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1 | INTRODUCTION

This paper considers the existence of one positive solution for the following boundary value problem with a
Sturm-Liouville second-order differential equation and Dirichlet conditions

—u"” +yu +o(u = Af(t,u) in]a, b, D
u(a) = u(b) = 0. (D)

where 4 € R*, f € L([a, b] x R) is a function that satisfies the Carathéodory hypothesis and y, ¢ € L*([a, b]) such that

essinf o > —(L)Z.
[a,b] b—a

This type of problems describes, for instance, physical and chemical events, as well as the Boyd equation about eddies
in the atmosphere,! Laplace tidal wave equation,> and Meissner equation which arises in a model of a one-dimensional
crystal.®> From a mathematical point of view, such problems are often studied in particular cases when the associated
energy functional is well known, that is, for instance, if ¢ > 0 and y = 0, while in the previous models the coefficients may
be even non-positive. In this paper, we present our results considering that the functions y and ¢ can be non-zero or even
sign changing, in order to offer a more effective link between pure and applied mathematics. Therefore, the existence of
one positive solution for the problem (D,) is investigated. In particular, a mathematical approach for tuning a proportional
voltage control of a DC-DC buck converter has been performed. In detail, for a given time dynamic response of the system
and by imposing the voltage error null before and after the voltage transient, maximum and minimum values of the
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5574 Wl LEY AMOROSO ET AL.

proportional constant of the P controller are obtained. The mathematical results have been compared with simulations
of the DC-DC converter by using the Matlab/Simulink platform by obtaining a good matching. In our paper, we apply a
recent critical point result to equations of Sturm-Liouville type in a complete form, that is, also with the presence of the
term y(t)u. We recall that, in this case, the variational formulation of the corresponding problem is not natural. Indeed,
we use an appropriate functional I; which is more general than the usual energy functional, and it can be applied to the
sign changing case (see Proposition 2.3). Moreover, our results extend previous results obtained for the Sturm-Liouville
equation in the incomplete form and with nonnegative coefficients (see, for instance, Bonanno and D'Agui*). Our main
assumption, that is (jj) of Theorem 3.1, describes a growth of the nonlinearity which is more than quadratic in an interval
[c,d] (see its simpler form (A) in Theorem 3.3), and as a conclusion, we obtain a suitable interval of parameters for which
problem admits at least one non-zero solution which is a local minimizer of the Euler-Lagrange functional corresponding
to the problem (D,).

We emphasize that to achieve our goal, we do not assume any growth condition at infinity on the nonlinearities. Finally,
we also want to point out that, to the best of our knowledge, it is the first time that an application of the nonlinear problem
is given in order to study the stability of a power electric devise with the aim to have a control low of a Buck converter. The
paper is organized as follow. In Section 2, we prove some basic properties among them, the equivalence between the usual
norm in Wg’z([a, b]) (see Proposition 2.2) and a useful norm with the problem, and moreover, we mention a non-zero
local minimum for functionals of class C* parameter depending (Theorem 2.1), which is our main tool. In Section 3, we
present our result on the existence of one classical solutions for the problem (D;) and its consequence in particular cases.
Finally, Section 4. is devoted to the application of our results to the analysis of the dynamical performance of a class of
power converter.

2 | BASIC PROPERTIES

Let f : [a,b] Xx R — R be an L'—Carathéodory function, that is a function such that

(i) t—f(t,x)is measurable for allx € R;
(ii) x— f(t,x)is continuous for almost every t € [a, b];
(iii) for all p> 0 the function sup | f(t,x)| belongs to L'([a, b]).

[x]<p

Moreover, let y,o : [a,b] — R be two functions belonging to L*([a, b]). We assume that

2
info>—(—2—). 2.1
o> - (%) @y

Finally, 4 is a positive real number. Consider the following problem

—u" +y(Ou' +o(t)u = Af(t,u) in [a, b],
(D)
u(a) = u(b) = 0.
Denote by X the Sobolev space Wg'z([a, b]) with the usual norm ||u|| = |[u/||2, where || - ||2 is the norm of the Lebesgue

space L*([a, b], that is,

b ;
llull = (/ Iu'(t)lzdt> :

We point out the following Poincaré inequalities.

Proposition 2.1. Forall u € X, one has
1
. (b—a)2
max |u(t)| < =—=|lu
() ma|u(o] < > ul

G lullz < =2 jull.
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Proof. (j) Since, in particular, u’ € L'([a, b]) (and hence u is absolutely continuous), one has u(t) = /a "W (r)dr and
—u(t) = /lb u'(r)dz. Therefore, taking also the Holder inequality into account, one has |u(t)| < % /ab [ (v)|dr <

l 1/2
b0z (b |u'(7)|dr and the inequality is proved.
2 a

(jj) Denoting by 4, the first eigenvalue of the problem —u” = Au, u(a) = u(b) = 0, from a classical result (see, for
instance, Boccardo and Croce> Theorem 84, page 69) ‘gne hag

415
A1 = min 5 (2.2)
UEX,u#0 ”u”2
. 2 .
Since A; = (ﬁ) , the conclusion follows. O
Remark 2.1. The constant ©=2 is the best constant among the constants ¢ for which the e uality max,eqqpj|u(t)| <
g q la.b]

c|lul| is true for all u € X, as the function

if te[a,‘%’b

t—a
b—a

) = , \
—t - a+
. if re [T,b],

shows. The same remark also for (jj) holds as (2.2) shows for the eigenfunction p(t) = sin(ﬁt) for all t € [a, b].

b b 3
lullx = ( / eTOW/(0]2dt + / e-”f>a<r>|u<r>|2dt> ,

where I'(¢) = fa[ y(&)dé for all te[a, b].
We have the following result.

