

Contents lists available at ScienceDirect

Journal of Algebra

journal homepage: www.elsevier.com/locate/jalgebra

Research Paper

Classifying simple superalgebras with automorphism and pseudoautomorphism $\stackrel{\Rightarrow}{\Rightarrow}$

ALGEBRA

Antonio Ioppolo^{a,*}, Daniela La Mattina^b

^a Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
 ^b Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi 34, 90123, Palermo, Italy

ARTICLE INFO

Article history: Received 4 November 2023 Available online 26 March 2024 Communicated by Alberto Elduque

MSC: primary 16W50, 17B20, 16W20

Keywords: Superalgebras Simple Linear maps

ABSTRACT

Let F be an algebraically closed field of characteristic zero. We give a complete classification of finite dimensional simple superalgebras over F endowed with a graded automorphism or a pseudoautomorphism.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let A be an associative algebra over a fixed field F of characteristic zero. The algebra A is called simple if $A^2 \neq 0$ and it has no non-trivial ideals. The most famous example of a simple algebra is given by $M_n(F)$, the algebra of $n \times n$ matrices over F. Actually,

* Corresponding author.

(D. La Mattina).

https://doi.org/10.1016/j.jalgebra.2024.03.015

 $^{^{\}pm}$ The first author was partially supported by GNSAGA-INDAM. The second author was partially supported by GNSAGA-INDAM and FFR 2023-24.

E-mail addresses: antonio.ioppolo@univaq.it (A. Ioppolo), daniela.lamattina@unipa.it

^{0021-8693/} 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

under the hypothesis of an algebraically closed field, this is the only example of a finite dimensional simple algebra, as stated in the well-known Wedderburn-Artin Theorem.

Theorem 1. If A is a finite dimensional algebra over an algebraically closed field F, then A is simple if and only if $A \cong M_n(F)$, for some $n \ge 1$.

The main goal of this paper is to generalize the Wedderburn-Artin Theorem in the setting of algebras with additional structures. More precisely, we assume that the algebra A, defined over an algebraically closed field, has a structure of superalgebra. Moreover it is endowed with particular graded linear maps.

We recall that a linear map φ defined on $A = A_0 \oplus A_1$ is graded if it preserves the grading, i.e., $\varphi(A_j) \subseteq A_j$, for any j = 0, 1. Graded involutions, superinvolutions and pseudoinvolutions are examples of graded maps. For superalgebras with such graded maps a classification theorem of *simple algebras* is known (see [1,2,5,6]).

In this paper we are interested in automorphism-like graded maps.

Recently the authors started the study of superalgebras with superautomorphisms, i.e., superalgebras endowed with graded linear maps φ of order ≤ 2 such that $\varphi(ab) = (-1)^{|a||b|}\varphi(a)\varphi(b)$. Here |a|, |b| denote the homogeneous degree of a, b. In [4] a complete classification of the finite dimensional simple superalgebras with superautomorphism was given.

Now assume that the superalgebra A is endowed with a graded automorphism of order at most 2 or with a pseudoautomorphism. We recall that φ is a pseudoautomorphism on A if $\varphi^2(a) = (-1)^{|a|} a$ and $\varphi(ab) = (-1)^{|a||b|} \varphi(a) \varphi(b)$.

In 2022 the first author showed that superautomorphisms and pseudoautomorphisms represent the connection link between graded involutions, superinvolutions and pseudoinvolutions ([3]).

In this paper we obtain a classification theorem in the setting of simple superalgebras with graded automorphism or pseudoautomorphism.

2. Superalgebras and automorphisms

Throughout this paper F will denote an algebraically closed field of characteristic zero and $A = A_0 \oplus A_1$ an associative superalgebra, that is an F-algebra graded by \mathbb{Z}_2 , the cyclic group of order 2.

The subspaces A_0 and A_1 satisfy the properties $A_0A_0 + A_1A_1 \subseteq A_0$ and $A_0A_1 + A_1A_0 \subseteq A_1$; their elements are called homogeneous of degree zero (or even elements) and of degree one (or odd elements), respectively.

