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Abstract Moving masses are of interest in many
applications of structural dynamics, soliciting in the
last decades a vast debate in the scientific literature.
However, despite the attention devoted to the subject,
to the best of the authors’ knowledge, there is a lack of
analysis about the fate of a movable mass when it rolls
or slips with friction on a structure. With the aim of
elucidating the dynamics of the simplest paradigm of
this system and to investigate its asymptotic response,
we make reference to a two-degree-of-freedom model
made of an elastically vibrating carriage surmounted
by a spherical mass, facing the problem both theoreti-
cally and experimentally. In case of linear systems, the
analytical solutions and the laboratory tests performed
on ad hoc constructed prototypes highlighted a coun-
terintuitive asymptotic dynamics, here called binary:
in the absence of friction at the interface of the bodies’
system, the mass holds its initial position or, if nonzero
damping acts, at the end of the motion it is in a posi-
tion that exactly recovers the initial relative distance
carriage—sphere. While the first result might be some-
what obvious, the second appears rather surprising.
Such abinary behaviour is also confirmed for a Duffing-
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like system, equipped with cubic springs, while it can
be lost when non-smooth friction phenomena occur,
as well as in the case of elastic springs restraining the
motion of the sphere. The obtained analytical results
and the numerical findings, also confirmed by experi-
mental evidences, contribute to the basic understanding
of the role played by the damping parameters governing
the systems’ dynamics with respect to its asymptotic
behaviour and could pave the way for designing active
or passive vibration controllers of interest in engineer-
ing.
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dynamics - Non-smooth friction - Duffing model

1 Introduction

Problems of dynamic actions that vary with position
play a crucial role in several applications of structural
dynamics and have been widely investigated in the lit-
erature for many decades [1-10]. The seminal book
by Fryba [11] analyses the effects of moving loads on
solids and structures, as strings, rigid-plastic beams,
thin-walled beams and beams on elastic foundations,
frames and arches, plates and elastic spaces. Such prob-
lems are typically studied in transportation engineering
since structures, as bridges, railways and roadways, are
subjected to moving loads often generated by vehicles,
which move with constant or variable speeds along
the structure and produce inertial effects due to their
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masses and trajectories. In addition, the speed of the
vehicles and the flexibility of the main structure are
of great importance due to dynamic interaction phe-
nomena. Indeed, an accurate estimation of such loads
is required and mandatory for a reliable design, since
a structure subjected to moving loads exhibits deflec-
tion and stresses significantly higher than in the static
case. However, the problem is not strictly confined to
transportation engineering, being relevant to structures
of interest to the everyday life, as parking garages and
aircraft carriers, high-speed precision machining, mag-
netic disc drives and cables transporting materials, to
name a few. The moving loads, where their inertial
effects should be taken into account, are more precisely
called moving masses [12]. In fact, as illustrated by
Ting et al. [13], when the velocity of the sliding mass
is not relatively small, a coupling between the two bod-
ies occurs and the inertial effects cannot be referred to
the two structural parts as standalone.

In facing planar moving load problems, both the
directions of the load and its velocity are quite often
assumed as relevant, thus leading to a bidirectional
dynamics, where the interaction between the load and
the deformability of the supporting body assumes
a paramount importance. In this perspective, several
papers [14-19] analyse the effect of a mass mov-
ing along a flexible Euler—Bernoulli supported beam,
focusing on the influence of the mass ratio and the bend-
ing rigidity of the beam on the dynamic response of the
overall system. Lee and Kim [20] provide an analyt-
ical and numerical method for getting a response of
an elastically simply supported Timoshenko beam to a
moving load. Considering the problem of the motion
of a sphere on a flexible cable, Aristoff et al. [21], by
combining experimental and theoretical investigations,
demonstrate that the time taken by a sphere for descend-
ing along an elastic beam, the so-called elastochrone,
exceeds that from the classical brachistochrone.

All the above-mentioned works assume that defor-
mations and deflections remain small. To overcome this
limitation, an upgrade of moving mass problems is pro-
vided by Zhao et al. [22], who develop a theory for large
deformations based on Cosserat rod theory for studying
the dynamics of mass-cable systems. The problems of
taut strings carrying a movable mass [23] or travelled
by a train of forces [24] are also addressed in the litera-
ture. Also, the noteworthy paradox of the discontinuity
in the trajectory close to the end support exhibited by
the solution of string vibration under a moving mass
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has attracted attention [25]. In [26] the problem is stud-
ied through a kinematically exact nonlinear model, in
which the motion of the point mass in the direction of
the string in the reference configuration, say horizontal
direction, is firstly considered unknown, while a driv-
ing force is assigned in the same direction. By assuming
that the dynamic tension and the mass of the string are
negligible, the existence of a horizontal reactive force at
the mass—string contact, preventing the mass to reach
the right support, is highlighted. Further upgrades of
the mentioned study are introduced in [27,28].

In addition to the dynamic modelling and the
response analysis of beams and strings subjected to a
moving mass/load, the vibration control of these struc-
tures is another important issue that has received great
attention [29-33]: several control algorithms have been
proposed to suppress the vibration of the beam thanks
to the inertial and dissipative effects induced by the
moving mass sliding on the support. The inertial and
dynamic effects derived by the motion of an added solid
mass are also becoming of increasing interest in the
field of fluid mechanics [34-36].

Several papers focus on moving loads problems
characterised by unidirectional dynamics, where the
load/mass does not interact with the deformability of
the supporting structures, which can be assumed as
rigid. In particular, there is growing interest in devices
that can actively or passively control the dynamics of
bodies: a carried mass moving on a rigid track may
be used to reduce its dynamic amplification, as in the
case of tuned mass dampers [37,38], or the motion of
a mass inside rigid boxes can excite the locomotion
of the overall system, as in the case of capsule robots
[39—41].