Now, put

Proposition 2.2. Assume (2.1). Then || - ||x is a norm on X, and it is equivalent to the usual norm. In particular, one has
milull < [lullx < M|ul| (2.3)

for all u € X, where m, M, with M > m > 0, are given by

1/2
mine™" ifessinf ¢ >0
_ la.b] [a.b]
m= o\ 11/2
[min e T (1 + ess infa(“—“) )] ifessinf ¢ <0,
[a.b] [a.b] = [a.b]
and
boa\2 1/2
max e [ 1+ ess supo( — ifesssup ¢ >0
T
M= la.b] s [a,b] [a.b]
(max e‘r> ifesssup o < 0.
[a.b] [a.b]

Proof. First, we prove (2.3). To this end, one has

b b b b
||u||§=/ e—m>|u’(t)|2dt+/ e—””a(t)|u(t)|2dt2/ e‘m)lu’(t)lzdt+es[sg]nfa/ e TOu()2dt
a a a a, a

b b
> mine™" / [/ (¢)|%dt + ess infa/ lu(t)|?dt ).
[a,b] a [a.b] a

sa|a1e ssaddy uadQ 1oy 3dadxe ‘paniwiad Jou Aj3dL3s SI UOIINGUASIP puUe 8sn-ay “[2202/60/92] UO -euissa|n Ia 1pnis 116ad Ausianiun Ag ‘wodAsjim Aieiqgijauljuo//:sdiy woly papeojumoq 'Sy ‘2202 ‘9716601



5576 Wl LEY AMOROSO ET AL.

So, if es[s bi]nfo— > 0 one has ||u||}2( > I[l’llbI]l e‘rl|u’||§. While, if es[s g]nfo— < 0, taking also into account (2.1) and (jj)
a, a., a,
2
of Proposition 2.1, one has [|ul|; > mine™" <||u’||§ + ess info||u||§> > mine T (Ilu’||§ + ess infa(ﬂ> ||u’||§> =
[a,b] [a,b] [a,b] [a,b] z

2 2
mine™" <1 + ess infa(b;“) > lu||2,with min e <1 + ess info(b;a> ) > 0. On the other hand, one has
[a,b] [a,b] z [a.b] [a.b] z

ully < max e T <||u’||§ + ess supa||u||§>. So, if ess supe > 0, taking again (jj) of Proposition 2.1 into account,
> [a,b] [a,b]

2
one hasllullf( < rlnezl»)l( e T <||u'||§ + ess supa(%’) ||u’||§>, while if ess supe < 0, it follows ||u||)2< < rlnzll);l( e—F||w||§.
as la.b] la.b] a,
Hence (2.3) is proved.
Now, it is easy to verify that || - ||x is a norm, by using (2.3) and by standard computations. O

Remark 2.2. Clearly, the dot product

b b
(u;v) = / eTOU (W' (Hdt + / e TOs(u(v(t)dt

induces the norm || - ||x.
Remark 2.3. From (j) of Proposition 2.1 and Proposition 2.2, we obtain that

(b _ a)l/z
max |u(x)| £ ———|lu||x Yu € X, (2.4)
[a.b] 2m

where m is given in Proposition 2.2.

Remark 2.4. We explicitly observe that the inequality (2.3) remains true by substituting the interval [a, b] with a
nonempty bounded open set A C R. In particular, one has

m; / W' (0)]*dt < / e O (o) de + / e Oo(0)|ut)|*dt
A A A

2
for all u € Wy?(A), where m% = min {inf e T inf et <1 + ess/}nfo(%) > } We will use the present remark in
the proof of Lemma 2.1.

Now we recall the definition of a generalized solution for (D,). We say that u : [a,b] — R is a generalized solution of
(D) ifue C([a, b)), u’ € AC([a, b]), which is the set of all absolutely continuous function, u(a) = u(b) = 0 and —u"(t) +
y(OUW ) + o(tut) = A1 (¢, u(t)) for a.e. t € [a, b]. Clearly, if f € C([a,b] X R), y,6 € C([a, b], any generalized solution u is
a classical solution, that is u € C?([a, b)), u(a) = u(b) = 0 and —u"(t) + y(Ou'(t) + c(Hu(t) = Af(t, u(t)) for all t € [a, b].

Now, put F(t,x) = [Ox f(t,&)dé for all (t,x) € [a, b] x R. Clearly, one has (i") t - F(t, x) is measurable for all x € R; (ii’)

x — F(t,x) belongs to C}(R) for a.e. t € [a, b]; (iii’) |F(t,x)| < < sup | f(t, cf)|) |x| for a.e. t € [a, b], for all x € R. Moreover,
[E<]x]
put
b
P(u) = / e TOFt, u(t))dt.

for all u € X. From (iii"), taking also into account that X € C([a,b]), ¥ : X — R is well defined since
e "OF(t,u()) <maxe™| sup |f(t, &) |max|u| < CK ( sup |/f(¢, @I) € L'(la.b)).
[a,b] |§]§r[n:z)]( |ul a.b] [¢1<K

Standard computations show that ¥ is Gateaux differentiable, and one has

b
Y (w)(v) = / e O (e, u)(t)dt,
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for all u, v € X. Further, it is easy to verify that ¥’ : X — X* is a continuous operator, that is ¥ is a C'-function.
Now, put ®(u) = % [|u]| }2( for all u € X. Taking into account of Remark 2.2, the Gateaux derivative of ® is

b b
' (W) = / e TOW (W (Hdt + / e TOs(Hutv(t)dt,

for all u,v € X. Moreover, ® is a C'-function.
Finally, put
L) = O(u) — A¥w),

for all u € X. Clearly, I, is a C'-function and, in particular, one has

b b b
Iw®) = / e TOY (v (Hdt + / e TOs(Outvt)dt — A / eTO £t u)v(ndt,

forall u,veX.
We have the following result.

