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A B S T R A C T

In this work we investigate the behaviour of a human crowd in a cross-flow by analysing the results of a set
of controlled experiments in which subjects were divided into two groups, organised in such a way to explore
different density settings, and asked to walk through the crossing area. We study the results of the experiment
by defining and investigating a few macroscopic and microscopic observables. Along with analysing traditional
indicators such as density and velocity, whose dynamics was, to the extent of our knowledge, poorly understood
for this setting, we pay particular attention to walking and body orientation, studying how these microscopic
observables are influenced by density. Furthermore, we report a preliminary but quantitative analysis on the
emergence of self-organising patterns (stripes) in the crossing area, a phenomenon that had been previously
qualitatively reported for human crowds, and reproduced in models, but whose quantitative analysis with
respect to density conditions is, again according to our knowledge, a novel contribution.
1. Introduction

Pedestrian facilities can be found in any part of the world where
people transit, move or gather. Train stations, stadia or airports are
just a few examples of such structures, but shopping malls or other
commercial facilities also attract a large number of customers, thus
requiring a design that can guarantee safety and comfort of their oc-
cupants. Religious events or concerts also require meticulous planning,
especially when a large crowd is expected over a short period of time
in temporary facilities built to accommodate participants.

The design of pedestrian facilities has been traditionally based on
the experience gained from on-site personnel managing them. Nonethe-
less, data gained on pedestrian and crowd motion over the last 50 years
helped defining standards and regulations, which have contributed in
greatly increasing the safety of buildings especially in case of evacua-
tions. In addition, simulation software is also playing an increasingly
dominant role in the design of pedestrian facilities (Lovreglio et al.,
2020). The increasing role of models can be also confirmed by the
creation of standards for the validation of those designed for the
simulation of emergency evacuations (International Organization for

∗ Corresponding author at: International Professional University of Technology in Osaka, 3-3-1 Umeda, Kita-ku, 530-0001, Osaka, Japan.
E-mail addresses: zanlungo@atr.jp (F. Zanlungo), feliciani@g.ecc.u-tokyo.ac.jp (C. Feliciani), zeynep@okayama-u.ac.jp (Z. Yücel),

tknishi@mail.ecc.u-tokyo.ac.jp (K. Nishinari), kanda@i.kyoto-u.ac.jp (T. Kanda).

Standardization, 2020). In addition, simulation software is also used to
study pedestrian flow lines in normal situations with the aim to improve
pedestrian traffic and thus ensure a better experience for its users.

However, as already briefly stated above, the advances in the study
of pedestrian dynamics over the last decades are also related to the
increasing availability of empirical data that has helped in the defini-
tion of new theories, standards and constituted the base upon which
validation of numerical models is performed. The most representative
example is the study of the fundamental diagram of pedestrian traffic.
Based on this framework, developed from knowledge gained on ve-
hicular traffic but backed by quantitative measurements on pedestrian
motion, Fruin defined the LOS (Level Of Service), which is still one
of the most used criteria to classify quality of pedestrian areas (Fruin,
1971). Although the universality of the fundamental diagram is often
debated, its validity is not under discussion and has allowed to identify
differences in pedestrian motion related to diverse factors such as age,
gender and culture (Chattaraj et al., 2009; Fujita et al., 2019; Ye et al.,
2021; Subaih et al., 2020; Cao et al., 2016).
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Initially, empirical data on collective motion were mostly collected
in public facilities, which can be seen as the most logical choice
since they represent the ‘‘natural habitat’’, i.e. the ecological context
where pedestrians move (Weidmann, 1993). However, to study the
very fundamental mechanisms of collective motion and remove the
influence of external variables difficult to control in public facilities,
controlled experiments also started to be considered and an increasing
number has been performed over the last few decades (Haghani and
Sarvi, 2018). In general, it can be said that the scope of supervised
experiments is to manipulate each variable affecting collective motion
in public spaces independently, thus allowing to better understand its
influence before considering the combination of multiple factors. For
instance, route choice (Crociani et al., 2016), exit selection (Bode et al.,
2015), disabilities and/or walking impairment (Geoerg et al., 2019),
collaborative vs competitive behaviours (Von Krüchten and Schad-
schneider, 2017), level of competitiveness (Feliciani et al., 2020b),
social norms (Zanlungo et al., 2012), social bonds and relationships (Ye
et al., 2021; Zanlungo et al., 2014, 2015; Zanlungo and Kanda, 2015;
Zanlungo et al., 2017, 2019, 2020) or available information (Feliciani
et al., 2020a) are examples of variables which are better studied in
supervised experiments or by carefully selecting a specific area of a
public space where influence of other factors is minimal.

When it comes to physical aspects of collective motion, one of the
most simple and common supervised experiments is represented by
the single-file walking in a loop. Despite the very simple geometry,
effectively making motion strictly uni-dimensional, several important
properties of pedestrian dynamics can be obtained, from the previously
mentioned fundamental diagram to more subtle aspects related to
stepping and locomotion (Chattaraj et al., 2009; Jelić et al., 2012; Wang
et al., 2018; Subaih et al., 2020; Cao et al., 2016). In addition, evacu-
ation (or more generally egress) also represents a commonly studied
scenario (Seyfried et al., 2009; Adrian et al., 2020; Feliciani et al.,
2020b). Uni-directional experiments were also performed with differ-
ent corridor widths thus allowing the consideration of more complex
interaction among pedestrian (Zhang et al., 2012). Although bottle-
neck/egress and the corridor-shaped uni-directional flow take complex-
ity one step further from the single-file geometry, they all represent
quite simple conditions in terms of collision avoidance since headway
is the most important parameter upon which speed is adapted, with
limited changes in longitudinal direction and shoulder orientation.1

Furthermore, a number of studies were performed on bi-directional
flows, where people from two directions meet in a delimited path, such
as in a corridor or a crosswalk (Zhang et al., 2012; Feliciani and Nishi-
nari, 2016; Murakami et al., 2021). The increasing complexity given by
the existence of frontal collision avoidance leads to the creation of self-
organised structures, lanes in the case of a bi-directional flow, which
are the results of an optimisation strategy occurring on a collective level
with the aim of limiting potential collisions. Even this comparatively
simple scenario is still not fully understood and simulations often
fail in reproducing experimental results, typically either leading to an
overly straightforward formation of lanes or running into a deadlock at
relatively low densities. This shows that even a simple case like the bi-
directional flow is worth being studied and, as stated above, knowledge
gained from the understanding of its underlying principles can have
consequences on the practical aspects and applications.

With this said, it is also worth adding that the full complexity of
the bi-directional case is only at play during the time in which lanes
are forming. Once the crowd divides into well distinguished lanes,
the motion is basically uni-directional, with each lane being poten-
tially considered as (almost) independent from the others (Feliciani
et al., 2018). For this reason, the knowledge obtained by studying
the bi-directional scenario may not be generalised in a straightforward

1 With the possible exception of extreme high-density conditions where
houlder orientation is constrained by available space.
2

way. For example, models focusing on ‘‘following strategies’’ could
describe very well self-organisation in bi-directional flows while failing
to reproduce proper collision avoidance in general settings.

In the discussion provided above controlled experiment (or, more
in general, simple geometries) were presented as a solution to obtain
data to be used in research and to validate numerical models. It is
nonetheless worth pointing out their limitations. For instance, people
are known (or at least they are believed) to behave quite differently
in controlled experiments compared to the ecological context. Thus,
depending on the purpose of the study, collecting data in public facili-
ties would be preferable. But, on the other side, controlled experiments
allow to remove potential influences related to the surrounding en-
vironment which are difficult to quantify in real-life observations. As
such, a well designed controlled experiment may identify fundamental
aspects of crowd motion, which could help explaining the dynamics
observed in an ecological context, where additional factors need to be
accounted in addition to the fundamental dynamics.

