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Abstract: Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, consti-
tuting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements
in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular
heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective
treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage
detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from
the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay
between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belong-
ing to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the
pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer
progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.

Keywords: glioblastoma multiforme; tumor microenvironment; extracellular vesicles; chaperoning
system

1. Introduction

Glioblastoma multiforme (GBM) is the most aggressive brain tumor that accounts
for 60% of primary brain cancers, with a poor survival rate [1,2]. The survival time is
usually less than one year after diagnosis, while for lower-grade gliomas, the survival
time is longer [3]. In general, the 5-year survival rate of GBM patients remains around
10% [4]. Moreover, most patients with GBM do not have a family history, a characteristic
shared by most central nervous system (CNS) tumors [5]. Despite the progress of research
in areas such as bivalent chimeric antigen receptor (CAR) T cells and immunotherapies [6],
chemotherapy and surgery represent the current therapeutic options. The gold-standard
therapy in GBM treatment is Temozolomide (TMZ), which is usually administered in
combination with radiotherapy for about six cycles. However, this therapeutic approach
shows side effects including myelosuppression and hepatic impairment [3,7,8].

The onset of GBM is usually unpredictable and characterized by a poor prognosis.
Therefore, its early diagnosis by tumor markers becomes crucial.
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The high molecular heterogeneity of gliomas, the intricate relationship with the tumor
microenvironment (TME), and the non-selective treatments available are often responsible
for events of epilepsy and neoplasia recurrence [9].

Most GBM cases are diagnosed in the advanced stage, as the symptomatology arises
from their rapid expansion due to the tumor’s infiltration towards healthy brain structures.
Neuroimaging techniques, such as magnetic resonance imaging (MRI) or computed to-
mography (CT), show the GBM as a bulk with invasiveness paths that seem to have an
anatomical fingerprint [5,10]. Recurrent GBM often arises in peritumoral areas. There-
fore, the radiologically defined FLAIR hyperintensity areas beyond the GBM enhancing
core becomes matters of debate. T2-flair digital subtraction maps may be useful tools for
quantitation, and the surgical procedure of “flairectomy” could be of benefit to patients’
outcomes [11,12].

Beyond the biology of oncological transformation and its genetics, the aggressiveness
of the GBM is allowed by the alliance with other cells in the central nervous system
(CNS), including neurons, astrocytes, oligodendrocytes, macrophages, microglia, and other
immune populations [13–15]. Therefore, the CNS microenvironment is indispensable for
GBM progression [16].

Astrocytes and myeloid-derived cells including microglia and macrophages share
innate immune properties and are the first interactors of GBM. The tumor-supportive glial
cells aid the cancer’s immune escape and facilitate its progression in a dynamic sequence of
molecular events [17]. In accord, many shreds of evidence indicate that GBM evolves by the
reorganization of TME, suggesting the potential of glial and myeloid cells’ re-education as
an immunotherapy approach and the urgency of novel biomarkers for the early diagnosis
of the disease [18,19].

GBM cells establish contact with the host cells and can release cytokines or extracel-
lular vesicles (EVs), changing their metabolism and converting them toward a pro-tumor
phenotype [20].

In the current review, we depict the main molecular interactors between human GBM
cells, astrocytes and microglia, supported by the literature and bioinformatic tools. We
identify molecular targets specific to astrocytic and myeloid cells that could potentially be
involved in cancer progression. Moreover, we highlight the role exerted by EVs in the early
and targeted diagnosis of astrocytic tumors.