Proposition 2.3. u is a generalized solution of (D;) <= u is a critical point of I,.

Proof. Assume that u is a generalized solution of (D;). In particular, one has —u”/(¢) + y(Ou'(t) + o (Hu(t) = Af (¢, u(t))
for a.e. t € [a, b]. Fixv € X and multiplying by e~"v, which belongs again to X, integrating and then integrating by parts
the first term, it follows that

b b b b
/ —u" (e TOu()dt + / yOu' (e T Oue)dt + / c(Ou®e TOu)dt = 4 / £t u)e T O dt

b b b
/ u' (He TV (Hdt + / c(Ou®e T Ou)dt = 4 / £t u)e T Ou(ndt,

thatis, u is a critical point of I;. Now, assume that u is critical point of I;. Fixw € X. Clearly,v=e"w € X. So, Lw) =0,
that is

b b b
/ e TOY (e (Hdt + / e TOs(Ouv)dt = 4 / e O £(t, u)v(t)dt.

Therefore, taking into account that eV (t) = (e TOv(t))’ + y(t)e " Dv(t), one has

b b b b
/ u' (e T vy dt + / u' Oy (Oe TOu)dt + / e TOs(Ouv)dt = A / e 1O £(t, u(e)v(t)dt,

that is , , . ,
/ u' (Hw' (Hdt + / y(Ou' (Hw(t)dt + / c(Hu®w(t)dt = A / F(¢t, u(h)w(t)dt.
a a a a
Hence, 1’ admits the weak derivative which is yu’ + ou — Af(-, u(+)), which is a L!-function and so, by standard
arguments, the conclusion is achieved. D

Our main tool is a non-zero local minimum theorem obtained in Bonanno® as a consequence of the local minimum
theorem established in Bonanno.” We recall it below. To this end, let X be a real Banach space and let ®,¥ : X — R be
two continuously Gateaux differentiable functions, put I = ® — ¥ and fix r > 0. We say that I satisfies the Palais-Smale
condition cut off upper at r (in short (PS)"l-condition) if any sequence {u,} such that I(u,) is bounded, I'(u,) — 0 and
®(u,) < rfor all n € N has a convergent subsequence. Moreover, put

sup Y(w)
o(r) = ueP-1(J~co.1{) . 2= sup Y(u)
- r | ued-1(jo.p) P’

Now, we recall the non-zero local minimum theorem (see Bonanno® Theorem 2.3y
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Theorem 2.1. Let X be a real Banach space and let ®,%¥ : X — R two continuously Gdateaux differentiable functions
such that infx® = ®©(0) = W(0) = 0. Assume that there is a r > 0 such that

@(r) < o(r) (2.5)

and foreach 4 € A, = ] %, ﬁ the function I, = ® — A satisfies the (PS)/"-condition.

Then, for each A € A, thereisu, € ®~(J0, r[) (hence, u; # 0) such that I;(u)<I;(w) forallu € ®~'(Jo, r[) and I',(u;) = 0.

Now, we point out the following results which allows to obtain nonnegative or positive solutions to problem (D,). Put

f(t,0), ift € [a,b], x <0,
frx =
f(t,x), ift € [a,b]x >0,

and consider the problem

—u" +y(Ou +o(H)u = Af*(t,u) in [a,b],
{ (DY)

u(a) = u(b) =0.

The following result is useful to obtain nonnegative solutions.

Lemma 2.1. Assume that
f(t,0) >0 for ae.t € [a,bl.

Then, any generalized solution of the problem (Djlr ) is nonnegative, and it is also a generalized solution of (D).

Proof. Let & be a generalized solution of problem (D). So, taking into account Proposition 2.3, one has
/ab eTOF () (Hdt + fab e TOsutwvydt = A /ab e 1O £+t u(r)v(n)de for all veX. Now, put i~ = min{i,0}.
Clearly, i~ € X (see, for instance, Gilbarg and Trudinger®, Lemma 7.6), for which we can choose v = &~ in the
previous equality. We have /| b e TOR (@) (tdt + 1/, e TOG(OROE-(Hdt = 4 /i b =T £+ (¢, a(1)a—(t)dt. Now, put
A = {t€la,b] : () <0} and arguing by contradiction, assume that A is non empty. Taking into account that

2 2
ess infé > ess infé > —<L> > —(i> , from Remark 2.4 one has
A [a.b] b-a [A]

0 < (my)? / (@) (H)dt < / e O[@ ) (]*dt + / e We(nla=(n)*dt =
A

A A

= / e TOR (@) (Hdt + / e TOs(hua(Hdt =

A A

b b b
= / e TOR (@™ (Hdt + / e TOs(ata(H)dt = A / e TOf+(t, a@)a (Hdt =

=1 / e PO £+t ()= (Hdt = A / e PO f£(t,00a(Hdt < 0, that is
A A

(mA)z/[(lT)'(t)]zdt =0.
A

So, ii(t) = 0 for all t € A, and this is absurd. Hence, A = @ for which @(t) > 0 for all t € [a, b].