From what discussed above we may assume that the cross-flow, a
condition where two groups of people coming from different directions
cross in a delimited space, represents a good test-bed to study collision
avoidance in controlled conditions. Although, as we discuss below, self-
organising patterns are present also in a crossing scenario, the geometry
of the problem does not allow for a complete spatial separation of
different flows, and pedestrians (and participants) need to continu-
ously perform (relatively) complex avoidance behaviour to navigate
the crossing area. In addition, it is worth mentioning that intersections
are a common element of pedestrian infrastructures and accidents
occurred in the past (such as the 1993 Lan Kwai Fong Accident in Hong
Kong Lee and Hughes, 2005; Feliciani et al., 2022b), thus highlighting
the importance of this geometry for the sake of safety.

For these reasons, in this work, we study the behaviour of pedes-
trians in a cross-flow. The geometry consists of a crossing area where
two orthogonal corridors, each characterised by a uni-directional flow,
meet, and interactions among pedestrians are observed and studied.
Again, we should point out that these are extremely idealised and
simplified conditions. In the real world crossing flows are not neces-
sarily orthogonal and even when such a condition occurs, people may
have different destinations and thus some of them may turn left or
right, limiting the proportions of those aiming to the opposite side
of the crossing area. Nevertheless, given what discussed above, we
believe the cross-flow scenario is a good trade-off between a too simple
geometrical setup and a completely realistic behaviour in terms of
collision avoidance. In that regard, the complex interactions among par-
ticipants, requiring both anticipatory and collision avoidance abilities,
could reproduce well what is observed in a real world context (possibly
excluding the fact that in public spaces people often move in groups,
while experiments only considered individual behaviour).

Despite the remarkable properties listed above, only few studies
considered the cross-flow geometry in the frame of controlled exper-
iments (although it is however often considered in numerical mod-
els). The few studies that did consider it mostly focused on macro-
scopic quantities, often with the aim to compare it with other ge-
ometries, without discussing microscopic properties which we consider
to be worth studying in light of the non-trivial collision avoidance
mechanisms involved (Wong et al., 2010; Cao et al., 2017, 2018).

As stated above, qualitative observations and preliminary studies
suggest that self-organising patterns emerge in the cross-flow, ulti-
mately reducing the interactions between streams and optimising the
overall flow. More precisely, the occurrence of ‘‘diagonal stripes’’ has
been reported, but little quantitative evidence has been given to sup-
port their emergence (Naka, 1977; Ando et al., 1988; Helbing et al.,
2005). On the other side, diagonal stripes are used in ‘‘centrally organ-
ised’’ marching parades (Rokko High School, 2017), where well-trained
people enter the crossing area in a predetermined formation thus
preventing any collision and leading to an aesthetically appealing

motion. Theoretical justification for the emergence of such a pattern
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can be found in Cividini et al. (2013a), Cividini and Appert-Rolland
(2013) (using a discrete lattice model), Cividini et al. (2013b) (using
a mean field approach), Hittmeir et al. (2016) (using a partial differ-
ential equation model) and Totzeck (2019) (using an anisotropic agent
model). In addition, such pattern has also been recently reported in
an experimental work (Mullick et al., 2022) whose analysis focused
on the relationship between crossing angles and stripe orientation. On
the other hand, as detailed later on, in this work we focus on density
conditions and crossing angle is kept constant at 𝜋∕2. Finally, it is worth
mentioning that although stripes have been typically presented as
regular well-defined structures (especially in simulation models), they
are expected to appear highly irregular in real crowds (in particular
when density is very low or very high). To study such kind of irregular
formations, a definition describing ‘‘stripe’’ shape is needed and this is
best done employing clustering algorithms, something that we indeed
intend to perform in a future work. Nevertheless, the fundamental
nature of the problem is geometrically simple and an initial analysis can
be carried out based only on relative angles between first neighbours
(as defined in Appendix A and formalised in Eqs. (A.22) and (A.24)).
As we will show, these observables provide some initial evidence on
stripe formation and suggest conditions for their emergence.

In this work, we aim to study details of the microscopic and macro-
scopic dynamics of the cross-flow. More specifically, we are going to
consider six different experimental conditions of two flows crossing
orthogonally through a central square. For each condition, pedestrian
density in both flows was changed (while maintaining density equal
between the flows) and a number of repetitions were performed to
ensure sufficient statistical validity. Results are based on the analysis
of nine different macroscopic and microscopic observables (rigorously
defined below). Some of them are quite common in the study of crowd
dynamics (e.g. temporal change in density, speed distribution), but
others have been studied to a lesser extent, such as the probability
distribution of distances between first neighbours (either in the same
or in the crossing flow) or the distribution of the velocity direction.
Some additional features have been, to our knowledge, studied to a
very limited extent, such as the distribution of relative position angles
between first neighbours (either in the same and in the crossing flow).
Finally, believing it may play an important role at high densities,
we also obtained data regarding body orientation, which could help
in deepening the understanding on its role in collision avoidance.
Consequently, body orientation and its deviation with respect to the
velocity direction are also studied, adding to the list of rarely studied
properties of pedestrian motion.

2. Experiments

2.1. Experimental setup

At the scope of collecting empirical data on the behaviour of crowds
in a cross-flow scenario, an experimental campaign was organised
recruiting students as participants. Two waiting/starting lanes having
an equal width 𝑤 = 3.0 m were prepared, each creating a similar
ni-directional flow. These two flows were directed in such a way
o have them crossing perpendicularly in a specific area where the
rajectories of participants were collected. Experiments were conducted
utdoors on the Tokyo university campus on December 7th, 2019. To
rotect participants from the rain roof-covered parts of the building
ere used and, due to space limitations, a starting lane had to be bent.
he experimental setup is schematically presented in Fig. 1(a) and in
ddition a top-view image of the experimental setup is also provided
n Fig. 1(b) .

To allow an accurate setup of crowd density in each starting area
nd yet get a uniform distribution of participants, starting lines were
rawn on the ground and participants were asked to freely take position
etween the external perimeter of the crossing area (whose borders
elimited by magenta lines are clearly visible in the image of Fig. 1(b))
3

r

and the line determining the end of the waiting area (i.e. the grey
thick line shown in Fig. 1(a) whose distance from the crossing area
is indicated as 𝑙). Staff members checked that subjects disposed them-
selves in a uniform way. The control of density in the crossing area
was consequently achieved by setting different lengths 𝑙 in the starting
reas (i.e. moving the location of the grey line in Fig. 1(a)). Namely, six
ifferent lengths have been considered: 𝑙 = 36.0 m, 𝑙 = 18.0 m, 𝑙 = 9.0

m, 𝑙 = 6.0 m, 𝑙 = 4.5 m and 𝑙 = 3.6 m.
This configuration was planned expecting a total number of 54

participants, which would lead to starting area densities 𝜌𝐼 = 0.25, 𝜌𝐼 =
0.5, 𝜌𝐼 = 1, 𝜌𝐼 = 1.5, 𝜌𝐼 = 2 and 𝜌𝐼 = 2.5 ped/m2 (following the same
order given for the lengths 𝑙 above). However, a slightly higher number
of participants showed up on the day of the experiments: 56, 2 more
than originally expected2. As a consequence, real densities were slightly
higher (3.7% higher to be precise). Nonetheless, to keep presentation
of the results simple, we kept the original densities to label each
experiment, also considering that those are simply initial conditions
and densities really observed in the crossing area are measured in detail
from the collected data.

For each initial density condition, 6 repetitions were performed,
although this number was increased to 8 for the configuration having
the lowest density (𝜌𝐼 = 0.25 ped/m2), see also Table 1 for details.
To limit the capability of participants to develop efficient strategies
through a learning process, configurations were not performed in in-
creasing/decreasing order but following a shuffled schedule (again
details are provided in Table 1). Considering that participants simply
walked straight in the starting areas, marking was only performed
delimiting each region with coloured signs on the ground. However,
due to the strong interactions observed in the crossing area and its
importance in the frame of data collection and analysis, this area has
been delimited using chain partitions (see Fig. 1(b)).