1.1. Human GBM and Astrocytes

Human astrocytes are star-like cells, a major glial component in the CNS. They provide
neuronal axon guidance during development and metabolic support to neurons throughout
their life. They take part in synaptic activity, maintain ion homeostasis and the integrity of
blood–brain barrier (BBB), and concur to build the extracellular matrix (ECM), along with
many other roles that are as-yet undiscovered in health and disease. Human astrocytes
can be identified for the expression of the glial fibrillary acidic protein (GFAP), which
increases in response to injury [19,21], even though its labeling appears weak and diffused
in the tumor area [22]. Human glioma cells may undergo an alteration in GFAP splicing,
with a dominance of the GFAPδ isoform in GBM, affecting the aggressiveness of the
tumor [23]. Reactive astrocytosis with typical overexpression of GFAP and vimentin
(VIM) is commonly found at the boundary of the tumor bulk and in the peritumoral
microenvironment [24,25]. Furthermore, VIM expression appears to be elevated in human
glioblastoma cells compared to healthy astrocytes [26]. Glutamate transporter 1 (GLT-1)
is expressed primarily in astrocytes [27]. GLT-1 mRNA is scarce in primary brain tumors
when compared to control brain tissues, and it seems to be inversely correlated with the
tumor grade [28]. Peritumoral reactive astrocytes show an impairment in glutamate and
potassium uptake, as well as glutamine synthetase activity [29]. Accordingly, the increased
expression of GLT-1 in peritumoral tissue is neuroprotective and associated with prolonged
survival in a rat model of experimental malignant glioma [30].
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A recent analysis of astrocyte transcriptomes shows that tumor-associated astrocytes
undergo a robust modification of the RNA transcripts. Peritumor astrocytes downregulate
the expression of genes involved in the synaptic circuits’ maturation, metabolism, glu-
tamate transporters (SLC1A2 and SLC1A3) and receptor sensing, which may limit their
ability to respond to environmental stimuli, contributing to neuronal toxicity and epileptic
discharges [25]. Human astrocytes appear with a reactive profile based on the upregula-
tion of proinflammatory genes [25]. In parallel, tumor core astrocytes upregulate many
anti-inflammatory genes via JAK-STAT and interferon-gamma response, contributing to an
immunosuppressive microenvironment that facilitates tumor growth and infiltration [31].

Human astrocytes under the cancerous processes reveal a change in the protein
secondary conformation, with less α-helical sequence content and an increase in β-sheets
and random structures, critical to the biological function [24].

The phenotypic transformation of human astrocytes occurs via direct coupling with
glioma cells. The astrocytic gap junction protein, Connexin 43 (Cx43), was identified
in immunoreactive areas of cell–cell contact [32]. However, an inverse correlation has
been revealed between Cx43 and the tumor grading in biopsies. The expression of Cx43
decreases as the glioma invasion increases and could be considered as a putative marker
of glioma progression. Indeed, Cx43 labeling has been detected as weak, with aberrant
cytoplasmic staining or fibrillary background in human glioblastomas [22]. Another study
reported the persistence of elevated levels of Cx43 mRNA in high-grade astrocytomas. The
reduced levels of the Cx43 protein could be due to an alteration in the post-transcriptional
mechanisms such as the regulation of its synthesis and/or the intracellular transport to
membrane sites [33]. From animal studies, it has been suggested that tumor cells contact the
Cx43+ astrocytes to overcome the glial scar surrounding the tumor core [34]. Subsequently,
glioma migration may depend on other mechanisms. Among these, human GBM cells
release extracellular vesicles (EVs) which are taken up by other cells in the TME. EVs
are nanoparticles with a lipidic membrane that contains various molecular constituents,
including proteins and nucleic acids [35,36]. Among the exosome-associated markers, there
are CD63, Tsg101, and ALIX, and an absence of GM130, a Golgi protein that indicates
contamination with cellular debris [37].

GBM EVs appear to reprogram astrocyte metabolism by inducing a shift in gene
expression that may be partly associated with the horizontal transfer of mRNAs encoding
ribosomal proteins, oxidative phosphorylation, and glycolytic factors [38]. Human astro-
cytes receive EVs containing CD147, which is a signaling protein propagated from tumor
cells to astrocytes inducing the expression and release of metalloproteinases 9 (MMP9),
probably through the MAPK pathway [38]. Metalloproteinases are enzymes degrading the
extracellular matrix (ECM), whose remodeling is a key process for glioma progression [37].
Beyond the MMPs, regulators of cell–cell or cell–substrate adhesion in the ECM such as
collagen IV, CXCL14, TGFBI, FBLN5, ADAMTS2, TN-C, and CD44 are modified to facilitate
tumor dissemination and can be mainly subscribed to microglia and astrocytes [39–41].
Reactive astrocytes maintain tumor pro-invasion programs driven by the signal transducer
and activator of transcription 3 (STAT3), p53, and MYC signaling pathways. They aid
tumor immunoevasion under the control of both GBM and the microglia [31,42,43].

