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Abstract
Traditional mediation analysis has been developed in the context of linear models, enabling 
the estimation of indirect effects through the product of regression coefficients. However, 
in the presence of nonlinearities, defining and estimating indirect effects becomes more 
challenging. While nonlinear mediation models are relatively easy to address in the 
counterfactual-based framework, very few generalizations to nonlinear associational 
settings have been proposed. One of the most intuitive is the derivative-based approach 
that, however, seems not to be widely spread among scholars. In this paper, we deepen such 
an approach to nonlinear mediation models, clarifying and proposing solutions to some 
issues which have not been addressed by the previous literature. Specifically, we discussed 
discrete exposures, binary mediators and extensions of this approach to more complex 
settings like the multilevel one. We also propose to estimate confidence intervals for the 
indirect effect within a Bayesian framework and compare its performance to that of other 
approaches in the literature through a simulation study. Finally, a real data application is 
presented.

Keywords Mediation analysis · Indirect effect · Derivative-based method · Generalised 
linear models · Bayesian statistics

1 Introduction

In several applied research fields, it is common that the effect of a variable on a response 
of interest is not entirely direct, but is transmitted by one or more intermediate variables 
called mediators. Mediation analysis is nowadays a widely spread approach to address 
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such settings. It was developed by social scientists Baron and Kenny (1986), relying on the 
path-analytic framework developed by Wright (1934) and subsequently further extended to 
structural equation models (SEM, Bollen 1989).

The SEM framework assumes linearity; that is, the mediator and the outcome models 
are assumed to be linear (identity link functions and no interactions). This allows us 
to estimate the indirect effect of the exposure on the outcome, i.e. the part of the effect 
conveyed by the mediator, as a product of regression coefficients (Baron and Kenny 
1986; Bollen 1989; MacKinnon 2008). This approach takes the name of product method, 
and the obtained indirect effect is interpreted as the change in the outcome associated 
to a one-unit change in the exposure via the mediator. However, in many real-world 
applications, linearity may fail to hold because of interaction terms in the models or the 
presence of not normally distributed variables requiring link functions different from the 
identity. Consider, for example, a mediational setting where the researcher is interested 
in investigating the relationship between parental support and depression (measured as a 
binary variable denoting whether a subject is depressed or not) mediated by another binary 
variable indicating if a subject has ever experienced bullying. Another example could be 
a study about how stress levels influence the probability of experiencing memory loss 
through the number of nighttime awakenings (a discrete variable counting the number of 
times a person wakes up during the night). It is clear that in both cases, the assumption of 
normality cannot hold, the mediator being either a binary or a discrete count variable, and 
the outcome always being binary.

Despite the widespread of such variables in applied research, mediation analysis 
with nonlinear models has primarily been addressed using non-parametric estimands of 
the indirect effect based on counterfactuals, typical of a causal framework (Pearl 2012a, 
b; Gaynor et al. 2019; Doretti et  al. 2022). This non-parametric formalisation allows for 
a certain flexibility in the model specification when one fits parametric models for the 
mediator and the outcome. However, these estimands require the introduction of a different 
notation and several, sometimes untestable, assumptions for them being identified (i.e. 
expressed in terms of observed variables), which scholars may not be willing to do. On 
the other hand, to date, very few approaches have been proposed to deal with the issue of 
nonlinear mediation models using a path-analytic approach, typically used in traditional 
mediation (Rijnhart et  al. 2021, 2023), and they are based either on standardising 
coefficients (MacKinnon and Dwyer 1993), or on the less employed difference method 
(Schluchter 2008).

An exception is given by a generalisation of the product method based on partial 
derivatives, proposed in the ’80  s by Stolzenberg (1980), and recently revived by Hayes 
and Preacher (2010) and Geldhof et al. (2018). Although quite intuitive, this approach is 
not widely known and applied by practitioners, and for this reason, it is not well developed, 
presenting theoretical shortcomings yet to be addressed. The aim of the present paper 
is to discuss some of these gaps and provide more insights into an approach that has 
much potential. Specifically, among the insights of the paper, the key ones regard: the 
implications of employing a binary mediator, how to estimate and interpret the indirect 
effect when the exposure is discrete, and the proposal of the Bayesian framework for the 
estimation of confidence intervals for the indirect effects. To the best of our knowledge, 
these issues have never been addressed in the few previous works discussing the derivative-
based approach. As a consequence, the contribution of this paper is two-fold: on the one 
hand, it tackles several under- or unexplored aspects of the derivative-based approach 
to nonlinear mediation, proposing novel solutions to some of the issues it presents, and 
extending it to more complex frameworks like the multilevel one; on the other hand, it 
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contributes to the existing literature on nonlinear mediation analysis, enriching the 
underdeveloped group of works in the associational framework.

The paper is structured as follows: first, we briefly review the approaches proposed 
in the literature to deal with nonlinear mediation models, with a particular focus on the 
derivative-based approach. Then, in Sect.  3, we introduce our novel contributions to 
this method, addressing some of its aspects which have received little attention from 
practitioners, and we believe should be deepened. In the fourth section, we carry out a 
simulation study addressing some of the issues discussed in Sect. 3, and the fifth section 
presents an application to real data. The conclusions follow.

2  Mediation analysis in nonlinear models

In this section, we first review the main approaches to address nonlinear mediation models 
proposed over the years, and then we introduce the derivative-based approach, i.e. the 
focus of the paper.

2.1  Literature review

In its most basic specification, a mediation model involves three variables: an exposure 
X, a mediator M and an outcome Y. As already mentioned, in the traditional associational 
framework, M and Y are continuous and are modelled as linear

where �
M
 and �

Y
 denote the conditional expectations �[M |X] and �[Y |X,M] , respectively.

The coefficient �1 represents the direct effect of X on Y,   while, as discussed in Baron 
and Kenny (1986) and Bollen (1989), the indirect effect can be estimated as the product 
�1�2 , i.e., the product of regression coefficients lying on the X → M and M → Y  paths. 
Alternatively, considering the marginal model for the outcome, i.e. the model including 
only the exposure

the indirect effect can also be estimated as the difference between �1 , the total effect of X on 
Y, and the direct effect �1 , that is �1 − �1 . This approach is called difference method, and it 
is easy to prove that, in the linear case, the product and difference methods yield the same 
indirect effect estimate (MacKinnon 2008).

