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Abstract. Let K be a field and let Jn,k be the Jordan algebra of a degenerate symmetric bilinear form b

of rank n− k over K. Then one can consider the decomposition Jn,k = Bn−k ⊕Dk, where Bn−k represents
the corresponding Jordan algebra, denoted as Bn−k = K ⊕ V . In this algebra, the restriction of b on the
(n− k)-dimensional subspace V is non-degenerate, while Dk accounts for the degenerate part of Jn,k. This
paper aims to provide necessary and sufficient conditions to check if a given multilinear polynomial is an
identity for Jn,k. As a consequence of this result and under certain hypothesis on the base field, we exhibit
a finite basis for the T -ideal of polynomial identities of Jn,k. Over a field of characteristic zero, we also
prove that the ideal of identities of Jn,k satisfies the Specht property. Moreover, similar results are obtained
for weak identities, trace identities and graded identities with a suitable Z2-grading as well. In all of these
cases, we employ methods and results from Invariant Theory. Finally, as a consequence from the trace case,
we provide a counterexample to the embedding problem given in [8] in case of infinite dimensional Jordan
algebras with trace.
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1. Introduction

Let A be an algebra over a field K, then A is said to be an algebra with polynomial identities (or simply
PI-algebra) if it satisfies a non-trivial polynomial identity. The development of the theory of PI-algebras
started in 1950 with [2], a celebrated paper by Amitsur and Levitzki about standard polynomials on matrix
algebras, that posed the following crucial question: given any PI-algebra A, are we able to describe the
polynomial identities satisfied by A? In other terms, if T (A) is the T -ideal of identities of A, how to compute
a basis for T (A)?

Around the 80’s, Kemer developed a sophisticated theory which gave a complete description of the ver-
bally prime (also called T-prime) algebras in terms of their T-ideals (that is the ideals of their polynomial
identities). He showed that the structure of the T -ideals in the free associative algebra resembles in many as-
pects that of the ideals in the usual polynomial algebra in several variables. Kemer’s work is of fundamental
importance in the theory of PI-algebras, see for more details [18], and the monograph [19].

In spite of the extensive research in this area, little is known about the concrete form of the identities
satisfied by such algebras. In the setting of associative algebras, we can cite the monograph [9] and its
references for an exhaustive discussion about algebras with polynomial identities. Kemer’s results led to
the solution of the long-standing Specht problem. It asks whether there exists a finite basis for the ideal of
identities of an algebra in a given variety (associative, Lie, Jordan, etc.) Equivalently, the Specht problem
asks whether the ideal T (A) of identities of an algebra A and all T -ideals containing T (A) are finitely
generated as T -ideals. Kemer proved that the variety of the associative algebras, over a field of characteristic
0, satisfies the Specht property (see [19]). Later on Iltyakov [14] transferred Kemer’s theorem to large classes
of Lie algebras which include the finite dimensional ones, and Vajs and Zelmanov [35] obtained an analogous
theorem for finitely generated Jordan algebras (under an additional restriction). Iltyakov [13] obtained the
Specht property for finitely generated alternative algebras. Finally in [12], Iltyakov showed that the variety
of unitary algebras generated by Bn satisfies the Specht property. We recall that the Specht property does
not hold in general. The counterexamples in the case of associative algebras turned out to be much more
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intricate; such counterexamples were provided simultaneously and independently by Grishin, Belov and
Shchigolev [11, 17, 31].

Now identities for Jordan algebras even less is known. For instance, Isaev in [15] obtained a basis for the
T -ideal of identities of the Jordan algebra of a non-degenerate symmetric bilinear form, denoted by Bn, where
n = 2, 3, . . . ,∞, over a finite field. Vasilovsky [36] obtained an analogous result in case of an infinite field of
characteristic different from 2, 3, 5 and 7. There is an intrinsic fact related to B∞. According to a theorem
of Sverchkov [33], over a field of characteristic 0, the variety generated by B∞ is special, meaning that each
algebra in it is special. There are not many examples with this property, thus such algebra plays a major role
in the variety of Special Jordan algebras. In addition to these, we also mention that in [24] the second author
of this paper exhibited a basis for the T -ideal of identities of the Jordan algebra of a degenerate symmetric
bilinear form of rank n − 1 when the base field has characteristic zero. Furthermore, in [23], together with
Koshlukov, a basis for the T -ideal of identities for the Jordan algebra of upper triangular matrices of order
2 was described. This last result was obtained when the field is infinite and of characteristic different from 2
and 3. Recently, Gonçalves and Salomão in [10] obtained an analogous result over a finite field. Until now,
these are the only Jordan algebras in which a basis of their T -ideals of identities is known.

In the light of the above discussion, an interesting problem is to investigate other types of polynomial
identities such as weak, trace, and graded ones. The trace identities for Mn(K), with charK = 0, were
independently described by Procesi in [26] and by Razmyslov in [29]. More precisely, the authors proved
that all trace identities of Mn(K) follow from the Cayley-Hamilton polynomial of degree n. It is important to
mention that both works have great importance also for ring theory. In [37] Vasilovsky exhibited a finite basis
for the polynomial identities with trace of Bn when n ≥ 2 and the field is infinite of characteristic ̸= 2. On
the other hand, also graded polynomial identities play an important role in the study of PI-algebras, in fact
such identities are easier to describe in many important cases and they are related to the ordinary ones. For
instance, two algebras having the same graded identities also have the same ordinary identities. For Jordan
algebras, very little is as yet known about the concrete descriptions, here we can mention [10, 22, 23, 38].

Another interesting matter is the so-called embedding problem. More precisely, how to answer the ques-
tion: given a ring (or an algebra) that satisfies polynomial identity, what can one say about the structure of
its subrings (subalgebras)?

The matrix rings are “good” ones: they are quite well understood and their importance in Ring theory
is enormous without any doubt, thus describing conditions for embedding a ring into the n × n matrices
is a matter of great importance. Of course, an immediate necessary condition for embedding a ring S into
the n × n matrices is that S must satisfy all polynomial identities of the n × n matrices. This condition
turned out not sufficient, in fact in the 70’s, Amitsur [3] and Small [32] gave independently examples of rings
satisfying all the identities of n × n matrices over a field but not embeddable into matrices of order n over
any commutative domain.

An exhaustive answer to the embedding problem in general is not known yet. For instance, Procesi
in [28] and Berele in [4] studied such a problem in the setting of associative matrix algebras with trace
and associative matrix algebras with involution-trace, respectively. Moreover, in [8] the authors extend the
previous results, studying the embedding problem for the Jordan algebra Bn with trace.

This paper deals with the Jordan algebra Jn,k which arises from a degenerate symmetric bilinear form b
with rank n − k over a field K, where n and k are positive integers such that n > k. If we denote by Vn

an n-dimensional vector space equipped with a symmetric bilinear form b, then it is well known that we can
choose a canonical basis for V such that Vn = Vn−k⊕Dk, where the restriction of b on the (n−k)-dimensional
subspace Vn−k is non-degenerate and Dk is its degenerate part of dimension k. Under this notation, it is easy
to verify that Jn,k = K ⊕ Vn with the multiplication (α+ u)(β+ v) = (αβ+ b(u, v)) + (αv+ βu) is a Jordan
algebra. This algebra is called the Jordan algebra of the bilinear form b. It can be interesting to consider
the decomposition Jn,k = Bn−k ⊕Dk, where Bn−k is the corresponding Jordan algebra Bn−k = K ⊕ Vn−k′.
Notice that one should formally write Jn,k(b) for Jn,k since this algebra obviously depends on the form b.
In fact if b and b′ are two symmetric bilinear forms on Vn, the algebras Jn,k(b) and Jn,k(b

′) are isomorphic
if and only if the forms b and b′ have the same rank, in other words, they are equivalent. When the base
field K is algebraically closed, there exists, up to isomorphism, only one algebra Jn,k that depends on its
rank k. However, over an arbitrary field, Jn,k should interpreted as the class of Jordan algebras, which
are not necessarily isomorphic, having bilinear form of the same rank n − k. Moreover, it is clear that
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T (Jn,k) ⊆ T (Bn−k), since Bn−k is a subalgebra of Jn,k. Analogously, it turns out that, under some technical
conditions, Bn is a graded and trace subalgebra of Jn,k, therefore, it is possible and interesting to compute
a basis for the T -ideal of identities of such an algebra in each one of the aforementioned cases.