1.2. Human GBM and Microglia

Infrared spectroscopy presented the human microglia as round, small, and short rod-
shaped with clear edges [24]. Healthy, resting microglia, reactive microglia, intermediate
and bumpy forms, and macrophage-like cells can be tagged by allograft inflammatory
factor 1 (Iba1), CD68, CD16, and CD163 markers. They reveal different antigens with a
specific localization: membrane associated and cytoplasm for Iba1, lysosomes for CD68,
and cell membranes for CD16 and CD163. Iba1+ and CD16+ cells prevail in human low-
grade gliomas, whereas CD68+ and CD163+ cells increase in high-grade gliomas, with
a significant correlation between patients’ worsening overall survival [44]. Many other
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molecules, including growth factors and cytokines, have been identified as regulators of
glioma-associated microglia cell interactions [45].

During cancer progression, microglia cells polarize in different phenotypes: the
M1 phenotype induces reactive oxygen species (ROS) and nitric oxide (NO) and re-
leases proinflammatory cytokines (IL-1 β, IL-6, TNF α, CCL2), resulting in anti-tumor
effects [46–48]; the M2 phenotype regulates anti-inflammatory cytokine secretion (TGF-β
and IL-10) as well as immunosuppressive factors (ARG-1 and CD36), leading to pro-tumor
consequences [49–51]. Several studies have demonstrated that glioma-associated microglia
show both phenotypes in human GBM specimens, and distinguishing between these two
phenotypes is very difficult [52,53]. In the literature, the hypothesis that positive feed-
back exists between cancer cells and microglia has been largely supported. Cancer cells
release inflammatory factors (CCL2, CXCL12, CX3CL1, GDNF, CSF-1), leading to microglia
chemoattraction and eventually inducing its shift to the M2 phenotype. On the other
hand, many factors released from microglia (STI1, EGF, IL-6, TGF-β) stimulate GBM cell
migration and proliferation [53–56] (Figure 1).
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Figure 1. Positive feedback between cancer cells and microglia. Glioma cells release several
chemoattractant molecules that induce microglia to shift from M1 (pro-inflammatory) to M2
(anti-inflammatory) phenotype. Among chemoattractants, there are monocyte chemotactic pro-
tein 1 (CCL2), CXCL12 (C-X-C Motif Chemokine Ligand 12), C-X3-C Motif Chemokine Ligand
1 (CX3CL1), glial cell-derived neurotrophic factor (GDNF), and colony-stimulating factor 1 (CSF-1).
Activated microglia cells release many molecules that drive GBM cell migration and proliferation,
including stress-inducible protein 1 (STI1), epidermal growth factor (EGF), transforming growth
factor-β (TGF-β), and interleukin-6 (IL-6). (Image was created with BioRender.com online software:
https://www.biorender.com. Accessed on 19 January 2024).

Microglia were shown to internalize GBM-derived EVs, leading to their high prolifer-
ation rates and a shift in their cytokine profiles toward immune suppression [57]. These
findings could be in accordance with the role of microglia as the major regulator of im-
mune adaptation, which contributes to creating an immunosuppressive microenvironment
functional to tumor evasion. The immune adaptation in microglia could involve mTORC1
signaling via the regulation of STAT3 and NfKB transcription factors following the crosstalk
with GBM, since the human GBM-associated-microglia mTOR pathway and the poor in-

https://www.biorender.com
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filtration of lymphocytes were positively correlated [58]. In agreement, in vitro studies
reported that mTOR kinase inhibitors polarize glioma-activated microglia to express a
pro-inflammatory profile [59], and efforts have been made to enable the brain-restricted
inhibition of kinase targets [60].