In the presence of nonlinearities, such as interaction terms or link functions different 
from identity, the indirect effect cannot be estimated as a simple product, and its value 
generally differs from that estimated through the difference method (MacKinnon and 
Dwyer 1993). The issue of defining and estimating indirect effects in the context of 
nonlinear models has extensively been addressed in a counterfactual framework (Rubin 
2005; Morgan and Winship 2007; Pearl 2009a). Indeed, denoting by M(x) and Y(x) the 
counterfactual values of the mediator and the outcome if X were set to x, respectively, 
and by Y(x,M(x�)) the counterfactual value of Y if X were set to x and the mediator to 

(1)�
M
= �0 + �1X

(2)�
Y
= �0 + �1X + �2M,

(3)�
Y
= �0 + �1X,
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the (natural) value it would have assumed if X were instead equal to x′ ≠ x , Pearl (2001) 
defined the natural indirect effect (NIE) as

i.e. the average change in the outcome when leaving the value of X unchanged and moving 
from the mediator value under the condition X = x� to the mediator value under X = x . 
Under appropriate assumptions about the absence of unobserved confounders (see, for 
example, Pearl 2001, 2009b; VanderWeele 2015a), it can be proved that the NIE in Eq. (4) 
can be written as

Pearl (2012a, b) highlights how the nonparametric form of Eq. (5) makes its applicability 
to settings with nonlinear models straightforward. Indeed, he shows how to derive NIE 
formulas when the mediator and/or the outcome is binary, remarking that the quantities in 
(5) can be estimated from data directly with no need of fitting parametric models.

Many other counterfactual-based approaches to nonlinear mediation have been 
proposed in the literature. Valeri and VanderWeele (2013) provide formulas for the NIE 
in the specific cases of binary and count outcomes, relying on parametric models. They 
also propose SAS and SPSS macros for the estimation of natural mediational effects. 
Albert (2012) proposes an estimation approach of natural mediational effects based on 
a combination of empirical distribution functions and inverse probability weighting, 
avoiding the need to specify parametric models. Loeys et  al. (2013) use a different 
kind of mediational effects and the so-called natural effects models, highlighting their 
flexibility in nonlinear contexts. More recently, Gaynor et al. (2019) and Doretti et al. 
(2022) focused on the setting with a binary mediator and a binary outcome, overcoming 
the traditional assumption of rareness of the response variable and deriving closed-form 
expressions for the natural effects based on odds ratios.

In contrast, outside the counterfactual framework, few approaches have been proposed 
to estimate the indirect effect when the mediator and the outcome are not normal and 
are modelled with link functions different from identity, for example, using generalised 
linear models (GLMs). MacKinnon and Dwyer (1993) and MacKinnon (2008) focus 
on the case of a binary outcome modelled via logistic or a probit model. The indirect 
effect is obtained as a product of standardised regression coefficients. Schluchter (2008) 
addresses the wider class of GLMs, proposing an extension of the difference method 
based on generalised estimating equations (GEE). Both these approaches suffer from 
limitations, the former because it works only for binary outcomes and the latter because 
it does not allow for exposure-mediator interaction or other forms of nonlinearity in 
the mediator and the outcome models. It is also worth mentioning the work by Tsai 
et al. (2006), which extends SEMs to the GLMs framework, but does not discuss how to 
formalise and estimate indirect effects.

2.2  The derivative‑based approach to mediation analysis

The approach discussed in this paper does not rely on counterfactuals and is based on 
the simple idea that the indirect effect can be interpreted as the variation in the outcome 

(4)NIE = �[Y(x,M(x)) − Y(x,M(x�))],

(5)NIE =
∑

m

�[Y|x,m]{P(m|x) − P(m|x�)}.
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Y corresponding to a change in the exposure X through the variation in the mediator M 
(Stolzenberg 1980). Such a definition can be formalised in terms of derivatives, that is:

i.e. the product of the derivative of Y with respect to M and that of M with respect to X. Let 
us consider a typical GLM setting with the following models:

where g1 and g2 are possibly non-linear link functions, connecting the conditional 
expectations of the mediator and the outcome to their linear predictors, and 
hk = g−1

k
, k ∈ {1, 2}.

Notice that in the trivial case of identity link functions, the indirect effect in formula (6) 
reduces to the traditional expression obtained via the product method �1�2.

In contrast, when at least one of the g functions differs from identity, the indirect effect 
assumes a more complex form. In this case, the expression of the indirect effect is not a 
single value but depends on X and/or M via the derivatives of h1 and h2 . Assuming a 
continuous exposure, the researcher chooses some values of X of potential interest, say 
x∗
1
,… , x∗

p
 and, if the expression of the indirect effect also involves the mediator, its values 

should be selected accordingly to those of X, as the predicted values corresponding to 
x∗
1
,… , x∗

p
 , obtained from the fitted model �

M|x∗
1

, … ,�
M|x∗p

 . For this reason, Geldhof et  al. 

(2018) suggest calling the effect in Equation (6) Conditional Indirect Effect (CIE), since its 
values are conditional to those of X. To illustrate this concept further, let us consider the 
case where both the mediator and the outcome are binary variables. Let us also assume that 
they are both modelled using logistic regression. In this case the indirect effect relative to 
x∗
p
 , using the model specification in Equations (7) and (8) is found as:

As highlighted above, in the presence of these nonlinearities, the Indirect Effect becomes 
dependent on the values of x∗

p
 and �

M|x∗p
 , and this explains why the effect was named 

‘conditional’ by Geldhof et al. (2018).
The models in Eqs. (7)–(8) are intentionally very simple, but real-world data generally 

require adjustment for covariates. Including covariates Z in the mediator and the outcome 
models affects the expression of the indirect effect, which may depend on the covariates’ 
values in addition to those of X and M. For example, consider models as in Eqs. (7)–(8), 
where h1 is the identity (i.e. the mediator model is linear), and h2 is the exponential function, 
and include two (possibly overlapping) sets of covariates ZM and ZY for the mediator and 
the outcome, respectively:

(6)IE =
�Y

�M

�M

�X
,

(7)g1(�M
) = �0 + �1X → �

M
= h1(�0 + �1X)

(8)g2(�Y
) = �0 + �1X + �2M → �

Y
= h2(�0 + �1X + �2M),

CIE|x∗
p
=

�1 ⋅ exp(�0 + �1 ⋅ x
∗
p
)

(1 + exp(�0 + �1 ⋅ x
∗
p
))2

⋅

�2 ⋅ exp(�0 + �1 ⋅ x
∗
p
+ �2 ⋅ �M|x∗p

)

(1 + exp(�0 + �1 ⋅ x
∗
p
+ �2 ⋅ �M|x∗p

))2
.
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The indirect effect is

i.e., substituting �
M
 to M,

As already mentioned, the formula also includes covariates. Hayes and Preacher (2010) 
suggest estimating the indirect effects conditional on the values of X and M, setting 
the covariates to their mean values. The authors do not address the scenario where the 
covariates act as effect modifiers, i.e. when they interact with the exposure or the mediator. 
This simply makes the partial derivatives in Eq.  (6) more complex but does not add 
any conceptual difficulty. An important interaction term, which is often included in the 
outcome model, is that between the exposure and the mediator. To see how the presence of 
such a term influences the indirect effect, it is sufficient to consider linear models for both 
the mediator and the outcome and include a term �3XM in the outcome model. The indirect 
effect is �1(�2 + �3X) , which depends on X, in contrast to the indirect effect obtained from 
models excluding the presence of an exposure-mediator interaction, i.e. the simple product 
�1�2 . The expression �1(�2 + �3X) is consistent with that obtained by VanderWeele (2015b) 
in a counterfactual-based framework.

