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Abstract 

The mode I fracture parameters for an orthotropic body are directly calculated from full-field 

deformation measurements provided by Digital Image Correlation (DIC). Three complementary and 

direct approaches are evaluated and compared: i) the determination of the Stress Intensity Factor 

(SIF) by fitting the displacement field using the analytical expression proposed by Lekhnitskii; ii) the 

determination of the J-Integral by using the Energy Domain Integral (EDI) formulation on the raw 

DIC data; and iii) the calculation of the J-Integral using the EDI approach on the displacement data 

fitted using Lekhnitskii’s formulation. A comparative experimental study is performed by testing an 

IM7/8552 cross-ply laminate, and the effect of different parameters is analysed and discussed. The 

outcomes of this work show that, if an accurate choice of the parameters is performed, the different 

approaches lead to the same results. 
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1. Introduction 

Advanced composites are orthotropic quasi-brittle materials whose mechanical behaviour can be 

modelled using Linear Elastic Fracture Mechanics (LEFM). The determination of fracture 

parameters, such as the Stress Intensity Factor (SIF), the Energy Release Rate (ERR), or the J-

Integral, provides information on the stress field in the neighbouring of the crack tip. An accurate 

determination of the aforementioned parameters is necessary to assess the structural integrity of these 

materials and their structures. A direct determination of fracture parameters can be done using the 

information provided by Digital Image Correlation (DIC) [1], a full-field non-contact optical 

experimental technique which can provide displacement and strain fields with suitable spatial 

resolution and accuracy around the crack tip. It should be noted that the assumption of validity of 

LEFM for describing the quasi-brittle behaviour of most polymer composites leads to the equivalence 

of the fracture parameters mentioned above. 

Subramanyam et al. [2], Yates et al. [3] and Harilal et al. [4] employed the Least Squares 

Fitting (LSF) method on DIC data to determine the SIF in isotropic materials. Their studies proved 

the accuracy and effectiveness of the LSF method. Moreover, they demonstrated that 2D DIC 

provided results comparable to the ones obtained using more sophisticated methods, as 3D DIC [2] 

or FEM-based calibration [1, 2], provided that a judicious choice of the fitting and the DIC parameters 

is made, and the location of the crack tip is calculated with sufficient approximation [2,5,6]. Other 

authors [7] showed that the DIC technique, combined with high-speed digital cameras, is able to study 

the crack growth behaviour of a polymeric beam subjected to impact loading, managing to extract the 

SIF for both mode I and II using a LSF procedure. 

Rabbiolini et al. [8] used the LSF approach in an anisotropic material (Haynes 230 superalloy) 

in order to calculate the mixed mode (I+II) SIF, obtaining a good agreement between experimental 

and fitted displacements, proving the validity of the proposed approach also for orthotropic materials. 

In addition, Mogadpalli et al. [9] evaluated the SIF in a unidirectional GFRP specimen, showing a 
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strong dependence of the SIF on the number of terms used in the fitting procedure. Lee et al. [10] 

used 2D DIC and the LSF of the Lekhnitskii formulation to study the fracture behaviour of 

unidirectional composites, performing both quasi-static and dynamic tests. 

DIC data can also be used to compute the J-Integral [11] expressed either as a contour or an 

area integral (the so-called Energy Domain Integral approach). Long before the diffusion of the DIC, 

authors such as Dadkhah et al. [12], starting from the crack tip displacement fields determined by 

Moire interferometry, evaluated the J-Integral, studying its path independency and the existence of a 

HRR field. Subramanyam et al. [2] compared both the area and contour approaches for the evaluation 

of the J-Integral and concluded that the use of the Energy Domain Integral approach provides more 

accurate predictions. Similar conclusions were obtained by other authors [8–11].  

Montenegro et al. [17] calculated the J-Integral in orthotropic materials using the contour 

integral approach, and reported that a convergence on the predictions is obtained only if the 

integration path is taken far enough from the crack tip location. The authors also pointed out that one 

of the biggest advantages in using J-Integral is that knowing the exact crack tip location is not a strict 

requirement.  

Catalanotti et al. [18] calculated the critical value of the J-Integral using the contour integral 

approach in order to determine the resistance curves (R-Curves) of IM7/8552 cross-ply laminates, 

and concluded that the procedure provided results that were in good agreement with the ones obtained 

using a different approach based on the Finite Element Method (FEM). 

Although several approaches have been attempted in determining the aforementioned fracture 

parameters using the DIC, a study on the different approaches (Least Squares Fitting and Energy 

Domain Integral methods) is missing in terms of systematic comparison and efficiency. 

Hence, the aim of this work is to analyse these different approaches, in order to provide useful 

recommendations for the improvement of the accuracy and reliability of the methodology based on 

full-field deformation measurements provided by digital image correlation. 
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2. Theory 

2.1 Evaluation of the SIF by fitting the displacement field 

The SIF of a two-dimensional orthotropic body containing a crack (Figure 1) can be 

determined by using the analytical expression for the displacements obtained by Lekhnitskii [19].  

 

Figure 1 – Cracked body with reference system centred on the crack-tip. 

 

The first step consists in evaluating the complex material properties, 𝜇𝑖, as the roots of the 

characteristic equation: 

 𝑎11𝜇
4 – 2𝑎16𝜇

3 + (2𝑎12 + 𝑎66)𝜇
2 –  2𝑎26𝜇 + 𝑎22 = 0       (1) 

 

where 𝑎𝑖𝑗 are the terms of the compliance matrix in the Hooke’s law, which, for plane stress, can be 

expressed in term of the engineering elastic constants: 

𝑎11 =
1

𝐸1
;  𝑎22 =

1

𝐸2
; 𝑎12 = −

𝜈12
𝐸1

= −
𝜈21
𝐸2
;  𝑎66 =

1

𝐺12
;    𝑎16 = 𝑎26 = 0 

The characteristic equation (Eq. (1)) has four complex roots. Two of them, 𝜇1 and 𝜇2 have 

positive imaginary part. The other two, 𝜇3 and 𝜇4, are their complex conjugates (i.e. 𝜇3 = �̅�1and 𝜇4 =