1.3. Extracellular Biomarkers Involved in Early Diagnosis of GBM

GBM recurrence arises from cells at the invasive margin evading surgical debulking,
yet the degree of similarity to bulk counterparts remains uncertain. Investigating the
extracellular space and tumor matrix is crucial for comprehending tumor regrowth [61].
The tumor microenvironment, influenced by astrocytes and microglia supporting GBM
invasiveness, presents challenges for developing treatments aiming to decrease recurrence
rates and enhance overall patient survival. The brain’s ECM offers a unique invasion envi-
ronment, and research suggests that M2-like microglia/macrophage polarization correlates
with a poorer prognosis, while predominant M1 polarization indicates a more favorable
prognosis in GBM patients [62]. Additionally, astrocytes, involved in blood–brain barrier
modulation and neuronal plasticity, contribute to CNS damage and undergo astrogliosis,
transforming into reactive astrocytes capable of tissue repair. Various pathways activate
astrocytes into tumor-associated astrocytes (TAAs) during GBM growth, influencing modi-
fications in the TME and the release of active mediators potentially useful as biomarkers
for the early diagnosis and prognosis of GBM [63].

About 10 years ago, circulating tumor cells (CTCs) and circulating tumor DNA
(ctDNA) were discovered. They received much attention as new biomarkers and introduced
the concept of liquid biopsy [64–66]. The concept of liquid biopsy can be applied to all fluids
in the human body (blood, urine, cerebrospinal fluid, saliva, etc.), and the main advantage
is that it allows cancer screening and the prognosis and monitoring of the effectiveness of
cancer therapies with minimally invasive techniques for the patient (e.g., blood sampling).
Increased levels of specific proteins or nucleic acids in blood or other biological fluids reflect
many pathological processes, including cancer [67]. Thus, liquid biopsy has advantages
over classic tissue biopsy, which is a more invasive procedure and cannot be repeated as
often as a liquid biopsy; the latter can be repeated several times to follow the evolution
of the disease in its various stages and the response to anti-tumor therapy [68]. Another
disadvantage of tissue biopsies is that they represent a small region of the tumor and,
therefore, may not fully include the intra-tumor heterogeneity of GBM [69].

In GBM patients, plasma obtained after the centrifugation of blood or cerebrospinal
fluid is usually used as a biological matrix for tumor markers. Tumor-specific circulating
components include CTCs, ctDNA, miRNA, proteins, tumor-educated platelets (TEPs),
and EVs [70–72]. CTCs are cells released into the bloodstream by the primary tumor
or metastases. GBM-derived CTCs have been shown to have a phenotype like cancer
stem cells, thus exhibiting characteristics such as resistance to radiation, chemotherapy,
and stress-induced apoptosis [73]. Another characteristic of CTCs is that they undergo
epithelial–mesenchymal transition (EMT), resulting in a more mesenchymal phenotype
with greater migratory potential that underlies the process of metastasis formation [74].
The detection of circulating CTCs is correlated with the risk of recurrence after surgery [75].

The ctDNA comprises small DNA fragments (180–200 base pairs) released by cancer
into the bloodstream, mainly from apoptotic cells. In particular, the presence of GBM-
derived ctDNA in plasma is low, compared to other tumors, because the blood–brain barrier
(BBB) limits its diffusion into the blood, and therefore, it is better to use cerebrospinal fluid
(CSF) for this type of analysis [76]. Its importance consists of the ability to carry tumor-
specific mutations [77]. It was seen that the glioma genome in the CSF contained a wide
spectrum of genetic alterations and had similarities to the genome in tumor biopsies.
Among the most common mutations found in gliomas both at the tumor biopsy level
and at the ctDNA level in the patient’s CSF were mutations within the telomerase reverse
transcriptase promoter (TERT), the protein-coding regions of TP53 and the catalytic domain
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of isocitrate dehydrogenase 1 (IDH1), CDKN2A/CDKN2B deletions, and epidermal growth
factor receptor (EGFR) amplifications [78].