The main focus of this paper is on mediation analysis with GLMs; nonetheless, it is 
worth remarking that the derivative-based approach can also be used in situations where 
the mediator or the outcome depends on nonlinear transformations of their regressors, 
such as X2 or log(X) , see Hayes and Preacher (2010) for some examples. Moreover, this 
approach is crucial even when the distributions of variables M and Y do not belong to the 
exponential family. In such cases, the key is establishing appropriate link functions that 
enable us to calculate the derivatives and obtain the CIE.

3  Insights and extensions of the derivative‑based mediation approach

In this section, we discuss some relevant aspects of the derivative-based method which 
have not been addressed or satisfactorily deepened in the previous literature on the topic. 
For the sake of generality, we assume to be in an observational setting, although moving to 
an experimental setting will not influence the results.

�
M
= �0 + �1X +

p∑

k=1

�k+1ZMk

�
Y
= exp

(
�0 + �1X + �2M +

q∑

k=1

�k+2ZYk

)
.

CIE = �1�2 exp

(
�0 + �1X + �2M +

q∑

k=1

�k+2ZYk

)

CIE = �1�2 exp

(
�0 + �1X + �2

(
�0 + �1X +

p∑

k=1

�k+1ZMk

)
+

q∑

k=1

�k+2ZYk

)
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3.1  Binary, categorical and discrete exposures

The mathematical definition of derivatives is based on the concept of ‘small increment’ 
in the argument of the function to differentiate. Thus, the derivative of the mediator with 
respect to the exposure conceptually relies on a small increment of X, and analogously 
for the derivative of the outcome with respect to the mediator. This definition makes 
sense if the support D

W
 of the variable W with respect to which differentiation is made is 

continuous. The derivative is a continuous function defined over D
W
 or a subset. However, 

when W is discrete, the interpretation of the derivative becomes more challenging, as that 
of the indirect effect in Eq. (6).

Let us start with a setting with a binary exposure. The mediator expectation is 
then a discrete function that can assume only two values. Consequently, the concept of 
infinitesimal increment is misspecified since the only increment meaningful to conceive 
is a unit increment. Derivatives cannot be applied to discrete functions; therefore, an 
alternative definition to express change is required. We can use finite differences

where f is the function of interest and w is the difference between two points in D
X
. Notice 

that, when w → 0,Dx,w(f ) ≡
df

dx
 . Going back to our mediational setting, the derivative of the 

mediator in the case of binary exposure can then be written simply as the difference

It is easy to prove (see “Appendix”) that the chain rule for composite functions holds also 
in the discrete case, and the indirect effect can then be written as

where we explicitly wrote the functional dependence of �
M
 and �

Y
 , and where the variation 

of x concerns only �
M
.

The case of binary exposure easily extends to that of categorical exposure. Suppose that 
X is a categorical variable with k categories. Without loss of generality, assume that the k-
th category is the one chosen as baseline. The mediation model can be rewritten as

where the Xj are binary variables assuming value 1 if X is in category j, 0 otherwise. In this 
case, it is necessary to specify the variable with respect to which one takes the difference 
or, in other words, the category with respect to which the indirect effect is estimated. An 
increment from 0 to 1 represents the passage from the baseline to this selected category.

The same line of reasoning holds for discrete exposures, for example, number of 
cigarettes smoked in a day or number of panic attacks in a month.

3.2  Binary mediator

As already mentioned, when the expression of the indirect effect involves both X and M, 
the values of M cannot be chosen arbitrarily, instead they should be fixed at the values 

(9)Dx,w[f ] =
f (x + w) − f (x)

w

(10)D0,1[h1] = h1(1) − h1(0).

CIE = D�
M
(x),wD

x,w
[�

M
(x)][�

Y
(�

M
(x))] ⋅ D

x,w
[�

M
(x)],

(11)h1(�M
) = �0 +

k−1∑

j=1

�jXj,
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the mediator takes in correspondence of the selected values of X, determined by the fitted 
model. This is generally straightforward unless the mediator is binary when some issues 
arise.

Consider a setting with a binary mediator, where g1 in Eq. (7) is the logit link and, and 
g2 in the outcome model in Eq.  (8) is a generic function different from identity, say the 
logarithm to fix ideas. Therefore, applying the formula in Eq. (6), the CIE is given by

which, as can be seen, depends on both X and M. However, when coming to the estimation 
of such an effect, the choice of the mediator value is not so immediate. Indeed, the mediator 
is binary, assuming only two values, while, for any selected value of X, its predicted values 
from model (7) with a logit link are probabilities, ranging in the continuum from 0 to 1. 
Which values to select, then? This issue is addressed neither by Hayes and Preacher (2010) 
nor by Geldhof et  al. (2018). We believe that the most appropriate solution consistent 
with a data-generating mechanism of this type is to include binary values of the mediator 
obtained by the corresponding expected probabilities �̂�M|X by means of a cutoff c such that

The most trivial choice c = 0.5 may often not be appropriate, for example when classes are 
unbalanced. A possible alternative criterion for the choice of c could be selecting the value 
for which the sensitivity and specificity of the classification are equal based on the ROC 
curve, which can ensure a better performance. Clearly, other approaches are possible, for 
example maximizing the Youden’s index or the F1-score (Berrar 2019).

In principle, this idea can be extended to the case of categorical mediators, for which it 
is necessary to estimate multiple thresholds. There exist generalisations of the ROC curve 
for polytomous variables; see Hand and Till (2001) for example. However, moving from a 
setting with only two categories to a setting with multiple categories comes at the cost of 
additional issues. These issues go beyond the scope of this paper, suggesting the need for 
further investigation of this topic.

3.3  Extension to multilevel models

Geldhof et al. (2018) claim that the derivative-based approach can be easily extended to the 
multilevel case, but we are not aware of any study addressing this issue. In the following, 
we discuss how the derivative-based method can be applied to generalized mixed-effect 
models (GLMMs).

Consider a setting with J clusters and I =
∑

j nj subjects, where nj is the number of 
individuals belonging to each cluster. Typical examples of clustered data are children 
within classrooms, employees in an organization’s departments, or patients in hospitals. Let 
us start from linear multilevel models where all variables are measured at the subject level 
(level 2), i.e. a 1 → 1 → 1 design, using the notation introduced by Krull and MacKinnon 
(1999, 2001):

CIE = �1�2
exp (�0 + �1X)

(1 + exp (�0 + �1X))
2
exp (�0 + �1X + �2M),

M̂|X =

{
1 if �̂�M|X ≥ c

0 if �̂�M|X < c
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where j denotes the cluster and i the subject, Greek letters denote fixed effects and 
(b

0j
, b

1j
, g

0j
, g

1j
, g

2j
)� is the vector of random effects, which are assumed to be from a multi-

variate normal distribution with mean 0 and covariance matrix � possibly non-diagonal 
(i.e. random effects are allowed to have non-null covariances). Random effects capture the 
interdependence of units belonging to the same cluster and represent cluster-specific devi-
ances from the average intercept or slope levels.

