemma 2.5, L1 is a fixed component of multiplicity at least
⌈
10m̄−6m̄+1

4

⌉
≥ m̄+ 1. Hence

dim[I2m̄X]6m̄−1 = dim[I2m̄X−(m̄+1)L1
]5m̄−2.

If this dimension is not zero, we get that L2 is a fixed component of multiplicity at least
⌈
8m̄−5m̄+2

3

⌉
≥

m̄+ 1. Hence

dim[I2m̄X]6m̄−1 = dim[I2m̄X−(m̄+1)L1−(m̄+1)L2
]4m̄−3.

If this dimension is not zero, we get that L3 is a fixed component of multiplicity at least
⌈
4m̄−4m̄+3

1

⌉
= 3.

It follows that F is a fixed component. Hence, we get a contradiction since

dim[I2m̄X]6m̄−1 = dim[I2m̄X−F ]6m̄−1−6 = dim[I2(m̄−1)X]6(m̄−1)−1,

which is zero by the definition of m̄. �

Theorem 6.5. Let X be a standard k-configuration of type (2, b, c).

(i) If b = 3 and c ≥ 6, then α̂(IX) = 3;
(ii) if b ≥ 4, then α̂(IX) = 3.

Proof. Let F = L1 + L2 + L3. Since mF ∈ [ImX]3m, then in both cases, α̂(IX) ≤ 3.
Now let X be a standard k-configuration of type (2, 3, c), with c ≥ 6. Then there exists a standard k-

configuration X
′ of type (2, 3, 6), with X

′ ⊆ X . Since, by Theorem 6.3, the Waldschmidt constant of X′ is
3, then α̂(IX) ≥ 3, and (i) is proved.

For (ii), since b ≥ 4, then there exists a standard k-configuration X
′ of type (2, 4, 5), with X

′ ⊆ X. Since,
by Theorem 6.4, the Waldschmidt constant of X′ is 3, hence α̂(IX) ≥ 3, and (ii) is proved. �

Remark 6.6. From the previous results we know the Waldschmidt constant of any standard k-configuration
of type (2, b, c), except for X of type (2, 3, 5). For the case (2, 3, 5), we found by Macaulay 2 [19] a curve F

of degree 71 with multiplicity exactly 24 at each point of X. The components of F are lines, one irreducible
conic and an irreducible rational septic. This implies α̂(IX) ≤ 71

24 < 3. Moreover, since a k-configuration of
type (2, 3, 4) is a subset of X, this give 17

6 as a lower bound (see Theorem 6.1). Hence 17
6 ≤ α̂(IX) ≤

71
24 .

Finally, we deal with the k-configurations of type (a, b, c) when a ≥ 3.

Theorem 6.7. Let X be a standard k-configuration of type (a, b, c), whith a ≥ 3. Then the Waldschmidt

constant of X is

α̂(IX) = 3.

Proof. It follows immediately from Corollary 4.2. �
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Remark 6.8. We recall Chudnovsky’s conjecture:
Let X be a finite set of distinct points in P

n. Then, for all m > 0,

α(I
(m)
X

)

m
≥

α(IX) + n− 1

n
.

This conjecture was proved in P
2 by Chudnovsky (see, for instance [22, Proposition 3.1]). As an application,

we wish to show that Chudnovsky’s conjecture is verified by standard k-configurations in P
2 of type (a, b, c).

Let X and Y be standard k-configurations in P
2 of type (a, b, c), and (b, c), respectively. We know that

α(IX) = 3 , and from the proof of Lemma 4.1, recalling that b > 1, we get that α(I(m)
Y

) = 2m. Moreover,

since the scheme mX ⊃ mY, then α(I
(m)
X

) ≥ α(I
(m)
Y

). It follows that, for all m > 0,

α(I
(m)
X

)

m
≥

α(I
(m)
Y

)

m
= 2 =

3 + 2− 1

2
=

α(IX) + n− 1

n
.

7. APPENDIX.

We recall the notation for the proofs of theorems about standard k-configurations of type (1, b, c), sum-
marized in Figure 6.