The paper is organized as follows. In Section 2, we provided a basis for the T -ideal of ordinary polynomial
identities of Jn,k, assuming that a basis for the T -ideal of Bn−k is known. Section 3 is devoted to the study
of the Z2-graded polynomial identities of Jn,k endowed with a suitable Z2-grading called the scalar grading.
In order to obtain the description of the identities of the latter case, we exhibit a basis for the T -ideal of the
weak identities for the pair (Jn,k, Vn). Recall that Vn was defined in the previous paragraph. In Section 4,
a basis for the T -ideal of trace identities of Jn,k will be computed. In particular, we prove that the algebra
Jn,k and Bn−k are PI-equivalent, as ordinary, trace and graded algebra when n is infinite, but the same
conclusion does not hold for n finite. Moreover, we provide a counterexample to the embedding problem
in the sense of [8, Theorem 4.7] in the case of infinite dimensional Jordan algebras with trace. Finally, in
Section 5 we list some conjectures that may lead to possible generalizations of the results presented here.

2. Ordinary polynomial identities

From now on, unless specified otherwise, K will denote a field of characteristic different from two. All
algebras will be unitary and considered over K. Let A be an associative algebra, then one can always
construct a Jordan algebra considering A(+) as the vector space A equipped with the Jordan product a◦ b =
(ab+ba)/2, for all a and b in A. Conversely, given a Jordan algebra J, the existence of an associative algebra
A such that J ⊆ A(+) is not guaranteed. Jordan algebras sharing this property are called special and the
associative algebra A is called associative envelope for J . Otherwise, they are called exceptional.

Unless otherwise stated, we shall assume that X is an infinite countable set, and we denote by K(X) the
free nonassociative algebra freely generated by X over K. The elements of K(X) are called polynomials
and a polynomial f is called polynomial identity for A (written as f ≡ 0), if f(a1, . . . , am) = 0 for all a1,
. . . , am ∈ A. Let S be a subset of K(X), the set of all algebras satisfying the polynomials in S is called
the variety generated by S and we denote it by V(S). We say that A ∈ V(S), if S is contained in the set
of all identities for A, denoted by T (A). Moreover, we say that a variety V is generated by the algebra A
if V is the variety generated by T (A), and we denote V by V(A). We also denote by K⟨X⟩ and J(X) the
free associative and Jordan algebra freely generated by X over K, respectively. Moreover, it is possible to
construct SJ(X), the free special Jordan algebra, as the subalgebra of K⟨X⟩(+) generated by the set X by
means of the definition of the Jordan product as previously stated.

Now, let J be a Jordan algebra, the set T (J) = {f ∈ J(X) | f ≡ 0} is an ideal of J(X) that is closed
under the endomorphisms of J(X); such ideals are called T -ideals. A set of identities {g1, g2, . . .} is a basis
of the T -ideal I if {g1, g2, . . .} generates I as a T -ideal and in this case we write I = ⟨g1, g2, . . .⟩T . It is well-
known (see for instance [9, Theorem 1.3.7]) that, in case of characteristic zero, every T -ideal is generated
by the multilinear polynomials it contains. Over an infinite field of positive characteristic, one has to take
into account the multihomogeneous polynomials instead of the multilinear ones. Recall that a multilinear
polynomial is a polynomial of the vector subspace

Pn = spanK{xσ(1) · · ·xσ(n) | σ ∈ Sn},

where Sn is the symmetric group and xσ(1) · · ·xσ(n) stands for a monomial with all possible brackets ar-
rangements. It turns out that if f ∈ Pn, then in order to establish whether f ∈ T (J), it suffices to evaluate
f on the elements of a basis of J.

A polynomial identity f is a consequence of the identity g (or follows from g) if f ∈ ⟨g⟩T . Similarly, we
say that f and g are equivalent if each one is a consequence of the other, i.e. ⟨f⟩T = ⟨g⟩T . More generally,
if A and B are two algebras we say that A and B are PI-equivalent if T (A) = T (B).

An important role in the theory is played by the so-called Capelli-type polynomials defined as follows.

Definition 2.1. A polynomial f ∈ J(X) is a polynomial of Capelli-type of order m if f is multilinear and
alternating in m variables. Moreover, we say that the algebra J satisfies the Capelli-type identities of order
m, and we write Capm ≡ 0, if J satisfies all polynomials of Capelli-type of order m.
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It is clear that if dimK J = k, then Capt ≡ 0 on J for all t ≥ k+1. Furthermore, Capelli-type polynomials
represent an important tool in order to establish an equivalence among two T -ideals, as highlighted in the
following lemma that we will use very often.

Lemma 2.2 ([6], [12]). Let K be a field of characteristic zero. Moreover, let I and Q be T -ideals of J(X)
and let I(m) = I ∩ J(x1, . . . , xm) and Q(m) = Q ∩ J(x1, . . . , xm), for all m ≥ 1. Then I and Q are equal
modulo Capk+1 if and only if I(k) = Q(k).

In what follows we are interested in the polynomial identities of a special Jordan algebra called the Jordan
algebra of a symmetric bilinear form. Let V be a vector space, dimK V = n ≥ 2, equipped with a symmetric
bilinear form b and let A = K ⊕ V. It is well known that A, with the multiplication (α + u) ◦ (β + v) =
(αβ + b(u, v)) + (αv + βu), for all α, β ∈ K and for all v, u ∈ V , is a Jordan algebra with respect to the
multiplication ◦. Thus, if b is non-degenerate, we denote it by Bn if dimK V = n and by B∞ if dimK V = ∞.

Assuming that V is an n-dimensional vector space, if b is degenerate with rank n− k, for some integer k
satisfying 0 < k < n, then A, with respect to the multiplication ◦, will be denoted by Jn,k. Here n and k can
be infinite. We can also write Jn,k = Bn−k ⊕Dk, where Bn−k = K ⊕ V ′, V ′ is the subspace of V spanned
by the non-degenerate vectors with respect to b and Dk is the degenerate part of V. Thus, it is clear that
Bn−k is a subalgebra of Jn,k, for all k ≥ 0. It should be noted that both Bm and Jn,k are special algebras,
and their associative envelopes are the Clifford algebras. Additionally, Bm is simple whereas Jn,k is not. It
is evident that these algebras depend on the form b.

A basis of T (Bm) and T (B∞) were found in [36], where the following theorems were proved.

Theorem 2.3. [36, Theorem 0.2] The identities

([x, y]2, z, t) ≡ 0(1) ∑
σ∈S3

(−1)σ(xσ(1), (xσ(2), x, xσ(3)), x) ≡ 0(2)

form a basis for polynomial identities of the var(B∞) of Jordan algebras over an infinite field of characteristic
different from 2,3,5, 7.

Theorem 2.4. [36, Theorem 0.2] The identities (1), (2),∑
σ∈Sm+1

(−1)σ(xσ(1), y1, xσ(2), . . . , ym, xσ(m+1)) ≡ 0(3)

∑
σ∈Sm+1

(−1)σ(xσ(1), y1, xσ(2), . . . , ym−1, xσ(m))(ym, xσ(m+1), ym+1) ≡ 0 ,(4)

form a basis for polynomial identities of the varBm, m < ∞, of Jordan algebras over an infinite field of
characteristic different from 2,3,5, 7.

Here and in what follows [x, y] = xy− yx is the commutator among the variables x and y, and (x, y, z) =
(xy)z − x(yz) stands for the associator among the variables x, y and z. One can also define by induc-
tion the associator among more than three elements of the algebra by left-normalizing the brackets. Thus
(x1, x2, x3, x4, x5) = ((x1, x2, x3), x4, x5) and so on.

It is well known that SJ(X) ∼= J(X) if and only if |X| ≤ 2; see for example [16, p. 47] or [39, Theorem
3, p. 59]. Therefore we are identifying [x, y]2 with the corresponding Jordan polynomial written by means
of the multiplication in the associative envelope of J(x, y) = SJ(x, y). The linearization and the translation
by using Jordan multiplication of [x, y]2 were computed. In fact, if we set T (x1, x2, x3, x4) = (x1x2, x3, x4)−
x1(x2, x3, x4)− x2(x1, x3, x4) in J(X), then it is well know that

T (x1, x2, x3, x4) =
1

4
([x1, x3] ◦ [x4, x2] + [x1, x4] ◦ [x3, x2]).