2.2. Experimental procedure

An overall number of 56 participants voluntarily applied for the ex-
periments. Only males were recruited since other planned experiments
had male-only conditions3 (and partially to avoid possible issues arising
from body contact at high densities.4) Instructions to the participants
were simple and yet clear. They were asked to line up in front of
the entrance of the (magenta) crossing area uniformly occupying the
whole space available in the starting area (again, this being defined
as the area between the central crossing and the end line shown in
grey in Fig. 1(a)). When participants finished taking position in the
starting area, a ‘‘start’’ signal was given so that they start walking
towards the central crossing. Both groups had to walk straight, pass
through the crossing area and keep walking for a short distance after
leaving it (to avoid congestion due to stopping participants). Staff on-
site helped to ensure a uniform distribution and to avoid participants
taking repeatedly similar positions (front/back positions are typically

2 Based on previous experiences with participants not showing up the day
f the experiments without informing the organisers in time, a higher than
eeded number of participants was recruited, i.e. 56 people. Since they all
howed up and the total number was even, we decided to get them all involved
o increase the sample size without affecting results.

3 A male-only condition was chosen instead of a female-only one since other
xperiments in the same session (Murakami et al., 2021) were partially aimed
o compare results with a previous work (Feliciani and Nishinari, 2016). Also,
he proportion of males is quite high in the department with which organisers
re affiliated, making recruitment of males easier.

4 The dynamics of a mixed-gender crowd could be significantly different,
ue to greater variation in body size, preferred speed, and possibly even
ollision avoidance norms; nevertheless we believe that even the results arising
rom a same-gender crowd are novel and of interest to the crowd dynamics
esearch community.
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Fig. 1. (a): schematic representation of the experimental area. For the sake of simplicity, only a small number of pedestrians is represented. The crossing area is the square
bordered in magenta on the image taken from the camera as shown in (b). The end of the waiting area is shown using a grey line and its length is indicated as 𝑙. In this example
two settings are shown: 𝑙1 = 9 m and 𝑙2 = 18 m. In the representation shown in (a) participants occupy the starting area having a length 𝑙 = 9 m. Note that for each experimental
run, the lengths of the waiting area in the two lanes were the same. (b): frame relative to a specific experiment with 𝜌𝐼 = 2 ped/m2 (i.e., length of the starting area was 4.5 m).
The image corresponds approximately to the blue area given in the schematic representation in (a). The participants wearing caps different from red or yellow had been equipped
with tablets to measure their body orientation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Summary of relevant information on experimental procedure and collected data. Nominal density refers to the descriptive value used in this
work, real to the effective density. Units for density and distance are omitted for the sake brevity, they are ped/m2 and m, respectively. Number
of valid orientation samples refer to trajectories associated with body orientation satisfying all requirements to couple them and ensure quality
standards. Note that orientation samples refer to the sum over all the repetitions corresponding to a given density condition. Ideally the total
number of samples should be equal to the number of participants equipped with tablets and whose recognition was possible (i.e., 9 participants)
multiplied by the number of repetitions, although such number of samples is usually lower due to the issues explained in the text.

Starting density End line
distance

Number of
repetitions

Execution order Valid body
orientationNominal Real samples

0.25 0.26 36 8 10, 11, 12, 13, 20, 31, 32, 38 60
0.5 0.52 18 6 4, 5, 6, 21, 30, 33 52
1 1.04 9.0 6 1, 2, 3, 22, 29, 34 53
1.5 1.56 6.0 6 14, 15, 16, 23, 28, 35 53
2 2.07 4.5 6 7, 8, 9, 24, 27, 36 52
2.5 2.59 3.6 6 17, 18, 19, 25, 26, 37 54
preferred). In addition, staff at the exit encouraged participants to keep
walking past the crossing area.

Experimental procedures were approved by the Ethical Commis-
sion of the university of Tokyo and conform with the Declaration
of Helsinki. Participants received clear information on the nature of
the research, methods employed and disclosed data. After a briefing,
they gave written permission for participation and data acquisition and
received a remuneration in accordance to the university’s policies.

2.3. Data acquisition and processing

A camera was placed approximately 6 m right above the centre of
the crossing area to record the dynamics observed during the experi-
ments. Resolution was set at 3000 × 4000 pixel and frame rate at 30 fps.
Trajectories were extracted from the recorded videos using the PeTrack
software (Boltes et al., 2010; Boltes and Seyfried, 2013) employing hats
with different colours worn by participants as markers. It is important
to remark that the software employed allows to take into account both
camera distortion (due to the wide-lens used) and perspective. This
means that obtained trajectories are representative of planar motion
and relative to the projection of people’s head to the ground.

Since body orientation is an important part of the analysis presented
hereafter, the following approach was taken to gain precise information
on this quantity. 10 participants were given a tablet (Nexus 7, 2013)
which was fixed to their body using a bib (see also Nagao et al.,
2018 for more details). However, one of the participants equipped with
tablets mistakenly used a red cap intended to be used by participants
without tablet (instead of the white colour assigned to him), thus
making individual recognition impossible (details will follow later).
Consequently, only data relative to 9 participants have been available
to study body orientation in relation to moving direction.
4

The tablet recorded the movements in the upper body part and more
specifically the pedestrian chest orientation, which, except in cases of
strong torsion, is expected to provide a reliable estimate of shoulder
orientation (often regarded as the proxy for body orientation Willems
et al., 2020). Tablet (body) orientation was obtained by making use of
the inbuilt gyroscope sensor. Previous research (Feliciani and Nishinari,
2022) showed that errors in terms of precision and accuracy of the
gyroscope sensor are below 1%. This allows obtaining an angle given
the initial orientation and integrating the measured angular velocity
over time. Due to the small error, dead-reckoning is thus not an issue
for short time measurements such as in the case of this experiment.

From the details presented above, it should be clear that to properly
record body orientation it is necessary to know its initial value. For this
reason, participants wearing a tablet were asked to orientate towards
the crossing area (i.e., in such a way that the normal to their chest was
aligned with the corridor’s axis) before the start of the experiments so
that angles could be computed accurately. However, as it could be pos-
sible that some participants did not follow the instructions properly, to
verify the reliability of body orientation information, we overlapped the
video recording of the experiments with ‘‘animations’’ that used ellipse
shaped ‘‘virtual pedestrians’’ whose positions and orientations were
given according to our tracking process, and proceeded to eliminate the
few instances in which body orientation appeared to be unreliable (see
also Table 1 for details). In addition, in some instances the gyroscope
sensor failed to collect data for almost one second. Since angle orien-
tation is obtained by integration, in such cases, this information is lost,
requiring to neglect the record. Due to these issues, the total number
of collected samples is typically lower than the number of participants
equipped with gyroscope sensors.

The data set is freely available at Feliciani et al. (2022a).
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Fig. 2. Graphical definition of observables 𝜃𝑣, 𝜃 and 𝛥𝜃. 𝜃 is defined as the angle between the normal to the pedestrian chest 𝐧 and the corridor axis 𝑦 corresponding to the
pedestrian’s flow. 𝜃𝑣 is defined as the angle between the velocity 𝐯 and 𝑦, while 𝛥𝜃 is defined as the (modulo 2𝜋) difference between 𝜃 and 𝛥𝜃. Angles are defined as positive
when spanning in the direction of the 𝑥 axis, the latter showing the direction from which the crossing pedestrians are coming. To better clarify the definition, (a) shows the angle
definitions for pedestrians that see the crossing flow as in-coming from their right, while (b) shows the angle definitions for pedestrians that see the crossing flow as in-coming
from their left. Arrows starting from the 𝑦 axis represent positive angles, arrows ending on the 𝑦 axis negative ones.
Participants equipped with a tablet were given a cap with a dif-
ferent colour, allowing the coupling of their trajectory (obtained from
the camera) with body orientation (from the gyroscope sensor). For
example, it is possible to know that the participant wearing a green
cap and a grey T-shirt and coming from the left (as seen in Fig. 1) was
using tablet no. 2 and thus it is possible to study its position and body
orientation separately.