· · ·
· · ·L1

L2

R

Q1 Q2 Qb

P1 P2 P3 P4 Pc

M1 N1 M2 N2 M3

Ti

b

b b b b

b b b b b

FIGURE 6. A standard k-configuration of type (1, b, c)

We denote by

L1 be the line through P1, P2, . . . , Pc;
L2 be the line through Q1, Q2, . . . , Qb;
M1 be the line through P1, Q1, R;
M2 be the line through P3, Q2, R;

...
Mi be the line through P2i−1, Qi, R, for i ≤ b and 2i ≤ c+ 1;
N1 be the line through P2, R;
N2 be the line through P4, R;

...
Ni be the line through P2i, R, for 2i ≤ c;
Ti be the line through Qi, R, for i ≤ b and 2i ≥ c+ 2.

Proof of Theorem 5.4. Let X be a standard k-configuration of type (1, b, b+ 1). If b ≥ 4 is an even integer,
we show that

α̂(IX) =
9b− 4

3b
.

Let

F =
3b− 2

2
L1 +

3b− 2

2
L2 + M1 + · · · + M b

2
+1 + N1 + · · ·+ N b

2
+ T b

2
+2 + · · · + Tb,
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so mF is a curve in the linear system [I 3b
2
mX

] 9b−4
2

m
. Now we need to prove that, for each m > 0,

dim[I 3b
2
mX

] 9b−4
2

m−1 = 0.

By Lemma 2.5, if dim[I 3b
2
mX

] 9b−4
2

m−1 6= {0}, then L1 is a fixed component of multiplicity at least

(7.1)

⌈
3b
2 m(b+ 1)− 9b−4

2 m+ 1

b

⌉
=

⌈
(3b2 − 6b+ 4)m+ 2

2b

⌉
≥

3b− 6

2
m,

for the plane curves of the linear system [I 3b
2
mX

] 9b−4
2

m−1.

If we remove 3b−6
2 mL1, we get that L2 is a fixed component of multiplicity at least

(7.2)

⌈
3b
2 mb− (3b+ 1)m+ 1

b− 1

⌉
=

⌈
(3b2 − 6b− 2)m+ 2

2(b− 1)

⌉
≥

3b− 6

2
m.

By removing 3b−6
2 mL2, we have that L1 is a fixed component of multiplicity at least

(7.3)

⌈
3m(b+ 1)− 3b+8

2 m+ 1

b

⌉
= m+

⌈
(b− 2)m+ 2

2b

⌉
.

After removing mL1, then L2 is a fixed component of multiplicity at least

(7.4)

⌈
3bm− 3b+6

2 m+ 1

b− 1

⌉
= m+

⌈
(b− 4)m+ 2

2b− 2

⌉
.

Remove mL2. The residual scheme is

Y = X−
(3b− 6

2
m+m

)
L1 −

(3b− 6

2
m+m

)
L2 =

3b

2
mR+

∑

i

2mPi +
∑

i

2mQi,

and
dim[I 3b

2
mX

] 9b−4
2

m−1 = dim[IY] 3b+4
2

m−1.

Now, by Bezout’s Theorem, the lines Mi, Ni, and Ti are fixed components.
Set

(7.5) m̄ = min{m | [I 3b
2
mX

] 9b−4
2

m−1 6= {0}}.

First observe that m̄ 6= 1, in fact for m = 1, by (7.1), (7.2), (7.3), (7.4), and using also the ceiling parts, we
get that F is a curve of the linear system [I 3b

2
X
] 9b−4

2
−1, but F has degree 9b−4

2 , a contradiction.

So m̄ > 1. By by (7.1), (7.2), (7.3), (7.4), we get that F is a fixed component for the linear system[
I 3b

2
m̄X

]
9b−4

2
m̄−1

, hence, by recalling that degF = 9b−4
2 and F contains each point of X with multiplicity

3b
2 , we get

dim
[
I 3b

2
m̄X

]
9b−4

2
m̄−1

= dim
[
I 3b

2
m̄X−F

]
9b−4

2
m̄−1− 9b−4

2
= dim

[
I 3b

2
(m̄−1)X

]
9b−4

2
(m̄−1)−1

,

which is zero by (7.5), a contradiction. �

Proof of Theorem 5.6. Let X be a standard k-configuration of type (1, b, 2b − 1). We show that

α̂(IX) =
6b2 − 8b+ 1

2b2 − 2b
.