Moreover, if K is an infinite field of characteristic different from 2 and 3, then by [23, Section 4], the right-
hand side is readily seen to be, up to a scalar, the multilinearization of the polynomial [x, y]2, therefore we
can substitute the identity (1) by

(5) (T (x1, x2, x3, x4), z, t),
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which is multilinear, see also [36].
In the next subsection, a basis of T (J∞,k) and T (Jn,k), for all k ≥ 1, will be computed. To this end,

first remark that we may assume K algebraically closed eventually by considering K̄, the algebraic closure
of K, and observing that polynomials (1) – (4) have coefficients in K (see also [9, Section 1.4]). Therefore,
if Jn,k = K ⊕ V, then we can fix an orthonormal basis of V with respect to the bilinear form b, namely
B = N ∪D where N = {e1, e2, . . . , en−k} spans the non-degenerate subspace of V and D = {d1, d2, . . . , dk}
spans the degenerate part. Hence,

ei ◦ ej = δi,j , dr ◦ el = dr ◦ dt = 0,

for all 1 ≤ i, j, l ≤ n− k and for all 1 ≤ r, t ≤ k, where δi,j is the Kronacker’s delta. The above notation
also implies that Bn−k is spanned by {1} ∪N and Dk is spanned by D. Notice that the previous arguments
can also be easily generalized for the case J∞,k. In order to simplify the notation, in the Jordan product we
shall replace ◦ with · or we shall omit it.

2.1. Computing the T -ideal of identities. In order to reach the goal, we first state the following propo-
sition that relates the multilinear identities of Jn,k to the ones of Bn−k.

Proposition 2.5. Let Jn,k = Bn−k ⊕ Dk be the decomposition of Jn,k into the direct sum of the non-
degenerate part of the algebra plus the degenerate part where k ≥ 1. A multilinear polynomial f ∈ J(X) is a
polynomial identity of Jn,k if and only if f ∈ T (Bn−k) and

(6) fxi
= f(n1, . . . , ni−1,mi, ni+1, . . . , ndegf ) = 0,

for all 1 ≤ i ≤ deg f and for all nj ∈ Bn−k, j ̸= i, mi ∈ Dk.

Proof. If f ∈ T (Jn,k) then f ∈ T (Bn−k) since Bn−k is a subalgebra of Jn,k. Furthermore, condition (6)
trivially holds and we are done.

Conversely, let us suppose that f = f(x1, . . . , xr) ∈ T (Bn−k) is a multilinear polynomial satisfying (6).
We claim that f ∈ T (Jn,k). Since f is multilinear, one can evaluate every variable xi on elements of the
basis B ∪ {1}. If we substitute each variable with an element of N ∪ {1}, then f = 0, since f ∈ T (Bn−k).
Thus we may evaluate at least one variable on D. Moreover, since Dk is an ideal of Jn,k and D2

k = 0, we
have that if we evaluate at least two distinct variables of f in D, then such evaluation is automatically zero.
Therefore, it suffices to consider only the evaluations in which exactly one variable xi is mapped into D, i.e.
xi 7→ m ∈ D and xj 7→ nj ∈ N ∪ {1} for all j ̸= i and for all 1 ≤ i ≤ deg f. Since condition (6) holds, also in
this case we get zero, hence f ∈ T (Jn,k) as claimed. □

We shall use the previous result in order to prove that polynomials (1), (2) and (4) are still identities of
Jn,k, for all k ≥ 1. First, we need the following technical lemma.

Lemma 2.6. If a1, a2, a3 ∈ N ∪ {1}, and d ∈ D, then
(1) (a1, d, a2) = 0;
(2) d · (a1, a2, a3) = 0.

Proof. If ai = 1 for some i, then the result is trivial, thus let us suppose that a1, a2, a3 ∈ N . Since dai = 0
for all 1 ≤ i ≤ 3, then (a1, d, a2) = (a1d)a2 − a1(da2) = 0 and the first item is proved. Moreover, if
(a1, a2, a3) ∈ spanK{N} then also d · (a1, a2, a3) = 0. The latter claim shows the last item and we can
conclude the proof. □

Lemma 2.7. If K is an infinite field of characteristic different from 2 and 3, then the polynomial (1) is
still an identity of Jn,k.

Proof. Since charK ̸= 2 and 3, by the previous arguments, it suffices to prove that the polynomial (5) is an
identity of Jn,k. To this end, let

f = ((x1x2, x3, x4)− x1(x2, x3, x4)− x2(x1, x3, x4), x5, x6).

Moreover, by Theorem 2.3 we have that f ∈ T (Bn−k), thus in order to reach the goal we only need to check
condition (6) of Proposition 2.5.
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By Lemma 2.6, if either x3 or x5 takes value in Dk, then we get automatically zero, i.e. f3 = f5 = 0. Now
let d ∈ Dk and ai ∈ N , for all 1 ≤ i ≤ 6. Let us analyse fx1 :

fx1
= ((da2, a3, a4)− d(a2, a3, a4)− a2(d, a3, a4), a5, a6).

As dai = 0 for all ai ∈ N , then each summand of the first element of this associator is equal to zero, i.e.,
fx1 = 0. Since f is symmetric with respect to the variables x1 and x2, we get also fx2 = 0.

Let now substitute x4 by d. We get:

fx4
= ((a1a2, a3, d)− a1(a2, a3, d)− a2(a1, a3, d), a5, a6).

It can be easily noted that the first associator is equal to zero and (a, b, d) ∈ span{d}, for all a, b ∈ Jn,k.
Hence fx4 = 0. Finally,

fx6
= ((a1a2, a3, a4)− a1(a2, a3, a4)− a2(a1, a3, a4), a5, d)

= (((a1a2, a3, a4)− a1(a2, a3, a4)− a2(a1, a3, a4))a5)d.

But (a1a2, a3, a4) − a1(a2, a3, a4) − a2(a1, a3, a4) has degree 4 and all its variables evaluate in N ; then its
evaluation is a scalar α ∈ K. This implies that fx6

= αa5d = 0 and we are done. □

Lemma 2.8. If K is an infinite field of characteristic different from 2, then the polynomial (2) is still an
identity for Jn,k.

Proof. Since charK ̸= 2, by multilinearizing (2), it is sufficient to deal with

g =
∑
σ∈S3

(−1)σ(xσ(1), (xσ(2), x, xσ(3)), y) +
∑
σ∈S3

(−1)σ(xσ(1), (xσ(2), y, xσ(3)), x).

By Theorem 2.3, g ∈ T (Bn−k), thus it suffices to prove condition (6).
As in the previous lemma, we can consider only evaluations in N ∪D. For all d ∈ Dk and for all ai ∈ N ,

by Lemma 2.6 we have that

gy =
∑
σ∈S3

(−1)σ(aσ(1), (aσ(2), a, aσ(3)), d) =
∑
σ∈S3

(−1)σ(aσ(1)(aσ(2), a, aσ(3)))d.

If one expand the associator, as it was done in [24, Lemma 4], it turns out that gy = 0. Furthermore, the
polynomial g is symmetric with respect to the variables y and x thus gx = 0.

Moreover, since g is symmetric with respect to the variables x1, x2 and x3, we shall compute fx1
only.

To this end, let us consider the evaluation φ such that φ(x1) = d ∈ D, φ(xi) = ai, φ(x) = a and φ(y) = b,
where ai, a, b ∈ N , i = 1, 2. By Lemma 2.6 and recalling that the equality (a, b, c) = −(c, b, a) hold in every
Jordan algebra, we have

gx1 = (d, (a2, a, a3), b)− (d, (a3, a, a2), b) + (d, (a2, b, a3), a)− (d, (a3, b, a2), a)

= 2[(d, (a2, a, a3), b) + (d, (a2, b, a3), a)]

= −2d[(a2, a, a3)b+ (a2, b, a3)a]

= −2d[(a2a)(a3b)− (aa3)(a2b) + (a2b)(a3a)− (a3b)(a2a)] = 0.

Hence Proposition 2.5 applies the polynomial (2) is an identity of Jn,k. □

By putting together the previous lemmas, we easily obtain the following result.

Theorem 2.9. Let K be an infinite field of characteristic different from 2, 3, 5 and 7, the Jordan algebras
J∞,k and B∞ are PI-equivalent.

Let us now focus our attention on the case n finite.

Lemma 2.10. If n < ∞ then the polynomial (4), for m = n− k, is still an identity for Jn,k.

Proof. The proof follows immediately from the second equality of Proposition 2.6, since the product of two
associators where one of them is in Dk is zero. □

Things seem to be different in the case of polynomial (3), in fact it can be proved that it is not a polynomial
identity for Jn,k. The following simple example shows a particular case in which one can find a non-zero
evaluation.
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Example 2.11. Let n = 2 and k = 1. The polynomial (3) is equal to

h = 2((x3, y1, x1, y2, x2) + (x2, y1, x3, y2, x1) + (x1, y1, x2, y2, x3)).