Finally, synchronisation between tracking data and body orientation
obtained from gyroscope sensors was achieved using a common refer-
ence time. Tablets continuously streamed local time and angular speed
data to a computer connected to a monitor showing time and experi-
ment number (seen in the upper-left corner of Fig. 1). The information
stored in the computer connecting all tablets and the time shown in the
video allowed to synchronise trajectories and body orientation with an
error of a single video frame, i.e. around 0.03 s. For details on this
synchronisation method readers are referred to Feliciani and Nishinari
(2022).

3. Observables

In our work we use 9 observables to quantify cross-flow dynamics.
In this section, we introduce them providing a qualitative descrip-
tion of their definition and meaning, while a detailed, operative and
quantitative definition is provided in Appendix A.

1. The density in the crossing area 𝜌(𝑡) is the time dependence of the
number of pedestrians tracked at each time in the crossing region
divided by the area of such region, and it is measured in ped/m2.
This is the only macroscopic (i.e., defined at the crowd-level, and
not at the individual pedestrian-level) observable that we use.
Nevertheless, it is strongly related to a microscopic observable,
the exit time (from the tracking area) 𝐸𝑡, and we will sometimes
refer also to the latter observable because it allows for a more
straightforward definition of a probability distribution.

2. By 𝑣 we denote the pedestrian speed, whose probability distribu-
tion is denoted with 𝑃 (𝑣), a notation used also for all the other
pedestrian-level (microscopic) observables defined below.

3. To investigate also the direction of the pedestrian velocity, we
study the velocity direction angle 𝜃𝑣. This angle, defined in detail
in Appendix A, assumes values in [−𝜋, 𝜋), 𝜃𝑣 = 0 denoting
movement along the corridor axis. The angle is defined in such
5

a way that 𝜃𝑣 > 0 denotes angles in the direction the other flow
is coming from. Fig. 2 explains in a graphical way the definition
of 𝜃𝑣 and its relation to other observables.

4. A subset of ten subjects was carrying a sensor that allowed us
to know their body orientation. This is denoted with 𝜃, assuming
values in [−𝜋, 𝜋). Here 𝜃 = 0 corresponds to the state in which
the normal to the pedestrian chest is aligned with the corridor’s
axis. Again, 𝜃 > 0 denotes angles in the direction the other flow
is coming from. Refer again to Fig. 2 for a graphical explanation
of the definition of 𝜃 and its relation to other observables.

5. The difference between 𝜃 and 𝜃𝑣 is defined as 𝛥𝜃 in such a way
that, again, −𝜋 ≤ 𝛥𝜃 < 𝜋. Refer again to Fig. 2.

6. For all pedestrians we also measure, as a vector, the distance
to their first neighbours, distinguishing between neighbours in
the same flow and in the crossing flow (see Eq. (A.22), (A.24)
and Fig. 3). In order to identify the presence of a self-organising
pattern, neighbours are defined to be other pedestrians on the
front of the pedestrian under consideration, i.e., located in the
direction of motion, as identified by the corridor’s axis. In such
a way, if a stripe pattern emerges, there will be a peak in the
relative angle distribution corresponding to the stripe axis (if
also neighbours on the back were present such peak would be
duplicated by symmetry).
The magnitude of the relative distance to the first neighbour in the
same flow is denoted as 𝛿𝑠,

7. while the magnitude of the relative distance to the first neighbour in
the crossing flow is denoted as 𝛿𝑜.

8. The angles that these distance vectors form with the corridor axis
are, respectively, the same flow first neighbour relative angle 𝜙𝑠

9. and crossing flow first neighbour relative angle 𝜙𝑜. These angles are
defined to assume values in [−𝜋∕2, 𝜋∕2), 𝜙 = 0 identifying the
corridor axis and 𝜙 > 0 the direction the other flow is coming
from (refer again to Fig. 3 for a graphical explanation).

The names, symbols and references to the mathematical definitions
of all observables are summarised in Table 2.
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Fig. 3. Graphical definition of observables 𝛿𝑠, 𝛿𝑜 and 𝜙𝑠 and 𝜙𝑜. First neighbours are defined as ‘‘the closest pedestrian in the direction of motion’’, i.e. in the growing 𝑦 directions
(thus the dashed grey area is ignored), and differentiated as belonging to the same or opposite flows. Angle signs are defined as in Fig. 2.
Fig. 4. (a): ⟨𝜌⟩𝜌𝐼 . (b): ⟨𝑣⟩𝜌𝐼 . Dashed lines provide standard error intervals.
Table 2
Summary of observables.

Name Symbol Definition

Density in the crossing area 𝜌 Eq. (A.15)
Exit time 𝐸𝑡 Eq. (A.18)
Pedestrian speed 𝑣 Appendix A.2
Velocity direction angle 𝜃𝑣 Eq. (A.19)
Body orientation 𝜃 Eq. (A.20)
Difference between 𝜃 and 𝜃𝑣 𝛥𝜃 Eq. (A.21)
Distance to the first neighbour in the same flow 𝛿𝑠 Eq. (A.23)
Distance to the first neighbour in the crossing flow 𝛿𝑜 Eq. (A.25)
Same flow first neighbour relative angle 𝜙𝑠 Eq. (A.26)
Crossing flow first neighbour relative angle 𝜙𝑜 Eq. (A.27)

4. Dependence of observables on density

4.1. Dependence of observables on the initial density 𝜌𝐼

For each observable 𝑂, we compute its dependence on the initial
condition density 𝜌𝐼 , denoted as ⟨𝑂⟩

𝜌𝐼 (for a detailed operational defi-
nition of these average values and their standard errors and deviations,
refer to Appendix B.1).

⟨𝜌⟩𝜌𝐼 is reported in Fig. 4(a). Furthermore, the dependence on 𝜌𝐼
of 𝑣 is shown in Fig. 4(b), that of the 𝛿 observables in Fig. 5(a), that
of the 𝜙 observables in Fig. 5(b), and finally the one of 𝜃 observables
in Fig. 6(a). We also report in Fig. 6(b) the absolute value of the 𝜃
observables (as 𝜃 observables are expected to be almost symmetric,
their average provides information on their asymmetry, while the
average of the absolute value provides information on their spread
around 0).
6

We may observe from Fig. 4(a) that, as expected, 𝜌 is an increasing
function of 𝜌𝐼 . Nevertheless, while at 𝜌𝐼 = 0.25 ped/m2 we have
𝜌 ≈ 2𝜌𝐼 , at 𝜌𝐼 = 2.5 ped/m2 we have 𝜌 ≈ 3∕5𝜌𝐼 (this is the average
value over the experiment; maxima, as shown in Section 5, in which we
report pdfs, are considerably higher, in particular for high 𝜌𝐼 , although
the growth is still sub-linear). We observe (from Figs. 4(b) and 5(a))
that 𝑣, 𝛿𝑜 and 𝛿𝑠 are decreasing functions of 𝜌𝐼 , although they reach a
plateau around 𝜌𝐼 ≈ 1.5 ped/m2. We also observe (Fig. 5(b)) that 𝜙𝑠

is clearly biased towards positive values. This result, which is related
to the ‘‘diagonal stripe formation’’ and it is better discussed studying
full pdfs (see again Section 5), is particularly strong in the 1–2 ped/m2

range. A weaker bias towards positive values is shown also by 𝜙𝑜

(Fig. 5(b)).
As seen in Fig. 6(a), the observable 𝛥𝜃 appears to be weakly biased

towards negative values, while 𝜃 and in particular 𝜃𝑣 are more sym-
metric. As the signs of the 𝜃 observables are defined with respect to
the direction the other flow is coming from (as explained in Fig. 2), we
expect this result to be related to the experimental setting more than
to an actual bias in the left/right symmetry of pedestrian behaviour.