However, although so many moving masses/loads
problems have been in-depth investigated, with differ-
ent purposes and applications and by adopting increas-
ingly refined models, to the best of the author’s knowl-
edge, no research paper focuses on the asymptotic
behaviour of the simplest “toy system” case of an elasti-
cally vibrating rigid support with a mass free to move on
it. To fill this gap, this paper deals with the dynamics of
such a paradigmatic two degree-of-freedom (2-DOF)
system, which allows predicting two different asymp-
totic responses of the mass. In the absence of friction
at the interface between the carriage and the mass, the
latter holds its initial position. If nonzero damping acts,
at the end of the motion the mass is in a position that
exactly recovers the initial relative distance carriage—
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sphere. This behaviour, which we call binary, has been
found analytically in Sect. 2.1, and also experimen-
tally reproduced, through an ad hoc designed ad 3D
printed set-up, for the first time in Sect. 2.2. Then, the
effects of some nonlinearities on the binary asymptotic
behaviour are discussed in Sect. 3 by considering either
Duffing [42-45] or dry friction [46—48] terms. A further
example is conceived by connecting the carriage to the
moving mass through nonlinear elastic springs allow-
ing tunable, pre-stretch induced stiffness in Sect. 4.
Then some conclusions are reported in Sect. 5.

2 Binary dynamics of the simplest “toy system’’:
analytical and experimental results

2.1 Analytical solution for the linearly elastic system
with moving mass

Let us consider a spherical mass moving on a sliding
carriage, as shown in Fig. 1. In the hypothesis of small
oscillations, the equations of the free vibration along
the x direction are

mX1(t) + dxi(¢) + kixi(¢)

—c(x2() —x1(1) =0, ey
maXa(1) + ¢ (%2(1) — x1(2)) =0, 2)
where x;, x;, X; i = {1, 2} stand for displacement,
velocity, acceleration, of carriage (i = 1) or sphere

(i = 2) where the superimposed dot denotes the deriva-
tive with respect to time ¢. The masses of carriage and
sphere are m and mj, respectively; k; indicates the
overall axial stiffness of the two springs anchored to
the carriage; ¢ and d are damping parameters.

We emphasise that, in the first step, we assume
that the dissipation-inducing terms, as dynamic fric-
tion at the interface between the spherical mass and the
carriage or between the carriage wheels and the sub-
strate, the air drag forces on the sphere and carriage
and the damping induced by synergistic effects of air
trapped into the helical springs and internal damping,
and so on, are all represented as effective linear vis-
cous damping. However, the orders of magnitude of
the terms incorporated in the damping parameters can
be significantly different. For instance, for a spherical
steel mass moving with velocity v and having diameter
¢ = 0.03 m, the air drag force, typically evaluated as

3w puqave, with u, the air viscosity, is about 6 orders
of magnitude lower than the rolling friction force, cal-
culated as 2mogus /¢, being g acceleration of gravity
and pg the dynamic friction coefficient, at the contact
surface between the sphere and the vibrating carriage.
These findings have been experimentally confirmed by
ad hoc laboratory tests, which also allowed measuring
the involved key parameters (see Sect. 2.2).

By setting yi(t) = x1(¢) and y>(t) = X2(1),
Egs. (1)—(2) can be conveniently rearranged in matrix
form as

)2,'1 O 0 ] O xl

| 0 0 0 1 X2

il —klmfl O—(c—i—d)mlf1 cmf1 |’

y2 0 0 cmz_1 —cmz_l »2
3

admitting the characteristic equation
U(m1m2773 + (dmz +c(my + mz))’)2

+(cd + kymo)n + k1C> =0, “4)

where, for ease of notation, the time dependence is
implied.

Since Eq. (4) has a vanishing root, among the other
three ones, at least one is real. Therefore, eigenval-
ues can be written in closed form by using Cardano’s
solution [49]. For the range of parameters of inter-
est, each eigenvalue has an algebraic multiplicity equal
to 1, and the problem is diagonalisable and charac-
terised by a complete system of 4 eigenvectors. The
general integral of the system, namely the vectory(¢) =
(x1(2), x2(1), y1 (1), yz(t))T , takes the form

y=c1vi + cavae™ 4+ c3v3e™! 4 cqvae™, (®)]

where v;, i = {1, ..., 4}, are the eigenvectors associ-
ated to the eigenvalues 7;, and ¢; represent the constants
of integration to be determined by imposing the ini-
tial conditions. Explicit expressions of eigenvalues and
eigenvectors of Eq. (3) are reported in “Appendix A”.

To capture the key features of the response of the
system as the parameters vary, we exploit the analyti-
cal solution and perform a sensitivity analysis through
six representative examples (see Fig. 2), in which the
parameters take nonnegative values and the initial con-
ditions, with A x (0) the initial distance between the cen-
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Fig.1 2-DOF model of a
spherical mass moving on a
sliding carriage

tres of gravity of carriage and sphere, are set as

x1(0) = 0.01 m,

x2(0) = x1(0) + Ax(0) = 0.03m, (6)
%1(0) = %2(0) =0m s~ .

In Example A, m| < mj and ¢ = d < d, being
derit = 2+/m1ky the critical damping, thus leading to
both the degrees of freedom showing harmonic damped
responses (Fig. 2A).

In Example B, m| < my, ¢ < d and d > dri,
and the response has overdamped behaviour on both
the degrees of freedom (Fig. 2B).