Finally, it is simple to verify that & is a generalized solution of (D,). Indeed, the definition of f* and taking
again Proposition 2.3 into account, one has /, P e TOR (e (Hdt + fab eTOs(hu(v(nde = A /ab eTO £+, m()w(tdt =
A [P e £t a(o)w(odt for all ve X. O

The next result allows us to obtain positive solutions. It is based on the strong maximum principle.
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Lemma 2.2. Assume that
f(t,x)>0 fora.e. t€la,b], forallx>0.

Then, any non-zero generalized solution of the problem (D7) is positive, and it is also a generalized solution of (D;).

Proof. Let it a non-zero generalized solution of the problem (D?). Owing to Lemma 2.1, it is a nonnegative solution
of the problem (D,). Therefore, taking the Proposition 2.3 into account, one has

b b b
/ TOR OV (Hdt + / e TOsavt)dt = A / e TO (it a)mnde > 0

for all ve X such that v(t) > 0 for every ¢ € [a, b]. Therefore, taking into account that € C*([a, b]) and @(t) > 0 for
every t € [a, b], the strong maximum principle (see, for instance, Pucci and Serrin®, Theorem 11.1) ensures & > 0 for
every t €]a, b[, that is the conclusion. O

3 | EXISTENCE THEOREMS OF AT LEAST ONE NON-ZERO SOLUTION

In this section, we present our main results. Put

min e T®
1 m t€la,b]

T 2 M2 max eTO
tela.b]

(3.1

where m, M are given in Proposition 2.2 and I' is the primitive of y as defined in the previous section. We observe that
0<K< % Our main result is the following.

Theorem 3.1. Let f : [a,b] x R — R be a L'-Carathédory function and put F(f,x) = fox f(t,EdE for all (t,x) €
[a, b] X R. Assume that there are two positive constants ¢, d, with d < ¢, such that

(])F(tx)>0f0raete[aa+ ]U[ bjT",b]andforallxe[O,d]

_b—a

/ & F(rd)dt
f max,e_ . F(tx)dt + g
(i) = <K——2

Then, for each A € A, 4, where

2m? 1 d? ) 2m? 2
Acd = (b —a) max e T® K b-t (b —a) max e T® b F d ’
refa.b] f 2 F(t,d)dt tefa.b] Ja o (&, x)dt
the problem (D;) admits at least one non-zero generalized solution ii such that |||l < ¢, ||it]lx < ———cand

(b— a)l/Z
b 1 1 b 1 1
/ T[S @ + S0l - P, aw)| dr < / e SO + 30Ol - AP u(e)| di

forallu e W”([a b)) such that ||u||x < Gom )1/2
Proof. Our aim is to apply Theorem 2.1. To this end, take (X, || - ||x), ®,¥ : X — R as defined in Section 2. As also
seen there, ® and W satisfy the assumptions of regularity requested in Theorem 2.1. So we are going to verify (2.5).
1/2
Putr = %icz. Taking Remark 2.3 into account, for each u € X such that %||u||)2( < r,one has |u(f)] < %HM”X <
1/2
% Var= <(g‘7‘2’)r> = cfor all t € [a, b]. Therefore, it follows that

b b b
Y(u) = / e TOFt, u(t)dt < rr%aée‘m) / F(t,u(t))dt < maxe @ max]F(t,g)dt
a t€la, a .C

t€la.b] . cel-c
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5580 Wl LEY AMOROSO ET AL.

for each u € X such that %Hullf{ <r.

maxe r‘”/ max F(t &)de

_ supu€¢,1(]7w_r[)‘ll(u) tefa.b]
Hence, one has ¢(r) = . < f)'"—zcz =
[P max Feydt
= =9 maxeTO L , that is,
2m* tefa,b] e
max F(t, &)dt
(r) < b-9 max e‘r(”/a el o (3.2)
LU= "0m2 ielan c2 ' '
Now, put
4=t ifrefa,a+ 5
it =4d ifte[a+b‘—" —%"]
d - 1fte]b—— b]
b-a
Clearly, i € X and one has ||&||> = /ab |o' (1)|?dt = ﬁz“ 4 ( ) dt + /b = (;—) dt = =. So, taking Proposition

2
2.2 into account, one has ®(i1) < %lelzlll2 = %, that is,

Moreover, taking (j) into account, one has
W@ = [ e TOF, w)dt 2 n%m]e‘m) /

b-a

F(t,d)dt, that is,

4
_‘1
4

ba

b- 1
¥(it) > min e / L Py
a+=2

tela,b]

Therefore, one has

p—b=a
. [} F(t d)dt
Y(@) (b a min e-T® a2

CD(I]) 4M?  telab) d?

Now, we verify that it € ®~1(]0, r[). First, we observe that from d < ¢, owing to (jj), we obtain \/E%d < ¢. Indeed,

arguing by contradiction, we assume thatd < ¢ < \/E%d It follows that

fu Masei-caF (4O [, maXeei-caF(t, Ot

<%>2/f F(tddt

NI'—'

c2 - dz?
(z)dz
p—b=a _b-a _b-a
© Rt d)dt . TR, d)dt TRt d)dt
>1(ﬂ)2_/“+7“ e > L(m) Dheten?” o ot P _ ot PO
—2\M d? T 2\M/ maxpqpeT® d2 d?

and this contradicts (jj). Next, from \/E%d < ¢, we have Zx—jdz <3, ﬁM2d2 < ﬁmzcz, that is, ﬁMzd2 <r.