miRNAs are part of the non-coding RNAs and are involved in both physiological
and pathological processes (e.g., cancer) through a mechanism of post-transcriptional
gene expression regulation. Thus, they are implicated in the processes of proliferation,
differentiation, invasiveness, and tumor metastasis formation [79]. GBM patients show the
altered expression of several miRNAs in the bloodstream [80,81]. Circulating levels of miR-
15b, miR-23a, miR-133a, miR-150, miR-197, miR-497, miR-548b, miR-128, and miR-342-3p
were reduced in GBM patients compared to healthy controls; in contrast, miR-21, miR-221,
miR-222, miR-210, miR-182, and miR-454 levels were upregulated in cancer patients [69].
These miRNAs play key roles in the proliferation, invasion, and angiogenesis of glioma
cells, and their dysregulation is correlated with low survival rates. Therefore, they can be
used both as prognostic and diagnostic biomarkers. Their usefulness as cancer biomarkers
was confirmed by observing that normal levels of these miRNAs were restored after surgery
and chemo-radiotherapy. Furthermore, it was seen that these miRNAs appear to be specific
for gliomas, allowing for a differentiated diagnosis from other types of brain tumors [82].

The class of non-coding RNAs also includes long non-coding RNAs (lncRNA). In-
creased HOTAIR lncRNA in serum was associated with poor prognosis and early tumor
recurrence in GBM. Conversely, GAS5 lncRNA upregulation is associated with a better
prognosis and a reduced chance of recurrence [83,84].

Circulating protein markers of brain tumors include immunosuppressive acid protein,
acid glycoprotein alpha-1, antitrypsin alpha-1, glycoprotein fibronectin, and thrombomodulin-
1 [85]. Among the secreted proteins, some have been proposed as potential serum biomark-
ers of astrocytoma: soluble CD95, YKL-40, serum protein kinases, apolipoprotein E, cell
adhesion molecules, and angiopoietin-1 and 2 [86]. Although the serum profiles for GBM
identified through data mining exhibit a promising level of robustness, these findings
warrant validation in a larger sample size. Such validation is essential to establish stronger
correlations between individual markers and GBM, ensuring the sensitivity and speci-
ficity of circulating protein markers for GBM, both critical characteristics for effective
biomarkers [86]. As stated above, the primary biological processes central to the develop-
ment of gliomas involve the restructuring of the ECM and the occurrence of proneural–
mesenchymal transition (PMT), in which cancer cell proliferation and invasion are closely
tied to the proteolytic remodeling of the ECM. This process enhances the migratory poten-
tial of glioma cells by activating integrins and associated signaling pathways, ultimately
leading to increased invasiveness and migratory capacity, which contribute to a dismal
prognosis and resistance to conventional treatments. As gliomas progress towards malig-
nancy, patients undergo various therapeutic interventions, resulting in the emergence of
surviving cells with diverse phenotypic traits and resistance to radiation or chemotherapy.
In this context, the elevated expression of proteins associated with proteotoxic stress, such
as heat shock proteins (HSPs), is closely associated with poor prognosis and therapeutic
resistance in gliomas [78]. HSPs promote tumor growth by stimulating cell proliferation
and inhibiting cell death pathways. Additionally, HSPs exhibit chaperone activity for
numerous proteins, including matrix-degrading enzymes involved in ECM degradation.
Furthermore, HSPs play a crucial extracellular role in the invasive phase of metastasis by
binding to matrix metalloproteinases (MMPs) [79]. The upregulation of HSP expression
occurs in both stages of gliomagenesis and in the acquisition of chemo- or radio-resistant
phenotypes. Consequently, HSPs represent potential targets for effective clinical strategies
in the rational development of anti-glioma drugs.