More interestingly, Example C, where m| < m; and
¢ > d = 0, i.e. damping on the carriage is negligible,
while mutual damping is present, both responses x1 and
x7 are damped. By virtue of Eq. (2), we can substitute
the term — c(xp — x1) with maX; in Eq. (1), thus attain-
ing miX| + kjx; = — mpXp, which, if compared with
graphs shown in Fig. 2C, allows recognising that the
force —myX> actually drives x| towards its rest posi-
tion. This example shows that the moving mass exerts a
damping action on the motion of the carriage. Despite
an indirect damping is imparted on the carriage, the
system in this case is different from classical tuned
mass dampers, where typically the secondary mass is
attached to the primary one through elastic constraints,
modelled as springs [50]. Therefore, this system could
represent the paradigm of a viscous tuned mass damper
and it could pave the way for designing devices for the
vibration control of interest in engineering.

Example D emphasises the damping role of a car-
ried mass much larger than that of the carriage. Here,
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my ~ 0 and ¢ = d < di lead to a response towards
resting position without oscillation. Notice that to avoid
division by zero, m| must be not null in Eq. (3), so that
m1 2 0 in performed test stands for m; = 1073 kg.

Furthermore, the most intriguing feature of responses,
from A to D, as shown in Fig. 2, is that while the
displacement x; (grey line) of the carriage invariably
asymptotically approaches to 0, the displacement x;
of the sphere goes to Ax(0). Indeed, chosen any refer-
ence point on the carriage, whatever is the initial dis-
placement x1(0), the sphere, after the transient phase,
reaches its rest position whose relative distance from
the reference point will be equal to the initial relative
distance Ax(0), as if it remembered where it was at the
beginning.

We highlight that this interesting behaviour, com-
puted in closed form by solving Eqgs. (1)—(2) comple-
mented with the initial conditions given by Eq. (6),
is somehow unexpected and, to the best of authors’
knowledge, not reported in the scientific literature.

This behaviour changes abruptly for ¢ = 0, ¢ actu-
ally playing both the role of the coupling parameter
between Eqs. (1)—(2) and that of a bifurcation parame-
ter. Indeed, for ¢ = 0, no interaction between the two
bodies occurs and, for the initial conditions reported
in Eq. (6), the sphere rests for any ¢, which is an
obvious consequence of the fact that, in such a case,
x2(t) = x2(0) + x2(0)t = 0.03m. In addition, we
also emphasise that such a behaviour of the sphere
is expected by physical intuition, that is even before
observing that Egs. (1)—(2) become mathematically
uncoupled for ¢ = 0.
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Fig. 2 Sensitivity analysis

of the system made up of a A 0.04 m>0;c=d>0] p 0.04 m >0; d>c>0
spherical mass moving on a — x,(t) [Carriage]
sliding carriage. In all 0.03 — x,(t)-Ax(0) [Sphere] 0.03
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It is also interesting to observe that one expects two
different behaviours also in case of two harmonic oscil-
lators which are equal to each other but for the damping,
being one damped and the other undamped. Indeed, the
former system is structurally stable, while the latter not.
In fact, in the case of the undamped harmonic oscilla-
tor, the action of any arbitrarily small damping force
changes the qualitative behaviour of the solutions from
that of a centre to a focus at the origin [51]. However,

we emphasise that here the situation is different, or at
least apparently less well documented. In fact, Egs. (1)—
(2) present two independent parameters of damping,
namely ¢ and d, being only the former responsible
for the behaviour we shall henceforth call binary. To
recognise this, one can compare results from Exam-
ples A to D to those from two further ones (Fig. 2E
and F), both characterised by ¢ = 0 and d > 0, chosen
as representative of the second asymptotic behaviour
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of the sphere. In both cases, the sphere does not have
any motion, resting in its initial position, while the car-
riage exhibits a damped motion, due to d > 0, with
or without oscillations (respectively, underdamped for
m1 > 0, or overdamped for m ~ 0).

Figure 3A and C shows the phase trajectories of car-
riage and Fig. 3B and D those of the sphere for the two
cases shown in Fig. 2E (¢ = 0) and Fig. 2A (¢ > 0),
emphasising the binary asymptotic behaviour and the
counterintuitive response for ¢ > 0.

2.2 Experimental confirmation of the binary
behaviour: 3D prototype and laboratory tests

With the aim of providing experimental validations of
the analytical results, a prototype of the analysed model
has been designed with the aid of the 3D CAD/CAM
software Solid Edge [52] (see Fig. 4A and C) and then
manufactured using Thermoplastic Polyurethane (TPU
92A) on the STRATASYS F170 3D printer.

In order to have the ability to adjust the inclination of
the wheeled, main carriage (the blue-coloured element
inFig. 4B, C and D) and keep it horizontal, two supports
have been 3D printed (black-coloured in Fig. 4B, C
and D) and equipped with regulating bolts.

An aluminium rail surmounts the carriage to force
the secondary mass into a perfectly unidirectional
motion.