It is well-known that there is a one-to-one correspondence between \mathbb{Z}_2 -gradings and automorphisms of order ≤ 2 . If $A = A_0 \oplus A_1$ is a superalgebra then A can be endowed with an automorphism $\psi: A \to A$ such that $\psi(a_0 + a_1) = a_0 - a_1$, for all $a_0 \in A_0$, $a_1 \in A_1$. Conversely, let A be endowed with an automorphism ψ of order ≤ 2 and let $A = A_0^{\psi} + A_1^{\psi}$, where $A_0^{\psi} = \{a \in A \mid \psi(a) = a\}$ and $A_1^{\psi} = \{a \in A \mid \psi(a) = -a\}$. Then $A = A_0 \oplus A_1$ is a superalgebra with grading $A_0 = A_0^{\psi}$ and $A_1 = A_1^{\psi}$.

We say that an ideal I of a superalgebra $A = A_0 \oplus A_1$ is graded if

$$I = (I \cap A_0) \oplus (I \cap A_1).$$

In case A does not contain non-trivial graded ideals we say that A is a simple superalgebra.

The structure of simple superalgebras is given in the following result (see [7]).

Theorem 2. Let A be a finite dimensional simple superalgebra over an algebraically closed field F of characteristic zero. Then A is isomorphic to one of the following:

- $Q(n) = M_n(F \oplus cF), c^2 = 1, where Q(n)_0 = M_n(F) and Q(n)_1 = cM_n(F).$
- $M_{k,h}(F)$, the algebra of $n \times n$ matrices, n = k + h, $k \ge h \ge 0$, with the following \mathbb{Z}_2 -grading

$$M_{k,h}(F) = \left\{ \begin{pmatrix} K & 0 \\ 0 & H \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} 0 & R \\ S & 0 \end{pmatrix} \right\},\$$

where K, R, S, H are $k \times k, k \times h, h \times k, h \times h$ matrices, respectively.

Now we want to restate the previous theorem in the language of algebras with an automorphism. Clearly we say that an algebra is simple, as an algebra with automorphism ψ , if it has no non-trivial ψ -ideals, i.e., ideals invariant under the action of ψ . Moreover, (A_1, ψ_1) and (A_2, ψ_2) are isomorphic (as algebras with automorphism) if there exists an isomorphism of algebras $\tau: A_1 \to A_2$ such that $\tau(\psi_1(a)) = \psi_2(\tau(a))$, for any $a \in A_1$.

Theorem 3. Let A be an algebra over an algebraically closed field F of characteristic zero endowed with an automorphism of order ≤ 2 . If A is simple, as an algebra with automorphism, then it is isomorphic to one of the following:

- $M_n(F) \oplus M_n(F)$ with the exchange automorphism $(a,b) \mapsto (b,a)$.
- $M_{k,h}(F) = \left\{ \begin{pmatrix} K & R \\ S & H \end{pmatrix} \right\}, \ k \ge h \ge 0 \ and \ \psi \left(\begin{pmatrix} K & R \\ S & H \end{pmatrix} \right) = \begin{pmatrix} K & -R \\ -S & H \end{pmatrix}.$

The following remark will be useful in the next section.

Remark 4. Let $M_n(F)$ be endowed with two automorphisms ψ_1 and ψ_2 defined for any $L \in M_n(F)$ as

$$\psi_1(L) = PLP^{-1}$$
 and $\psi_2(L) = QLQ^{-1}$,

where P and Q are invertible matrices in $M_n(F)$. If $(M_n(F), \psi_1)$ and $(M_n(F), \psi_2)$ are isomorphic, then we can choose the matrices P and Q to be similar.