Using Equation (6), the indirect effect is the product:

which depends on b
1j
 and g

2j
 , for j = 1,… , J , or, in other words, the indirect effect is clus-

ter-specific. To obtain a unique, average indirect effect, it is necessary to integrate random 
effects out. If b

1
 and g

2
 are uncorrelated, then the indirect effect is simply the product �1�2 ; 

when, however, they are correlated, then the indirect effect is given by

where �
b1g2

 is the covariance between b
1
 and g

2
 (Kenny et al. 2003). The estimation of such 

a covariance term in the traditional multilevel setting is complex and requires ad hoc 
solutions, like those proposed in Kenny et al. (2003) and Bauer et al. (2006), or to address 
multilevel models from a structural perspective (Bauer et al. 2006; Curran 2003; Preacher 
et al. 2010, 2011). Another option could be moving to a Bayesian framework (Yuan and 
MacKinnon 2009; Di Maria et al. 2022), which allows us to obtain the posterior distribu-
tion of �

b1g2

 and of the indirect effect, also making the estimation of confidence intervals 
straightforward.

When at least one between h1 and h2 differs from identity, or, in other words, when the 
mediator and/or the outcome model is a generalized mixed model, estimation becomes 
more complex. For example, if the mediator is a count variable and we model it using a log 
link,

while the outcome follows a linear model as in Eq. 13, the indirect effect is

for which integrating out random effects and obtaining a closed form expression may be 
complex or even not feasible. In this case, numerical integration methods may be necessary.

So far, we have focused on the 1 → 1 → 1 design, the one generally most complex due 
to the potential presence of a product between two random effects. Analogous considera-
tions can, however, be extended to other multilevel mediational designs, like 2 → 1 → 1 or 
2 → 2 → 11. When both the mediator and the outcome models are linear, the integration of 

(12)�
Mij

= (�0 + b
0j
) + (�1 + b

1j
)Xij

(13)�
Yij

= (�0 + g
0j
) + (�1 + g

1j
)Xij + (�2 + g

2j
)Mij

(14)IE = (�1 + b
1j
)(�2 + g

2j
),

(15)IE = �1�2 + �
b1g2

,

�
Mij

= exp{(�0 + b
0j
) + (�1 + b

1j
)Xij}

CIE = (�1 + b
1j
)(�2 + g

2j
) exp{(�0 + b

0j
) + (�1 + b

1j
)Xij},

1 It is important to remark that, according to Krull and MacKinnon (1999, 2001), these are the only designs 
that can be addressed in the traditional multilevel framework. Other designs, including 1 → 2 components, 
i.e. bottom-up effects, cannot be dealt with.
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random effects is straightforward, while when one or both models are nonlinear, some dif-
ficulties may arise, especially in the case of correlated random effects.

3.4  Confidence intervals for the indirect effect

Estimating confidence intervals (CIs) for the indirect effect poses challenges even in the 
linear case, since the distribution of the product �1�2 does not follow a Normal distribution 
although the two coefficient estimators are assumed to be Normal (Springer and Thomp-
son 1966; Lomnicki 1967). Indeed, the distribution of the product may be asymmetric and 
difficult to approximate with distributions traditionally used in statistics, see MacKinnon 
(2008). This issue is potentially exacerbated in a nonlinear setting, where the indirect effect 
assumes complex forms, the distribution of which may be impractical (or simply impos-
sible) to derive in closed form. Therefore, it seems convenient to rely on sampling-based 
approaches to retrieve an empirical distribution of the indirect effect, from which to com-
pute statistics of interest. Geldhof et al. (2018) suggest using non-parametric bootstrap or 
Monte-Carlo confidence intervals (for a reference see, e.g., Efron and Tibshirani (1994) 
and Rubinstein and Kroese (2016)). The former creates B samples by resampling statistical 
units in the original sample, and for each of them, the parameter of interest is estimated, 
the indirect effect in our case.

The latter method does not require data resampling, but it generates samples of 
regression parameters in (7)–(8), assuming that they come from a multivariate normal 
distribution. Each of these samples is associated to an estimate of the indirect effect or, 
more generally, to the parameter of interest.

Supported by a growing body of literature which highlights its desirable properties 
(see, for example Yuan and MacKinnon 2009; Biesanz et al. 2010; Koopman et al. 2015; 
Miočević et  al. 2017), we believe that another valuable option for the estimation of CIs 
could be the Bayesian approach (for an introduction see, e.g., Gelman et al. (2013)). Each 
parameter is endowed with an a priori distribution, and an empirical (posterior) distribution 
of the indirect effect can be obtained via one of several methods available for this purpose, 
e.g. Monte Carlo Markov Chains (MCMC). Moving to the Bayesian framework can also 
provide additional advantages, like the possibility to embed prior information into the 
mediation model, if available, in order to improve estimates efficiency, ease of extension 
to the multilevel case, even assuming complex a priori correlation structures of fixed and 
random effects, and exact inference for small samples, for which asymptotic assumptions 
might not hold.

To the best of our knowledge, no simulation studies have been run so far to compare the 
performance of these three approaches for indirect effects estimated through the derivative-
based method. This is the primary focus of Sect. 4.

4  Simulation study

In order to overcome the issues related to the closed-form estimation of confidence inter-
vals for indirect effects in a non-linear context, sampling-based approaches may be a possi-
ble alternative. In particular, we focused on Bootstrap, Monte Carlo and Bayesian intervals, 
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conducting a simulation study in order to compare their behaviour under different condi-
tions. Namely, we considered three sample sizes ( n = 30, 100, 200 ) and two combinations 
of assumed distribution and link function for both the mediator and the outcome models, 
that is Bernoulli distribution and logit link in one case and Poisson distribution and log 
link in the other, with expectations as in Eqs. (7)–(8). We generated the exposure variable 
X from a N(0, 52) , and we chose three different exposure values (0 and ±5 ) on which to 
condition the indirect effect. The values of the model coefficients were chosen arbitrarily.