We recall that the basis B ∪ {1} of J2,1 is {1, e1, e2, d}. If we consider the evaluation φ(x1) = φ(y1) = e1,
φ(x2) = φ(y2) = e2 and φ(x3) = d we have

φ(h) = 2((d, e1, e1, e2, e2) + (e1, e1, e2, e2, d)) = 4d ̸= 0.

This implies that h does not lie in T (J2,1).

In order to provide a basis of T (Jn,k), as a T -ideal, we shall define a linear operator firstly introduced by
Iltyakov in [12], that later on Vasilovsky used as a means to compute the T -ideal of identities of Bm (see
[36, Section 1]). To this end, let V0 be the minimal subset of K(X) such that (a, b, c) ∈ V0, for arbitrary a,
b, c ∈ V ′

0 = V0 ∪X. Set V1 = {uv | u, v ∈ V0}. It is well known that V = V0 ∪ V1 is a linearly independent
set of K(X), see [12, Propostion 1].

Definition 2.12. Let KV = span{V}. For all a, b ∈ V ′
0, we define the linear operator L(a, b) on KV as

follows:
(a) if u = (u1, u2, u3) ∈ V0, then

uL(a, b) = (1/2){(u3, a, u1, b, u2) + (u3, b, u1, a, u2) + (u2, a, b, u3, u1)

+ (u2, b, a, u3, u1)− (u2, a, b, u1, u3)− (u2, b, a, u1, u3)};
(b) (uv)L(a, b) = (uL(a, b)) = (uL(a, b))v, where u, v ∈ V0;
(c) the operator L(a, b) is extended to KV by linearity.

Notice that the operator L(a, b) is symmetric with respect to a and b.
For all f ∈ K(X), we set f+ as the image of the polynomial f under the natural homomorphism of K(X)

onto SJ(X), i.e. f+ is the associative polynomial which is obtained from f by means of substituting the
Jordan product x ◦ y. According to the above notation, it is easy to check that the equality

(7) {(x, y, z)L(a, b)}+ = (x, y, z)+ ◦ (a ◦ b)
holds in SJ(X).

In [36], there are a lot of interesting tools and informations about such operator. Among all, Vasilovsky
proved that one can reduce the study of identities of the algebra Bm to that of the identities lying in a
suitable quotient space. More precisely, the author exhibited such a space in the next lemma.

Lemma 2.13. [36, Lemma 1.6.] The T -ideal of identities of Bm is generated by the identities lying in

KV = span{ (x, y, z)L(a0, b0)L(a1, b1) · · ·L(ak, bk); (x1, y1, z1)(x2, y2, z2)L(a0, b0)L(a1, b1) · · ·
· · ·L(ak, bk) | x, y, z, xi, yi, zi, ai, bi ∈ X; i ≥ 1, k ≥ 0}.

The following identities are satisfied in the Jordan algebra B∞ (see [36, p. 148-149]):

(x, y, z)L(a, b)L(c, d) ≡ (x, y, z)L(c, d)L(a, b);(8)
(x, y, z, s, t) ≡ (z, s, t)L(x, y)− (x, s, t)L(y, z).(9)

It is clear that these identities hold also on Jn,k, since T (B∞) ⊆ T (Jn,k).
In [36] the author characterizes the polynomial identities, modulo T (B∞), using the invariants of the

orthogonal group as described by De Concini and Procesi in [27]. Such a characterization was given in terms
of double tableaux. In what follows, we shall introduce such a description for convenience of the reader.

A double tableau is an array

(10) T =


p11 p12 · · · p1m1 q11 q12 · · · q1m1

p21 p22 · · · p2m2 q21 q22 · · · q2m2

...
...

pr1 pr2 · · · prmr
qr1 qr2 · · · qrmr


where m1 ≥ m2 ≥ . . . ≥ mk and the pij and qij are positive integers. Moreover, T is called a double standard
tableau if pi1 < pi2 < . . . < pimi

, qi1 < qi2 < . . . < qimi
, pij ≤ qij and qij ≤ pi+1,j . Hence, a double tableau
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is standard, if we get an ordinary standard tableau (in the sense of [9, Definition 2.2.5]) by inserting each
row of qij just below its counterpart pij .

Set µ[T ] = (m1,m2, . . . ,mr) and h[T ] = r. We denote by T (i) the i-th row of the tableau T :

T (i) = (pi1 . . . pimi | qi1 . . . qimi).

We shall call the double tableaux of the type (10) a 0-tableaux if p11 = 0 and all remaining entries of T
are positive integers. For all r > 0, we shall associate to each double tableau-row T = (p1 . . . pr | q1 . . . qr) a
linear operator on KV given by

l[T ] =
∑
σ∈Sr

(−1)σL(xp1
, xqσ(1)

) · · ·L(xpr
, xqσ(r)

).

Notice that L(xp, xq) = l(p | q). If T0 = (0 p2 . . . pr | q1 . . . qr) is a double 0-tableau, then we set

(11) F [T0] =
1

2

∑
σ∈Sr

(−1)σ(xqσ(1)
, xp1

, xqσ(2)
)L(xp3

, xqσ(3)
) · · ·L(xpr

, xqσ(r)
).

If T is an arbitrary double 0-tableau with µ[T (1)] ≥ 2, then

F [T ] = F [T (1)]l[T (2)] · · · l[T (h[T ])].

Finally, for r ≥ 3 we set

(12) F [(p1 . . . pr | q1 . . . qr)] =
1

4

∑
σ∈Sr

(−1)σ(xp1
, xqσ(1)

, xp2
)(xqσ(3)

, xp3
, xqσ(2)

)L(xp4
, xqσ(4)

) · · ·L(xpr
, xqσ(r)

).

and if µ[T (1)] ≥ 3 we define F [T ] as before. For T with µ[T (1)] = 2 and h[T ] ≤ 2 we put

F [T ] = F

[
T (1)

T (2)

]
l[T (3)] · · · l[T (h(T ))].

In [36, p. 163] it is proved that the polynomial (3) is equal to

(13) 2m−1
∑

σ∈Sm+1

(−1)σ(xσ(1), y1, xσ(2))L(xσ(3), y2) · · ·L(xσ(m+1), ym) = 2mF [(0 1 . . .m | 1 2 . . .m+ 1)],

and (4) is

2m−2
∑

σ∈Sm+1

(−1)σ(xσ(1), y1, xσ(2))(y2, xσ(3), y3)L(xσ(4), y4) · · ·L(xσ(m+1), ym+1)(14)

= 2mF [(1 2 . . .m+ 1 | 1 2 . . .m+ 1)].

Moreover, the following proposition holds.

Proposition 2.14. [36, Proposition 2.3] Every polynomial in KV can be represented as a linear combination
of polynomials {F [T ]}, where the T ’s are double standard 0-tableaux.

Since the previous arguments hold modulo T (B∞), they are also valid modulo T (Jn,k). We are now in a
position to prove that the polynomial (3) does not belong to T (Jn,k).

Lemma 2.15. The polynomial in (3), for m = n− k, is not an identity for Jn,k.

Proof. Write the polynomial (3) as

f = 2n−k−1
∑

σ∈Sn−k+1

(−1)σ(xσ(n−k), yn−k, xσ(n−k+1))L(xσ(n−k−1), yn−k−1) · · ·L(xσ(1), y1).

By Proposition 2.5, it is enough to prove that fxi
is non-zero for some i.

First remark that if a = d ∈ D (as well as b = d) then, by definition of L, we have

(x̄1, ȳ1, x̄2)L(d, b̄) = (1/2){(x̄2, d, x̄1, b̄, ȳ1) + (x̄2, b̄, x̄1, d, ȳ1) + (ȳ1, d, b̄, x̄2, x̄1)

+ (ȳ1, b̄, d, x̄2, x̄1)− (ȳ1, d, b̄, x̄1, x̄2)− (ȳ1, b̄, d, x̄1, x̄2)}
= (1/2){(ȳ1, b̄, d, x̄2, x̄1)− (ȳ1, b̄, d, x̄1, x̄2)}
= 0.(15)
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Here we denote by xi the evaluation of the variable xi in an element of the algebra. The latter one plus
identity (8) and the first equality of Lemma 2.6, imply that fyi = 0, for all i. Now, since f is symmetric
with respect to the variables xi’s, we compute fx1

only, i.e., x̄1 = d. By the identity (9) we have

(x1, y1, x2)L(a, b) ≡ (a, b, x1, y1, x2) + (a, y1, x2)L(b, x1) (mod T (Jn,k))

and so
(d, ȳ1, x̄2)L(ā, b̄) = (ā, b̄, d, ȳ1, x̄2).