�̅�2). With reference to the coordinates system {𝑥1, 𝑥2} centred on the crack tip (Figure 1), it is possible 

to define the complex variables 𝑧1 and 𝑧2 as: 

 𝑧𝑗 = 𝑥1 + 𝜇𝑗𝑥2 ;     𝑗 = 1, 2 (2) 

and to obtain the displacements in terms of the arbitrary stress functions, 𝛷(𝑧1) and 𝛹(𝑧2): 
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 𝑢1 = 2 ℜ{𝑝1𝛷(𝑧1) + 𝑝2𝛹(𝑧2)} (3) 

 𝑢2 = 2 ℜ{𝑞1𝛷(𝑧1) + 𝑞2𝛹(𝑧2)} (4) 

where 𝑝𝑗, 𝑞𝑗 (𝑗 = 1, 2) are the complex properties of the material defined as: 

 𝑝𝑗 = 𝑎11𝜇𝑗
2 + 𝑎12 – 𝑎16𝜇𝑗 (5) 

 

 𝑞𝑗 =
𝑎12𝜇𝑗

2 + 𝑎22 – 𝑎26𝜇𝑗

𝜇𝑗
       (6) 

Performing a conformal transformation from the physical plane, 𝑧, to the complex plane, 휁: 

 𝑧𝑗 = −휁𝑗
2 ;          휁𝑗 = 𝑖√𝑧𝑗  (7) 

it is possible, following Lin et al. [20], to express the stress functions as power series: 

 𝛷(휁1) = −∑𝑖(𝐴𝑗휁1
𝑗
)

𝑁

𝑗=1

 (8) 

 𝛹(휁2) = −∑𝑖(−�̅�𝑗𝐵 + 𝐴𝑗𝐶)

𝑁

𝑗=1

휁2
𝑗
 (9) 

where 𝑁 is the number of terms of the power series, 𝑖 is the imaginary unit, and 𝐵 and 𝐶 are material 

properties defined as: 

 𝐵 =
�̅�2 – �̅�1
𝜇2 –  �̅�2

 (10) 

 𝐶 =
�̅�2 –  𝜇1
𝜇2 –  �̅�2

 (11) 

The coefficients 𝐴𝑗 are complex numbers, so it is possible to express them as 𝐴𝑗 = 𝐴𝑅𝑗 + 𝑖𝐴𝐼𝑗, 

where the subscripts 𝐴𝑅𝑗 and 𝐴𝐼𝑗 denote the real and imaginary part of 𝐴𝑗, respectively. Substituting 

Eqs. (7) - (11) in Eqs. (3) and (4) it is possible to express the displacements as: 

 𝑢1 =  2 ℜ∑{−𝑖𝐴𝑅𝑗[𝑝1휁1
𝑗
+

𝑁

𝑗=1

𝑝2휁2
𝑗
(𝐶 –  𝐵)] + 𝐴𝐼𝑗[𝑝1휁1

𝑗
+ 𝑝2휁2

𝑗
(𝐶 + 𝐵)]} (12) 

 𝑢2 =  2 ℜ∑{−𝑖𝐴𝑅𝑗[𝑞1휁1
𝑗
+

𝑁

𝑗=1

𝑞2휁2
𝑗
(𝐶 –  𝐵)] + 𝐴𝐼𝑗[𝑞1휁1

𝑗
+ 𝑞2휁2

𝑗
(𝐶 + 𝐵)]} (13) 
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Eqs (12, 13) are equivalent to the ones expressed in [21]. For the determination of the 

coefficients 𝐴𝑅𝑗 and 𝐴𝐼𝑗, it is sufficient to consider any linear combination of the displacements (𝜑 =

𝑐1𝑢1 + 𝑐2𝑢2 being 𝑐1 and 𝑐2 scalars), its value at the 𝑘-th macropixel, 𝜑𝑘, and the corresponding 

experimental value, �̃�𝑘 (that is determined using the DIC). If this is done for 𝑛 points, the following 

system of linear equations is obtained: 

 

{
 
 

 
 
�̃�1
�̃�2
⋮

�̃�𝑛−1
�̃�𝑛 }

 
 

 
 

=

{
 
 

 
 
𝑎𝑅11 𝑎𝐼11    ⋯   𝑎𝑅1𝑁        𝑎𝐼1𝑁
𝑎𝑅21
⋮

𝑎𝑅𝑁−1 1
𝑎𝑅𝑁1

𝑎𝐼21
⋮

𝑎𝐼𝑁−1 1
𝑎𝐼𝑁1

⋯
⋯
⋯
⋯

𝑎𝑅2𝑁
⋮

𝑎𝑅𝑁−1 𝑁
𝑎𝑅𝑁𝑁

𝑎𝐼2𝑁
⋮

𝑎𝐼𝑁−1 𝑁
𝑎𝐼𝑁𝑁 }

 
 

 
 

{
 
 
 
 

 
 
 
 
𝐴𝑅1
𝐴𝐼1
𝐴𝑅2
𝐴𝐼2
⋮

𝐴𝑅𝑁−1
𝐴𝐼𝑁−1
𝐴𝑅𝑁
𝐴𝐼𝑁 }

 
 
 
 

 
 
 
 

 (14) 

or, in compact form: 

{�̃�} = [𝑎]{𝐴} 

where {�̃�} is the vector containing the experimental data, [𝑎] is a matrix containing the material 

parameters, and {𝐴} is the vector of the unknown coefficients that can be determined by using an 

over-deterministic least square fitting procedure. 

The calculation of the coefficients of {𝐴} relies on the correct determination of the location of 

the crack tip. This is done implementing an optimisation methodology proposed by Pitarresi et al. 