Finally, |𝜃| has no clear dependence on 𝜌𝐼 , while |𝜃𝑣| and |𝛥𝜃| are
clearly increasing with 𝜌𝐼 (Fig. 6(b)).

4.2. Dependence of other observables on 𝜌

The most straightforward way to analyse the results of our exper-
iments is to study the dependence of all observables on the initial
density condition 𝜌𝐼 , as reported in 4.1. We nevertheless noticed that
results are more clearly interpreted if the remaining observables are
studied as a function of the crossing area density 𝜌 (denoted for each
observable 𝑂 as ⟨𝑂⟩

𝜌, refer to Appendix B.2 for the detailed operative
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Fig. 5. (a): ⟨𝛿𝑜⟩𝜌𝐼 (blue circles) and ⟨𝛿𝑠⟩𝜌𝐼 (red squares). (b): ⟨𝜙𝑜
⟩

𝜌𝐼 (blue circles) and ⟨𝜙𝑠
⟩

𝜌𝐼 (red squares). Dashed lines provide standard error intervals.
Fig. 6. (a): ⟨𝜃⟩𝜌𝐼 (blue circles) and ⟨𝜃𝑣⟩𝜌𝐼 (red squares) and ⟨𝛥𝜃⟩𝜌𝐼 (green stars). (b): ⟨|𝜃|⟩𝜌𝐼 (blue circles) and ⟨|𝜃𝑣|⟩𝜌𝐼 (red squares) and ⟨|𝛥𝜃|⟩𝜌𝐼 (green stars). Dashed lines provide
standard error intervals.
Fig. 7. (a): ⟨𝑣⟩𝜌. (b): ⟨𝛿𝑜⟩𝜌 (blue circles) and ⟨𝛿𝑠⟩𝜌 (red squares). Dashed lines provide standard error intervals.
efinition). Indeed, it is not surprising that the dynamics of the crowd
s more directly determined by the actual density than by the initial
ensity conditions, and thus we perform such analysis in this section.

The dependence on 𝜌 of 𝑣 is shown in Fig. 7(a), that of the 𝛿
bservables in Fig. 7(b), that of the 𝜙 observables in Fig. 8(a), and that
f 𝜃 observables in Fig. 8(b). We also report in Fig. 8(c) the absolute
alue of the 𝜃 observables.

In Fig. 7(a) observable 𝑣 presents an initial plateau for low density,
ut from 𝜌 ≈ 0.7 it turns into a decreasing function of 𝜌, a trend that

does not change up to 3 ped/m2. Such results are in line with the
usual ‘‘fundamental diagram’’ behaviours (compare to the less clear
behaviour when 𝑣 is studied as a function of 𝜌𝐼 in Fig. 4(b)). Also 𝛿𝑜 and
𝑠 are decreasing functions of 𝜌 up to 3 ped/m2, although they seem to

be converging to a stable value (compare again to Fig. 5(a), in which
a plateau is reached at 𝜌𝐼 ≈ 1.5 ped/m2).

In Fig. 8(a) a bias towards positive values of 𝜙𝑠 emerges in a stable
way for 𝜌 > 1.2 ped/m2. As stated above, this result is related to the
‘‘diagonal stripe formation’’ and it is better discussed studying overall
pdfs (see Section 5). A weaker bias towards positive values is shown
also by 𝜙𝑜 for high 𝜌 values (and more strongly but also less regularly
7

for low 𝜌 values).
In Fig. 8(b) observables 𝜃 and 𝛥𝜃 are weakly biased towards nega-
tive values, while 𝜃𝑣 is weakly biased towards positive ones, although
such biases emerge mostly only at high densities (i.e., high values of
𝜌).

In Fig. 8(c) observables |𝜃𝑣| and |𝛥𝜃| are clearly increasing functions
of 𝜌. Also |𝜃| appears to grow with 𝜌, although not as strongly as |𝜃𝑣|
and |𝛥𝜃|. Interestingly, such a pattern for |𝜃| does not clearly emerge
when this observable is studied as a function of 𝜌𝐼 in Section 4.1 (see
Fig. 6(b)).

5. Overall pdfs

In Figs. 9∼14 we show the results concerning all observables for the
𝜌𝐼 = 0.25, 0.5, 1 and 2 ped/m2 initial conditions.

We may see in Fig. 9(a) that the maximum density in the crossing
area grows with the initial density. Nevertheless, while it attains a value
doubling the initial condition for 𝜌𝐼 = 0.25 ped/m2, it is just ≈ 1.25 fold
the initial condition at 𝜌𝐼 = 2 ped/m2.

Fig. 9(b) shows that the total time for the crowd to pass the crossing
area decreases with time, i.e., the flow is increased. Nevertheless, an 8
fold increase in the initial condition density (corresponding to a 5 fold
increase in peak density) results in half ‘‘passing time’’.
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Fig. 8. (a): ⟨𝜙𝑜
⟩

𝜌 (blue circles) and ⟨𝜙𝑠
⟩

𝜌 (red squares). (b): ⟨𝜃⟩𝜌 (blue circles) and ⟨𝜃𝑣⟩𝜌 (red squares) and ⟨𝛥𝜃⟩𝜌 (green stars). (c): ⟨|𝜃|⟩𝜌 (blue circles) and ⟨|𝜃𝑣|⟩𝜌 (red squares)
and ⟨|𝛥𝜃|⟩𝜌 (green stars). Dashed lines provide standard error intervals.
Fig. 9. (a): 𝜌(𝑡) for different initial conditions. (b): 𝑃 (𝐸𝑡) for different initial conditions. Dashed lines provide standard error intervals (computed over independent repetitions).
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This finding is obviously related to the decrease in velocity with
ncreasing density, shown in Fig. 10(a), as the velocity peak decreases
rom ≈ 1.4 m/s for the 𝜌𝐼 = 0.25 ped/m2 initial condition to ≈ 0.6 m∕s

for 𝜌𝐼 = 2 ped/m2.
As shown in Fig. 10(b), motion becomes less ordered as density

increases (i.e., the spread of 𝜃𝑣 increases).
In an equivalent way, at high density, it is more probable to have

arge deviations between the body orientation and the corridor axis
Fig. 11(a)), as well as between the body orientation and the velocity
ne (Fig. 11(b)). It is nevertheless to be noticed that |𝜃| seems to be
trongly limited5 by 𝜋∕4, and |𝛥𝜃| by 𝜋∕2.

The distance between pedestrians in the same flow (Fig. 12(a))
ecreases with density, having a peak at ≈ 1.5 m for the 𝜌𝐼 = 0.25
ed/m2 initial condition, and at ≈ 0.5 m for 𝜌𝐼 = 2 ped/m2. At the
ighest initial density condition, the peak attains a similar value also

5 When comparing the 𝜃𝑣 distributions of Fig. 10(b) to the 𝜃 distributions
f Fig. 11(a), two considerations concerning the nature of these observables
ave to be taken in account. First of all, 𝜃𝑣 may be computed for all subjects,
hile 𝜃 (and thus 𝛥𝜃) only for those provided with a tablet. As a result, the
𝑣 data set is roughly 6 times larger. It is clear that observations with |𝜃𝑣| ≈ 𝜋
efer to subjects without tablet, otherwise larger deviations in the 𝜃 and/or 𝛥𝜃
istributions would be observed. Second, as 𝜃𝑣 is computed by differentiating
rajectory data, while 𝜃 is computed by integrating angular velocity ones, the
ormer is necessarily more noisy than the latter.
8

or the distance to pedestrians in the other flow, while at low density
edestrians get closer to people in the other flow than they do to people
n their own flow (peak at ≈1 m, Fig. 12(b)).