The carriage is connected to external clamps through
pre-stretched elastic springs, as shown in Fig. 4B and D.
The spring elasticity has been estimated through uni-
axial tests performed on many specimens by means
of the ElectroForce® 200N 4 Motor Planar Biaxial
TestBench machine (Fig. 4E). Because of pre-stretch,
depending on the displacement of the carriage, a non-
linear response could be expected. However, in the
small-on-large hypothesis, the linearity can still be
retained, and the equivalent, effective stiffness is the
mean value of those registered in the range of sev-
eral pre-stretch values. From experimental evidence,

Fig. 3 Phase space plots
for the carriage (top panels) c= c0
and the sphere (bottom
panels), by assuming A 0.4 — [Carriage] C 04
x1(0) = 0.01 m and x,(0) = ’
x1(0) + Ax(0) = 0.03m,
my = 0.10kg, ma = Ue 0.2
0.04kg, k; = 400N m™!,
andd = INsm~'. The = 00 £ 00
damping parameter takes = =
values ¢ = ON s m~! (left -0.2 -0.2
column panels) or
c¢=1Nsm™! (right _04 04
column panels)
-0.6 -0.6
-0.005 0.000 0.005 0.010 -0.005  0.000 0.005 0.010
x1(t) x(t)
g 01 _ [Sphere] Do.10
0.05 0.05
0.00 [ ] 0.00
S -0.05 S -0.05
= -0.10 £'-0.10
-0.15 -0.15
-0.20 -0.20
-0.25 -0.25
0.020 0.022 0.024 0.026 0.028 0.030 0.020 0.022 0.024 0.026 0.028 0.030
X, (t) X, (t)
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Fig.4 3D CAD model of
the laboratory set-up system
(A and C); 3D printed
prototype of the model (B
and D); experimental set-up

(E)

3D CAD
Model

Assembled

the tangent modulus of the springs varies in the order
of tens Nm~!.

The primary mass to be considered is a compound
of the masses of the carriage, wheels, rail, and elas-
tic restraints and is measured as 0.478 kg, by using a
precision scale. For the secondary mass, several steel
spheres, from 0.067 kg to 0.288 kg, have been utilised
to have the possibility of reproducing either low mass
ratio cases up to mass ratios greater than 0.5.

A high-speed Photron’s camera CMOS MINI FAST-
CAM AX100 (Fig. 4E) has been placed over the system
to record displacements at a sampling rate of 4000 fps
at image resolution of 1024 x 1024 pixels.

By focusing on the free mass case, in order to grasp
the binary behaviour provided by the analytical predic-
tions of Sect. 2.1, two different experimental set-ups
are organised: (i) the aluminium rail and the sphere
have been oiled with the aim of nullifying the friction
in the sphere—carriage interface and of reproducing the
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Displacements [m]
|
o0 0000

OO [efeojojo)
BON=_2O=2NWH

x1(t) [Analytical] @ x1(t) [Experimental]

X(t) [Analytical] @ x,(t) [Experimental]

Fig. 5 Experimental validation of the asymptotic binary
behaviour for the free mass example, with parameters mea-
sured or derived from experimental calibration: m| = 0.478 kg,
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cases E and F of Fig. 2 (Fig. 5A); (i) a TPU layer
is mounted over the aluminium rail for increasing the
friction between the sphere and the primary mass, thus
replicating the non zero friction case (Fig. 5B). While
the stiffness and mass parameters are experimentally
measured, the damping coefficients ¢ and d are cal-
culated through curve-fitting aimed at converging the
experimental results with the theoretical curves.

In case A, the initial distance between the centres
of gravity of the carriage and the sphere is set as
Ax(0) = 0.021 m. For activating dynamics of the sys-
tem, the carriage is initially displaced of 0.025 m in the
opposite direction to Ax(0) (i.e. x;(0) = —0.025m)
and then released. From Fig. 5A, it can be seen that
the theoretical curves, in terms of the time histories of
displacement of the two masses, perfectly match the
experimental points, confirming that no dynamic inter-
action occurs between the sphere and the carriage in
the case of zero friction, with the sphere remaining at
rest.

In case B, an initial step displacement x{(0) =
0.03 m is imposed on the carriage, while the centres
of gravity of sphere and carriage are vertically aligned,
Ax(0) = 0.00m. From Fig. 5B, it can be observed
that, with friction at the interface, the sphere actually
returns to its initial relative position, i.e. x approaches
Ax(0), in excellent agreement with the analytical time
history.

As already stated, several springs with different stiff-
ness and spheres with different diameters, to repre-
sent cases with low, intermediate and high mass ratios,
have been considered, while keeping invariant the pri-
mary mass. Invariably, tests showed the sphere achiev-
ing a rest position equal to the initial relative position
between its centre of gravity and that of the carriage.

3 Effects of nonlinearities on the asymptotic
behaviour of the system

In Sect. 2, the binary asymptotic behaviour of the sys-
tem has been first analytically found and then confirmed
through experimental validation. As above mentioned,
by considering a linear system, this behaviour depends
essentially on the parameter c.

In the following, to investigate the effects of nonlin-
earities on the dynamics of the system, especially with
reference to the asymptotic behaviours, we consider

two nonlinear models, the first equipped with nonlin-
ear stiffness and the second with nonlinear damping.

The nonlinear differential equations will be inte-
grated, for given initial conditions and over assigned
time intervals from fpnin to fimax, using the general
numerical differential equation solver NDSolve avail-
able in Mathematica®[53]. NDSolve has many differ-
ent built-in methods for computing solutions and, by
default, NDSolve automatically chooses the possibly
most appropriate method for the differential equations
under integration. Furthermore, during the integration
process one method can call another, if needed.

The solution is found iteratively, starting at a par-
ticular value of the independent variable, and then tak-
ing a sequence of steps, trying eventually to cover the
whole range fmin t0 fmax. NDSolve uses an adaptive
procedure to determine the size of the steps, which is
made smaller and smaller until the solution reached
satisfies either the value of the chosen accuracy or pre-
cision, through error estimates. For a wide description
of methods and available options for their settings, as
well as of the control mechanisms set up for writing
new user-defined numerical integration algorithms to
be used as specifications for NDSolve, we refer to
[54].