Bootstrap estimates are obtained by drawing 1,000 samples of size n, with replacement, 
from the original simulated dataset. Then, with each bootstrap sample, we fit models in 
Eqs. (7) and (8) and at each iteration we saved coefficients’ estimates. To retrieve Monte 
Carlo samples, we first estimated GLM expressed in Eqs.  (7) and (8), then we sampled 
1000 regression coefficients values from a MVN(�̂, �̂�̂) , where

�̂ and �̂ being the vectors of estimated coefficients of mediator and outcome models, 
respectively, and �̂�̂ and �̂�̂ their asymptotic estimated covariance matrices. Matrix �̂�̂ 
is block diagonal because we assume that Cov(�̂, �̂) = 0 . Bayesian posterior coefficients 
samples have been derived using diffuse priors ( N(0, 103) ) for each parameter, by means 
of Monte Carlo Markov Chains, from two chains of length 10,000 with burn-in = 5000. 
Graphical inspection of the chains showed that all the chains converged. Simulations were 
carried out in R, using the package rjags for the bayesian part.

(16)�̂ =

[
�̂

�̂

]
�̂�̂ =

[
�̂�̂ 0

0 �̂�̂

]

n = 30 n = 100 n = 200

log
logit

−5 0 5 −5 0 5 −5 0 5

0.86

0.90

0.94

0.850

0.875

0.900

0.925

0.950

0.975

X

C
ov

er
ag

e Method
Bayesian

Bootstrap

Monte Carlo

Fig. 1  Results of the simulation study: coverage rates
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We repeated the process 500 times, each time estimating the value of the indirect 
effect, in order to retrieve its empirical distribution for each approach and scenario, 
then we computed quantile-based 95% intervals. We compared the three approaches 
in terms of the average length of the intervals and the proportion of intervals which 
contain the “true” value of the indirect effect (i.e. coverage rate). Results are shown in 
Figs. 1 and 2 and in Table 1.

As expected, the average CI lengths and the differences between the three methods 
reduce as the sample size increases. When n = 30 , in general, it can be noticed that 
the coverage rate of Monte Carlo CIs is slightly higher than that of the other two 
approaches. Bayesian intervals behave well compared to the others and can then be 
considered as a reasonably good alternative.

5  Application

In this section, we analyse data from the ANS (Anagrafe Nazionale Studenti), which 
serves as the database for Italian university students (MOBYSU.IT. 2017). Each record 
in the database represents a statistical unit, specifically a freshman enrolled at an Italian 
university. These records contain variables about the student’s high school background 
and university career. For this study, we have chosen to focus on the 2015 cohort, the 
most recent available cohort, which covers a sufficiently long time span to observe the 
completion of the degree. We have decided to limit the analysis to students enrolled at a 
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Fig. 2  Results of the simulation study: average CI lengths
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non-online Sicilian university, comprising N = 19 770 individuals. It is worth emphasis-
ing that the exclusion of students enrolled at online universities is driven by their unique 
behavioural patterns concerning degree completion (Priulla 2023).

Our analysis employs associational nonlinear mediation analysis to examine the 
relationship between high school background and academic success. Specifically, the 
goal is to examine the impact of the high school final mark (HSFM) on the probability 
of achieving a bachelor’s degree (BD) within four academic years while also exploring 
the mediating role of the number of University Credits (UC) earned at the end of the 
first year.

In addition to the HSFM, CU and BD variables, which act as exposure, mediator 
and outcome, respectively, we included a set of covariates to control for possible 
confounders. The three variables of interest and the selected covariates are briefly 
described below:

• HSFM: final mark obtained by the student at the end of high school. In Italy, the final 
mark ranges from 60 (‘Sufficient’) to 100 cum laude, coded as 101. Decimal scores are 
not allowed.

• UC: number of university credits obtained by the student within the first year from his 
enrollment to their current degree course. Generally, the maximum number of credits a 
student can get during the first year is 60.

Table 1  Results of the simulation study. For each method, the average coverage rates and interval lengths 
are reported

Sample 
size

Link X value True eff. Bayesian Bootstrap Monte Carlo

Cov. rate Avg. 
length

Cov. rate Avg. 
length

Cov. rate Avg. length

30 logit −5 −0.005 0.890 0.045 0.864 0.052 0.936 0.044
0 −0.007 0.950 0.058 0.936 0.121 0.974 0.050
5 −0.002 0.852 0.018 0.866 0.027 0.948 0.017

log −5 −0.010 0.950 0.037 0.866 0.036 0.966 0.054
0 −0.066 0.896 0.130 0.870 0.150 0.970 0.167
5 −0.097 0.908 0.307 0.834 0.313 0.952 0.403

100 logit −5 −0.005 0.936 0.021 0.948 0.021 0.948 0.020
0 −0.007 0.928 0.025 0.930 0.027 0.938 0.024
5 −0.002 0.930 0.008 0.936 0.009 0.948 0.009

log −5 −0.012 0.968 0.021 0.934 0.019 0.956 0.021
0 −0.097 0.954 0.075 0.928 0.076 0.952 0.077
5 [−0.133] 0.952 0.175 0.902 0.167 0.956 0.181

200 logit −5 −0.005 0.950 0.014 0.956 0.014 0.952 0.014
0 −0.007 0.946 0.017 0.952 0.018 0.946 0.017
5 −0.002 0.956 0.006 0.950 0.006 0.954 0.006

log −5 −0.012 0.970 0.014 0.958 0.013 0.972 0.014
0 −0.095 0.956 0.054 0.950 0.051 0.960 0.052
5 −0.124 0.970 0.133 0.924 0.118 0.938 0.124
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• BD: binary variable, taking value 1 if the student graduates within four years from their 
enrolment to the current degree course, 0 otherwise.

• TUSS: Type of Upper Secondary School diploma. In Italy, there are various types of 
upper secondary schools, each offering a different curriculum and training students 
for a particular career or academic path. In this study they have been categorized in 
Classical lyceum, Scientific lyceum, Technical institute, Industrial Technical institute, 
Vocational institute, Industrial Technical institute, Other lyceum (baseline), and 
Abroad/Other.

• sex: student’s biological sex, male and female (baseline).
• TDC: area of the degree course at which the student is enrolled, categorised in 

“Agriculture, forestry, fisheries and veterinary” (baseline), “Arts and humanities”, 
“Engineering, manufacturing and construction”, “Health and welfare”, “Business, 
administration and law”, “Natural sciences, mathematics and statistics (NsMS)”, 
“Services”, “Social sciences, journalism and information”, “Education”, and 
“Information and Communication Technologies (ICTs)”.

• age: student’s age.