Let

Ci be the irreducible curve of degree (b− 1) through P2, P4, . . . , P2b−2, Q1, . . . , Q̂i, . . . , Qb, (b− 2)R
for 1 ≤ i ≤ b (see Lemma 2.7),
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and let F be the following curve of degree 6b2 − 8b+ 1 with multiplicity 2b2 − 2b at each point of X.

F = (2b2 − 3b)L1 + (2b2 − 4b+ 1)L2 + bM1 + · · ·+ bMb + C1 + · · ·+ Cb.

Hence for m > 0

mF ∈ [I(2b2−2b)mX](6b2−8b+1)m.

We should now prove that for m > 0,

[I(2b2−2b)mX](6b2−8b+1)m−1 = {0}.

Since the proof is analogous to the one of Theorem 5.5, assuming that the ideals which we will consider
are different from zero, we just show the computation that, from Lemma 2.5, gives how many times each
component of F is a fixed component for the curves of the linear system [I(2b2−2b)mX](6b2−8b+1)m−1.

We get that L1 is fixed component of multiplicity at least

(7.6)

⌈
(2b− 1)(2b2 − 2b)m− (6b2 − 8b+ 1)m+ 1

2b− 2

⌉
≥ (2b2 − 4b+ 1)m.

By removing (2b2 − 4b+ 1)mL1, we get that L2 is fixed component of multiplicity at least

(7.7)

⌈
b(2b2 − 2b)m− (4b2 − 4b)m+ 1

b− 1

⌉
= (2b2 − 4b)m+

⌈
1

b− 1

⌉
.

By removing (2b2 − 4b)mL2, we find that L1 is fixed component of multiplicity at least

(7.8)

⌈
(2b− 1)2m− 2b2m+ 1

2b− 2

⌉
= (b− 2)m+

⌈
(2b− 3)m+ 1

2b− 2

⌉
.

Now we remove (b− 2)mL1 and we find that each Mi is fixed component of multiplicity at least

(7.9)

⌈
(2b2 − 2b)m+ 2bm+ (b+ 1)m− (2b2 − b+ 2)m+ 1

2

⌉
= (b− 1)m+

⌈
m+ 1

2

⌉
.

So, after we remove ((2b2 − 4b+ 1) + (b− 2))mL1 + (2b2 − 4b)mL2 +
∑b

i=1(b− 1)mMi, the residual
scheme is

Y = (b2 − b)R+
b∑

i=1

(b+ 1)Qi +
∑

for i odd

2mPi +
∑

for i even

(b+ 1)mPi,

and the degree we have to consider is ((6b2−8b+1)−(2b2−4b+1)−(b−2)−(2b2−4b)−b(b−1))m−1 =
(b2 + 2)m− 1, thus

dim[I(2b2−2b)mX](6b2−8b+1)m−1 = dim[IY](b2+2)m−1.

Now if H is a curve of the linear system [IY](b2+2)m−1, the multiplicity of intersection between each Ci

and H is at least

|Ci · H | ≥ (b− 2)(b2 − b)m+ (b+ 1)(b− 1)m+ (b+ 1)(b − 1)m = (b3 − b2 + 2b− 2)m,

and this number is bigger than the product of the degree of Ci and H , which is

degCi · degH = (b− 1)((b2 + 2)m− 1) = (b3 − b2 + 2b− 2)m− (b− 1).

Hence, by Bézout’s Theorem, each curve Ci is a fixed component for the curves of [IY](b2+2)m−1.
Now let

(7.10) m̄ = min{m| [I(2b2−2b)mX](6b2−8b+1)m−1 6= {0}}.

We have m̄ > 1, in fact for m = 1, by (7.6), (7.7), (7.8), (7.9), and using also the ceiling parts, we get that
F should be a curve in the linear system [I(2b2−2b)X]6b2−8b, but F has degree 6b2 − 8b+1, a contradiction.