3.1 Duffing-like stiffness

‘We consider the elastic restraints as nonlinear and write
the equations of motion of the system shown in Fig. 1
as

miE 0 + diy (0 + ki (@ + B0 07) 10

—c (i2(t) —x1(1)) =0, (7
maXo(t) + ¢ (2(t) — X1 (1)) =0, (8)

« and B being the coefficients specifying the nonlinear
behaviour of the springs. It is immediate to recognise
that Egs. (7)—(8) correspond to a damped Duffing oscil-
lator [42—45] coupled to a linear oscillator.
Bysettinga = 1, 8 = 2x 10 m~2, Fig. 6 shows the
time histories and phase trajectories for both the two
degrees of freedom. Notice that such a choice of param-
eters corresponds to the mono-stable Duffing model,
which for = 0 m~2 reproduces the linear behaviour
already discussed in Sect. 2.1. On the contrary, the large
value adopted for § in the numerical simulations pre-
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Fig. 6 Displacements
histories (A and D) and C= c>0
phase space plots for the
carriage (B, E) and the A 004 D
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sented below is aimed at emphasising the effect of the
cubic term. The other parameters are the same adopted
in the linear case, and the initial conditions are those
set in Eq. (6).

Interestingly, the nonlinear stiffness does not change
the asymptotic behaviours of the system, by still dis-
tinguishing the two limit cases: indeed, for ¢ = 0,
Egs. (7)—(8) are uncoupled and the sphere rests in its
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initial position for any ¢ > 0, while for ¢ > 0 the sphere
restores its initial relative position with respect to the
centre of gravity of the carriage. In fact, by comparing
plots Figs. 2A and E to 6A and D, respectively, it can
be seen that, despite the oscillations of the two bodies
in the nonlinear case are quite different with respect to
the linear counterpart, the asymptotic behaviours reg-
istered are perfectly recovered.
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3.2 Non-smooth friction

The assumption of damping linear with velocity used in
Sects. 2.1 and 3.1 is physically plausible when a sphere
moves on a smooth surface, and nonlinear phenomena
are negligible. While, for the problem under investi-
gation, the predictions of such a simple model have
been confirmed by the experimental tests reported in
Sect. 2.2, in order to analyse more general systems, a
nonlinear dissipation model is here considered, while
the linear elasticity of the springs is retained.

In order to define a mutual nonlinear damping term
that upgrades the linear one utilised in Egs. (1)—(2), i.e.
fl? é) =cé, being £a dummy variable (for instance,
in Eqs. (1)—(2), § = x» — 1), the dry friction model
[46—48] has been selected. Within this framework, let
us consider a body resting on a rough surface under
the action of an increasing external force. Before the
body starts sliding, friction and external force are in
equilibrium, the latter do not exceeding the static fric-
tion. Whenever the latter is overcome by a large enough
applied force, then the friction decreases to the kinetic
value [55]. Hence, by introducing the dimensionless
stick (static) and slip (kinetic) friction coefficients 11
and pup, with 0 < o < w1, the mutual nonlinear
damping force in Egs. (1)—(2) is replaced with

R (E) = o+ 2 uaFy = xvo H(E)
F . . .
—U—N (1€ + pove) + x (6 + vr)) H(|E] —vr).

€))

Terms in Eq. (9) comment as follows: H(-) is the
Heaviside unit step function equal to O for negative
values of its argument and 1 otherwise, Fy is the
weight of the sphere (here acting normally to direc-
tion of the motion), v; > 0, is the threshold reference
velocity responsible for the transition from stick to slip
behaviour of the dry friction [56-58], x > 0is a damp-
ing parameter having dimensions of mass per time, as
c in the linear case.

We emphasise that Eq. (9) approximates different
friction models. In the limit v; — 0T and setting
x = 0, Eq. (9) recovers the Amontons—Coulomb
for w1 = w2, and the stiction friction model for
1 > o [59], both of which result in constant forces
either for negative or positive velocities. However, for
many different materials, friction has been experimen-
tally shown to be velocity-strengthening [60], with a

12043
i
A
1 Fy
p2Fn +
)
‘ 1 » ¢
—vr Uy
/ T —H2Fy
| o — P
! tang = “iTV
: tany = x
+ —mEN

Fig. 7 Qualitative graph of fﬁ for u; > ppand x >0

viscous-like damping becoming dominant [61], indeed
simulated by Eq. (9) by setting x > 0.
A qualitative graph of Eq. (9) is shown in Fig. 7.
The numerical integration of

mi¥1 (1) 4+ di1 (1) + kix1 (6) + A5 @) — %2(1))
=0, (10)

maia (1) + AL (E2(1) — %1(1)) = 0, (1)

in the time range i = 0 t0 fipax = 103 s for a given
set of mechanical parameters and the initial conditions
reported in Eq. (6) allows plotting time histories, in
terms of displacements and velocities, and phase trajec-
tories elucidating that the stick—slip phenomenon aris-
ing between m and my strongly influences the oscil-
lation of the overall system to a drastic change in its
asymptotic behaviours.