In this case study, the variables UC and BD acting as the mediator and outcome, 
respectively, do not follow a Gaussian distribution, suggesting the need for nonlinear 
mediation analysis. Specifically, the UC variable is bounded between 0 and 60, as 
mentioned before. To account for this, we first transformed UC into the proportion of 
UC (PUC) obtained in the first year, dividing UC by 60; then, to make these scores 
strictly in the interval (0,1), we applied the transformation proposed by Smithson and 
Verkuilen (2006):

and employed a Beta model with logit link for analysis:

Regarding the outcome, BD is a binary variable that takes the value of 1 if the student 
successfully graduates on time. To examine the relationship between HSFM and PUC′ , we 
employed a logistic regression model as follows:

An important point to highlight is that the exposure variable, HSFM, is a discrete 
variable. Consequently, estimating the indirect effect requires the use of finite differences 
methodology. Since the model also includes some other covariates, they need to be fixed 
to specific values. Specifically, we fixed TUSS, TDC, and age to their joint mode: TUSS = 
Scientific lyceum, TDC = Engineering, manufacturing and construction, and age = 19. In 
contrast, the variable sex has not been explicitly assigned. Indeed, we calculated the CIEs 
for both males and females, enabling a meaningful comparison. The indirect effect for the 
i-th value of HSFM is found as:

where

PUC� =
PUC ⋅ (N − 1) + 0.5

N
,

logit
(
�[PUC�|X, Z]

)
= �0 + �1HSFM + �

2
TUSS + �3sex + �

4
TDC + �5age.

logit(P[BD = 1|M,X, Z]) = �0 + �1HSFM + �2PUC
� + �

3
TUSS + �4sex + �

5
TDC + �6age.

(17)CIEi = logit−1(�i+1) − logit−1(�i), i = 1,… , 41,
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and

Note that HSFM1 = 60 and HSFM42 = 101. In this terms, CIEi quantifies how the 
probability of achieving BD changes when HSFM increases by one unit, from HSFMi to 
HSFMi+1 in the mediator model, leaving its value fixed in the outcome model, considering 
the mediating effect of PUC′.

The coefficients involved in the estimation of the CIEs are reported in Table 2, while the 
whole set of coefficients can be found in the Appendix (see Table 3).

The results in Table  2 seem to suggest that the relationship between HSFM and BD 
is fully mediated by PUC′ since the effect of HSFM in the outcome model, �1 , is not 
significant. HSFM is positively and significantly associated with PUC′ , which is in turn 
positively and significantly associated with BD. The magnitude of the latter coefficient 
is remarkable (4.583). To formally test if the indirect effect is significant, we estimated 
the CIEs (as shown in Eq. 17) and their confidence intervals using the three approaches 
discussed before.

Figure 3 shows the results obtained using the Bayes approach, while those obtained with 
the other approaches are almost identical (see Figs. 4 and 5 in the Appendix); actually, this 
is in agreement with what we observed in simulations in the scenario with a large sample 
size, as it is here.

Each point in the graph represents the difference in the probability of graduating within 
four years for a unitary increase in HSFM mediated by PUC′ . It is worth noting that all 
the estimated CIEs are positive and significant (their CIs does not contain zero), meaning 
that getting a higher HSFM is associated with a higher probability of graduating on time 
through PUC′ . However, the curve has a monotonic increasing trend until HSFM reaches 
92, then it slightly starts to decrease. This may suggest that the mediating role of PUC′ 
becomes more and more important as HSFM increases until 92, at which point it becomes 
slightly less relevant. In addition, we can notice that the indirect effect for females is 
slightly larger than those of males; however, the confidence intervals overlap for all values 
of HSFM, implying that the observed differences in CIEs magnitude are not significant. 
This is consistent with the regression model’s results.

�i = �0 + �1HSFMi + �2PUC
�

|HSFMi

+ �
(TUSS=Sci)

3
+ �4sex + �

(TDC=Eng)

5
+ �6 ⋅ 19

PUC�

|HSFMi

= logit−1(�0 + �1HSFMi + �2
(TUSS=Sci) + �3sex + �4

(TDC=Eng) + �5 ⋅ 19).

Table 2  Estimates and p values of regression coefficients involved in the estimation of CIEs

Mediator Outcome

 Name Coef Estimate p value Coef Estimate p value

Intercept �
0

−2.683 < 2e-16 �
0

−2.900 < 2e-16
HSFM �

1

0.039 < 2e-16 �
1

0.0004 0.774
PUC′ - - - �

2

4.583 < 2e-16
TUSS = Sci �

2

0.361 < 2e-16 �
3

−0.050 0.345
sex = male �

3

−0.032 0.124 �
4

−0.039 0.321
TDC = Engineering �

4

−0.114 0.015 �
5

−0.302 0.001
age �

5

−0.034 < 2e-16 �
6

−0.001 0.903
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6  Conclusions

Estimating the indirect effect in an associational mediational context where the mediator 
and/or the outcome model are nonlinear is a common and relevant task in applied research 
but is not straightforward. The existing literature primarily focuses on nonlinear mediation 
models within the causal framework, which requires different assumptions and notation 
compared to the traditional framework commonly used in mediation analysis (Rijnhart 
et  al. 2021, 2023). Stolzenberg (1980) proposed to estimate the indirect effect as the 
derivative of a composite function, and Geldhof et al. (2018) discussed some applications 
of this approach in the GLM context. In this work, we offer a comprehensive discussion of 
the derivative-based method for nonlinear mediation analysis by deepening some aspects 
of the proposal of Geldhof et  al. (2018), addressing potential issues, like the presence 
of binary mediators and the corresponding choice of predicted values for the estimation 
of CIEs, and how to deal with binary/categorical/discrete exposure variables. We also 
proposed the use of a Bayesian approach as a valuable option for the estimation of CIEs 
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Fig. 3  CIEs for males and females and their confidence intervals estimated with the Bayesian approach
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confidence intervals, which also allows researchers to include a priori information about 
variables, offers exact inference for small samples, for which asymptotic assumptions 
might not hold, and can provide estimates for the covariance between random effects in 
multilevel mediation models. Through a simulation study, we demonstrated that Bayesian 
intervals are a valid alternative compared to the Bootstrap-based and Montecarlo ones used 
by Geldhof et al. (2018).

Also, we present a real-data application which investigated the relationship between 
high-school background and academic success, in which we dealt with the presence of 
a discrete exposure variable. This posed a limitation for applying the derivative-based 
approach discussed in the paper, as the concept of derivative lacks meaning in the context 
of discrete variables. To overcome this challenge, we employed finite differences to 
estimate the conditional indirect effects. By calculating finite differences, we were able 
to capture the effects of the mediator on the outcome variable while accounting for the 
discreteness of the high-school background variable. The results obtained through this 
approach were then interpreted accordingly, acknowledging the specific characteristics of 
the variables involved.

Overall, we believe that our work can contribute to the existing literature on nonlinear 
mediation analysis by discussing a very promising approach and addressing some of its 
potential issues through novel solutions. In addition, this paper can serve as a guide for 
researchers who need to address a mediational setting with nonlinear models without switching 
to the counterfactual framework. Our work can be extended in several ways. First, settings 
with categorical mediators need further investigation. This issue has traditionally received 
little attention by scholars, either in the counterfactual and the associational framework, and 
can be a promising research direction. Another interesting issue concerns the relationship 
between the total and indirect effects. Indeed, in the classical linear setting, the total effect 
is the sum of the direct and indirect effects; however, this property does not hold in the case 
of nonlinear models. Another possible venue for future research is clustered data, for which 
multilevel models are often employed. A simulation study may show the strengths and limits 
of the three approaches for estimating confidence intervals illustrated in the previous sections 
in such a setting. This underscores the need for continued exploration and development of 
methodologies for nonlinear mediation analysis in diverse real-world scenarios.