Proof. By definition, since $(M_n(F), \psi_1)$ and $(M_n(F), \psi_2)$ are isomorphic, there exists an isomorphism $\tau: M_n(F) \to M_n(F)$ defined by $\tau(L) = CLC^{-1}$, for some $n \times n$ invertible matrix C, such that $\tau(\psi_1(L)) = \psi_2(\tau(L))$, for any $L \in M_n(F)$. It follows that $\tau\psi_1\tau^{-1}(L) = \psi_2(L)$. Hence

$$\tau\psi_1(C^{-1}LC) = \tau(PC^{-1}LCP^{-1}) = (CPC^{-1})L(CPC^{-1})^{-1} = QLQ^{-1}$$

We get that $(Q^{-1}CPC^{-1})L = L(Q^{-1}CPC^{-1})$. So $Q^{-1}CPC^{-1}$ commutes with any matrix $L \in M_n(F)$ and, so, $Q^{-1}CPC^{-1} = \alpha I$ is a scalar matrix, $\alpha \in F$. Hence P is similar to αQ and, since Q and αQ determine the same automorphism, we get the desired conclusion. \Box

3. Simple φ -superalgebras

In this section we define on the superalgebra $A = A_0 \oplus A_1$ some particular graded linear maps. We recall that a linear map $\varphi \colon A \to A$ is graded if it preserves the grading of A, that is $\varphi(A_j) \subseteq A_j$, for j = 0, 1.

We say that φ is a graded automorphism if, for any $a, b \in A$,

$$\varphi^2(a) = a$$
 and $\varphi(ab) = \varphi(a)\varphi(b)$

Instead, φ is a pseudoautomorphism if, for any homogeneous elements $a, b \in A_0 \cup A_1$,

$$\varphi^2(a) = (-1)^{|a|} a$$
 and $\varphi(ab) = (-1)^{|a||b|} \varphi(a) \varphi(b)$.

In what follows we shall denote by φ a graded automorphism or a pseudoautomorphism on A and we shall say that A is a φ -superalgebra. In this setting a φ -ideal of A is a graded ideal such that $\varphi(I) = I$. In case the only φ -ideals of A are those trivial we say that A is simple, as a φ -superalgebra, or φ -simple.

The main goal of this section is to classify the simple φ -superalgebras.

The following result goes in this direction.

Lemma 5. Let A be a finite dimensional simple φ -superalgebra. Then A is either

- simple as a superalgebra or
- $A = B \oplus B^{\varphi}$, for some simple superalgebra B, where $B^{\varphi} = \varphi(B)$.

Proof. Suppose that A is φ -simple but not simple as a superalgebra. Then there exists a proper non-zero graded ideal B of A. Notice that both $B + B^{\varphi}$ and $B \cap B^{\varphi}$ are graded

ideals of A stable under the action of φ . Since A is φ -simple we get that $A = B + B^{\varphi}$ and $B \cap B^{\varphi} = \{0\}$. Hence $A = B \oplus B^{\varphi}$.

We are left to show that B is simple as a superalgebra. Assume, by absurd, that there exists a proper non-zero graded ideal I of B. Then $I \oplus I^{\varphi}$ would be a proper non-zero graded ideal of A stable under φ , and this is a contradiction. \Box

Now given a superalgebra $B = B_0 \oplus B_1$, consider $B \oplus B$ as a superalgebra with grading induced by the grading on B. It is not difficult to see that the map

ex:
$$B \oplus B \to B \oplus B$$

 $(a,b) \mapsto (b,a)$

is a graded automorphism. In order to have an analogous map in the case of pseudoautomorphisms, let B^s denote the superalgebra with the same graded vector space structure as B but with distinct product \circ given, for any $a, b \in B_0 \cup B_1$, by

$$a \circ b = (-1)^{|a||b|} ab.$$

If $B \oplus B^s$ is the superalgebra with grading induced by the grading on B, we can define the following pseudoautomorphism:

pex:
$$B \oplus B^s \to B \oplus B^s$$

 $(a,b) \mapsto ((-1)^{|(a,b)|}b,a),$

for any homogeneous element $(a, b) \in B \oplus B^s$.