[22] for the case of experimental data obtained from Thermoelastic Stress Analysis. The optimisation 

algorithm consists in finding the coordinate of the crack tip, (�̌�1, �̌�2) that maximises the coefficient of 

determination 𝑅2 (0 ≤ 𝑅2 ≤ 1): 

 𝑅2 = 1 – 
𝑅𝑆𝑆

𝑇𝑆𝑆
 (15) 

where the Residual Sum of Squares, 𝑅𝑆𝑆, and the Total Sum of Squares, 𝑇𝑆𝑆, are defined as: 

 𝑇𝑆𝑆 =∑(�̃�𝑙 − �̅̃�)
2

𝑛

𝑘=1

 (16) 
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 𝑅𝑆𝑆 =∑(�̃�𝑘 − 𝜑𝑘)
2

𝑛

𝑘=1

 (17) 

being �̅̃� = ∑ �̃�𝑘 /𝑛 the mean of the observed data. The guess domain over which the values of 𝑅2 

are iteratively evaluated consists in a small region around the expected location of the crack tip that 

is selected by the user at the beginning of the optimisation procedure. If the location of the crack tip 

is assumed to be at the centre of the subset, the optimisation procedure trivially calculates the values 

of 𝑅2 at each analysed point in the selected Region of Interest (ROI), identifying the location of the 

crack-tip with the coordinates of the centroid (𝑥1
𝑐 , 𝑥2

𝑐) of the subset for which the coefficient of 

determination takes its maximum value 𝑅2~1. This procedure allows the determination of the 

location of the crack tip with the accuracy of the chosen subset spacing, which in the best but most 

labour-intensive case may coincide with the native image the pixel resolution. If such accuracy is 

sufficient or not, then ultimately depends on the spatial resolution of ROI, i.e. on the subset spacing 

adopted. If an accuracy of the sub-ROI-spacing is desired, a further optimisation could be made, this 

time considering as a domain the region centred on the last pixel previously identified by the coarse 

optimisation (i.e.𝑥𝑘 ∈ [𝑥𝑘
𝑐 −

𝑠

2
, 𝑥𝑘
𝑐 +

𝑠

2
] for 𝑘 = 1,2, where 𝑠 is the side of the subset that is equal to 

1 or 1
𝑓
 depending on whether its dimensions are expressed in subset-spacings or mm). It should be 

noted that the choice of 𝜑 is not completely arbitrary since it will affect the accuracy of the fitting, as 

it will be shown in the following. For the case of mode I, the SIF can be calculated from the first term 

of Eq. (13) as [23]: 

 𝒦𝐼 = − √2𝜋 ℜ (
𝜇1 – 𝜇2
𝜇2

)𝐴𝑅1 (18) 

2.2 Procedure to evaluate the J-Integral 

Let {𝑥1, 𝑥2} be a Cartesian coordinate system with 𝑥1 aligned with the crack growth direction 

(i.e. Figure 2). The J-integral for a two-dimensional body is calculated as [11]: 
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 𝒥 = ∫(𝑤 ⅆ𝑥2 − 𝑡𝑗
𝜕𝑢𝑗

𝜕𝑥1
ⅆ𝑠)

Γ

 (19) 

where 𝛤 is an arbitrary path around the crack tip, 𝑤 is the strain energy density (calculated as 𝑤 =

1

2
𝜎𝑖𝑗휀𝑖𝑗 where 𝜎𝑖𝑗 and 휀𝑖𝑗 are the stress and strain tensors, respectively), and 𝑡𝑗 are the tractions along 

the path (𝑡𝑗 = 𝜎𝑗𝑖𝑛𝑖, where {𝑛} is the normal to Γ and 𝑛𝑖 is the 𝑖-th component of {𝑛}). 

 

Figure 2 – Representation of the integration path (𝛤) and area (in grey) required for the numerical calculation of 𝒥. 

 

The contour integral of Eq. (19) allows the numerical calculation of the J-integral as done by 

Catalanotti et al. [18]. Here, in order to improve the accuracy of the method, we propose to calculate 

the J-Integral by using the formulation based on the Domain Integral Method. By applying the 

divergence theorem, after having defined an auxiliary function 𝑄, Shih et al. [24] demonstrated that 

the J-integral of Eq. (19) can also be calculated as an area integral: 

 𝒥 = ∫ [(𝜎𝑙𝑚
𝜕𝑢𝑚
𝜕𝑥1

− 𝑤 𝛿1𝑙)
𝜕𝑄

𝜕𝑥𝑙
] ⅆ𝐴

Ω

     𝑙, 𝑚 = 1, 2 (20) 

where Ω is the domain of integration (grey area in Figure 2), 𝑄 is an arbitrary continuous smooth 

function that takes the value of 0 and 1 on the inner (Γ1) and outer boundary (Γ3), respectively, and 

𝛿𝑙𝑚 is the Kronecker delta (𝛿𝑙𝑚 = 1 if 𝑙 = 𝑚, and 𝛿𝑙𝑚 = 0 if 𝑙 ≠ 𝑚).  

Eq. (20) is expected to be more effective when calculating the J-integral by using field data, 

e.g. as those obtained by means of the DIC. To explain this assumption let us consider Figure 2 where 

the two cases, calculating the J-Integral using Eq. (19) or Eq. (20) are analysed. In Figure 2, the grid 
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is made by all the subsets centred on the points where the displacement is evaluated by the DIC 

analysis. 

If the J-Integral is calculated as in Eq. (19), the arbitrary path Γ needs to connect the centroid 

of the subsets (Figure 2). It is convenient to choose a rectangular path in order to simplify the 

numerical calculation of the terms in Eq. (19) [18]. Although this methodology was successfully used 

to measure the J-Integral in orthotropic materials, care needs to be taken when choosing the 

parameters in order to ensure a sufficient level of accuracy.  

One issue arises from the fact that the displacement is not available in the subsets located at 

the border of the specimen (dots in red in Figure 2). A second issue is that the normal to the boundary 

is not always easily calculated. This is the case of singular points, where the normal is simply assumed 

(point in blue in Figure 2). Finally, although the DIC is an experimental method able to provide the 

entire displacement field, only a small portion of the data available, that related to the subsets located 

on Γ, is used in Eq. (19). All these reasons may affect the accuracy of the method. 