Appendix A: Chain rule for finite differences

Let f(x) and g(x) two discrete functions and f◦g ≡ f (g(x)) the function obtained from their 
composition. We want to prove that

can be written as a product of differences, deriving a chain rule analogous to that for 
derivatives of continuous functions. Indeed, Dx,w[f (g)] can be written as

Dx,w[f (g)] =
f (g(x + w)) − f (g(x))

w

f (g(x + w)) − f (g(x))

w
=

f
(
g(x) + w

g(x+w)−g(x)

w

)
− f (g(x))

w

=
f
(
g(x) + wDx,w[g]) − f (g(x)

)

w
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Noting that

it is easy to derive that

Dg(x),wDx,w[g]
[f (g)] =

f (g(x) + wDx,w[g]) − f (g(x))

wDx,w[g]
,

Dx,w[f (g)] = Dg(x),wDx,w[g]
[f (g)] ⋅ Dx,w[g].

Table 3  Estimates and p values of regression coefficients

Mediator Outcome

 Name Coef Estimate p value Coef Estimate p value

Intercept �
0

− 2.683 < 2e−16 �
0

− 2.900 < 2e−16
HSFM �

1

0.039 < 2e−16 �
1

0.0004 0.774
PUC′ – – – �

2

4.583 < 2e−16
TUSS = Sci �

2

0.361 < 2e−16 �
3

− 0.050 0.345
TUSS = Clas 0.209 < 2e−16 − 0.301 < 2e−16
TUSS = Tech − 0.209 < 2e−16 − 0.137 0.039
TUSS = Voc − 0.38 < 2e−16 − 0.338 0.002
TUSS = Ind Tech − 0.101 0.047 − 0.066 0.525
TUSS = Abroad 0.021 0.894 0.189 0.54
sex = male �

3

− 0.032 0.124 �
4

− 0.039 0.321
TDC = Engineering �

4

− 0.114 0.015 �
5

− 0.302 0.001
TDC = Arts 0.438 < 2e−16 0.092 0.331
TDC = Health 0.326 < 2e−16 − 0.555 < 2e−16
TDC = Business − 0.017 0.708 − 0.865 < 2e−16
TDC = NsMS − 0.425 < 2e−16 0.453 < 2e−16
TDC= Education 0.734 < 2e−16 − 0.921 < 2e−16
TDC = ICTs − 0.299 <0.001 − 0.141 0.419
age �

5

− 0.034 < 2e−16 �
6

− 0.001 0.903
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Appendix B: Real data application supplementary

B.1 Regression coefficients
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Fig. 4  CIEs for males and females and their confidence intervals estimated with the Bootstrap approach
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B.2 Estimates of CIEs on real data

Acknowledgements The authors are grateful to Massimo Attanasio, the Principal Investigator, and 
Andrea Priulla for granting access to the valuable data provided by the Ministero dell’Istruzione, 
dell’Università e della Ricerca (MIUR), PRIN 2017 project titled ‘From high school to job placement: 
micro data life course analysis of university student mobility and its impact on the Italian North–South 
divide’ (Grant No. 2017HBTK5P).

Funding Open access funding provided by Università degli Studi di Palermo within the CRUI-CARE 
Agreement. The research work of Alessandro Albano has been partially supported by the European Union—
NextGenerationEU—National Sustainable Mobility Center CN00000023, Italian Ministry of University and 
Research Decree n. 1033—17/06/2022, Spoke 2, CUP B73C2200076000.

Data Availability The data used in this study have been processed in accordance with the RESEARCH 
PROTOCOL FOR THE STUDY “From high school to the job placement: analysis of university careers and 
university mobility from Southern to Northern Italy” among the Ministry of University and Research, the 
Ministry of Education and Merit, the University of Palermo as the lead institution, and the INVALSI Insti-
tute. The reference researcher is Massimo Attanasio.

0.004

0.006

0.008

0.010

60 70 80 90 100
High school final mark

Es
tim

at
e 

of
 in

di
re

ct
 e

ffe
ct

sex

F
M

Fig. 5  CIEs for males and females and their confidence intervals estimated with the Montecarlo approach



The derivative‑based approach to nonlinear mediation models:…

1 3

Declarations 

Conflict of interest The authors report that there are no competing interests to declare.

Financial and non‑financial interests The authors have no relevant financial or non-financial interests to dis-
close.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Albert, J.M.: Distribution-free mediation analysis for nonlinear models with confounding. Epidemiology 
23(6), 879–888 (2012)

Baron, R.M., Kenny, D.A.: The moderator–mediator variable distinction in social psychological research: 
conceptual, strategic and statistical considerations. J. Personal. Soc. Psychol. 51(6), 1173–1182 (1986)

Bauer, D.J., Preacher, K.J., Gil, K.M.: Conceptualizing and testing random indirect effects and moderated 
mediation in multilevel models: new procedures and recommendations. Psychol. Methods 11(2), 142–
163 (2006)

Berrar, D.P.: Performance measures for binary classification. In: Encyclopedia of Bioinformatics and Com-
putational Biology (2019)

Biesanz, J.C., Falk, C.F., Savalei, V.: Assessing mediational models: testing and interval estimation for indi-
rect effects. Multivar. Behav. Res. 45(4), 661–701 (2010)

Bollen, K.A.: Structural Equations with Latent Variables. Wiley, New York (1989)
Curran, P.J.: Have multilevel models been structural equation models all along? Multivar. Behav. Res. 38(4), 

529–569 (2003)
Di Maria, C., Abbruzzo, A., Lovison, G.: Bayesian causal mediation analysis through linear mixed-effect 

models, Book of Short Papers-SIS 2022. Springer, Berlin (2022)
Doretti, M., Raggi, M., Stanghellini, E.: Exact parametric causal mediation analysis for a binary out-

come with a binary mediator. Stat. Methods Appl. 31, 87–108 (2022)
Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca Raton (1994)
Gaynor, S.M., Schwartz, J., Lin, X.: Mediation analysis for common binary outcomes. Stat. Med. 38, 

512–529 (2019)
Geldhof, G.J., Anthony, K.P., Selig, J.P., Mendez-Luck, C.A.: Accommodating binary and count vari-

ables in mediation: a case for conditional indirect effects. Int. J. Behav. Dev. 42(2), 300–308 (2018)
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. 