Hence m̄ > 1.
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By the above computation, then F is a fixed component for the linear system [I(2b2−2b)mX](6b2−8b+1)m−1.
We have

dim[I(2b2−2b)m̄X](6b2−8b+1)m̄−1 = dim[I(2b2−2b)m̄X−F ](6b2−8b+1)m̄−1−(6b2−8b+1)

= dim[I(2b2−2b)(m̄−1)X](6b2−8b+1)(m̄−1)−1

which is zero by (7.10), a contradiction. �

Proof of Theorem 5.7. Let X be a standard k-configuration of type (1, b, 2b). We show that

α̂(IX) =
6b− 5

2b− 1
.

Let
C be the irreducible curve of degree b through P2, P4, . . . , P2b, Q1, . . . , Qb, (b− 1)R

(see Lemma 2.7),

and let F be the following curve of degree (6b− 5) with multiplicity exactly (2b− 1) at the points of X,

F = (2b− 2)L1 + (2b− 3)L2 + M1 + · · · + Mb + C .

Hence, for m > 0, mF ∈ [Im(2b−1)X]m(6b−5). Now we will show that for each m > 0 we have

[Im(2b−1)X]m(6b−5)−1 = {0},

and the conclusion will follow from Lemma 2.2.
Assume that [Im(2b−1)X]m(6b−5)−1 6= {0} for some m > 0.
Let H be a curve of the linear system [Im(2b−1)X]m(6b−5)−1. Then the multiplicity of the intersection

between C and H is at least (2b− 1)m in each of the points Pi and Qi and at least (b− 1)(2b− 1)m in R.
Since we have 2b points Pi and Qi,

|C · H | ≥ 2b(2b− 1)m+ (b− 1)(2b− 1)m,

and this number is bigger than the product of the degree of C and H , which is b(m(6b− 5)− 1). In fact

2b(2b − 1)m+ (b− 1)(2b − 1)m− b(m(6b − 5)− 1) = m+ b > 0.

Hence, by Bézout’s Theorem, the curve C is a fixed component for the curves of [Im(2b−1)X]m(6b−5)−1.
Moreover, for the curves of this linear system, by Lemma 2.5, Mi, (1 ≤ i ≤ b), is a fixed component of

multiplicity at least
⌈
3(2b− 1)m− (6b− 5)m+ 1

2

⌉
=

⌈
2m+ 1

2

⌉
= m+ 1,

and L1 is a fixed component of multiplicity at least
⌈
2b(2b − 1)m− (6b− 5)m+ 1

2b− 1

⌉
= (2b− 3)m+

⌈
2m+ 1

2b− 1

⌉
.

If we remove the curve (2b− 3)mL1 we get

dim[Im(2b−1)X]m(6b−5)−1 = dim[Im(2b−1)X−(2b−3)mL1
)](4b−2)m−1.

If this dimension is different from zero, by Lemma 2.5, we get that L2 is a fixed component of multiplicity
at least ⌈

(2b− 1)m · b− (4b− 2)m+ 1

b− 1

⌉
= (2b− 4)m+

⌈
(b− 2)m+ 1

b− 1

⌉

for the curves of [Im(2b−1)X]m(6b−5)−1.
Now let

(7.11) m̄ = min{m|[Im(2b−1)X]m(6b−5)−1 6= {0}}.

We have m̄ > 1, in fact for m = 1, by the computation above, the curve Fof degree 6b − 5 should be a
fixed component for the linear system, [I(2b−1)X]6b−4, a contradiction.
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Hence m̄ > 1. Since F is a fixed component for the linear system [Im(2b−1)X]m(6b−5)−1 we have

dim[Im̄(2b−1)X]m̄(6b−5)−1 = dim[Im̄(2b−1)X−F ]m̄(6b−5)−1−(6b−5) = dim[I(m̄−1)(2b−1)X](m̄−1)(6b−5)−1,

which is zero by (7.11 ), a contradiction. �

Proof of Theorem 5.8. Let X be a standard k-configuration of type (1, b, 2b + 1). We show that

α̂(IX) =
6b2 − 2b− 3

2b2 − 1
.