If Eq. (20) is used, the accuracy of the method is improved. In this case, in fact, the calculation 

of the J-Integral is done considering the information calculated in more points, i.e. all the subsets 

contained in Ω (grey area in Figure 2), making the method less affected by local errors. If the error 

related to the subsets located at the border of the specimen (in pink in Figure 2) is still maintained 

(this is an intrinsic issue related to the DIC and not to the equation used for the calculation of the J-

Integral), its effect is mitigated by the fact that more subsets are considered. Finally, there is no need 

to calculate any normal. 

The numerical calculation of Eq. (20) is done adapting a formulation proposed by Shih et al. 

[24] for the calculation of the J-Integral by using the finite element method. Hence, the J-Integral can 

be calculated as the sum of the contributions to the J-Integral given by each subset: 

 𝒥 =
𝑛 𝐴

ℎ
∑[(𝜎𝑙𝑚

𝛥𝑢𝑚
𝛥𝑥1

− 𝑤 𝛿1𝑙)
𝛥𝑄

𝛥𝑥𝑙
]
𝑘

𝑛

𝑘=1

 (21) 
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where 𝑛 is the number of subsets in Ω, 𝐴 = 𝑠2 = 1/𝑓2 is the area of each subset, ℎ is the thickness 

of the orthotropic body, 𝜎𝑙𝑚 are the stresses, 
𝛥𝑢𝑚

𝛥𝑥1
 is the numerical derivative of the displacement with 

respect to 𝑥1, and 
𝛥𝑄

𝛥𝑥𝑙
 is the numerical derivative of 𝑄 with respect to 𝑥𝑙.  

Rearranging Eq. (21) as: 

 𝒥 =
𝑛 

ℎ 𝑓2
∑[(𝜎𝑙𝑚

𝛥𝑢𝑚
𝛥𝑥1

−
1

2
𝜎𝑙𝑚휀𝑙𝑚𝛿1𝑙)

𝛥𝑄

𝛥𝑥𝑙
]
𝑘

𝑛

𝑘=1

 (22) 

it can be observed that: 

 the thickness of the specimen, ℎ, the conversion factor, 𝑓, and the number of subsets, 𝑛, are 

known; 

 𝑄 is imposed by the user, and its derivative, with respect to 𝑥𝑙, can be calculated numerically 

as the ratio 𝛥𝑄/𝛥𝑥𝑙; 

 the displacements, 𝑢𝑚, and strains, 휀𝑙𝑚, are obtained from the DIC, and the numerical 

calculation of  𝛥𝑢𝑚/𝛥𝑥1 does not present particular difficulties; 

 the stresses, 𝜎𝑙𝑚, are calculated knowing the stiffness matrix of the material, {𝜎} = [𝐶]{휀}. 

It should be observed that, since the material is considered to be linear elastic, the J-Integral 

allows the determination of both the energy release rate (ERR), 𝒢𝐼, and the SIF, 𝒦𝐼 [25]: 

 ℐ = 𝒢𝐼 =
𝒦𝐼
2

�́�
 (23) 

where �́� is the equivalent Young’s modulus defined as [26]: 

 �́� = (𝑎11𝑎22
1 + 𝜚

2
)
−
1
2
𝜆
1
4 (24) 

being 𝜚 and 𝜆 two dimensionless material properties that take into account the orthotropy of the 

material: 

 𝜚 =
2𝑎12+𝑎66

2√𝑎11𝑎22
;     𝜆 =

𝑎11

𝑎22
 (25) 



11 
 

3. Experimental Work 

3.1 Digital Image Correlation 

Digital Image Correlation (DIC) is an experimental technique which allows the evaluation of full-

field displacements in a material or structure by numerically correlating a set (at least two) of textured 

pattern images, each characterized by a given deformation stage. As highlighted by Pan et al. [27], 

the advantages in using 2D DIC are linked to its low requirements in terms of experimental setup, 

wide measurement range, and full-field and contactless characteristics. On the other hand, specimens 

are required to be flat and remain parallel to the sensor of the imaging system during the test. 

Therefore, only in-plane displacements can be measured. These characteristics make 2D DIC one of 

the most used experimental techniques when the evaluation of in-plane displacements is required 

[28].  

DIC allows obtaining displacements and strains in a specimen using a relatively simple 

experimental setup (only a digital camera and the application of a pattern on the target surface of the 

specimen are required). It is achieved comparing a pair of images of the undeformed and deformed 

structure, in a specific area of the structure, called Region Of Interest (ROI). In the subset-based DIC 

approach, the principle of DIC is to track the transformation of a kernel region between the 

undeformed image (reference image) and the deformed image. A square subset of N × N pixel is 

typically used to find the location of the points in the deformed image. The dimension of the subsets 

affects both the accuracy and the spatial resolution of the technique [20,21]. The subset spacing, 𝑠, is 

the distance between adjacent subsets and defines the number of points effectively available in the 

defined ROI.  

Displacements are found defining a correlation function that evaluates the similarity between 

the reference subset and the target subset. Pixel accuracy in the evaluation of the displacement is 

computed minimizing the correlation function between the reference and the deformed image, while 

sub-pixel accuracy is obtained using for instance iterative algorithms and interpolation (i.e. Newton-
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Raphson). Finally, strains are typically evaluated using a local polynomial fitting algorithm over an 

extension defining a virtual strain gauge (VSG). 

3.2 Specimen manufacturing 

The material system used in this work is unidirectional carbon fibre reinforced epoxy Hexcel 

IM7-8552 pre-impregnated plies, whose elastic properties are reported in Table 1. The plies were 

laid-up in a [(90/0)4]s configuration, in order to obtain a balanced cross-ply plate with a thickness of 

2 mm (16 plies, each one having a thickness of 0.125 mm). 