Two classes of cytoplasmic proteins associated with cellular stress (HSP70) and neu-
ral stem cells (FABP7) have been proposed as biomarkers for GBM [86]. HSP70 is an
anti-apoptotic chaperone with tumor-promoting activity that therefore shows higher con-
centrations in the plasma of subjects with GBM than in controls. It has been shown that
when cells are under stress, they can express HSPs on the surface of the plasma membrane
with the possibility of secreting them into the extracellular space. This is one of the mecha-
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nisms by which cancer cells modulate the tumor microenvironment, and it is also possible
to identify the increased concentration of HSPs in circulation [87,88]. Furthermore, it was
noted through in vitro models that HSPs can easily cross the BBB [89].

1.4. EVs Role in GBM Progression and Focus on HSP90/HIF/HO-1 Pathway

The new frontier for the analysis of tumor biomarkers by liquid biopsy is represented
by EVs characterization. They are more representative of ctDNA, which reflects the informa-
tion of apoptotic or dead tumor cells. Furthermore, EVs have a higher relative abundance
in biological fluids than circulating tumor cells (CTCs), due to the ability of EVs to cross
the blood–brain barrier [90–92].

EVs are a heterogeneous group of vesicles that can be classified according to their
size, density, and mechanism of biogenesis into three main types: exosomes, microvesicles,
and apoptotic bodies [93]. However, the International Society for Extracellular Vesicles
(ISEV) encourages the use of the term “extracellular vesicles (EVs)” as a generic term for all
secreted vesicles, considering the lack of consensus for the identification of specific markers
to distinguish between the different subtypes of EVs [94].

They are produced by all the cells in the body and are involved in both normal and
pathological cellular processes like intercellular communication and homeostasis. EVs
allow their cargo (RNA, proteins, and lipids) to be transported from the parenteral cells
to the recipient cells by traveling through the extracellular space, so they are present in
all biological fluids and can be used in liquid biopsy [95]. The cargo vesicles are located
within a phospholipid bilayer that protects them from enzymatic degradation, and this is
one of the advantages of using EVs in the field of nanotechnology target therapy [96].

In pathological conditions such as cancer, EVs can promote the horizontal spread of
malignancy by transporting their cargo into recipient cells, thus altering their physiological
mechanisms and affecting their phenotype [90–92].

The interest that has grown in EVs in recent years for cancer research concerns their role
in certain processes such as proliferation and invasion, drug resistance, and the polarization
to a microenvironment favorable to cancer [97,98]. Other studies show that circulating
EVs levels were significantly reduced post-operatively compared to pre-operative plasma
samples, suggesting that a tumor causes increased EVs levels in patients’ plasma [99].

Among the proteins present in the cargo of EVs, proteins belonging to the Chaperoning
System (CS), with most of them being HSPs, are found [87]. These proteins are necessary
for the maintenance of cellular homeostasis and they are also involved in several stages of
carcinogenesis [48,100–103]. In glioma, various heat shock proteins (Hsps) play significant
roles in promoting malignant behavior. Specifically, HSP27, HSP60, and members of
the HSP70 and HSP90 families are involved in processes like proliferation, migration,
invasion, and tumor growth regulation. Additionally, these proteins contribute to cancer
cell survival mechanisms, including resistance to apoptosis and adaptation to hypoxic
conditions [104,105].

In the pathogenesis of gliomas, HSP90 plays a crucial role in metabolic rewiring and
the transcriptional regulation of key genes involved in tumorigenesis and cancer pro-
gression [106]. HSP90 directly influences metabolic processes by regulating the activity
and stability of various metabolic enzymes. Additionally, it indirectly affects metabolic
networks and oncogenic pathways by modulating HSP90-dependent signaling pathways.
Client HSP90 proteins are regulated by the ubiquitin/proteasome system among the mech-
anisms [107]. Cancer cells exploit HSP90’s chaperone function to protect mutated and
overexpressed oncoproteins, such as hypoxic inducible factor (HIF) and vascular endothe-
lial growth factor (VEGF), from misfolding and degradation, thereby enhancing cancer cell
survival [108]. Within GBM, hypoxic microenvironments support the maintenance of stem-
like cells known as glioblastoma stem-like cells (GSCs), where HSP90 is co-localized with
stem cell markers and HIF [109]. Furthermore, HSP90 is implicated in GBM cell migration,
invasiveness, and the regulation of survival and apoptosis pathways [108]. Remarkably,
a recent study has elucidated that Hsp90 not only interacts directly with membranes but
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also plays a pivotal role in their deformation during the biogenesis of EVs, thereby being
intricately linked to the dissemination of molecular mediators [110].