Definition 6. Two φ -superalgebras (A, φ_1) and (B, φ_2) are said to be isomorphic (as φ -superalgebras) if there exists an isomorphism of superalgebras $g: A \to B$ such that $g(\varphi_1(a)) = \varphi_2(g(a))$, for any $a \in A$.

Now we can prove the following result.

Theorem 7. Let $A = B \oplus B^{\varphi}$ be a finite dimensional simple φ -superalgebra over an algebraically closed field F of characteristic zero. If φ is a graded automorphism then A is isomorphic to either

- $(M_{k,h}(F) \oplus M_{k,h}(F), \operatorname{ex})$ or
- $(Q(n) \oplus Q(n), ex)$.

If φ is a pseudoautomorphism then A is isomorphic to either

- $(M_{k,h}(F) \oplus M_{k,h}(F)^s, \text{pex})$ or
- $(Q(n) \oplus Q(n)^s, \text{pex}).$

Proof. Assume first that φ is a graded automorphism. The linear map

$$\tau \colon (B \oplus B^{\varphi}, \varphi) \to (B \oplus B, \mathrm{ex})$$
$$a + \varphi(b) \quad \mapsto (a, b)$$

is an isomorphism of superalgebras with graded automorphism.

Analogously, in case φ is a pseudoautomorphism, the graded linear map

$$\tau \colon (B \oplus B^{\varphi}, \varphi) \to (B \oplus B^{s}, \text{pex})$$
$$a + \varphi(b) \mapsto (a, b)$$

is an isomorphism of superalgebras with pseudoautomorphism.

Now the result follows by using Theorem 2. \Box

In the following proposition we deal with the superalgebra $Q(n) = M_n(F) \oplus cM_n(F)$, $c^2 = 1$. We shall denote by $\operatorname{Aut}(M_n(F))$ the set of all automorphisms of order ≤ 2 on the matrix algebra $M_n(F)$. Let $i \in F$ be an element such that $i^2 = -1$.

Proposition 8. We have that

- graded automorphisms on Q(n) are of the form $\varphi(a+cb) = f(a) \pm cf(b)$,
- pseudoautomorphisms on Q(n) are of the form $\varphi(a+cb) = f(a) \pm icf(b)$,

where $a, b \in M_n(F)$ and $f \in Aut(M_n(F))$.

Proof. Let φ be a graded automorphism or a pseudoautomorphism on Q(n). So, for $a, b \in M_n(F)$, one can write

$$\varphi(a+cb) = f(a) + cg(b),$$

where f, g are linear maps on $M_n(F)$, $f = \varphi|_{M_n(F)}$ and $g: M_n(F) \to M_n(F)$ is such that g(b) = d if $\varphi(cb) = cd$. Clearly f is an automorphism of order ≤ 2 on $M_n(F)$.

Now assume that φ is a graded automorphism and let us prove that $g(1) = \pm 1$, where 1 denotes the identity $n \times n$ matrix. We have that:

$$cg(1)f(b) = \varphi(c1)\varphi(b) = \varphi(c1b) = \varphi(cb) = \varphi(cb1)$$
$$= \varphi(bc1) = \varphi(b)\varphi(c1) = f(b)cg(1) = cf(b)g(1).$$

It follows that g(1) commutes with f(b), for any $b \in M_n(F)$. Since f is in particular surjective, g(1) commutes with any element of $M_n(F)$ and, so, it is a scalar matrix. Moreover, we have that $g(1)^2 = 1$. In fact,

$$1 = f(1) = \varphi(1) = \varphi(c1 \cdot c1) = \varphi(c1)\varphi(c1) = g(1)g(1) = g(1)^2.$$

Now the proof is complete since, for any $b \in M_n(F)$, we have that

$$f(b) = f(b1) = \varphi(cbc1) = \varphi(cb)\varphi(c1) = g(b)g(1) = \pm g(b).$$

If φ is a pseudoautomorphism, one proves $g(1) = \pm i1$ and, so, $f(b) = \pm ig(b)$. \Box

We are left to determine the graded automorphisms and the pseudoautomorphisms on the matrix superalgebra $M_{k,h}(F)$.