Table 1 – Elastic properties of Hexcel IM7-8552 plies [31] 

𝐸1 171.42 GPa 

𝐸2 = 𝐸3 9.08 GPa 

𝐺12 = 𝐺13 5.29 GPa 

𝐺23 3.97 GPa 

𝜈12 = 𝜈13 0.32 

 

 Single Edge Notched Tension (SENT) specimens (Figure 3) were machined from the plate 

with a notch, having a length of 12 mm and radius of 0.9 mm. An artificial crack (about 4.7 mm) 

has then been made with a saw (having a thickness of 0.2 mm) to obtain a value of 𝑎0/𝑊 equal to 

0.56. The tested specimen had a value of 𝑊 = 30 mm and 𝑎0 = 16.7 mm and a total length L =

200 mm. 

 

Figure 3– Sketch of the tested SENT specimens a0=15 mm, W=30 mm. 
 

Tests were carried out on a servo hydraulic INSTRON® 8801 universal test machine, at room 

temperature, under displacement control using a 100 kN load cell, with a crosshead displacement of 
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0.2 mm/min. No tabs were applied on the specimen in the gripped area. Given the relatively low 

level of applied load at crack propagation, and the distance of the gripped area from the crack line, it 

was assumed that specimen tabbing was not necessary. It is assumed that the specimen is under plane 

stress conditions. 

A 2D DIC setup was used. A 8-bit Baumer Optronic FWX20 Charged Coupled Device (CCD) 

camera coupled with a Nikon AF Micro-Nikkor 200 mm f/4D IF-ED lens was used for image 

grabbing. An acquisition frequency of 1 Hz was selected. The images were then processed using DIC 

MatchID software [32]. The DIC setting parameters were calibrated using the performance analysis 

tool. The converged parameters used in the analysis and post-processing are summarised in Table 2. 

Table 2 – DIC setting parameters 

Correlation Criterion ZNSSD 

Shape Function Quadratic 

Image Interpolation Bicubic Spline 

Image Filtering Gaussian, with Kernel 5 × 5 

Subset Size 21 pixels 

Subset Step 10 pixels 

Strain Window 7 subsets 

Strain Interpolation Bilinear Quadrilateral 

 

The used ROI has a size of 185 × 238 subsets, with a conversion factor mm to pixels equal 

to 0.0097 mm/pixel. For the analysed specimen, 108 frames were available. Among the available 

frames, results are referred to the 30th frame, which corresponds to an applied load of 4.6 kN. The 

Load-Displacement curve is shown in Figure 4 and the chosen load is highlighted. A representative 

contour plot for the component 𝑢2 of the displacement is shown in Figure 5. 
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Figure 4 – Load-Displacement curve of the tested specimen. The load corresponding to the chosen frame is highlighted. 

 

 

Figure 5 –contour plot of 𝑢2 displacement at the 30th frame. 

4. Experimental Results and Discussion 

4.1 Determination of SIF and influence of parameters 

Both displacement components, 𝑢1 and 𝑢2, were considered when using the Over 

Deterministic Least Squares Fitting procedure for determining the SIF. As reported by Subramanyam 

et al. [2] this approach should lead to more stable and accurate results.  

The displacements were fitted over an annular region centred on the crack tip (Figure 6) 

delimited by the inner and the outer radius (𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥, respectively) and by the angular 
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coordinates (𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛), where the generic subset is identified referring to the polar coordinate 

system centred on the crack tip {𝑟, 𝜃}. The use of these parameters allows excluding from the fitting 

the data that could undermine the accuracy of the fitting. In particular:  

(i) it is necessary to define a 𝑟𝑚𝑖𝑛 value in order to neglect points too close to the crack tip. In 

fact, since the region around the crack tip is characterised by the onset and propagation of 

damage, the data obtained in this region is not reliable. Moreover, the proposed fitting 

methodology assumes a linear elastic behaviour of the material, a condition that does not 

apply at the crack tip. Hence, the definition of a minimum radius allows the elimination of 

this problematic region from the fitting procedure; 

(ii) if the fitting is performed on a region which is extremely large when compared to the region 

dominated by the SIF, the weight of the first term, 𝐴𝑅1, decreases and this might affect the 

accuracy in the calculation of the SIF. Hence, it might be convenient in some cases to exclude 

the data that are too distant from the crack tip, and this could be done setting an appropriate 

value for 𝑟𝑚𝑎𝑥; 

(iii)for the same reason, i.e. excluding data which could undermine the effectiveness of the fitting, 

it is possible to limit the angular extension of the region by defining the two angular 

coordinates 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 (in the following 𝜃𝑚𝑎𝑥 = 𝜃𝑚𝑖𝑛 = θ̂). The definition of 𝜃 allows 

avoiding considering points with low significance as for example the points in proximity of 

the faces of the crack behind the crack tip. These points could also not provide reliable data 

since the DIC is unable to provide the displacement field in proximity of an edge. 

Subramanyam et al. [2] evaluated the influence of the angular extent, showing that angular 

values higher than 130° allow to obtain more stable results. 
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Figure 6 – Annulus sector area used in the fitting procedure 

Since the formulation of the displacement used is a power series, also the effect of the number 

of terms has to be evaluated. The parameter used to quantify the quality of the fitting is the coefficient 

of determination, 𝑅2, that is determined as in Equation (15). Since the specimen is subject to mode I 

loading, the displacements in the 1 direction, 𝑢1, are much smaller than the displacements in the 2 

direction, 𝑢2. Hence, only the latter are used for this procedure. It should also be noted that although 

the annular region is considered for the fitting, the calculation of the coefficient of determination, 𝑅2, 

is done considering the entire data available. 

4.1.1 Influence of 𝑟𝑚𝑎𝑥 and  𝑟𝑚𝑖𝑛 

Analyses were performed with an angular extension of the annular region of 𝜃 = 160°, and a 

number of Lekhnitskii’s series terms of 𝑁 = 4. Keeping a constant value of 𝑟𝑚𝑖𝑛 equal to 2 mm, the 

value of 𝑟𝑚𝑎𝑥 was changed between 5 mm and 15 mm (Figure 7). It is observed that 𝑟𝑚𝑎𝑥 has little 

influence on the SIF (Figure 7a), and virtually no influence on 𝑅2 (Figure 7b). Hence, it is deduced 

that, for the case under investigation, it is not necessary to define a value of 𝑟𝑚𝑎𝑥. It can be postulated 

that this happens because the ROI contains points that are relevant for the calculation of the SIF. For 

this reason, in the following analyses a value of  𝑟𝑚𝑎𝑥 is not defined. 