CRC Press, Boca Raton (2013)
Hand, D.J., Till, R.J.: A simple generalisation of the area under the ROC curve for multiple class clas-

sification problems. Mach. Learn. 45, 171–186 (2001)
Hayes, A.F., Preacher, K.J.: Quantifying and testing indirect effects in simple mediation models when 

the constituent paths are nonlinear. Multivar. Behav. Res. 45, 627–660 (2010)
Kenny, D.A., Korchmaros, J.D., Bolger, N.: Lower level mediation in multilevel models. Psychol. Meth-

ods 8(2), 115–128 (2003)
Koopman, J., Howe, M., Hollenbeck, J.R., Sin, H.P.: Small sample mediation testing: Misplaced confi-

dence in bootstrapped confidence intervals. J. Appl. Psychol. 100(1), 194–202 (2015)
Krull, J.L., MacKinnon, D.P.: Multilevel mediation modeling in group-based intervention studies. Eval. 

Rev. 23(4), 418–444 (1999)
Krull, J.L., MacKinnon, D.P.: Multilevel modeling of individual and group level mediated effects. Multivar. 

Behav. Res. 36(2), 249–277 (2001)

http://creativecommons.org/licenses/by/4.0/


 C. Di Maria et al.

1 3

Loeys, T., Moerkerke, B., De Smet, O., Buysse, A., Steen, J., Vansteelandt, S.: Flexible mediation analysis 
in the presence of nonlinear relations: beyond the mediation formula. Multivar. Behav. Res. 48(6), 
871–894 (2013)

Lomnicki, Z.A.: On the distribution of products of random variables. J. R. Stat. Soc. Ser. B 29(3), 513–524 
(1967)

MacKinnon, D.P.: Introduction to Statistical Mediation Analysis. Taylor and Francis Group, New York 
(2008)

MacKinnon, D.P., Dwyer, J.H.: Estimating mediated effects in prevention studies. Eval. Rev. 17, 144–158 
(1993)

Miočević, M., MacKinnon, D.P., Levy, R.: Power in Bayesian mediation analysis for small sample research. 
Struct. Equ. Model. 24(5), 666–683 (2017)

MOBYSU.IT. 2017. Database MOBYSU.IT, Mobilità degli studi universitari italiani, Research Protocol 
MUR—Universities of Cagliari, Palermo, Siena, Torino, Sassari, Firenze, Cattolica and Napoli Fed-
erico II, Scientific Coordinator Massimo Attanasio (UNIPA), Data Source ANS-MUR/CINECA

Morgan, S.L., Winship, C.: The Counterfactual Model. Analytical Methods for Social Research, pp. 31–58. 
Cambridge University Press, Cambridge (2007)

Pearl, J.: Direct and indirect effects. In: Proceedings of the Seventeenth Conference on Uncertainty in Arti-
ficial Intelligence, UAI’01, San Francisco, CA, USA, pp. 411–420. Morgan Kaufmann Publishers Inc 
(IO) (2001)

Pearl, J.: Causal inference in statistics: an overview. Stat. Surv. 3, 96–146 (2009a)
Pearl, J.: Causality. Cambridge University Press, Cambridge (2009b)
Pearl, J.: The causal mediation formula-a guide to the assessment of pathways and mechanisms. Prev. Sci. 

13(4), 426–436 (2012a)
Pearl, J.: The mediation formula: a guide to the assessment of causal pathways in nonlinear models, Chap-

ter 12, pp. 151–179. Wiley, New York (2012b)
Preacher, K.J., Zyphur, M.J., Zhang, Z.: A general multilevel SEM framework for assessing multilevel medi-

ation. Psychol. Methods 15(3), 209–233 (2010)
Preacher, K.J., Zhang, Z., Zyphur, M.J.: Alternative methods for assessing mediation in multilevel data: the 

advantages of multilevel SEM. Struct. Equ. Model. 18(2), 161–182 (2011)
Priulla, A.: Inequalities in student performances in the Italian universities. PhD thesis, University of 

Palermo (2023). Available at https:// iris. unipa. it/ handle/ 10447/ 582705
Rijnhart, J.J.M., Valente, M.J., MacKinnon, D.P., Twisk, J.W.R., Heymans, M.W.: The use of traditional 

and causal estimators for mediation models with a binary outcome and exposure-mediator interaction. 
Struct. Equ. Model. 28(3), 345–355 (2021)

Rijnhart, J.J.M., Valente, M.J., Smyth, H.L., MacKinnon, D.P.: Statistical mediation analysis for models 
with a binary mediator and a binary outcome: the differences between causal and traditional mediation 
analysis. Prev. Sci. 24(3), 408–418 (2023)

Rubin, D.B.: Causal inference using potential outcomes: design, modeling. Decis. J. Am. Stat. Assoc. 
100(469), 322–331 (2005)

Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method. Wiley, New York (2016)
Schluchter, M.D.: Flexible approaches to computing mediated effects in generalized linear models: general-

ized estimating equations and bootstrapping. Multivar. Behav. Res. 43(2), 268–288 (2008)
Smithson, M., Verkuilen, J.: A better lemon squeezer? Maximum-likelihood regression with beta-distrib-

uted dependent variables. Psychol. Methods 11(1), 54 (2006)
Springer, M.D., Thompson, W.E.: The distribution of products of independent random variables. SIAM J. 

Appl. Math. 14(3), 511–526 (1966)
Stolzenberg, R.M.: The measurement and decomposition of causal effects in nonlinear and nonadditive 

models. Sociolog. Methodol. 11, 459–488 (1980)
Tsai, T.L., Shau, W., Hu, F.: Generalized path analysis and generalized simultaneous equations model for 

recursive systems with responses of mixed types. Struct. Equ. Model. 13(2), 229–251 (2006)
Valeri, L., VanderWeele, T.J.: Mediation analysis allowing for exposure-mediator interactions and causal 

interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol. 
Methods 18(2), 137–150 (2013)

VanderWeele, T.: Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford Univer-
sity Press, Oxford (2015a)

VanderWeele, T.J.: Explanation in Causal Inference. Oxford University Press, New York (2015b)
Wright, S.: The method of path coefficients. Ann. Math. Stat. 5(3), 161–215 (1934)
Yuan, Y., MacKinnon, D.P.: Bayesian mediation analysis. Psychol. Methods 14(4), 301–322 (2009)

https://iris.unipa.it/handle/10447/582705


The derivative‑based approach to nonlinear mediation models:…

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	The derivative-based approach to nonlinear mediation models: insights and applications
	Abstract
	1 Introduction
	2 Mediation analysis in nonlinear models
	2.1 Literature review
	2.2 The derivative-based approach to mediation analysis

	3 Insights and extensions of the derivative-based mediation approach
	3.1 Binary, categorical and discrete exposures
	3.2 Binary mediator
	3.3 Extension to multilevel models
	3.4 Confidence intervals for the indirect effect

	4 Simulation study
	5 Application
	6 Conclusions
	Appendix A: Chain rule for finite differences
	Appendix B: Real data application supplementary
	B.1 Regression coefficients
	B.2 Estimates of CIEs on real data

	Acknowledgements 
	References