In fact, unlike what happens in the previously anal-
ysed systems, the asymptotic binary behaviour is not
confirmed in the general case. Let us consider the
example shown in Fig. 8: despite x; asymptotically
approaches 0 (Fig. 8A and C), the sphere does not
invariably reach a rest position recovering the initial
relative distance from the centre of gravity of the car-
riage (Fig. 8A and D), because of the strong nonlinear
effect that arises in the first 0.2s of the motion, dur-
ing which the displacement and velocity histories of
the sphere show stick phases alternating to slip motion
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A 0.04 B
0.03} v
—_— r
g = %Ay
§ 0.02 £
§ — x(t) [Carriage] E:’
£ 0.01f — x,(t)-Ax(0) [Sphere] 2
=3 o
2 — Ax(t) = -
a — X1 (t) [Carriage]
0.00} _04 U — J(t)~Ax(0) [Sphere]
— Ax()
-0.01 _0.6- . : i :
0.0 0.2 0.4 0.6 0.8 1.0 0 60.0 0.2 0.4 0.6 0.8 1.0
Time [s] Time [s]
C D
0.4 = i 1 —
[Carriage] 0.05 [Sphere]
0.2
0.0 [s
0.0} -
= " _0.05
-0.2
~0.4 -0.10
20005 0000 0005 0010 0.020 0.022 0.024 0.026 0.028 0.030
x1(0) *2(0

Fig. 8 Time histories, in terms of displacements (A) and veloc-
ities (B), and phase trajectories for the primary (C) and sec-
ondary mass (D). Initial conditions x1 (0) = 0.01 m and x2(0) =
x1(0) + Ax(0) = 0.03m are set. In all graphics, the following
parameters are adopted: m; = 0.10kg, mp, = 0.04kg, k1 =
400N m~!andd = 1 N s m~!. The parameters of the nonlinear

(Fig. 8A and B). Notice that the change in the velocity
slope and the kinks in the phase trajectories are related
to the change in the friction coefficient at & = v,..

However, it must be emphasised that if the relative
velocity £ does not overcome the value of v,, the sys-
tem essentially recovers the linear behaviour, as shown
in Fig. 9. Reported results correspond to the numerical
integration of Eqs. (10)—(10) by setting initial condi-
tions tailored to ensure E < vy, having the same Ax (0)
and initial velocities, but x1(0) halved with respect to
Eq. (6),

x1(0) =5 x 103 m,
x2(0) = x1(0) + Ax(0) = 0.025m,
%1(0) = %2(0) = 0m s~ .

12)
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dry friction model are set as follows: u; = 0.509, up = u1/2,
Fy = 0.3924N, v, = 0.2m s~!. The red dashed line in plot
(A) marks the asymptotic behaviour of the linear counterpart of
the system, and the dashed circle in plot (D) highlights the point
of coordinates (0.02, 0.00) corresponding to the attractor in the
damped linear case

Furthermore, the same behaviour of the linear sys-
tem can be obtained playing with the value of the
parameter v,, as shown Fig. 10 through two bifurca-
tion diagrams. Such diagrams are built by integrating
the equation of motion for the initial conditions given
in Eq. (6) and a fixed set of parameters, at threshold
velocity in the range 10 °ms! < v, < Ims~! (with
astep of 1072 ms™!). It can be recognised that a critical
value v, it can be detected (v ¢rit & 0.4635 ms~! for
the parameters chosen in the numerical computations)
below which (i.e. v, < v, ¢it) the asymptotic value of
Ax is different from Ax(0), apart for a limited num-
ber of specific values of v,, while, for any v, > vy cit,
Ax(t) asymptotically approaches Ax(0), as in the lin-
ear case (see Fig. 10). Such a behaviour is confirmed for
different values of the dynamic viscosity x (Fig. 10A)
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A B v,
0.025 O2p===semmmpommm e
0.020 /'\Y/'\VA 04l
E 0.015 B
£ E o0l
£ 0.010 — %,t) [Carriage] £
g‘ — x,(t)-Ax(0) [Sphere] § _04l
2 0.005 — Ax(t) — () [Carriage]
— X(t)-Ax(0) [Sphere]
-0.2¢
0.000 ~— Iy
00 02 04 06 08 10 00 02 04 06 08 10
Time [s] Time [s]
Fig. 9 Time histories, in terms of displacements (A) and veloc- linear dry friction model are set as follows: u; = 0.5097,

ities (B). Initial conditions x;(0) = 0.005m and x,(0) =
x1(0) + Ax(0) = 0.025 m are set. In all graphics, the following
parameters are adopted: m; = 0.10kg, mo = 0.04kg, k; =
400Nm~! and d = 1.00N s m~!. The parameters of the non-

wr = 1/2, Fy = 0.3924N, v, = 0.2m s~ '. Notice that,
to compare results with those obtained in the linear case, the
parameters are set to fulfil uy Fy /v, = ¢

Fig. 10 Bifurcation 0.024F j
diagrams showing as the

asymptotic value of Ax 0.023¢
varies in function of v,, for 0.022F
the parameters set as: )

mi = 0.10kg, < 0021}
my = 0.04kg, 1 0.020F
k1 =400Nm™",

d=100Nsm, 0.019¢
Fy =0.3924N, 0.018 ¢

x=0.6 0.5 0.4 0.3 0.20.1 00

Mmp = 0.51, x1(0) =0.01 m,
x2(0) = x1(0) + Ax(0),

0.6 0.8 1.0

Ax(0) = 0.02m,

%1(0) = %2(0) = 0m s~ L. ,
The top panel A reports 0.028¢
diagrams built by setting the

dynamic friction coefficient 0.026¢

2 = /2 and for seven 0.0241

different values of the 8
dynamic viscosity x. The < 0.022}
bottom panel B shows

diagrams for the damping 0.020f

coefficient
x =0.10Nsm~! and five

0.018

fo = /8
po = 11 /4

p2 = p1/2

po =31 /4

different values of the ratio
M2/

and the friction ratio up/pu (Fig. 10B). The latter
diagram also elucidates that whenever pu, < pp the
bifurcation diagram contains jumps, for certain values
of vy < Vycit, becoming smaller and smaller as 2
approaches (1.