Employing a similar procedure, the effect of  𝑟𝑚𝑖𝑛 is calculated in the range from 1 mm to 10 

mm (Figure 8). Although 𝑟𝑚𝑖𝑛 does not affect the quality of the fitting (Figure 8b), it is noticed that 
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the value of the SIF slightly decreases with increasing 𝑟𝑚𝑖𝑛 (Figure 8a). This behaviour is expected 

because an increase of 𝑟𝑚𝑖𝑛 corresponds to an exclusion of points belonging to the region dominated 

by the singularity. Hence, large values of 𝑟𝑚𝑖𝑛 increases the weight of the non-singular terms while 

reduced values of 𝑟𝑚𝑖𝑛 increase the weight of the singular term, which is the value from which 

depends the SIF. In the following 𝑟𝑚𝑖𝑛 = 2 mm was used. 

 

Figure 7 – (a) SIF and (b) R2 as functions of rmax (𝑁 = 4, 𝜃 = 160°°, 𝑟𝑚𝑖𝑛 = 2 mm).  

 

Figure 8 – (a) SIF and (b) R2 as functions of rmin (𝑁 = 4, 𝜃 = 160°, 𝑟𝑚𝑎𝑥 not defined). 

4.1.2 Influence of number of Lekhnitskii’s series terms 

The effect of the number of the power series terms, 𝑁, was studied varying 𝑁 from 1 to 10 

(Figure 9). The number of the power series terms does not seem to substantially affect the SIF which 

has an average values of  21 MPa√m and fluctuates between 20 MPa√m and 22 MPa√m (Figure 9a).  
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Table 3 also reports and compares the values of the Lekhnitskii’s displacement field 

coefficients, 𝐴𝑅𝐽  and 𝐴𝐼𝐽  (see also Eqs. 12-13) for the two cases of 4 and 10 coefficients truncation. 

It is in particular seen as the first coefficient, associated to the SIF is the biggest term, and the higher 

order coefficients becomes progressively smaller, indicating a decreasing weight of terms of 𝑟 with 

higher exponent order.  

Table 3 – Comparison of Lekhnitskii’s displacement field series coefficient 

Lekhnitskii’s series 

coefficient 

4 coefficients truncation 10 coefficients truncation 

 𝑅𝑒 𝐼𝑚 𝑅𝑒 𝐼𝑚 

𝐴1  [MPa × mm
1/2 ] -16.58 -0.24 -16.48 0.4 

𝐴2  [MPa] -0.048 -1.8 -0.045 -2.9 

𝐴3  [MPa × mm
−1/2 ] 0.033 0.037 0.0079 0.08 

𝐴4  [MPa × mm ] -0.0001 0.0146 0.0024 -0.016 

𝐴5  [MPa × mm
−3/2 ]   -0.00047 0.0019 

𝐴6  [MPa × mm
−2 ]   0.00027 0.0022 

𝐴7  [MPa × mm
−5/2 ]   -0.00015 0.00025 

𝐴8  [MPa × mm
−3 ]   -0.00000143 -0.00017 

𝐴9  [MPa × mm
−7/2 ]   0.0000298 0.00000355 

𝐴10  [MPa × mm
−4 ]   -0.000000779 0.00000188 

 

The quality of the fitting is assessed calculating, separately, the values of the coefficient of 

determination, 𝑅2, for each of the components of the displacement (i.e. 𝑅2(𝑢1) and 𝑅2(𝑢2)). It is 

observed that while 𝑅2(𝑢2) does not virtually change with the number of Lekhnitskii’s series terms 

(𝑅2(𝑢2) ≈ 1), 𝑅2(𝑢1) increases noticeably, and reaches a plateau (𝑅2(𝑢1) ≈ 0.9) only for 𝑁 ≥ 4 

(Figure 9b).   
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Figure 9 – (a) Stress Intensity Factor and (b) R2 as functions of the number of Lekhnitskii’s series terms, 𝑁 (𝜃 = 160°, 𝑟𝑚𝑖𝑛 = 2 mm, 
𝑟𝑚𝑎𝑥 not defined). 

Although 𝑅2 increases with 𝑁 (mainly that related to the 𝑢1 component), the best fit is 

obtained with a low number of terms  (𝑁 = 4)  as it is deduced observing the contour plots (Figure 

10) that report, for different number of terms, the experimental and fitted displacement fields.  

 

 

Figure 10 – Contour plot of the experimental and analytical method for both displacement fields, varying the number of terms: (a) 
𝑢2 when 𝑁 = 4, (b) 𝑢2 when 𝑁 = 10, (c) 𝑢1 when 𝑁 = 4, (d) 𝑢1 when 𝑁 = 10. 
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For a number of Lekhnitskii’s series terms equal to 𝑁 = 4, the fitting is excellent (Figure 11), and 

the absolute error† contained (Figure 12). 

 

 

Figure 11 – Comparison between the (a) experimental and (b) fitted 𝑢2 displacement and (c) experimental and (d) fitted 𝑢1 
displacement. 

 

                                                           
† Calculated as the difference between the experimental and fitted values of the displacement field. 
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Figure 12 – Absolute error of both (a)  𝑢2 and (b)  𝑢1 displacements. 

4.2 Evaluation of J-Integral and influence of parameters  

The calculation of the J-Integral using the formulation of Equation (22) requires the definition of an 

integration domain (shaded area in Figure 13) that is delimited by two boundaries (Γ1 and Γ3) as 

shown in Figure 2. In the following  Γ1 and Γ3 are considered to be squares with side having 𝑁𝑖𝑛𝑡 and 

𝑁𝑒𝑥𝑡 subsets, respectively (Figure 13).  