Assume first h = 0, that is $M_{k,0}(F) \cong M_k(F)$ is endowed with the trivial grading. In this case a graded automorphism or a pseudoautomorphism on $M_k(F)$ is just an automorphism of order ≤ 2 and a description of such automorphisms is given in the second item of Theorem 3.

Now let us consider the case h > 0. We start with the following lemma.

Lemma 9. Let $A = A_0 \oplus A_1$ be a simple φ -superalgebra with non-trivial grading, where φ is a graded automorphism or a pseudoautomorphism. Then either

- $(A_0, \varphi|_{A_0})$ is simple, as an algebra with automorphism of order ≤ 2 , or
- A₀ = C₁ ⊕ C₂, A₁ = D₁ ⊕ D₂, where (C_i, φ|_{C_i}) are simple (as algebras with automorphism), D_j are irreducible A₀-bimodules such that φ(D_j) = D_j, j = 1, 2, and
 C₂D₁ = C₁D₂ = D₁D₁ = D₂D₂ = D₁C₁ = D₂C₂ = {0}.
 D₁D₂ = C₁, D₂D₁ = C₂, C_lD_l = D_l, D_lC_j = D_l, l, j ∈ {1,2}, l ≠ j.

Proof. The result can be proved using the same approach of [6, Theorem 12]. \Box

Now we are in a position to prove the following theorem.

Theorem 10. Let $M_{k,h}(F)$, h > 0, endowed with a graded automorphism or a pseudoautomorphism φ . Then it is isomorphic to one of the following:

-
$$(M_{k,k}(F), \varphi)$$
 with $\varphi \left(\begin{pmatrix} K & R \\ S & H \end{pmatrix} \right) = \begin{pmatrix} H & \alpha S \\ \alpha R & K \end{pmatrix}$, where
• $\alpha = 1$ in case φ is a graded automorphism,
• $\alpha = i$ in case φ is a pseudoautomorphism;
- $(M_{k,h}(F), \varphi)$ with $\varphi \left(\begin{pmatrix} K & R \\ S & H \end{pmatrix} \right) = \begin{pmatrix} PKP & \alpha PRQ \\ \alpha QSP & QHQ \end{pmatrix}$, where
• $\alpha = \pm 1$ in case φ is a graded automorphism,
• $\alpha = \pm i$ in case φ is a pseudoautomorphism.
Here $P = \begin{pmatrix} I_{k_1} & 0 \\ 0 & -I_{k_2} \end{pmatrix}$, $Q = \begin{pmatrix} I_{h_1} & 0 \\ 0 & -I_{h_2} \end{pmatrix}$, the I_j 's are identity matrices of
order j and $k = k_1 + k_2$, $k_1 \ge k_2$, $h = h_1 + h_2$ and $h_1 \ge h_2$.

Proof. We shall prove the result when φ is a pseudoautomorphism. The case in which φ is a graded automorphism can be proved in a similar manner.

In order to simplify the notation write $A = M_{k,h}(F)$. According to Lemma 9, assume first that $A_0 = M_k(F) \oplus M_h(F)$ is simple as an algebra with automorphism. Hence, by Theorem 3, we must have k = h and, up to isomorphism,

$$(A_0, \varphi = \varphi|_{A_0}) = (M_k(F) \oplus M_k(F), \varphi),$$

where $\varphi(a, b) = (\varphi(b), \varphi(a))$. Now let us consider the following elements:

$$a_{11} = \sum_{l=1}^{k} e_{ll}, \qquad a_{12} = \sum_{l=1}^{k} e_{lk+l}, \qquad a_{21} = \sum_{l=1}^{k} e_{k+ll}, \qquad a_{22} = \sum_{l=k+1}^{2k} e_{ll},$$

where the e_{lj} 's are elementary matrices. We get $\varphi(a_{11}) = a_{22}$, $\varphi(a_{22}) = a_{11}$ and

$$A_0 = M_k(F)a_{11} \oplus M_k(F)a_{22}, \quad A_1 = M_k(F)a_{12} \oplus M_k(F)a_{21}$$