2 . .
Hence, ®(i1) < %(P < r,and our claim is proved.

/ o il F(t.d)dt
Finally, taking into account that &t € ®=1(J0, r[), from EE“; > (f:M‘? rr[ulg]e‘r(‘)T we obtain
tela
p—b=a
- /a Lo PG
o(r) > min ¢~ 0 —2 (3.3)

4M?  tefab) d?
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Hence, from our assumption (jj), (3.2) and (3.3), we obtain
@(r) < o(r),
that is, (2.5) is verified. Moreover, again from (3.2) and (3.3), one has
Aca CAr.

Now, we prove that I, = ® — A¥, 1 > 0, satisfies the (PS)"l-condition. Let {u,} be a sequence such that I(u,) is
bounded, I'(u,) = 0 and ®(u,) <rfor all n € N. From ®(u,) < r, that is, ||u.||x < \/5 for all n € N, we obtain that
{u,} is bounded in X. Therefore, since X is reflexive, {u,} admits a subsequence which is weakly convergent to u € X.
Moreover, taking into account that the embedding of X into C([a, b]) is compact, there is a subsequence which is
strongly convergent to u in C([a, b]). Summing up and renaming the subsequence again with {u,}, we have

U, =~ uin X and u, — uin C([a, b]).
Clearly, since @’ is a linear operator and u, — u, one has
(D' (u), u, — u) = 0. (3.4)

Moreover, we prove that one has
(@' (up); y — u) — 0. (3.5)

Indeed, we have (@' (u,); u, — u) = (I} (,); u, — u) + A /ab eTO £ (t, u,(1)(u, — w)dt. So, since one has
[P eTO £t u) (- widt < [ Clu, — wde, being (6, un() < Maxig < f (¢, ) since [|unl| o< [[n — ulleo + llutllco <k,
and (I (up); up — u) < |11 () |lx+ llun — ullx < LI (un)|lx-
the condition (3.5) is proved.
Hence, from (3.4) and (3.5), one has

(@' (up) — @' (W) up —uy — 0. (3.6)

So, taking into account that (®'(u,), u)< |, |lxllullx and (@'(w), u,)< llullxllunllx, one has (lunllx = llullx)® =
Nunlly + Nulls = lunllxllullx = lullxluallx < lually + lully = (@ (), u)y = (D' W), up) = (D' (Un), Up) + (@' (W), u) —
(D (), uy = (D' (W), up) = (P () — D' (W); Uy — u).

Therefore, from (3.6), it follows that

lim |lunllx = [lullx.
n—+oo

Hence, since X is uniformly convex, Brezis!®: Proposition IlL.30 engyires that
lim [lu, —ullx =0,
n—+oo

that is, our claim is proved.

Since all assumptions of Theorem 2.1 are verified, for each 4 € A, and, in particular, for each 4 € A 4, the functional
I, admits a non-zero critical point it € ®~1(J0, r[) such that I;(it) < I;(u) for all u € ®~1(]0, r[). Hence, from Proposition
2.3, taking Remark 2.3 also into account, & is a generalized solution of (D,) which satisfies the conclusion. O

Remark 3.1. Taking Theorem 2.1 into account, the assumptions (j) and (jjj) of Theorem 3.1 can be expressed in the
following way.
Assume that there is a positive constant ¢ such that

(j)) F(t,x)>0fora.e.t€la,a+ %] ulb- l%“, b] and for all x € [0, c]
pboa
e T J é redd

.s /ﬂbm a+
(Jj) =—5"—— <K sup ————
delo,c|
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So that the interval for which the conclusion of Theorem 3.1 holds become

2m2 1 nf d? 2m? c?
. .
b-a e TO K defoc ,b-"=* b — a) max e T®
( )tg}sxl e ‘ f i F(t,d)dt ( )tels)lg / max F(t xdt

a+

Remark 3.2. If in addition we assume that (iii*) for all p > 0 the function sup | f(¢,x)| belongs to L*([a, b]), then the

[x|<p
assumption ((jj) of Theorem 3.1 can be expressed as follows:
e?:[ stllpxg[u%]F(tx) elses lilfF(f .d)
s o a, a
(J] ) Cz < K d 2
where
p—b=a
/ . 4 _r([)d[
oo lmie T
2 M? / e-Tdt
In this case, the interval become
y 2m? 1 d? 2m? c?

7 o=l K ess InfF( @) - wlle Tl ess sup_max F(Ex)

tefab] X€l-ccl

Indeed, arguing as in the proof of Theorem 3.1, one has

ess sup ( max F(t §)>

(b-a), _r, telab \&l-ed
r) < e s
o(r) T lle™ Ilx 2
and
b= ess infF(t,d)
o> LD [T g, Eel]

4M? a+ it a2

Remark 3.3. We explicitly observe that when y =6 =0, one has K = % (and K* = i), and in this case, the formula (jj)
(so also (jjj*)) is completely independent from the choice of interval [a, b]. On the contrary, the interval of parameters
Acg (the same for A7 ), also in this particular case, depends on the length of [a, b]. We use this fact to obtain a result
we will see later.

We also observe that also in general when one has the dependence of y and ¢, an appropriate choice of the interval
[a, b] does not allow us to verify directly the assumption (jj), being K < %

The following result is a version of Theorem 3.1 in order to obtain positive solutions.