In an analogous way as previously done,  𝑁𝑖𝑛𝑡 and 𝑁𝑒𝑥𝑡 can be used to exclude points that could affect 

the accuracy of the J-Integral calculation. The first parameter, 𝑁𝑖𝑛𝑡, allows to neglect points in the 

vicinity of the crack tip that need to be excluded because, as previously explained, are not able to 

provide reliable data for the displacement and strain field near geometric singularities at the notch 

and crack tip. The latter, 𝑁𝑒𝑥𝑡, allows eliminating points near the edge for which the DIC is not able 

to provide an accurate value of the displacement.  

 

Figure 13 – Sketch of the integration domain drawn around the crack tip. 
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Several aspects need to be considered to assess the effectiveness of the proposed approach, 

and in particular: 

(i) the ability of the method to provide a value of 𝒥 that converges for increasing number of 

points in the integration domain;  

(ii) the effect of the smoothing of the raw displacement field data; 

(iii) the appropriate choice of the auxiliary function 𝑄; 

(iv) the sensitivity of the method. 

4.2.1 Convergence of the J-Integral 

The path independency of the J-Integral implies that, changing the integration domain, the 

calculated value of 𝒥 should be constant; however, when a numerical approach is used, as in this case, 

the estimation is affected by an error that should decrease increasing the extension of the integration 

domain (the number of subsets, 𝑛 in Equation (22)). Hence, an increase of 𝑛 should cause the J-

Integral to converge to a plateau value that approaches to the actual experimental value. 

In order to perform this study, the J-Integral is calculated freezing the inner boundary (i.e. 

keeping constant the size of the inner boundary imposing 𝑁𝑖𝑛𝑡 = 20) and increasing the size of the 

outer boundary (i.e. increasing 𝑁𝑒𝑥𝑡). It is observed that the proposed approach behaves as expected, 

providing a plateau value of ℐ = 11.8 N/mm once a threshold value of 𝑁𝑒𝑥𝑡 has been reached (purple 

curve in Figure 14). The methodology is fast and can be implemented on-the-fly, providing the J-

Integral curves as a function of  𝑁𝑒𝑥𝑡 for different values of the applied load (Figure 14). 
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Figure 14 – J-integral as a function of 𝑁𝑒𝑥𝑡  for different applied loads. 

 

The ability of the proposed approach to converge to a plateau value of the J-Integral can be 

demonstrated also calculating ℐ for different combinations of 𝑁𝑖𝑛𝑡 and 𝑁𝑒𝑥𝑡.  

 

Figure 15 – Plateau value of the J-integral for different values of 𝑁𝑖𝑛𝑡 and 𝑁𝑒𝑥𝑡. 

 

With reference to the same case analysed earlier (30th frame), it is possible to calculate the 

value of the J-Integral for 𝑁𝑖𝑛𝑡 and 𝑁𝑒𝑥𝑡 in the range [20, 124] and [130, 150], respectively (Figure 

15). It is observed that the plateau value of 𝒥 is not correctly computed when both large values of 

𝑁𝑖𝑛𝑡 and small values of 𝑁𝑒𝑥𝑡 are simultaneously used. The reached plateau value is indicated by the 

arrow. 
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Finally, the sensitivity of the method towards number of points included in the calculation is 

investigated. This has been performed varying both the dimensions of the inner and the outer contour. 

The error has been evaluated as the variation of 𝒥 divided by the most accurate value.  

 

Figure 16 – Error as the number of points included in the calculation domain varies. 

 

It is fair to assume that the most accurate value is the one obtained using in the calculation 

the highest number of experimental points. Since 𝑁𝑖𝑛𝑡 varies from 20 to 124 points while 𝑁𝑒𝑥𝑡 varies 

from 130 to 150 points, the best value is considered the one obtained posing 𝑁𝑖𝑛𝑡 = 20 and 𝑁𝑒𝑥𝑡 =

150 (𝒥 = 11.8 N/mm). In Figure 16 it is shown the error (expressed in percentage terms). For most 

of the points, the error is close to 0, as a confirm of the high stability of the developed method. 

4.2.2 Smoothing of the raw data 

The noise in the displacement raw data obtained from the DIC could significantly affect the 

calculation of the derivatives of the displacement‡ necessary for the calculation of 𝒥 (Equation (22)), 

and could consequently cause a loss of accuracy of the proposed methodology. In order to improve 

the calculation of the derivative, it is possible to fit the experimental data using an analytical 

                                                           
‡ Equation (22) requires the calculation of 𝛥𝑢𝑚/𝛥𝑥1, that corresponds to the calculation of both 𝛥𝑢1/𝛥𝑥1 and 𝛥𝑢2/𝛥𝑥1. 
The first derivative, 𝛥𝑢1/𝛥𝑥1, is equal to the strain, 휀11, whose calculation does not present any particular difficulty 
since it is directly provided by the DIC. On the contrary, the derivative, 𝛥𝑢2/𝛥𝑥1, needs to be numerically calculated 
using the displacement field provided by the DIC.  
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formulation. Although any analytical expression could be used, it is appropriate to fit the experimental 

data using the formulation reported in Equations (12) and (13).  

This considerably improves the accuracy in the calculation of the derivative and provides a 

value of the J-Integral equal to 𝒥 = 11.5 N/mm.  This is due to the high reduction of the noise, in 

both the displacements and their derivatives, as shown in Figure 17.  

In Figure 17c,d it is shown the derivative of the displacement component 𝑢2 with respect to 

the 𝑥2 direction. Even though the calculation of this derivative is not required in the evaluation of 𝒥, 

it has been chosen to use it as an example of the noise-filtering effectiveness of the fitting algorithms. 

 

 

 

Figure 17 – Comparison between the (a) experimental and (b) fitted 𝑢2 field, and their derivatives  (c) experimental and (d)  fitted 
with respect to the 𝑥2 direction 
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4.2.3 Choice of the auxiliary function Q 

The auxiliary function 𝑄 can be arbitrary but has to meet some requirements [24], and in 

particular (i) it has to be continuous, (ii) it has to take the values 0 and 1 in the outer and inner 

boundaries, respectively, and (iii) it has to take values in the range [0,1] within the domain of 

integration. 