We have that $\varphi(a_{12}) = \varphi(a_{11}a_{12}a_{22}) = a_{22}\varphi(a_{12})a_{11}$, and, so, $\varphi(a_{12}) = ea_{21}$, for some $e \in M_k(F)$. Analogously, $\varphi(a_{21}) = e'a_{12}$, for some $e' \in M_k(F)$. Moreover, for any $b \in M_k(F)$, we have that

$$e\varphi(b)a_{21} = ea_{21}\varphi(b)a_{11} = \varphi((a_{12})(ba_{22})) = \varphi(ba_{12})$$
$$= \varphi((ba_{11})a_{12}) = \varphi(b)a_{22}ea_{21} = \varphi(b)ea_{21}.$$

It follows that $e \in Z(M_k(F)) \cong F$. Analogously, one gets that $e' \in Z(M_k(F)) \cong F$. Since φ is a pseudoautomorphism, we have that ee' = -1. In fact,

$$-a_{12} = \varphi^2(a_{12}) = \varphi(ea_{21}) = e\varphi(a_{21}) = ee'a_{12}.$$

So far we have proved that the pseudoautomorphism φ is of the kind

$$\varphi\left(\begin{pmatrix} K & R\\ S & H \end{pmatrix}\right) = \begin{pmatrix} H & \alpha S\\ \beta R & K \end{pmatrix},$$

where $\alpha\beta = -1$. Now we shall show that we can take $\alpha = \beta = i$. Let φ_i be the pseudoautomorphism on $M_{k,k}(F)$ defined by

$$\varphi_i\left(\begin{pmatrix} K & R\\ S & H \end{pmatrix}\right) = \begin{pmatrix} H & iS\\ iR & K \end{pmatrix}.$$

It is easy to check that the φ -superalgebras $(M_{k,k}(F), \varphi_i)$ and $(M_{k,k}(F), \varphi)$ are isomorphic through the isomorphism

$$f: (M_{k,k}(F),\varphi_i) \to (M_{k,k}(F),\varphi)$$
$$\begin{pmatrix} K & R \\ S & H \end{pmatrix} \mapsto \begin{pmatrix} K & -i\gamma R \\ \alpha^{-1}\gamma S & H \end{pmatrix},$$

where $\gamma \in F$ is such that $\gamma^2 = \alpha i$.

Now assume that $(M_{k,h}(F))_0$ is not simple as an algebra with automorphism. Clearly $(M_{k,h}(F))_0 = M_k(F) \oplus M_h(F)$ and $(M_{k,h}(F))_1 = M_{k \times h}(F) \oplus M_{h \times k}(F)$. By Lemma 9, we have that $M_k(F)$ and $M_h(F)$ are simple, as algebras with automorphism. Hence there exists $P \in M_k(F)$ with $P^2 = I_k$ such that

$$\varphi|_{M_k(F)}(K) = PKP, \ P \in M_k(F).$$

Analogously, there exists $Q \in M_h(F)$ with $Q^2 = I_h$ such that

$$\varphi|_{M_h(F)}(H) = QHQ, \ H \in M_h(F).$$

On the other hand, according to Lemma 9, we have that $M_{k \times h}(F)$ and $M_{h \times k}(F)$ are φ -invariant. Now, if we take a matrix unit e_{lj} with $l \in \{1, \ldots, k\}$ and $j \in \{k+1, \ldots, k+h\}$, we have that, for some $\alpha \in F$,

$$\varphi(e_{lj}) = \varphi(e_{ll}e_{lj}e_{jj}) = \varphi(e_{ll})\varphi(e_{lj})\varphi(e_{jj}) = P\left[e_{ll}P\varphi(e_{lj})Qe_{jj}\right]Q = \alpha Pe_{lj}Q.$$