Finally, we may see (Fig. 13) that, although the angle to the first
eighbour in the same flow is skewed to 𝜙𝑠 > 0 for all initial conditions,

assuming a maximum at ≈𝜋∕4, in the transition from low to high
densities there is a strong decrease in the probability of pedestrians
following each other (i.e., having 𝜙𝑠 ≈ 0). As the 𝜙𝑠 probability
distribution presents a peak at an angle ≈ 𝜋∕4 for all values of 𝜌𝐼 ,
we may say that diagonal stripes seem to emerge even at low density,
although the phenomenon is stronger at higher densities.

The 𝜙𝑜 distribution, shown in Fig. 14, is, compared to the 𝜙𝑠

one, less dependent on 𝜌𝐼 and less noisy. Also the distribution of this
variable suggests the presence of a geometrical structure (stripes), with
minima at ≈ 𝜋∕4 (corresponding to the position of a pedestrian from
the same flow in case of a diagonal lane Naka, 1977; Mullick et al.,
2022).

6. Comments and conclusions

Most of these results are qualitatively intuitive, although they had
not, to the limits of our knowledge, been investigated before in a quan-
titative way. It was expected that the two flows would exhibit some
kind of organisation that would regulate the density in the crossing area
(Figs. 4(a) and 9), although the quantitative behaviour was not known
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Fig. 10. (a): 𝑃 (𝑣) for different initial conditions. (b): 𝑃 (𝜃𝑣) for different initial conditions. Dashed lines provide standard error intervals (computed over independent repetitions).
Fig. 11. (a): 𝑃 (𝜃) for different initial conditions. (b): 𝑃 (𝛥𝜃) for different initial conditions. Dashed lines provide standard error intervals (computed over independent repetitions).
Fig. 12. (a): 𝑃 (𝛿𝑠) for different initial conditions. (b): 𝑃 (𝛿𝑜) for different initial conditions. Dashed lines provide standard error intervals (computed over independent repetitions).
Fig. 13. (a), (b): 𝑃 (𝜙𝑠) for different initial conditions. Dashed lines provide standard error intervals (computed over independent repetitions).
n advance. Similarly, the velocity/density relation (see in particular
ig. 7(a)) is qualitatively similar to those observed in uni-directional
lows. At higher densities, due to an increase in collision avoidance
ehaviours, we naturally expect more variation in the velocity direction
𝜃𝑣|, and this is confirmed by the findings reported in Figs. 6(b), 8(c)
nd 10(b). Also, the dependence on density (either in the crossing area
r as initial conditions) of the distance between pedestrians, follows the
xpected qualitative behaviour (Figs. 5(a), 7(b) and 12).

The other observables deserve more attention. The 𝜙 observables
are related to the formation of ‘‘stripes’’ in the crossing area. The most
9

intuitive and geometrically straightforward way to identify the stripes
is to notice the ≈ 𝜋∕4 peak in 𝜙𝑠 (Fig. 13), which shows that there is a
tendency to have the forward first neighbour in the same flow walking
at such an angle in the direction from which the crossing flow is coming
(see also the bias towards positive values in Figs. 5(b) and 8(a)). This
phenomenon has been shown to happen in many models, and had
been reported in the literature (Naka, 1977; Ando et al., 1988; Helbing
et al., 2005), but without quantitative data support (although a very
recent result has investigated the relation between stripe orientation
and crossing angle Mullick et al., 2022). We believe that this aspect
of the dynamics deserves to be studied more in detail using clustering

algorithms and the like, but since that approach is quite different
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Fig. 14. (a), (b): 𝑃 (𝜙𝑜) for different initial conditions. Dashed lines provide standard error intervals (computed over independent repetitions).
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rom the one of this work (relying on straightforward geometrical
bservables) we leave it for a future work. Nevertheless, since we are
ot aware of previous experimental results on the dependence of stripe
ormation on density, we may further comment on this point. From
igs. 5(b), 8(a) and 13 it appears that while the phenomenon is present
t any (studied) density, it is definitely stronger at densities (initial or in
he crossing area) higher than 1 ped/m2. It also appears that the stripe

formation gets weaker at higher densities, namely at values ≈ 2.5 ∼ 3
ped/m2, although this effect deserves further study since we obtained
few data points at those densities.

It was also expected that, as density grows, 𝛥𝜃 would increase.
Nevertheless, as many models do not include the possibility of a dis-
crepancy between velocity and body orientation (if they include body
orientation at all), it is very important to quantify this behaviour.
We may see that at most densities, |𝜃𝑣| ≈ |𝛥𝜃| (Figs. 6(b) and 8(c)).
Obviously, this does not imply that |𝜃| ≈ 0, but we have indeed
verified that |𝜃| depends very weakly on initial density conditions
(Fig. 6(b)). The situation is more subtle when the relation between |𝜃|
and 𝜌 is analysed, as we may see that |𝜃| increases at high densities
(Fig. 8(c)). Similarly, when pdfs are investigated (Fig. 11), we see that
at high (initial condition) densities, rare events with large |𝜃| are more
probable. In a following work (Zanlungo et al., 2022), we will try to
understand how important 𝜃 is in reproducing the cross-flow dynamics.

Finally, the asymmetry in the 𝜃 observable (Figs. 6(a) and 8(b)) is
definitely an interesting, although weak, phenomenon. The cross-flow
setting is obviously asymmetrical, although to understand whether this
is enough to cause the asymmetry in the 𝜃 observables, or whether this
is due to other aspects of the experimental setting (or to a left/right
asymmetry in human behaviour), a comparison with (future) other
similar experiments may be necessary.
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Appendix A. Definition of observables

We provide a detailed definition of the observables used in this
work. We start with some general definitions that will prove to be
useful.

The cardinality of a set 𝑆 is defined as #(𝑆). Vectors are denoted
by boldface, such as 𝐚. The standard Euclidean inner (scalar) product
between vectors 𝐚 and 𝐛 is given by

(𝐚,𝐛), (A.1)

and the Euclidean norm by

𝑎 = (𝐚, 𝐚)
1
2 . (A.2)

As we always deal with 2D vectors, we may consider their vector
roduct as a scalar (given by its projection on the right-handed normal
o the plane). Namely, given an arbitrary right handed frame, we define

𝐚,𝐛⟩ ≡ (𝐚 × 𝐛)𝑧 = 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥. (A.3)

If we are only interested in the absolute value of ⟨𝐚,𝐛⟩, we need not
to worry about the right-handedness of the frame.

We often use the two-value arctan function, defined as

atan2(𝑎, 𝑏) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

arctan
(

𝑎
𝑏

)

, if 𝑏 > 0

arctan
(

𝑎
𝑏 + 𝜋

)

, if 𝑏 < 0, 𝑎 ≥ 0

arctan
(

𝑎
𝑏 − 𝜋

)

, if 𝑏 < 0, 𝑎 < 0
𝜋
2 , if 𝑏 = 0, 𝑎 > 0
− 𝜋

2 , if 𝑏 = 0, 𝑎 < 0
undefined , if 𝑏 = 0, 𝑎 = 0.