Following Shih et al. [24], two analytical formulations are investigated for 𝑄, and in 

particular: 

(i) the pyramidal function, where 𝑄 varies linearly in all the directions, from the inner boundary 

(𝑄 = 1 at Γ1) to the outer boundary (𝑄 = 0 at Γ3); 

(ii) the plateau function, where 𝑄 = 1 everywhere in Ω but 𝑄 = 0 at the outer boundary (Γ3). 

Both functions can be implemented in a Matlab [33] script (Figure 18) and allow the 

calculation of the J-Integral using Equation (22). 

From a convergence study performed using both functions (Figure 19), it is observed that the 

use of the pyramidal or plateau functions is not equivalent and leads to different results. In fact, while 

the pyramidal function quickly converges to a limiting value of 𝒥, the plateau function provides 

values that fluctuate around the same value (Figure 19a). 

 

 

Figure 18 – (a) pyramidal and (b) plateau 𝑄 functions. Missing points are due to the presence of the notch. 

 



27 
 

This could be explained observing that in Equation (22) the derivatives 𝛥𝑄/𝛥𝑥𝑙 need to be 

calculated. In the case of the plateau function, these derivatives are 0 everywhere but on the subsets 

attached to the external boundary. This corresponds to the fact of considering, in the calculation of 𝒥, 

only the contribution of the subset attached to the external boundary and neglecting that of the inner 

subsets. This fact partially negates the advantage of using an integral domain approach and makes the 

calculation sensibly affected by local experimental errors. 

If the pyramidal function is used, the contribution of all the subsets in the integration domain 

is taken into account (i.e. the derivative is never zero). This makes the calculation less sensible to 

local errors and the convergence of the method more stable. 

To further corroborate this hypothesis, the same calculation is repeated using the displacement 

field obtained by fitting the experimental data with the analytical formulation reported in Equations 

(12) and (13).  

It is evident that in this case, the fitting eliminates the local errors, and this fact leads to a 

stable convergence when using both auxiliary functions. They both provide virtually the same 

limiting value (Figure 19b). The results obtained are summarised in Table 4.  

 

 

Figure 19 – Convergence comparison using pyramidal and plateau 𝑄 functions (a) without and (b) with smoothing of the 
displacement field. 
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Table 4 – J-integral values obtained. 

Smoothing on the displacement field 𝒥 [N/mm] 

No smoothing applied to the displacement field 11.8 

Smoothing applied to the displacement field 11.5 

 

4.3 Evaluation of SIF from J-integral and comparison 

The fitting procedure in 4.1 allows obtaining a value of the Stress Intensity Factor equal to 

21.04 MPa√m. Assuming that the material has a linear-elastic behaviour, it is also possible to obtain 

SIF from 𝒥, as shown in Eq. (28).  

Table 5 – SIF values obtained by the different presented approaches. 

Methods used to evaluate the mode I SIF 𝒦𝐼 [MPa√m] 

SIF obtained from the fitting procedure 21.04 

SIF obtained from J-integral 22.12 

SIF obtained from J-integral, using fitted displacement data 21.85 

Numerically evaluated SIF 20.34 

 

Table 5 summarises the values of SIF that can be obtained using different approaches. The 

three described experimental approaches are compared with a reference value obtained following the 

approach described by Catalanotti et al. [34,35]. Since the experimental values are fairly similar to 

each other and in good agreement with the reference value, this allows to verify the validity of the 

adopted techniques. 

Conclusions 

In this work a Single Edge Notched Tension sample, made of a CFRP IM7/8552 laminate 

with orthotropic behaviour, is tested for Mode I fracture. Two procedures are presented for the 

evaluation of the SIF, using the displacement field obtained with 2d Digital Image Correlation: a least 
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square fitting procedure based on the Lekhnitskii’s formulation, and a procedure based on the 

evaluation of the J-Integral as a domain integral. 

The outcomes of this investigation are summarised in the following points: 

i) The calculation of the SIF by fitting the displacements using Lekhnitskii’s formulation 

requires care in choosing the region of interest. On one hand, particular care needs to be 

taken when choosing 𝑟𝑚𝑖𝑛 which needs to be small enough to properly predict the singular 

term, and therefore the SIF. On the other hand,  𝑟𝑚𝑖𝑛 should be large enough to exclude 

the fractured region from the fitting procedure. On the contrary, it was demonstrated that 

the effect of 𝑟𝑚𝑎𝑥 is not significant. In this study, 𝑟𝑚𝑖𝑛 = 2 mm has been used and, in this 

particular case, 𝑟𝑚𝑎𝑥 was not defined. 

ii) A compromise needs to be found on the optimal number of terms of the power series 

needed. If an increase of 𝑁 improves the quality of the fitting, the number of terms need 

to be limited in order to avoid a badly conditioned fitting. In this study, a number of terms 

𝑁 = 4 was used. 

iii) In order to ensure the accuracy of the fitting, it is essential to correctly determine the 

location of the crack tip. In this study this was achieved through a simple iterative method. 

iv) The methodology developed for the calculation of 𝒥 has been proved to be robust and 

rapidly converging when increasing the domain of integration. 

v) The use of a plateau or pyramidal expression for the auxiliary function, 𝑄, does not lead 

to equivalent results especially when 𝒥 is calculated directly from the raw DIC data (i.e. 

with no fitting). In this case, in fact, the use of a pyramidal function is preferable, since it 

allows considering in the calculation a larger number of experimental points thus reducing 

the effect of local errors and, consequently, leading to more stable results. 

vi) The determination of 𝒥 requires the calculation of the derivatives 𝛥𝑢𝑚/𝛥𝑥1, whose 

calculation, performed on scattered raw DIC data, provides poor results. To remedy this 
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situation, these derivatives were calculated on the fitted displacements with improved 

accuracy. 

vii) Since a good agreement was found when comparing the SIF calculated through the 

proposed methods, it can be concluded that these approaches provide equivalent results if 

the experimental parameters are carefully selected. 
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