0.6 0.8 1.0

4 Tunable elastic constraints on moving mass:
back to standard behaviours

As a final example, let us consider the system shown in

Fig. 11, which is the same as that shown in Fig. 1, except
that here the sphere is anchored to the carriage by means

@ Springer
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of two elastic springs of stiffness k>; and kog, which
are assumed to be tunable through pre-stretching.
The equations of motion are written as

mX1(t) +dxi(t) + kix1(t) — ¢ (X2(t) — X1(1))

— (kar + kog) (x2(1) — x1(2)) =0, (13)
maXa(t) +c (X2(t) — x1(1)) + (kop + kogr)
X (x2(t) — x1(1)) = 0. (14)

In order ky; and kpg are tunable, we consider
an incompressible Neo—Hookean constitutive law [62,
63], which allows writing

ko = ko (1 + 2)»55) s
ok = ko (1+233)

where ko represents a constant parameter related to
the geometrical and mechanical characteristics of the
springs and o7 = lr1/lp and dogp = lhg/lp indi-
cate, respectively, the longitudinal stretches of springs
set on the left and right side of the sphere, being [y
the rest length and /5 and lrg the current lengths.
Notice that, in the small-on-large hypothesis, the cur-
rent length remains substantially equal to the mount-
ing length, that is the distance between the sphere and
the clamp (see Fig. 11). In addition to pre-stretch the
spring, we assume /o1 > lp and log > ly. Here, since
the rest length of both springs is the same, for the
self-equilibrium condition, the stretches Aoy and Asg

5)

Fig. 11 2-DOF model of a
spherical mass attached to a
sliding carriage through
pre-stretched nonlinear
springs

are coincident (A2;, = Azgp = Ap) and the sphere is
placed exactly in the middle of the carriage (Fig. 11),
i.e. Ax(0) = Om. Conversely, springs having differ-
ent rest lengths imply not null relative position of the
sphere with respect to the centre of gravity of the car-
riage.

By setting yi(t) = x1(¢) and y(r) = X2(1),
Egs. (13)-(14) can be conveniently rearranged in
matrix form as

X1 0 0 1 0 X1
bl 0 0 0 I x
| -kt kymt omt — D mi em | |y
\) ky mgl —ky m;l cm;1 —c m;l 2

(16)

where, for the sake of simplicity, ko = kop + ko is set
and the time dependence is implied. The characteristic
equation associated to Eq. (3) is written as

mimyy* + (¢ (my + my) + dmy) y>
+ (cd + kyma + (my + ma) ko) > (17)
+ (ck1 + dka) y + kiky =0,

solvable in closed form [49]. For the range of param-
eters of interest, the algebraic multiplicity of each
eigenvalue is 1. Therefore, a complete system of 4
eigenvectors can be provided. The general integral of
Eq. (16), ie. 2(1) = (x1(0), x2(1), y1(), y2(1))" , can

be obtained as

@ Springer
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Fig. 12 Displacement
histories (A and D) and c=0 c>0
phase space plots (B, C, E 0.015 0.015
and F) of the 2-DOF system A ") (Coringe]
made up of a spherical mass 0.010 _ xl(t)- Ax(0) [Sphere] 0.010
attached to the carriage _ e © _
through pre-stretched E 0.005 E 0.005
springs. In all graphics, the g 2
following parameters are % 0.000 % 0.000
assumed: m| = 2 E
0.10kg, my = 0.04kg, Z'-0.005 2-0.005
ko =S0Nm™!, A a
ki =400Nm™!, ~0.010 -0.010
A2=15,d=1Nsm™!
In the graphics D, E and F _ _
the damping parameter 0-07%% 0.5 1.0 15 20, %% 0z 04 06 08 10
c=1Nsm!is set Time [s] Time [s]
B o4 — [Carriage] Eo.2 — [Carriage]
0.1
0.2
0.0
e 00 £-01
~0.2 -0.2
-0.3
-0.4
-0.4
_0—'802 -0.01 0.00 0.01 0.02 _0—' .02 -0.01 0.00 0.01 0.02
x1(t) x1(t)
0.6
C — [Sphere] F — [Sphere]
0'5 0-4
0.2
Q:\ ~~
< 00 12 0.0
el =
-0.2
~05 -0.4
-0.6
-0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02
x(t) x2(t)
z(t) = dywie"" + dowre”?' + dzwze”! Based on the analytical solution given by Eq. (18),
+dywaer (18) the displacement histories and the phase trajectories are

being w;, i = {1, ..., 4}, the eigenvectors associated
to eigenvalues y;, and d; represent the constants of inte-
gration depending on initial conditions. For the sake
of brevity, the explicit expressions of eigenvalues and
eigenvectors of Eq. (16) are given in Appendix A.

provided in Fig. 12, for the initial conditions set as
x1(0) = x2(0) = 0.01 m,

oo 1 (19)
x1(0) = %2(0) = 0ms™

By examining all graphics reported in Fig. 12, one can
observe that the binary asymptotic behaviour of the
previous case is not confirmed.
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In particular, for the system under investigation, a
single asymptotic behaviour occurs: both the carriage
and the sphere return to their initial position, related
to the presence of the nonlinear pre-stretched springs,
which maintain coupled the dynamics of the sphere and
the carriage, also in the limit case of vanishing damping.
However, despite the unique asymptotic behaviour in
this last case may be somewhat expected, the possibility
of modulating the pre-stress in the springs attached to
the sphere can be interestingly exploited in order to
emphasise some dynamic effects on the overall system;
for instance, by properly tuning the nonlinear stiffness
of the sphere, a reduction of the dynamic amplification
of the carriage can be obtained, thus inducing a mass-
damping effect on it.