Let $r \in \{1, \ldots, k\}$ and $s \in \{k + 1, \ldots, k + h\}$. As before, we get that $\varphi(e_{rs}) = \beta P e_{rs} Q$, for some $\beta \in F$. Next we prove that $\alpha = \beta$. In fact

$$\alpha P e_{lj}Q = \varphi(e_{lj}) = \varphi(e_{lr}e_{rs}e_{sj}) = \varphi(e_{lr})\varphi(e_{rs})\varphi(e_{sj})$$
$$= (P e_{lr}P)\left(\beta P e_{rs}Q\right)\left(Q e_{sj}Q\right) = \beta P e_{lj}Q.$$

Moreover, $\alpha = \pm i$. In fact

$$-e_{lj} = \varphi^2(e_{lj}) = \varphi(\alpha P e_{lj} Q) = \alpha^2 e_{lj}$$

Now, with the same argument, we get that $\varphi(e_{jl}) = \alpha Q e_{jl} P$, for any $j \in \{k+1, \ldots, k+h\}$ and $l \in \{1, \ldots, k\}$. Hence

$$\varphi\left(\begin{pmatrix} K & R\\ S & H \end{pmatrix}\right) = \begin{pmatrix} PKP & \alpha PRQ\\ \alpha QSP & QHQ \end{pmatrix}$$

where $\alpha = \pm i$. In order to complete the proof we need just to show that the matrices Pand Q can be chosen as in the statement. By Theorem 3 we know that $(M_k(F), \varphi|_{M_k(F)})$ is isomorphic to $(M_{k_1,k_2}(F), \psi)$ for some $k = k_1 + k_2, k_1 \ge k_2$. Hence, without loss of generality we may assume that P is similar to

$$P' = \begin{pmatrix} I_{k_1} & 0\\ 0 & -I_{k_2} \end{pmatrix},$$

i.e., $P' = LPL^{-1}$, for some $k \times k$ invertible matrix L (see Remark 4). Analogously we get that $(M_h(F), \varphi|_{M_h(F)})$ is isomorphic to $(M_{h_1,h_2}(F), \psi)$ for some $h = h_1 + h_2$, $h_1 \ge h_2$. Hence, for some $h \times h$ invertible matrix M, we get $MQM^{-1} = Q'$, where A. Ioppolo, D. La Mattina / Journal of Algebra 649 (2024) 1-11

$$Q' = \begin{pmatrix} I_{h_1} & 0\\ 0 & -I_{h_2} \end{pmatrix}.$$

Then $(M_{k,h}(F), \varphi)$ is isomorphic to $(M_{k,h}(F), \sigma)$ where

$$\sigma\left(\begin{pmatrix} K & R\\ S & H \end{pmatrix}\right) = \begin{pmatrix} P'KP' & \alpha P'RQ'\\ \alpha Q'SP' & Q'HQ' \end{pmatrix}.$$

In fact the map $f: (M_{k,h}(F), \varphi) \longrightarrow (M_{k,h}(F), \sigma)$ defined by

$$f\left(\begin{pmatrix} K & R\\ S & H \end{pmatrix}\right) = \begin{pmatrix} LKL^{-1} & LRM^{-1}\\ MSL^{-1} & MHM^{-1} \end{pmatrix}$$

is an isomorphism of superalgebras with pseudoautomorphism. \Box

We summarize the results of this section in the following theorems, giving the classification of simple φ -superalgebras.

Theorem 11. Let A be a finite dimensional simple superalgebra with graded automorphism over an algebraically closed field F of characteristic zero. Then A is isomorphic to one of the following:

- (1) $M_{k,h}(F) \oplus M_{k,h}(F)$ with the exchange graded automorphism ex;
- (2) $Q(n) \oplus Q(n)$ with the exchange graded automorphism ex;
- (3) $(Q(n), \varphi)$, where φ is the graded automorphism defined as

$$\varphi(a+cb) = f(a) \pm cf(b),$$

for some automorphism f of order ≤ 2 on $M_n(F)$; (4) $(M_{k,k}(F), \varphi)$ with graded automorphism defined as

$$\varphi\left(\begin{pmatrix}K & R\\ S & H\end{pmatrix}\right) = \begin{pmatrix}H & S\\ R & K\end{pmatrix};$$