Let

Ci be the irreducible curve of degree b through P2, P4, . . . , P̂2i, . . . , P2b, P2b+1 ,
Q1, . . . , Qb, (b− 1)R for 1 ≤ i ≤ b,

Cb+1 be the irreducible curve of degree b through P2, P4, . . . , P2b, Q1, . . . , Qb, (b− 1)R;

(see Lemma 2.7 for the b+1 curves Ci). Note that the curve C1+ · · ·+Cb+1 has degree b(b+1), multiplicity
b + 1 at each of the points Q1, . . . , Qb, multiplicity b at each of the points P2, P4, . . . , P2b, P2b+1, and
multiplicity b2 − 1 at R. Let

F = (2b2 − b− 1)L1 + (2b2 − 2b− 2))L2 + bM1 + · · ·+ bMb + C1 + · · ·+ Cb+1.

Then F is a curve of degree (6b2 − 2b− 3) with multiplicity (2b2 − 1) at each point of X. Hence for m > 0

mF ∈ [I(2b2−1)mX](6b2−2b−3)m.

We now have to prove that
[I(2b2−1)mX](6b2−2b−3)m−1 = 0.

Assume that for some m > 0, [I(2b2−1)mX](6b2−2b−3)m−1 6= {0}.
Analogously to the proof of Theorem 5.7, let H be a curve of the linear system [I(2b2−1)mX](6b2−2b−3)m−1.

Then the multiplicity of intersection between each Ci and H is at least (2b2 − 1)m in each of the 2b points
Pi and Qi and at least (b− 1)(2b2 − 1)m in R, so,

|Ci · H | ≥ 2b(2b2 − 1)m+ (b− 1)(2b2 − 1)m,

and this number is bigger than the product of the degree of Ci and H , which is b((6b2−2b−3)m−1). Hence,
by Bézout’s Theorem, each curve Ci is a fixed component for the curves of [I(2b2−1)mX](6b2−2b−3)m−1.

Moreover, for the curves of this linear system, by Lemma 2.5, each Mi is a fixed component of multi-
plicity at least ⌈

3(2b2 − 1)m− (6b2 − 2b− 3)m+ 1

2

⌉
= bm+ 1,

L1 is a fixed component of multiplicity at least
⌈
(2b2 − 1)(2b + 1)m− (6b2 − 2b− 3)m+ 1

2b

⌉
=

⌈
(4b3 − 4b2 + 2)m+ 1

2b

⌉
= (2b2−2b)m+

⌈
2m+ 1

2b

⌉
,

and, by removing (2b2 − 2b)mL1, we get that L2 is a fixed component of multiplicity at least
⌈
(2b2 − 1)m · b− (4b2 − 3)m+ 1

b− 1

⌉
= (2b2 − 2b− 3)m+

⌈
1

b− 1

⌉
.

Now let

(7.12) m̄ = min{m|[Im(2b2−1)X]m(6b2−2b−3)−1 6= {0}}.

We have m̄ > 1, in fact for m = 1, by the computation above, the curve F ′of degree 6b2 − 3b− 1,

F
′ = (2b2 − 2b+ 1)L1 + (2b2 − 2b− 2)L2 + bM1 + · · · + bMb + C1 + · · · + Cb+1,
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should be a fixed component for the linear system, so

dim[I(2b2−1)X](6b2−2b−3)−1 = dim[I(2b2−1)X−F ′ ](6b2−2b−4)−(6b2−3b−1)

= dim[I(b−2)P1+···+(b−2)P2b+1
](b−3)

= 0,

a contradiction.
Hence m̄ > 1. By the computation above F is a fixed component for [I(2b2−1)m̄X](6b2−2b−3)m̄−1, hence

we have

dim[I(2b2−1)m̄X](6b2−2b−3)m̄−1 = dim[I(2b2−1)m̄X−F ](6b2−2b−3)m̄−1−(6b2−2b−3)

= dim[I(2b2−1)(m̄−1)X](6b2−2b−3)(m̄−1)−1,

which is zero by (7.12), a contradiction. �
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