5 Conclusions and perspectives

Although the problems of moving masses or loads have
been addressed in the inherent literature over the years,
somehow surprisingly no research paper focuses on the
asymptotic behaviour of the simplest “toy system” case
of an elastically constrained rigid system surmounted
by a movable mass.

To face this issue, in the present paper, analyti-
cal solutions and numerical results were provided, by
making reference to a 2-DOF model. The results were
compared to experimental findings obtained by ad hoc
designed and built-up prototype undergoing conditions
that reproduced the mechanical response of the ide-
alised structure. All the outcomes confirmed the non-
trivial asymptotic behaviour predicted by theory and
observed in the laboratory for different masses. In par-
ticular, when nonzero friction at the sphere—carriage
interface is considered and other nonlinear phenom-
ena can be neglected, the spherical mass counterin-
tuitively returns to the arbitrarily prescribed relative
sphere—carriage initial position. On the contrary, if the
friction at the sphere—carriage interface vanishes, a sec-
ond complementary behaviour occurs, that is the sphere
holds its initial position over the entire observation
time, regardless the vibration history of the support,
this duality here called binary.

Furthermore, it was numerically shown that non-
linear elastic springs constraining the carriage do not
change this binary asymptotic behaviour, while it can
be either maintained or lost, depending on parameters
or initial conditions if nonlinear friction phenomena are

@ Springer

incorporated into the model for taking into account, for
instance, stick—slip processes occurring at the interface.
Also, it was found that additional elastic constraints
applied to the spherical mass back the system to a stan-
dard behaviour. Apart from the value of the work per
se, it is felt that the results could be helpfully employed
for different engineering applications in order to design
new optimal tuned mass dampers, also by exploiting the
effects of nonlinearities.
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Appendix The components of the ith eigenvector v; =
(v1i, v2i, V3;, v4l-)T of Egs. (1) and (2), being the sub-
Here, for the sake of completeness, we report the eigen- script i ={1, ..., 4} referred to ith eigenvalue, are
values and eigenvectors of Eqs. (3) and (16). cni
The eigenvalues of Eq. (3) are Vii =70
_ ki +ni(c+d+min)
nm =0, V2i = M ’
1/3
(VG +H) 2131 vy — en}
= — -1, i = ,
mn 321/3 VG + H)1/3 M(k Ceids )
) (¢ min:
4= iAL 3G+ vy = e (22)
AT PBRJG+ m 62173 )
_J (20) where M can be made explicit as
M :\/(1 +n?) (k% +2kin; (¢ +d +mn;) + 77,-2<202 +2¢(d+mn) + (d+ mlm)2>)- (23)

where j is the imaginary unit and G, H, I and L are
evaluated, respectively, as

27
44
mym,

X <k1WZ2(2C(2C +d) — klmz) — C2d2>

G =

<4c4k1m~} + m3(c +d)?

+ i (4kma(e(Ge — 2d)

+ 2k1m2) — C2d2> +2mmo

x (k1m2<cz(6c2 T ed + d?) + 2ymy

x (kymy — ¢ (5¢ + 2d) )) — Bd (e - d))),

deray detd) (c(2c —d)— 3k1m2)
B mi’ B m%mz

3e(c@e—d)+6kimz) 93

— i

mlm% m;
c(my + my) + dmo
3mimy

I =

2
3mimy(cd + kymy) — (c(ml + my) + dmz)
L= .

3m%m%

ey

By substituting, in Egs. (22) and (23), n; with the
ith i = 1,...,4) eigenvalue given by Eq. (20), tak-
ing into account Eq. (21), the closed-form expressions
of the eigenvectors components given by can be made
explicit.

The eigenvalues of the system (16) are

s 1 /g N 2 P

T S AT T
1/g NP 4 P,
2 2g£ 3213g4  3g4 g4 ’
a8 L8 NP 2 P
’ 4ga 2 4g£ 3213g,  3gs  ga
1 [ g3 N3 4g
2 L T2 T L0, (24
¢2\/2&% 3213g4  3g4 g4 Q. (34

being the coefficients N, P and Q given by
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N =23 — 9g19293 + 278082 + 2787 g4 — 72808234

2 3
+\/ (283 —9818283+27g085 +27g784—72808284)" — 4(g5 — 38183 + 128084) "

p_ 2173 (¢3 — 38183 + 12g0g4)

4g28384 — 88183 — 83°

’

(25)

3NL/3

4g‘%\/3 22/3g§ + 6g4N/3 2113050, 4 328/3g,P

and the parameters g;

go = kika,

g1 = cki + dka,

g2 =cd +kimy + ky (my + ma),

g3 =cmy+my(c+d),

g4 = mimj. (26)
The components of the ith eigenvector w; =

(wii, wai, w3, wai)! of Eqs. (13) and (14), with the

subscript i ={1, ..., 4} referred to ith eigenvalue, can

be provided as

cvi +may? +ka

wii = #s
wy = itk

20 = —R 5

vi (cvi + may? + ko)
w3; = s
R
Wy = Vi (CVI + 2) 7 (27)
R

with

R
1+ 92) emay? + miy +deyiky + 2ka? + 2072 (2 + maka)).
(28)

By replacing, in Egs. (27) and (28), y; with the ith
(i = 1,...,4) eigenvalue given by Eq. (24), taking
into account Egs. (25) and (26), the components of the
eigenvectors can be written in explicit form.
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