(A.4)

In our analysis we will consider only pedestrians that, at a given
ime 𝑡, are located inside a tracking area, which is defined as an 𝐿

times 𝐿 square (𝐿 = 3.4 m), adding a 0.2 m border on the sides of
the magenta area in Fig. 1, to take into account the aforementioned
absence of hard walls, and as a consequence has an area 𝐴 = 𝐿2. For
ach pedestrian 𝑖 located inside the tracking area (at a given tracking

time 𝑡) we define the position vector 𝐫𝑖 as the vectorial distance from
the origin (e.g., located in the centre of the crossing area). The distance
between two pedestrians is defined as

𝐫𝑖,𝑗 = 𝐫𝑗 − 𝐫𝑖. (A.5)

At each time 𝑡, we also define 𝑓 1(𝑡) and 𝑓 2(𝑡) as the subset of
(tracked) pedestrians belonging, respectively, to flow 1 and 2. Since
these sets correspond to tracked pedestrians, they formally depend
on tracking time 𝑡, although such a dependence is shown only when
eeded. Their union is the set of tracked pedestrians

(𝑡) = 𝑓 1(𝑡) ∪ 𝑓 2(𝑡). (A.6)

ach flow belongs to a corridor, whose axis direction (oriented as

he marching direction of the pedestrians, i.e., their goal) is defined
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through the normalised vector 𝐣𝑘, 𝑘 = {1, 2}. We also define the
orthogonal normalised vectors as 𝐢1 = −𝐣2, 𝐢2 = −𝐣1. It should be noted
that, through this definition, {𝐢𝑘, 𝐣𝑘} are not necessarily right-handed.
This decision is made because we want 𝐢𝑘 to identify the direction the
other flow is coming from, in order to have, by symmetry, the same
expected distributions for the relative angle observables to be defined
below (see also Figs. 2, 3).

Furthermore, for each corridor 𝑘, we define a reference frame using

𝑎𝑘𝑥 = (𝐚, 𝐢𝑘) 𝑎𝑘𝑦 = (𝐚, 𝐣𝑘), (A.7)

(𝑎𝑘𝑥,𝑦 being the components of an arbitrary vector 𝐚 in frame 𝑘) and for
each pedestrian 𝑖, we define the function

𝐹 (𝑖) =

{

1, if 𝑖 ∈ 𝑓 1

2, if 𝑖 ∈ 𝑓 2.
(A.8)

An empirical probability distribution6 of an observable 𝑂 is computed
by defining a bin size

𝛥𝑂 =
𝑂max − 𝑂min

𝑛𝑏
, (A.9)

where 𝑛𝑏 is the number of bins, and 𝑂min, 𝑂max define the interval in
which we study the observable distribution.

The number of observations belonging to a bin 𝑗 is then defined as
𝑂
𝑗 = #( observations 𝑘 with value 𝑂𝑘

such that 𝑗𝛥𝑂 + 𝑂min ≤ 𝑂𝑘 < (𝑗 + 1)𝛥𝑂 + 𝑂min)
(A.10)

and the empirical probability distribution of 𝑂 is

𝑃 (𝑂) = 𝑃
((

𝑗 + 1
2

)

𝛥𝑂 + 𝑂min

)

≡ 𝑃𝑗 =
𝑛𝑂𝑗

∑

𝑙 𝑛
𝑂
𝑙

. (A.11)

All empirical probability distributions considered in this work are
computed by using 𝑛𝑏 = 40 bins.

For each experimental condition we performed 𝑛𝑒 independent rep-
titions. In graphs, we compare averages and standard errors over all
ndependent repetitions.

Namely, if 𝑃 𝑘
𝑗 is the value assumed by the 𝑗th bin of a given

bservable with an experimental condition in the 𝑘th independent
epetition, graphs will show average values and standard errors

𝑃𝑗⟩ ± 𝜖𝑗 , (A.12)

defined according to

⟨𝑃𝑗⟩ =

∑𝑛𝑒
𝑘=1 𝑃

𝑘
𝑗

𝑛𝑒
, (A.13)

and

⟨(𝑃𝑗 )2⟩ =

∑𝑛𝑒
𝑘=1(𝑃

𝑘
𝑗 )

2

𝑛𝑒
,

𝜖𝑗 =

√

⟨(𝑃𝑗 )2⟩ − ⟨𝑃𝑗⟩
2

𝑛𝑒 − 1
.

(A.14)

A.1. Density 𝜌(𝑡)

The density 𝜌(𝑡) is the density of pedestrians in the crossing area
as a function of time, and it is measured in ped/m2. The formal and
computational definition is the following. A bin size 𝛥𝑇𝜌 is defined (in
the following, we use 𝛥𝑇𝜌 = 1 s). For each instant 𝑡𝑘 = 𝑘𝛿𝑡track at
which tracking was performed (𝛿𝑡track = 1∕30 s being the tracking time
interval, and 𝑘 ∈ N), the number of pedestrians in the tracking area

6 The term ‘‘distribution’’ is used since observables are theoretically con-
inuous, although from an empirical point of view they are computed over
iscrete bins. In general, in figures we normalise them in such a way that
heir integral equals 1.
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a

is defined as 𝑛𝑘 = #(𝑇 (𝑡)). We define the set 𝑀𝑗 as consisting of all
observation times 𝑘 such that 𝑗𝛥𝑇𝜌 ≤ 𝑘(𝛿𝑡track) < (𝑗+1)𝛥𝑇𝜌. The density
in the crossing area is then defined as

𝜌(𝑡𝑗 ) = 𝜌
((

𝑗 + 1
2
𝛥𝑇𝜌

))

=

∑

𝑘∈𝑀𝑗
𝑛𝑘

𝐴#(𝑀𝑗 )
, (A.15)

𝐴 = 𝐿2 being the size of the crossing area.

A.1.1. Exit time pdf 𝑃 (𝐸𝑡)
Between all the observables considered in this work, 𝜌 is the only

ne that is not defined as a probability density function. As in Zanlungo
t al. (2022) we intend to calibrate pedestrian models by comparing
imulated pdfs to empirically observed ones by using Earth Mover’s
istance, we consider also a corresponding observable which may be
efined as a pdf (simply normalising the 𝜌(𝑡) interval is not a feasible
olution, since the absolute value of 𝜌 is of capital importance in
edestrian dynamics).

The chosen observable is the exit time pdf 𝑃 (𝐸𝑡). Computationally,
t is obviously defined using discrete bins. For each observation time
𝑘 = 𝑘𝛿𝑡track, we define 𝑒𝑘 as the number of pedestrians exiting the
rossing area, i.e.

𝑘 =
[

∩𝑡′>𝑡𝑘 (𝑖 ∉ 𝑇 (𝑡′))
]

∩ (𝑖 ∈ 𝑇 (𝑡𝑘)). (A.16)

e then define 𝑒𝑗 for any bin 𝑡𝑗 = 𝑗𝛥𝑇𝜌 as

𝑒𝑗 =
∑

𝑘∈𝑀𝑗

#(𝑒𝑘), (A.17)

nd finally define the empirical probability distribution of 𝐸𝑡 as

(𝐸𝑡) ≡ 𝑃
((

𝑗 + 1
2
𝛥𝑇𝜌

))

≡
𝑒𝑗

∑

𝑙 𝑒𝑙
. (A.18)

s all experiment repetitions were finished in less than 40 s, we used
0 bins to define the probability distribution. The same number of bins
s used for all the observables, to make comparisons straightforward.

.2. Speed pdf 𝑃 (𝑣)

Given the velocity 𝐯𝑖 of pedestrian 𝑖, 𝑣𝑖 gives the pedestrian speed.
We consider a possible maximum speed of 2.5 m/s, and in order to have
40 bins we define 𝛥𝑣 = 0.0625 m∕s.