Theorem 3.2. Let f : [a,b] x R — R be a L!-Carathédory function such that f (t, x) > 0 for all (t,x) € [a, b] X [0, + co[
and put F(t,x) = [0 f(t,EdE forall (t,x) € [a, b] X R. Assume that there are two positive constants ¢, d, with d < ¢, such
that

/ b_bbjf F(t,d)dt

~n [PEtodt at
(jj) LLat ok

Then, for each A € A 4, where

d2

A 2 1 & 2m? ¢
cd = — ,
' b—a) max eTOK  p-2t b—a) max e-T® rb

( )te[a.)lg] / b i F(t,d)dt ( )te[a,)b(] fa F(t, c)dt
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the problem (D;) admits at least one positive generalized solution i such that ||it||» < ¢, ||i]lx < (b_zﬁc and

’ o [1|a’(t)|2 + Yowiam) - A a(t))] i< [ eTo [1|u’(t>|2 + LoOlu@)? - AF u(t))] dt
. 2 2 ’ =/, 2 2 ’

forallu € Wy*([a, b]) such that ||ullx < )mc

Proof. Let ft be the function as defined in Section 2. It satisfies all the assumptions of Theorem 3.1, for which the
problem (DY) admits a positive generalized solution & that, owing to Lemma 2.2, is a positive generalized solution
of the problem (D,). Hence, taking also into account that F*(t, i(t)) = F(t, u(t)) for all t € [a, b], the conclusion is
achieved. O

Remark 3.4. Clearly, Remarks 3.1,3.2, and 3.3 can also refer to Theorem 3.2.

The assumptions of Theorems 3.1 and 3.2 can have a simpler form when the nonlinear term is of separate variables
type. As an example, here, we point out the following two cases.

Theorem 3.3. Letg : R — R be a continuous function such that g(x) > 0 for all x € [0, + co and a € L'([a, b] such that
a(t) >0 for a.e. t€[a, b]. Put G(x) = /Ox g(&)dé for all x € R and assume that there are two positive constants c, d, with

d<c, such that
GO _ xG@

C2 < d2 ’ (A)
p-bza
o 1md e’ 0, + b o
where K = 2 M2 tgiﬁ]e—m) ||a||1
Then, for each A € A, 4, where
A= 2m? 1 d | 2m? o
ed (b —a)||all; max eTO® £ G(d)’ (b — a)||alj; max e TO® G(o)|’
tela.b] tela.b]
the problem
—u" +y(OU + o(t)u = Aa(t)g(u) in [a,b], ~
(D7)
u(a)=ulb)=0
admits at least one positive generalized solution i such that ||it||» < ¢, ||it]lx < T )1 ——cand
b 1 1 b 1 1
/ e 1o [§|ﬂ'([)|2 + 5a(t)la(t)l2 - /1a(t)G(a(t))] dr < / e [zlu’(t)l2 + Ea(t)lu(t)l2 — Aa(OGu(n) | dt
a a
forallu € Wy*(la, b)) such that ||ullx < = a)wc
Proof. 1t follows from Theorem 3.2. O

Remark 3.5. In the autonomous case, that is, when a« =1, and when y = 6 =0 (see also Remark 3.3), the condition (A)
and the interval of parameters assume the following simpler forms

G _ 16
4@

8 a2 c?

Aed = | G a2 6@ B-ar 6O
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Theorem 3.4. Letg : R — R be a continuous function such that g(x) > 0 for all x € [0, + co[ and a € L'([a, b] such that
a(t) > 0 for a.e. t € [a, b]. Assume that

800
m-— =+

Rl ®
Put
A= 2m’ sup ¢
(b —a)||a|l; max eT® 5 G(c)’
t€la.b]
where G(x) = [; g(&)dé forallx € R.
Then, for each 4 €]0, A[, the problem (D) admits at least one positive generalized solution .
: 7 o 2m? &2 . 2m? 1 x*
Proof. Fix A €]0, A[ and let ¢ > 0 such that 4 < W es From (B) one has lim,_, o+ W}@ =
0 < 4, 0 we can fix 512 < ¢such that
2m 1 d
Wg}%e_m z % < A Hence, one has
2m? 1 a2 2m? o
——— < i< —_—,
(b — a)||all; max e TO K G(d) (b= a)||a|l; max e TO G(¢)
tela.b) tela.b)
for which Theorem 3.3 ensures the conclusion. O

Here, as a consequence of the theorems above, we point out a result where the problem is independent from
the parameter 4.

Theorem 3.5. Letg : R — R be a continuous function such that g(x) > 0 for all x € [0, + co[ and a € L'([a, b] such that
a(t) > 0forae. t€[a,b]. Put G(x) = /Ox g(&)d¢ for all x € R and assume that

6© _ 16@

< , C
¢z 4 a ©
Then, for each a € R there is b € R, with b > a, such that the problem
—u" =g in [a,bl,
(D)
u(a) = u(b) =0,
admits at least one positive classical solution .
Proof Fixa € Randputb=a+ ,/% + % Since (C) holds, from Theorem 3.3 one has that for each 4 € (b_%)z .
4d>  ¢?
] 5@’ 50 [ the problem
—u" = Ag(u) in [a, b],
u(a) = u(b) =0,
admits at least one positive classical solution . Hence, taking into account that
aa? | 2
i w = 1, that is 1 is the middle point of the interval of parameters, the conclusion is achieved. O
6@ " 6o

Remark 3.6. As the proof shows, a point b which satisfies the conclusion of Theorem 3.5 is

4d? c?