Remark that if ȳ1 ̸= x̄2 then (d, ȳ1, x̄2) = 0, and consequently (d, ȳ1, x̄2)L(ā, b̄) = 0. Moreover, if ā ̸= b̄ then
(d, ȳ1, x̄2)L(ā, b̄) = 0. Hence, we may assume x1 = d, y1 = x2, and for each pair (a, b) inside of the operator
L, a = b. Here a and x2 are elements in N .

By taking into account (8) and (15), we have that the only non-zero monomials in fx1 with the evaluation
x1 = d and xi+1 = yi = ei, for all 1 ≤ i ≤ n− k, are

(d, en−k, en−k)L(en−k−1, en−k−1) · · ·L(e1, e1)
and

(en−k, en−k, d)L(en−k−1, en−k−1) · · ·L(e1, e1).
Thus

fx1 = 2n−k−1{(d, en−k, en−k)L(en−k−1, en−k−1) · · ·L(e1, e1)−(en−k, en−k, d)L(en−k−1, en−k−1) · · ·L(e1, e1)} = 2n−kd ̸= 0,

and we are done. □

The connection between polynomial identities of Bm and double standard tableaux is based on [27, Section
5] as follows. Let V be the “generic” vector space with a basis consisting of the vectors xi = (xi1, xi2, . . . , xin).
Define an inner product by xi ◦xj =

∑
k xikxj1. In [27], Procesi and De Concini associate the double tableau

(10) to the polynomial fT given by

fT = f(T ) = fT (1)fT (2) · · · fT (r)

where

(16) fT (i) =
∑

σ∈Smi

(−1)σ(xpi1
◦ xqiσ(1)

) · · · (xpimi
◦ xqiσ(mi)

)

for T (i) = (pi1 . . . pimi
| qi1 . . . qimi

). Moreover, the authors proved that the K-algebra A of invariants of the
orthogonal group is generated by the products xi ◦ xj , i.e., A = K[xi ◦ xj ]. More precisely, the following
theorem holds.

Theorem 2.16. [27, Theorem 5.1] The polynomials {fT }, where T runs over all double standard tableaux
of positive integers such that m1 ≤ m, form a basis of A over K.

In order to simplify the exposition, we now give the definition of weak identity of Bn. Recall that we shall
extensively study such kind of identities in the next section.

Definition 2.17. An associative polynomial f = f(x1, . . . , xn) will be called a weak identity if, for all
v1, . . . , vn ∈ Vm, in an associative envelope algebra of Bn = K ⊕ Vm, one has f(v1, . . . , vn) = 0.

Remark 2.18. According to Theorem 2.16, if
∑

i αifTi , where {Ti}’s are double standard tableaux with
µ[T

(1)
i ] ≤ n, is a weak identity of the algebra Bm, with m < ∞, then αi = 0, for all i.

Lemma 2.19. [36, Lemma 1.10] For all r satisfying 1 ≤ r ≤ m, the following weak identity holds:

{(x, y, z)l[p1 . . . pk | q1 · · · qr]}+ = (x, y, z)+ ◦ f([p1 . . . pr | q1 · · · qr]).

From now until the end of the section, let charK = 0 and let I be the T -ideal generated by the polynomials
(1), (2) and (4). By Lemmas 2.7, 2.8 and 2.10, we have I ⊆ T (Jn,k). Furthermore, it is clear that the identity
(3) is Capelli-type of order n− k + 1. Thus, we have

(17) I = T (Bn−k),

modulo the T -ideal generated by Capn−k+1. Then from Lemma 2.2 it follows that I(n−k) = T (Bn−k)
(n−k).
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Proposition 2.20. Let K be a field of characteristic zero, we then have

T (Jn,k)
(n−k) = T (Bn)

(n−k).

Proof. As Bn−k is a subalgebra of Jn,k, we have that T (Jn,k) ⊆ T (Bn−k). Moreover, from (17) we have

T (Bn−k) = I ⊆ T (Jn,k) ⊆ T (Bn−k),

modulo the T -ideal generated by Capn−k+1. Hence, T (Bn−k) = T (Jn,k), modulo the T -ideal generated by
Capn−k+1. From Lemma 2.2, one gets T (Jn,k)

(n−k) = T (Bn−k)
(n−k) and we are done. □

The previous proposition implies that in order to determine T (Jn,k), it is enough to verify which Capelli-
type polynomial of order n− k + 1 which is an identity of Bn−k lies also in T (Jn,k).

Lemma 2.21. Let f be a Capelli-type polynomial of order n−k+1 such that f ∈ T (Bn−k). Then f modulo
I is a linear combination of polynomials of the type F [T ], where T runs over the set of 0-tableaux containing
the integers 1, 2, . . . , n− k + 1 in the first row.

Proof. Since f is an identity of Bn−k, by Lemma 2.13 we can suppose that modulo I, f is a consequence of
polynomial in (3) and so it can be written as a linear combination of polynomials of the form

(18) (x, y, z)L(a0, b0)L(a1, b1)L(a2, b2) · · · .

Suppose that f is alternating in x1, x2,. . . , xn−k+1. Since the operator L(a, b) is symmetric with respect
to a and b, by taking into account the identities (8)-(9) and passing from Jordan algebras to Lie triple
systems, we have that each polynomial in (18) can be written as

(x1, y, x2)L(x3, y3)L(x4, y4) · · ·L(xn−k+1, yn−k+1)L(a1, b1) · · ·L(al, bl) or(19)
(x1, y, z)L(x2, y2)L(x3, y3) · · ·L(xn−k+1, yn−k+1)L(a1, b1) · · ·L(al, bl) or(20)
(x, y, z)L(x1, y1)L(x2, y2)L(x3, y3) · · ·L(xn−k+1, yn−k+1)L(a1, b1) · · ·L(al, bl).(21)

First we consider any non-zero polynomial of f of the type (19) with non-zero coefficient β1 ∈ K. Since
every permutation can be written as a product of transpositions, an easy induction argument shows that for
any permutation σ ∈ Sm,

(xσ(1), y, xσ(2))L(xσ(3), y3)L(xσ(4), y4) · · ·L(xσ(n−k+1), yn−k+1)L(a1, b1) · · ·L(al, bl)

appears in f with coefficient (−1)σβ1. It follows that there exists a double standard tableau T having
{1, 2, . . . , n− k + 1} on its first row, such that F [T ] appears in the linear combination of f.

We consider now a non-zero polynomial of f of the form in (20) with non-zero coefficient β2 ∈ K. As
before, we have that for all σ ∈ Sm,

(xσ(1), y, z)L(xσ(2), y2)L(xσ(3), y3) · · ·L(xσ(n−k+1), yn−k+1)L(a1, b1) · · ·L(al, bl)

appears in f with coefficient (−1)σβ2. Thus there exists a double standard 0-tableau T that corresponds to

(xσ(1), y, z)L(xσ(2), y2)L(xσ(3), y3) · · ·L(xσ(n−k+1), yn−k+1).

In this case as well, we have successfully established that {1, 2, . . . , n + 1} lies in the first row of a double
standard tableau T and we are done.

Finally, we consider in f a non-zero polynomial of the form (21) with non-zero coefficient β3 ∈ K. This
implies that for all σ ∈ Sm,

(x, y, z)L(xσ(1), y1)L(xσ(2), y2)L(xσ(3), y3) · · ·L(xσ(n−k+1), yn−k+1)L(a1, b1) · · ·L(al, bl)

appears in f with coefficient (−1)σβ3, and, again, the result follows. □

The next result characterizes the Capelli-type identities of Bn−k, which are not in T (Jn,k).

Proposition 2.22. Let f be a multilinear Capelli-type polynomial of order n+1 which is an identity of Bn.
If, modulo I, f is a linear combination of polynomials F [T ], where T ’s are double standard 0-tableaux, such
that µ[T (1)] = n− k + 1 and µ[T (2)] < n− k + 1 (if it exists), then f /∈ T (Jn,k).
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Proof. We have that f , modulo I, is written as linear combination of polynomials of the form

F [T ] = F [T (1)]l[T (2)] · · · l[T (h[T ])],

where T is an arbitrary double standard 0-tableau with µ[T (1)] = n− k + 1.
If h[T ] = 1, then the result follows from the previous lemma together with Lemma 2.15. Thus let us

consider h[T ] > 1 and write

T =


T (1)

T (2)

...
T (s)

 .