By inducing HIF transcription, hypoxia activates many downstream target genes
including human heme oxygenase 1 (HO-1) [111–113]. Its overexpression was detected
in many human cancers, where it exerts an antiapoptotic role through mitogen-activated
protein kinase pathway induction, resulting in poor prognosis and chemoresistance. Note-
worthily, HO-1 overexpression was detected in human gliomas as compared to non-
malignant samples, suggesting its oncogenic role in GBM progression [114,115]. HO-1 was
suggested as an angiogenic marker since it drives VEGF overexpression, promoting an
aberrant neovascularization typical to GBM. Moreover, HO-1 aberrant levels were also
linked to increased macrophage infiltration [116,117].

Therefore, with glioma cell-derived vesicles being implicated in tumor expansion
and pro-angiogenic signaling [118], the expression of specific proteins, such as HSP90 and
HO-1, present within EVs can be used as an early diagnostic biomarker after the isolation
of vesicles from biological fluids [36,119,120].

2. Methods

Based on the aforementioned evidence, EVs appear to be fundamental in understand-
ing glioma interplay with the microenvironment. However, they appear to be heteroge-
neous, like the several cell populations found in tumor tissue [10,121]. Profiling the EVs
based on the cells of origin would provide insights into elucidating the molecular content
and the interactions occurring between human glioma, astrocytes, and myeloid cells.

We examined the connections among proteins using the online tool STRING version
12.0 (www.string-db.org, accessed for the first time on March 10, 2023), which is an open-
access, biological database and web resource of known and predicted protein–protein
interactions.

We considered the most used markers for astrocytes and microglia/macrophages
(listed in Table 1), as well as the major tags for EVs, as reported in the previous sections.
We refined the most significant connections based on the STRING experimental datasets
and well-known interactions. After that, we enriched the protein pathways including
STRING-predicted interactions and cluster analysis. The enrichment proteins included
regulators of the vesicular trafficking process (MVB12A, MVB12B, VPS37B, CHMP4A) and
the dendritic cell nuclear protein 1 (DCANP1) of the astrocyte signature.

Table 1. Lineage-expression proteins for human glioma cells, astrocytes, and myeloid cells. The
symbol + indicates protein overexpression; the symbol - indicates protein underexpression, with the
main corresponding references in the literature. Both symbols are shown in the case of variability.

Proteins Glioma Cells Astrocytes Microglia Ref.

GFAP GFAPδ+ GFAPα+ [23,25]

VIM + +/- [26]

SLC1A2 - [25]

SLC1A3 - [25]

CD63 + - - [37]

Cx43 +/- + [22]

GLT-1 - + [28,29]

Iba1 - + [44]

CD68 + [44]

C16 + [44]

CD163 + [44]

www.string-db.org
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New Perspectives for Early Diagnosis and Targeted Cancer Therapy

The STRING investigation resulted in specific connections between human GFAP+,
VIM+ astrocytic proteins, and HSP90, which may be a central node in the human astrocytic
EV traffic (protein pathway enrichment p-value: 3.75 × 10−5; Figure 2a). HSP90 is crucial to
cancer cell growth and survival [106]. It is overexpressed in pathological reactive astrocytes
(GFAP+, VIM+) to hold GLT-1 degradation [122], therefore providing a high level of
glutamate for tumor progression and associated epilepsy.
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Each node represents all the proteins produced by a single, protein-coding gene locus. Colored, filled
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clusters. Minimum required interaction score, medium confidence = 0.400.