A.3. Velocity direction pdf 𝑃 (𝜃𝑣)

We define the velocity direction angle as

𝜃𝑣𝑖 = atan2((𝑣𝑖)𝐹 (𝑖)
𝑥 , (𝑣𝑖)𝐹 (𝑖)

𝑦 ). (A.19)

We remind that (𝑣𝑖)
𝐹 (𝑖)
{𝑥,𝑦} are the {𝑥, 𝑦} components of 𝑖’s velocity vector

s measured in the reference frame corresponding to 𝑖’s corridor. The
unction atan2(𝑣𝑥, 𝑣𝑦) is chosen in such a way to have −𝜋 ≤ 𝜃𝑣 < 𝜋,
ith 𝜃𝑣 = 0 for velocities aligned with the corridor’s axis, and 𝜃𝑣 > 0 for

angles in the direction the other flow is coming from (see also Fig. 2).
The pdf 𝑃 (𝜃𝑣) is empirically defined by taking bins of size (2𝜋)∕40.

ince the angle 𝜃𝑣 is defined with respect to a clear and physically
eaningful axis (the corridor direction), and since we verified that the

mpirical probability distribution is clearly centred around zero and is
0 for 𝜃𝑣 ≈ ±𝜋, all the statistical analysis concerning the observable are

erformed by treating 𝜃𝑣 (and similarly 𝜃 and 𝛥𝜃 to be defined below)

s linear (i.e., we are not using circular statistics).
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A.4. Body direction pdf 𝑃 (𝜃)

As explained in Section 2, 10 subjects were carrying a tablet, fixed to
heir chest. Through a gyroscope, we could know the angular velocity
f the tablet, from which (by time integration, and assuming the
edestrians as having their chest orthogonal to the corridor direction
s an initial condition) we could obtain the normal unit vector to the
hest 𝐧𝑖, and define

𝜃𝑖 = atan2((𝑛𝑖)𝐹 (𝑖)
𝑥 , (𝑛𝑖)𝐹 (𝑖)

𝑦 ). (A.20)

he pdf 𝑃 (𝜃) is empirically defined by taking bins of size (2𝜋)∕40 (see
lso Fig. 2).

.5. Body direction deviation pdf 𝑃 (𝛥𝜃)

We also measure the deviation between the body and velocity
irections as

𝜃𝑖 = Mod2𝜋 (𝜃𝑖 − 𝜃𝑣𝑖 + 𝜋) − 𝜋, (A.21)

and define again its empirical pdf 𝑃 (𝛥𝜃) by taking bins of size (2𝜋)∕40
(see also Fig. 2).

A.6. Same flow first neighbour relative distance pdf 𝑃 (𝛿𝑠)

For each pedestrian 𝑖, we define the first (forward) neighbour in the
same flow as

𝑁𝑠
𝑖 = arg min

𝑗
𝑟𝑖,𝑗 , with 𝐹 (𝑖) = 𝐹 (𝑗), and (𝐫𝑖,𝑗 , 𝐣𝐹 (𝑖)) ≥ 0. (A.22)

We then define the distance to the first neighbour in the same flow as

𝛿𝑠𝑖 = 𝑟𝑖,𝑁𝑠
𝑖
. (A.23)

Namely, 𝛿𝑠𝑖 is the distance to the closest neighbour in the tracking area
belonging to the same flow, and located on the front of 𝑖 (see also Fig. 3).

Considering the size of the crossing area, the empirical pdf 𝑃 (𝛿𝑠) is
defined using bins of size 3∕40 = 0.075 m.

A.7. Crossing flow first neighbour relative distance pdf 𝑃 (𝛿𝑜)

For each pedestrian 𝑖, we also define the first (forward) neighbour in
the crossing flow as

𝑁𝑜
𝑖 = arg min

𝑗
𝑟𝑖,𝑗 , with 𝐹 (𝑖) ≠ 𝐹 (𝑗), and (𝐫𝑖,𝑗 , 𝐣𝐹 (𝑖)) ≥ 0, (A.24)

and the distance to the first neighbour in the crossing flow as

𝛿𝑜𝑖 = 𝑟𝑖,𝑁𝑜
𝑖
. (A.25)

Namely, 𝛿𝑜𝑖 is the distance to the closest neighbour in the tracking area
belonging to the crossing flow, and located on the front of 𝑖 (see also
Fig. 3). Also 𝑃 (𝛿𝑜) is defined using bins of size 3∕40 = 0.075 m.

A.8. Same flow first neighbour relative angle pdf 𝑃 (𝜙𝑠)

For each pedestrian 𝑖, we then define

𝜙𝑠
𝑖 = atan2((𝑟𝑖,𝑁𝑠

𝑖
)𝐹 (𝑖)
𝑥 , (𝑟𝑖,𝑁𝑠

𝑖
)𝐹 (𝑖)
𝑦 ), (A.26)

as the relative angle (in 𝑖’s frame) to the first (forward) neighbour in the
same flow. As we require the neighbour to be in the forward position,
we have 𝜙𝑠

𝑖 ∈ [−𝜋∕2, 𝜋∕2], and we treat again this observable as a linear
one in our statistical analysis. 𝑃 (𝜙𝑠) is defined using bins of size 𝜋∕40.

𝑜

12

The same considerations apply to 𝜙 defined below (see also Fig. 3).
A.9. Crossing flow first neighbour relative angle pdf 𝑃 (𝜙𝑜)

Finally we define

𝜙𝑜
𝑖 = atan2((𝑟𝑖,𝑁𝑜

𝑖
)𝐹 (𝑖)
𝑥 , (𝑟𝑖,𝑁𝑜

𝑖
)𝐹 (𝑖)
𝑦 ), (A.27)

as the relative angle (in 𝑖’s frame) to the first (forward) neighbour in
the crossing flow.

Appendix B. Definition of observable dependence on density

B.1. Dependence on experimental conditions (initial density 𝜌𝐼 )

For each initial condition 𝜌𝐼 , repetition 𝑗 and observable 𝑂, we
compute the average value

⟨𝑂⟩𝑗 (𝜌𝐼 ) ≡ 𝑂𝜌𝐼
𝑗 ≡

∑

𝑘,𝑙 𝑂
𝜌𝐼
𝑗,𝑘,𝑙

#({𝜌𝐼 , 𝑗})
, (B.1)

where 𝑂𝜌𝐼
𝑗,𝑘,𝑙 stands for the observation concerning pedestrian 𝑙 at time

𝑘(𝛿𝑡track) during repetition 𝑗 with initial condition 𝜌𝐼 , and {𝜌𝐼 , 𝑗} stands
for the whole set of observations concerning repetition 𝑗 with initial
condition 𝜌𝐼 . Furthermore, we compute the average value for the initial
condition as

⟨𝑂⟩

𝜌𝐼 =

∑

𝑗 𝑂
𝜌𝐼
𝑗

#({𝜌𝐼})
, (B.2)

and the corresponding standard error as

𝜀𝑂𝜌𝐼 =

√

⟨𝑂2
⟩

𝜌𝐼 − ⟨𝑂⟩

𝜌𝐼 2

#({𝜌𝐼}) − 1
. (B.3)

Here #({𝜌𝐼}) stands for the number of repetitions with initial con-
dition 𝜌𝐼 .

B.2. Dependence on crossing area density 𝜌

While the above discussion allows us to see how the observables
depend on the initial condition, equally or even more interesting is
to study their dependence on the crossing area density 𝜌. We may
define a density interval 𝛥𝜌 (that for practical purposes is fixed to
0.1 ped/m2), and denote {(𝑚 + 1∕2)𝛥𝜌, 𝑗} as the set of observations
concerning pedestrian 𝑙 during repetition 𝑗 for all times 𝑘 such that
𝑚𝛥𝜌 ≤ 𝜌𝑘 < (𝑚 + 1)𝛥𝜌. Then we can proceed as above to obtain

⟨𝑂⟩

𝜌
𝑗 ≡ 𝑂𝜌

𝑗 ≡

∑

𝑘,𝑙 𝑂
𝜌
𝑗,𝑘,𝑙

#({𝜌, 𝑗})
, (B.4)

⟨𝑂⟩

𝜌 =

∑

𝑗 𝑂
𝜌
𝑗

#({𝜌})
, (B.5)

𝜀𝑂𝜌 =

√

⟨𝑂2
⟩

𝜌 − ⟨𝑂⟩

𝜌𝐼 2

#({𝜌}) − 1
, (B.6)

where, to simplify the notation, the discrete value (𝑚+1∕2)𝛥𝜌 has been
replaced by 𝜌.
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