As f is a polynomial of Capelli-type of order n − k + 1, by the previous lemma we get that the set
{1, 2, . . . , n−k + 1} lies in the same row. Moreover, since each 0-tableau T is standard, Proposition 2.14
implies that the first row is (0 r1 . . . rn | 1 . . . n(n+ 1)). Hence we can write

f =
∑

αiF [Ti],

where αi ∈ K and for all i the first row of Ti is of the form T ′ = (0 r1 . . . rn−k | 1 . . . (n−k)(n− k + 1)), for
some fixed integers r1, . . . , rn−k. Therefore,

f = F [T ′]
(∑

αil[T
′
i ]
)
,

where

T ′
i =


T

(2)
i
...

T
(s−1)
i

T
(s)
i

 .

Suppose that f is an identity for Jn,k. By Lemma 2.19, together with the fact that F [T ′] is not identity for
Jn,k, we have that

∑
αif(Ti) is a weak identity for Bn with µ[T

(2)
i ] ≤ n− k. Thus by Remark 2.18 we get

αi = 0, for all i and so f = 0, which is a contradiction since f is non-trivial. □

Corollary 2.23. Every multilinear Capelli-type identity of order n − k + 1 of Bn−k, modulo I, which lies
in T (Jn,k) is a consequence of

(22) hn−k =
∑

σ∈Sn−k+2

(−1)σ(xσ(1), y1, xσ(2), . . . , yn, xσ(n−k+1), yn−k+1, xσ(n−k+2)).

Proof. Due to Proposition 2.22, we have that every Capelli-type polynomial of order n + 1 which is an
identity for Jn,k can be expressed as a linear combination, modulo I, of polynomials of the form F [T ], where
T ’s are double standard 0-tableaux with either µ[T (1)] > n+ 1 or µ[T (1)] = µ[T (2)] = n+ 1.

If µ[T (1)] > n+1 then by (13), F [T (1)] is a consequence of hn. If µ[T (1)] = µ[T (2)] = n+1, then F [T (2)] is
a consequence of (4) and hence F [T (2)] (and consequently F [T ]) lies in I. Therefore, the result follows. □

We are now in a position to prove the main result of this section. Such theorem is a consequence of
Lemmas 2.7, 2.8, 2.10 and Corollary 2.23, together with Theorem 2.4.

Theorem 2.24. Over a field of characteristic zero, the polynomials

([x, y]2, z, t),(23) ∑
σ∈S3

(−1)σ(xσ(1), (xσ(2), x, xσ(3)), x),(24)

∑
σ∈Sn−k+2

(−1)σ(xσ(1), y1, xσ(2), . . . , yn−k, xσ(n−k+1), yn−k+1, xσ(n−k+2)),(25)

∑
σ∈Sn−k+1

(−1)σ(xσ(1), y1, xσ(2), . . . , yn−k−1, xσ(n−k))(yn−k, xσ(n−k+1), yn−k+1),(26)

form a basis of the T -ideal of polynomial identities for the Jordan algebra Jn,k, with k ≥ 1 and 1 < n < ∞.
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Proof. We denote by Capkn−k+1 the set of all Capelli-type polynomials of order n− k+ 1 that are identities
for Jn,k and by I the T -ideal generated by the poylnomials (23), (24) and (26). By Lemma 2.2, we have
I = T (Jn,k), modulo Capn−k+1. As in the previous result, we will denote the identity (25) by hn−k.
Assuming Q = ⟨I, hn−k⟩T , it is clear that Q ⊆ T (Jn,k).

Conversely, let f ∈ T (Jn,k), then we get f = g + h, where g ∈ I and h ∈ Capn−k+1. Since h = f − g ∈
T (Jn,k), it follows that h ∈ Capkn−k+1. Moreover, by Corollary 2.23 any Capelli-type polynomial p of order
n− k + 1, which is an identity for Jn,k is a consequence of hn−k modulo I, i.e., p ∈ Q. In particular h ∈ Q
thus f ∈ Q and we are done. □

We will conclude this section by establishing the Specht property for the Jordan algebra Jn,k, with k ≥ 1
and n > 1. To this end, we need the following definition.

Definition 2.25. Let A be an algebra (not necessarily associative). We say that T (A) satisfies the Specht
property if any T -ideal I such that I ⊃ T (A), including T (A), has a finite basis as a T -ideal.

In other words, I has the Specht property, if I is finitely generated as a T -ideal. Moreover, we say that a
variety V has the Specht property if the corresponding T -ideal satisfies the Specht property.

As previously highlighted in the Introduction, the Specht property was extensively investagated when
considering the variety generated by Bn. Iltyakov [12] showed that the variety of unitary algebras generated
by Bn satisfies the Specht property. Vasilovskii [36] described a finite generating set of the identities of the
Jordan algebra B of a non-degenerate symmetric bilinear form on a vector space of infinite dimension, over
any infinite field of characteristic different from 2. Combining the main results of the papers [20, 36] one
deduces the Specht property for B (that is B∞). These positive results hold in characteristic 0. Recall that
Lemmas 2.7 and 2.8 implies T (B∞) ⊆ T (Jn,k), for all n > 1 and k > 0.

Due to these comments, we have established the following result.

Theorem 2.26. Over a field of characteristic zero, the T -ideal of identities of Jn,k satisfies the Specht
property.

3. Graded polynomial identities

Let Z2 be the cyclic group of order 2. The main goal of this section is to describe the Z2-graded identities
of the Jordan algebras Jn,k equipped with the so-called scalar grading. Along the way we will also compute
the weak identities of these algebras.

Let G be an abelian group with identity element ϵ and let A be an algebra (not necessarily associative).
A grading by the group G on A is a vector space decomposition A = ⊕g∈GA

(g) such that A(g)A(h) ⊆ A(gh)

for every g, h in G. In this case we say that A is G-graded. The subspaces A(g) are called the homogeneous
components of A. A non-zero element a ∈ A is homogeneous of degree g if a ∈ A(g) and we denote it by
∥a∥G = g (or simply ∥a∥ = g when the group G is clear from the context). A vector subspace (subalgebra,
ideal) B of A is said to be graded if B = ⊕g∈GA

(g) ∩ B. Moreover, if A and B are G-graded algebras, an
algebra homomorphism φ : A → B is a homomorphism of graded algebras if φ(A(g)) ⊆ B(g), for all g ∈ G.

In this section, we shall need only some facts about Z2-gradings and Z2-graded identities on Jordan
algebras. We denote by J(Y ∪Z) the free Z2-graded Jordan algebra, over K, requiring that the variables in
Y = {y1, y2, . . .} are homogeneous of degree zero, and those in Z = {z1, z2, . . .} are homogeneous of degree
one. This algebra has a natural Z2-grading, where the homogeneous component (J(Y ∪ Z))(0) is the span
of all monomials xi1 · · ·xim such that ∥xi1∥ + · · · + ∥xim∥ = 0, together with the empty word 1; otherwise
it has homogeneous degree 1, and this spans the homogenenous component (J(Y ∪ Z))(1). Notice that
J(Y ∪Z) = (J(Y ∪Z))(0)⊕J(Y ∪Z)(1) is a grading on J(Y ∪Z). Actually, we have that J(Y ∪Z) is free in
the class of every Z2-graded Jordan algebra freely generated by Y ∪Z over K and the elements in J(Y ∪Z)
are called 2-polynomials.

Let J be a Jordan algebra grading by group Z2, J = J (0) ⊕ J (1), a 2-polynomial f(y1, . . . , ym, z1, . . . , zn)
is a 2-identity for J if f(a1, . . . , am, b1, . . . , bn) = 0 for all a1, . . . , am ∈ J (0) and for all b1, . . . , bn ∈ J (1).

Clearly the set of all 2-identities of J , denoted by T2(J), is an ideal that is closed under the graded
endomorphisms of J(Y ∪Z). The graded ideals of J(Y ∪Z) with this property are called T2-ideal. Moreover,
as was said in the ordinary case, in characteristic 0, the T2-ideal T2(J) is generated by its multilinear 2-
polynomials and when the field is infinite by the multihomogenenous 2-polynomials it contains. Let J1 and
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J2 be two Z2-graded Jordan algebras, we say that J1 and J2 are PI-equivalent as Z2-graded algebras if
T2(J1) = T2(J2).