G(d) * G(o)’
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4 | APPLICATIONS TOA DC/DC BUCK CONVERTER

The Buck converter is a DC/DC switching mode power converter that steps-down the input voltage to a suitable level
for powering a given load (for general references, see previous studies!!~'®). The basic Buck converter scheme, shown in
Figure 1, is a second-order circuit consisting of two semiconductor devices (diode D and a transistor S) and two energy
storage elements (capacitor C and an inductor L).

The Buck converter is a nonlinear system with a variable structure, because its circuit topology changes according to
the state of the two semiconductor devices. More precisely, both the diode and the transistor can behave as an open or
closed switch, hence, as shown in Figure 2, the converter may take three states, namely, powering, free-wheeling and idle,
corresponding, respectively, to S on and D off, S off and D on, and S off and D off.

As shown in Figure 3, the powering state starts at t =t, when the transistor S is turned on and the diode D, which is
reverse biased, turns off. The inductor current increases, and the inductor stores in the form of a magnetic field a part of the
energy drawn from the input power source. The balance of the input energy is directly supplied to the load. At t = ty+ Ty,
the transistor S is turned off and the diode D, being forward biased, turns on. The converter takes the free-wheeling state,
and the energy stored in the inductor is fed to the load; hence, the current in the inductor decreases. If the current in the
inductor reaches zero at t = t, + Ton + T,y, the converter enters the idle mode until the end of the switching cycle at
L=ty + Tgn+Toff =Ts.

The Buck converter can operate in continuous conduction mode (CCM) or in discontinuous conduction mode (DCM).
In the first case, the converter takes only the powering and free-wheeling states along a switching cycle and the inductor
current never reaches zero. For efficiency reasons CCM is the most common operating mode. In CCM at steady state, the
output voltage vy is related to the input voltage v;, and to the duty cycle 6 by the following simple expression:

Vo = Viné (4-1)

where § = 2 (0 < § < 1),
A constant structure approximation of the Buck converter operating in CCM can be obtained according to the time
averaging approach, which gives the equivalent circuit shown in Figure 4.

Ky DC Buck Converter
li" ’ ; iL L io
+ vL 1 v
T
- p—
<_> Vin D 1 R® Vo
FIGURE 1 DC Buck converter
k. & i, ip L i, i
+ vL ] + vL ]
cl i cl ) <l )
CD Vin —T1— | R® |V, — | R® |V, — | R® |v,
Powering Free-wheeling Idle

FIGURE 2 The three possible states of a Buck converter
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FIGURE 3 Buck converter variables in a generic switching cycle

Switch state

FIGURE 4 Time averaged model of the Buck converter i L z
L 0
——{ Y Y Y ¥ -
+ vy '
L -
C
¥ il
JV,‘” C) ] I R@® |V,
FIGURE 5 Closed loop control of the Buck
converter output voltage vy Vo
%
Vo + 8
Control law [—» Vo
v Buck >
m L

A second-order differential equation can be written analytically to describe the circuit of Figure 4:

/

v
5(t,v9) = LCvj + EO + Vo (4.2)

with R, L, C constant coefficients.

In constant output voltage applications, the load voltage vy is kept at a given reference value v; by acting on the duty
cycle 6, in order to compensate the variation of the load R(t) over the time. The duty cycle is regulated according to a
closed loop control law processing the difference between the reference voltage v; and the actual one vy, as shown in the
block scheme of Figure 5.

In the Laplace domain, the control law is described by a rational fractional function, called the transfer function, of the

type:

_NG) . amS" + 018"+ Lt a
D(s) bps™ + by_18"t + ... +bo

T(s) being m < n, 4.3)
which can be rewritten as
' (1 +sT)A+ST) ... (1+5Ty)

T®) =K A+s)(d +510) ... A +s7,)

(4.4)
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The roots of the numerator are called the zeros of the transfer function.

1 1
-1 T = —— 4.5
21 T1 m Tm ( )
The roots of the denominator are called the poles of the transfer function.
1 1
bhh=——, ... ,PDn=—— (46)
71 Ty

A control law with a transfer function with a pole in the origin (s = 0) ensures a null asymptotic error on a second-order
system as the considered one, according to Equation 4.2. This means that, at least asymptotically, the error between the
reference voltage and the actual one is in any case driven to zero. Once that the convergence of the system to the reference
is ensured, the dynamic of the system can be managed through a simple proportional action, which means an additional
term of the control transfer function featuring an output proportional to the error between the reference voltage and the
actual one. In the time domain, a proportional control law is given by

o(t,vo) = K, f(Vy — Vo), €= (V5 — Vo). 4.7)

Considering that the value of the duty cycle is positive and upper limited to 1, a nonlinear piecewise control function

(vg—vo)

is obtained, which is shown in Figure 5 as a function of the normalized voltage error e, = ——-. The slope of the first

0
segment of the control function can be adjusted by acting on the gain k, in order to achieve a reasonably low error after
a given time.
The problem can be written in terms of the voltage error e:

vy —e

=L * 4
o(t,e) = LC(vy —e)" + R

+ (v —e), (4.8)

5(t,e) = K,(/e — n(e)), (4.9)

with f and # two positive constants. Figure 6 shows the proportional error of Equation (4.7), and the approximated error
described in (4.9) by means the sqrt functions.