The microglia/macrophage (Iba1+, CD68+) expression profile is linked to the HO-1
protein (protein pathway enrichment p-value: 0.00109; Figure 2b). HO-1 is a marker of
neovascularization and macrophage infiltration in human gliomas [108] and has been
reported as a novel potential therapeutic target to prevent osteopontin-dependent human
glioma cell migration [114]. However, the STRING cluster investigation suggested that EVs
might not prevail as a means of communication among myeloid cells. HO-1 is generally
triggered by the generation of reactive oxygen and/or nitrogen species, which have an
extremely short lifetime and quick effects that would be not compatible with the low-yield
process of EVs [123–125].

The current data shed light on targeted pathways within glioma–glia crosstalk, paving
the way for new perspectives on early diagnosis and molecular therapies. Interestingly, EV
biomarkers of activated astrocytes, HSP90+, may be directly detected in the patient’s fluid,
potentially informing on the disease state compared to controls [126]. Studies on human
microglia–macrophage-derived EVs are still limited [127].

3. Conclusions

In conclusion, GBM presents a formidable challenge due to its molecular complexity
and intimate association with the CNS microenvironment. Novel therapeutic avenues
targeting glial and myeloid cell interactions, and leveraging EVs-mediated signaling, hold
promise for improved outcomes. The identification of specific biomarkers within EVs
cargo, such as HSP90, offers a potential avenue for non-invasive, early diagnosis on as-
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trocytic tumor lineage [115,128]. The identification of HO-1 as a potential target for mi-
croglia/macrophage reactions sheds light on the development of targeted therapies, which
may go beyond the EVs’ traffic (Figure 3). Further research into the intricate intercellular
communication in GBM pathology is warranted to advance precision medicine approaches
in combating this aggressive disease.
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Figure 3. Schematic representation illustrating the role of extracellular HSP90 and HO-1 in the
crosstalk between different cell types present in the tumor microenvironment of GBM. The illustration
provides insight into the intricate interactions between astrocytes and microglia/macrophages within
the tumor microenvironment (TME), highlighting their bidirectional communication facilitated by the
release of extracellular vesicles (EVs). These cellular interactions have been extensively documented
in the context of their association with tumor cells in the TME (1). In GSCs in hypoxic conditions, HIF-
α recruits Hsp90 and Hsp70 in the cytoplasm and interacts with the importin for nuclear translocation.
Nucleated HIF-α further recruits other cofactors such as HIF-b and p300/CBP and initiates gene
transcription and hypoxia signaling. Hypoxia triggers the activation of numerous downstream target
genes, among which is HO-1, which plays an antiapoptotic role by inducing mitogen-activated
protein kinase pathways (2). Notably, the figure highlights specific connections identified between
human astrocytes and HSP90, suggesting a pivotal role for HSP90 in orchestrating the trafficking
of human astrocytic EVs. HSP90 serves as a crucial regulator of cancer cell growth and survival,
and its heightened expression in pathological reactive astrocytes characterized by GFAP+ and VIM+
expression significantly contributes to tumor progression. Understanding the role of HSP90 in EV
trafficking sheds light on a potential mechanism through which astrocytes modulate the TME and
influence tumor behavior (3). Additionally, the figure depicts the expression of the HO-1 protein by
microglia/macrophages, which serves as a marker of neovascularization. Importantly, HO-1 may
also be released into the TME via EVs, indicating a possible contribution to the complex interplay
between immune cells and the tumor microenvironment. This suggests a multifaceted role for EV-
mediated communication in shaping the TME and influencing various aspects of tumor progression,
including angiogenesis and immune regulation (4). The depicted crosstalk underscores the dynamic
nature of cellular interactions within the TME and highlights the potential significance of targeting
HSP90 and HO-1 pathways for therapeutic intervention in glioblastoma and other malignancies.
(Image was created with BioRender.com online software: https://www.biorender.com. Accessed on
17 March 2024).
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