We are interested in the 2-polynomial identities of Jn,k = K ⊕ V equipped with the scalar grading, i.e.,
Jn,k = J (0) ⊕ J (1) where J (0) = K and J (1) = V. Remark that the name “scalar” is justified by the fact
that the homogeneous component J (0) is actually the field of scalars K. The analogous problem for Bn was
solved by Diniz and Koshlukov. More precisely, in [22] the following theorem was proved.

Theorem 3.1. [22, Corollary 21] Let K be an infinite field of characteristic different from 2. Then:
(i) The T2-ideal of graded identities for the Jordan algebra B∞ equipped with the scalar grading is

generated by the 2-polynomial

(27) (y, u1, u2),

where u1, u2 ∈ Y ∪ Z.
(ii) The T2-ideal of graded identities for the Jordan algebra Bm, equipped with the scalar grading and

1 < m < ∞, is generated by the polynomials in (27) and

(28) gm =
∑

σ∈Sm+1

(−1)σzσ(1)(zm+2zσ(2)) · · · (z2m+1zσ(m+1)).

3.1. Computing the weak identities and 2-identities. From now on, let J = Jn,k = J (0) ⊕ J (1), where
J (0) = K and J (0) = V.

It is easy to verify that the 2-polynomial (27) is a identity for Jk,n, since the even elements are scalars.
Notice that (z1z2, u1, u2) is a consequence of (27).

In order to reach our goal, an important tool that we will use is the so-called weak identities. As we did
in the previous section in the particular case of Bm, we recall the definition of weak identity for convenience
of the reader. We also refer to [12] for further details.

Let J be a Jordan algebra and V a subspace of J . A polynomial f(x1, . . . , xn) ∈ J(X) is a weak identity
for the pair (J, V ) if f(v1, . . . , vn) = 0 for all vi ∈ V . We denote by T (J, V ) the set formed by all weak
identities for the pair (J, V ). It is clear that T (J, V ) is an ideal of J(X). Pay attention that according to
V , it is natural to assume that one can substitute the variables in a weak identity by linear combinations
of elements of X, i.e., if f(x1, . . . , xn) ∈ T (J, V ) then f(a1, . . . , an) ∈ T (J, V ) for all a1, . . . , an ∈ span{X}.
We do not treat the most general case here but instead we refer the reader to [7, 21] for more information.

Denote by I the T2-ideal of graded identities generated by the polynomial (27). Now consider a multi-
homogeneous 2-polynomial f = f(y1, . . . , yp, z1, . . . , zq) of J(Y ∪ Z). It is easy verify that modulo I, f is
written as yα1

1 · · · yαp
p g(z1, . . . , zq), for some polynomial g that involves only the odd variables. Therefore f

is a graded identity for Jk,n if and only if g is. Thus f is a graded identity for Jk,n if and only if g is a weak
identity for the pair (Jn,k, V ). This motivates our next result.

Proposition 3.2. Let Jn,k = K ⊕ V = Bn−k ⊕Dk be the decomposition of Jn,k into direct sum of the non-
degenerate part Bn−k = K ⊕V ′ of the algebra plus the degenerate part with k ≥ 1. A multilinear polynomial
f ∈ J(X) is a weak identity for the pair (Jn,k, V ) if and only if f is a weak identity for the pair (Bnk, V

′)
and

(29) fxi
= f(n1, . . . , ni−1,mi, ni+1, . . . , ndeg f ) ≡ 0,

for all 1 ≤ i ≤ deg f and for all nj ∈ V ′, j ̸= i, mi ∈ Dk.

Proof. If f ∈ T (Jn,k, V ) then f ∈ T (Bn−k, V
′) since V ′ ⊆ V. Moreover, condition (29) trivially holds and

we are done.
Conversely, let us suppose that the multilinear polynomial f = f(x1, . . . , xr) ∈ T (Bn−k, V

′) satisfies
condition (29). Since f is multilinear, one can to make the evaluation of every variable xi by elements of
B. As in Proposition 2.5, if f is evaluated in more than one element in D then it is automatically zero.
Therefore, it is sufficient to consider evaluations by elements of B where at most one element lies in D.
Hence, the result follows since that f is a weak identity for the pair (Bn−k, V

′) and satisfies the condition
(29). □
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The last proposition implies that if g is a multilinear 2-polynomial on the odd variables only, then in order
to verify that g lies in T2(Jn,k), we have only to check that g is a weak identity for the pair (Bn−k, V

′) and

g(b1, . . . , bi−1, di, bi+1, . . . , bdegg) ≡ 0,

for all 1 ≤ i ≤ deg g, bj ∈ V ′, j ̸= i, and di ∈ Dk.
The next theorems follow as a consequence of Theorem 3.1 and Proposition 3.2.

Theorem 3.3. Let K be an infinite field of characteristic different from 2. The weak Jordan identities for
the pair (J∞,k, V ) are consequences of the polynomial (x1x2, x3, x4).

Theorem 3.4. Let k be a positive integer. Over an infinite field of characteristic different from 2, the
Jordan algebras J∞,k and B∞, both equipped with their respective scalar grading, are PI-equivalent as Z2-
graded algebras. In particular, the identity (y, u1, u2) forms a basis of the T2-ideal of 2-polynomial identities
for the Jordan algebra J∞,k.

Recall that if two graded algebras share the same graded identities, then they share the same ordinary
identities. Thus, we can also generalize the Theorem 2.9 in the following sense.

Corollary 3.5. Over an infinite field of characteristic different from 2, the Jordan algebras J∞,k, for all k,
and B∞ are PI-equivalent.

Now, as it was done in the previous section, we focus our attention to the case n finite.

Remark 3.6. It is easily seen that the polynomial (28), for m = n−k, does not lie in T2(Jn,k). In fact, if we
consider the evaluation φ such that φ(z1) = d ∈ Dk and φ(zj) = φ(zn−k+j) = aj−1, for all 2 ≤ j ≤ n−k+1,
where a1, . . . , an−k are distinct elements of N , then

φ(gn) = da21 · · · a2n−k = d ̸= 0.

As we did for the ordinary identities, we will need ideas and methods from the invariants of the orthogonal
group given in Remark 2.18. Notice that the description of these invariants is independent of characteristic
of the ground field.

Definition 3.7. Let T = (p1 . . . pr | q1 . . . qr) be a double tableau consisting of one row. Then we associate
to T the 2-polynomial

fT =
∑
σ∈Sr

(−1)σ(zp1
zqσ(1)

)(zp2
zqσ(2)

) · · · (zpr
zqσ(r)

);

Moreover, if T is 0-tableau, then fT is∑
σ∈Sr

(−1)σzqσ(1)
(zp2

zqσ(2)
) · · · (zpr

zqσ(r)
).

Finally, let T be any double tableau and let T (1), T (2), . . . , T (s) be the rows of T . Then we set fT =
fT (1)fT (2) · · · fT (s) .

Define M as the subalgebra of L = J(Y ∪ Z)/I generated by the odd variables. Clearly the algebra
M = M (0) ⊕ M (1) has a grading by the group Z2, where the subalgebra M (0) is spanned by all products
(zi1zj1) · · · (zirzjr ) while the vector space M (1) is spanned by all zi0(zi1zj1) · · · (zirzjr ) (see [22, Lemma 17]
for more details).

Proposition 3.8. [22, Proposition 19] The vector space M (0) has a basis consisting of all 2-polynomials
associated to doubly standard tableaux. Also, M (1) has a basis consisting of all 2-polynomials associated to
doubly standard 0-tableaux.

Here and in what follows, we will use a graded (weak) version of the results that we obtained in the
ordinary case concerning Capelli-type polynomials and their connection to weak polynomial identities.

Proposition 3.9. Let K be a field of characteristic zero, we then have

T (Jn,k, V ) = T (Bn−k, V
′),

modulo the T -ideal generated by Capelli-type polynomials of order n− k + 1.
14



Proof. By Remark 2.18, every polynomial of T (Bn−k, V
′) follows from a polynomial fT where T is a doubly

standard tableau with µ[T (1)] > n. The assertion now follows immediately since fT is a Capelli-type
polynomial of order n−k + 1, the polynomial (x1x2, x3, x4) is a weak identity for the pair (Jn,k, V ) and [22,
Theorem 20] holds. □

From now on, Cap
(w,k)
n−k+1 (Cap

(w)
n−k+1, respectively) denotes the ideal generated by the weak Capelli-type

polinomials of order n−k+1 for Jn,k (Bn−k, respectively). It is clear that Cap
(w,k)
n−k+1 ⊆ Cap

(w)
n−k+1. The next

result will be important in order to describe the weak identities of the pair (Jn,k, V ) and its proof follows
step-by-step the one of Proposition 2.22.