(5) $M_{k,h}(F)$, with graded automorphism φ defined as

$$\begin{pmatrix} K & R \\ S & H \end{pmatrix}^{\varphi} = \begin{pmatrix} PKP & \alpha PRQ \\ \alpha QSP & QHQ \end{pmatrix},$$

where $\alpha = \pm 1$, $P = \begin{pmatrix} I_{k_1} & 0 \\ 0 & -I_{k_2} \end{pmatrix}$, $Q = \begin{pmatrix} I_{h_1} & 0 \\ 0 & -I_{h_2} \end{pmatrix}$, $I_{k_1}, I_{k_2}, I_{h_1}, I_{h_2}$, are the identity matrices of orders k_1, k_2, h_1, h_2 , respectively, $k = k_1 + k_2$, $h = h_1 + h_2$, $k_1 \ge k_2$ and $h_1 \ge h_2$.

10

Theorem 12. Let A be a finite dimensional simple superalgebra with pseudoautomorphism over an algebraically closed field F of characteristic zero. Then A is isomorphic to one of the following:

- (1) $(M_{k,h}(F) \oplus M_{k,h}(F)^s, \text{pex})$ with pseudoautomorphism pex defined on homogeneous elements as $\text{pex}(a,b) = ((-1)^{|(a,b)|}b,a);$
- (2) $Q(n) \oplus Q(n)^s$ with the pseudoautomorphism pex;
- (3) $(Q(n), \varphi)$, where φ is the pseudoautomorphism defined as

$$\varphi(a+cb) = f(a) \pm icf(b),$$

for some automorphism f of order ≤ 2 on $M_n(F)$;

(4) $(M_{k,k}(F), \varphi)$ with pseudoautomorphism defined as

$$\varphi\left(\begin{pmatrix} K & R\\ S & H \end{pmatrix}\right) = \begin{pmatrix} H & iS\\ iR & K \end{pmatrix};$$

(5) $M_{k,h}(F)$, with pseudoautomorphism φ defined as

$$\begin{pmatrix} K & R \\ S & H \end{pmatrix}^{\varphi} = \begin{pmatrix} PKP & \alpha PRQ \\ \alpha QSP & QHQ \end{pmatrix}$$

where $\alpha = \pm i$, $P = \begin{pmatrix} I_{k_1} & 0 \\ 0 & -I_{k_2} \end{pmatrix}$, $Q = \begin{pmatrix} I_{h_1} & 0 \\ 0 & -I_{h_2} \end{pmatrix}$, $I_{k_1}, I_{k_2}, I_{h_1}, I_{h_2}$, are the identity matrices of orders k_1, k_2, h_1, h_2 , respectively, $k = k_1 + k_2$, $h = h_1 + h_2$, $k_1 \ge k_2$ and $h_1 \ge h_2$.

Data availability

No data was used for the research described in the article.

References

- A. Giambruno, R.B. dos Santos, A.C. Vieira, Identities of *-superalgebras and almost polynomial growth, Linear Multilinear Algebra 64 (3) (2016) 484–501.
- [2] C. Gomez-Ambrosi, I.P. Shestakov, On the Lie structure of the skew-elements of a simple superalgebra with involution, J. Algebra 208 (1998) 43–71.
- [3] A. Ioppolo, Graded linear maps on superalgebras, J. Algebra 605 (2022) 377–393.
- [4] A. Ioppolo, D. La Mattina, Algebras with superautomorphism: simple algebras and codimension growth, Isr. J. Math. (2024), in press.
- [5] A. Ioppolo, F. Martino, Varieties of algebras with pseudoinvolution and polynomial growth, Linear Multilinear Algebra 66 (11) (2018) 2286–2304.
- [6] M.L. Racine, Primitive superalgebras with superinvolution, J. Algebra 206 (2) (1998) 588–614.
- [7] C.T.C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1964) 187–199.