The term R(¢) which represents the electrical load can vary with the time ¢. By considering e, = e(lo), if at f, the value
of R changes, the error e can be reported at the initial value for t = o0, e, = €y = e(f,), as shown in Figure 7. For a given
value of K, and v, the duty cycle will be changed in order to obtain e, = ey = e(t). Figure 7 shows the voltage error e
due to R transient from 10€2 to 5Q2 for different values of K,,. The error e, decreases as K, increases. Figure 8 shows the
error response for different load transients R by keeping constant K, = 1. The greater the variation of R, the greater the
maximum error.

1 i i i i i i i FIGURE 6 Proportional and approximated control functions
0 0005 0.01 0015 0.02 0.025 0.03 0035 004 0.045 0.05

[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Voltage error versus load transient R for different 807z y : - - :
values of K, [Colour figure can be viewed at wileyonlinelibrary.com|] ' :Ilg" fé ]
»=0.
60f M —K,=0.01 1
] €y
40f )
20f ]
0 i :
Birw 19 ' '
—K,=1
10 —K,=0.1 ]
. —K,=0.01
5t

0
0.005 0.0075 0.1 0.0125
[s]

0.015 0.0175 0.02

FIGURE 8 Voltage error versus different load transients R for 80 . .
K, =1 [Colour figure can be viewed at wileyonlinelibrary.com]

601

401

20f

—R— 10Q to 3Q
—R — 10Q to 4Q
—R — 10Q to 5Q

= R@) [Q]

10

0 i ‘
0.005 0.01 0.015
[s]

Consider the following problem

“ ICRG®) _ IC

—¢’ - <= LE,A8(t,v;—e)  in]0.01,0.015],
¢(0.01) = ¢(0.015) = 0.

0.02

0.025

(4.10)

where L = C = 0.01, R(t) = ';1)0;2 and A8(t,v; — e) = /e — ne, with § = 0.1 and 5 = 0.067. Our aim is to apply Theorem

3.3, because problem (4.10) can be obtained from problem (D) by choosing

ct)=0, a(t) =1, A=K,

L

y(t) = 8(0) = TAS(LY; ~ o).

1
LCR(t)’
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2 ' FIGURE 9 Trend of K¢ and K, pqy versus /\t [Colour figure
can be viewed at wileyonlinelibrary.com]|

K
-pmax

10°F

Kpmin

10

1%.005 0.01 0.015

Atfs]

2
Besides, the first hypothesis of Theorem 3.3 is that g has to be a continuous and positive function, so we put e* = (% ) =

0.556917, and we consider
N (e) if0<e<er,
8(e) = gd . .
gle*) ife>e*.

Clearly, this function satisfies the required assumptions. Hence, by simple calculations, one has

02

_ /" _ (41072
F(t)—/loz)/(cf)dé——ln<m> ;

1 (253 _ny2 : *

LC<3ﬂx2 2x> if 0 <x <e*,
2 4

i(”—x—ﬂ—) if x > e*

and

174\ 5
-3)%.
4\5
Choosing ¢ = e* and, for instance, d = 10/, hypothesis (A) of Theorem 3.3 is satisfied; then, for each K, €]1.414,15.385],

rounded down, the given problem admits at least one positive generalized solution e such that 0 < e <e*.
Now, we consider problem (4.10) in the interval 11072, 2 - 10~2[=]0.01, 0.02[; hence, one has

172\ 5
=107
4\3

Then, choosing c=e* and, for instance, d = 10~?, for each K, €]0.219,0.621[, rounded down, the considered problem
admits at least one positive generalized solution e such that 0 <e <e*.
Finally, we consider problem (4.10) in the interval 1102, 2.5 - 1072[=]0.01, 0.025[; hence, one has

174\ 50
1%
4\7

Then, choosing c¢=e¢* and, for instance, d = 107!, for each K, €]0.046,0.059[, rounded down, the considered problem
admits at least one positive generalized solution e such that 0 < e <e*. Let us consider /\t the time range in which the
problem has been considered. Hence, we have /\f; = 0.015 — 0.01 = 0.005s, /\t, = 0.02 —0.01 = 0.01s, and A\t; =
0.025 — 0.01 = 0.015s. The trend of Kpqx and Ky, has been plotted as a function of /\t, as shown in Figure 9. Note as
higher is the time range /\tin which at the end the voltage error value is again zero, lower is the value of K,,. The waveform
of the voltage error versus the /At has been evaluated in Figure 10, where for each time range /\f; = 0.015 — 0.01 =
0.005s, At = 0.02 —0.01 = 0.01s and At; = 0.025 — 0.01 = 0.015s, estimated values of K; = 2,5,K,, = 0.35 and
Kp3 = 0.05 have been set. The simulation results are in accordance with mathematical results.

In conclusion, in this section, a mathematical approach for tuning a proportional voltage control of a DC-DC buck
converter has been performed. In detail, for a given time dynamic response of the system and by imposing the voltage
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FIGURE 10 Voltage error during R transient for versus /\t 80 T B

[Colour figure can be viewed at wileyonlinelibrary.com]| — A1,-0.005s — K,=2.5
601 —A,-0.01s  — K,=0.35

—At;=0.015s — K,=0.05

20

=
6

R() [Q]

0.5f

0 i . i
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error null before and after the voltage transient, maximum and minimum values of proportional constant of the P con-
troller are obtained. The mathematical results have been compared with simulations of the DC-DC converter by using
the Matlab/Simulink platform by obtaining a good matching.
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