Proposition 3.10. Let f be a multilinear weak identity for the pair (Bn−k, V
′) and write f as a linear

combination of polynomials {fT }, where {T}’s are doubly standard tableaux. If, for all T , T (1) is a double
0-tableau with µ[(T (1))] = n− k + 1 and µ[(T (2))] < n− k + 1 (if it exists), then f /∈ T (Jn,k, V ).

Proof. The previous proposition implies that it suffices to consider that f is of order n−k+1. By Proposition
3.8, f can be written as linear combination of polynomials of the form

fT = fT (1)fT (2) · · · fT (h[T ]) ,

where T is a doubly standard 0-tableau with µ[T (1)] = n − k + 1. If h[T ] = 1, then the result follows by
Remark 3.6.

Therefore, we may assume that h[T ] > 1, for all T and we write

T =


T (1)

T (2)

...
T (s)

 .

Recall here that T (1) is a double 0-tableau.
Since f is Capelli-type polynomial of order n− k+1, then we must have that the set {1, 2, . . . , n− k+1}

lies in the same row. Thus, for each T , we have T (1) = (0 i1 . . . in−k | 1 . . . (n− k) (n− k+1)). Hence f can
be expressed as a linear combination of elements of the form

f = fT ′ ·
(∑

αifT ′
i

)
,

where T ′ = T (1) and

T ′
i =


T

(2)
i
...

T
(s)
i

 ,

with µ([T
(2)
i ]) ≤ n − k, for all i. Assume that f ∈ T (Jn,k, V ), then by Lemma 2.19, together with the fact

that fT ′ is not a weak identity for (Jn,k, V ), we have that
∑

αifT ′
i

is a weak identity for (Bn−k, V
′) with

µ(T
(2)
i ) ≤ n− k. Remark 2.18 implies that αi = 0 for all i and so f = 0, a contradiction. Therefore, we have

the result. □

By taking into account the previous results and Proposition 3.2, if charK = 0, the description of a basis
for T2(Jn,k) depends on the description of the weak Capelli-type polynomials of order n−k+1 of (Bn−k, V

′)
that lie also in T (Jn,k, V ).

Theorem 3.11. Over a field of characteristic zero, any weak identity of the pair (Jn,k, V ) follows from the
weak identities

(x1x2, x3, x4)

ln−k =
∑

σ∈Sn−k+1

(−1)σ(y1xσ(1))(y2xσ(2)) · · · (yn−k+1xσ(n−k+1)).
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Proof. Proposition 3.10 implies that every multilinear weak identity for Jn,k is a linear combination of
polynomials fT , where T ’s are doubly standard tableaux.

Let T be such a tableau. Then, by Remark 3.6 and (16), fT (1) is a consequence of ln−k. Hence, we can
suppose that every tableau T is a 0-tableau such that µ[T (1)] > n−k+1 or µ[T (1)] = µ[T (2)] = n−k+1 (if T (2)

exists). If µ[T (1)] > n−k+1, then fT (1) is again a consequence of ln−k. Finally, if µ[T (1)] = µ[T (2)] = n−k+1,
then fT (2) is consequence of ln−k. Therefore, in all the cases we have fT as a consequence of ln−k and the
result follows. □

We are now ready to prove the main theorem of this section.

Theorem 3.12. Let K be a field of characteristic zero. The T2-ideal of the 2-polynomial identities of the
Jordan algebra Jn,k with the scalar grading, where n is a positive integer and k > 0, is generated by the
2-polynomials from

(y, u1, u2)∑
σ∈Sn−k+1

(−1)σ(zn−k+2zσ(1))(zn−k+3zσ(2)) · · · (z2(n−k)+3zσ(n−k+1)),

where u1, u2 ∈ Y ∪ Z.

Proof. Let f ∈ T2(Jk,n). The identity (y, u1, u2) implies that f can be considered as a 2-polynomial in the
odd variables only. In this case, f is a weak identity for the pair (Jn,k, V ) and the result immediately follows
from the previous theorem. □

The corresponding Specht property for associative algebras graded by a finite group G was proved by I.
Sviridova [34] (for abelian groups) and by E. Aljadeff and A. Kanel-Belov [1], whereas in case of Jordan
algebras we have experimental results, such as in [5, 30], all of them in characteristic 0. In [30], the authors
proved the Specht property for Bn with the scalar grading, where n is a positive integer. The case B∞ is
open so far. Moreover, it is easy to see that T2(Bn−k+1) ⊆ T2(Jn,k).

In addition to the above comments, one can establish the next result.

Theorem 3.13. Over a field of characteristic zero, the T2-ideal of the 2-polynomial identities of the Jordan
algebra Jn,k with the scalar grading, where n is a positive integer and k > 0, satisfies the Specht property.

4. Trace polynomial identities

This section is devoted to the study of the trace polynomial identities of Jn,k. To this end, let us now
introduce some basic tools and definitions.

Let A be an algebra (not necessarily associative) over K, and let Z = Z(A) be its associative and
commutative center. A K-linear map τ : A → Z such that τ(τ(a)b) = τ(a)τ(b) and τ([a, b]) = τ((a, b, c)) = 0,
for all elements a, b and c in A, is called a trace on the algebra A. The pair (A, τ) will be called a trace
algebra (or algebra with trace). The pure trace algebra for (A, τ) is defined as the image of A under τ ,
denoted by τ(A). It follows immediately that τ(A) is a subalgebra of Z. An ideal (subalgebra, respectively)
in a trace algebra (A, τ) is called a trace ideal ( trace subalgebra, respectively) of (A, τ) if it is an ideal
(subalgebra, respectively) that is closed under the trace map. Let (A, τ) and (B, θ) be a trace algebras, a
map φ : (A, τ) → (B, θ) is a homomorphism of trace algebras if it is a homomorphism of algebras, φ(1A) = 1B ,
and φ(τ(a)) = θ(φ(a)) holds for every a in A.

In particular, the above definition implies that the pair (Bm, tr) is a Jordan algebra with trace, where
tr(α + v) = 2α, with α ∈ K and v ∈ V . Additionally, (Jn,k, tr) is also a Jordan algebra with trace. It is
important to mention that we do not require that the map trace to be non-degenerate. Furthermore, Dk is
a trace ideal, while Bn−k is a trace subalgebra of (Jn,k, tr).

Let V be a variety of unitary Jordan K-algebras. We recall the definition of the free trace algebra in V, see
[37] for more details. Assume A ∈ V is a Jordan algebra with trace Tr , and let X ⊆ A. The algebra (A,Tr )
is V-free with a set of free generators X if for all Jordan algebra with trace (B, ρ) in V, every map X → B
can be extended in unique way to a homomorphism of trace algebras (A,Tr ) → (B, ρ). The existence of
free trace algebras in a variety follows from general arguments, see for example [39, Theorem 2]. The same
arguments yield that two free trace algebras in V are isomorphic if and only if their free generating sets have
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the same cardinality. We shall denote the free Jordan trace in V as JTR(X). Recall that the trace algebras
in V form a variety (one includes the trace in the signature of the variety).

Unless otherwise stated we shall assume that X is an infinite countable set. It is immediate that JTR(X)
contains the ordinary free algebra J(X) in the variety V.

The subalgebra G(X) generated in JTR(X) by the set

{g(x1, . . . , xn),Tr (g(x1, . . . , xn)) | g(x1, . . . , xn) ∈ J(X)}

is the algebra of generalized polynomials in the variety V. Its elements are called trace polynomials. It is
clear that G(X) is spanned by the generalized monomials of the form

(30) â0Tr (a1) · · ·Tr (at),

where t ≥ 1 and a0, a1, . . . , at are monomials in J(X). Here â0 means that a0 can be eventually empty.
The trace monomial from (30) has degree deg a0 +deg a1 + · · ·+deg at and the degree of a trace polynomial
is defined as the greatest degree of a monomial that appears with non-zero coefficient in it.

Let (J, τ) be a trace algebra in the variety of all Jordan algebras with trace. A trace polynomial
f(x1, . . . , xn) ∈ G(X) is a trace identity of (J, τ) if, substituting Tr by τ , we have f(a1, . . . , an) = 0,
for all a1, . . . , an ∈ J . We denote by TTr(J, τ) (or simply TTr(J)) the set of all trace identities for trace
algebra (J, τ). An ideal I of the algebra G(X) is called TTr -ideal (or T -ideal with trace) if, for all trace poly-
nomial f(x1, . . . , xn) ∈ I and for all trace polynomials g1, . . . , gn in J(X), the trace polynomial f(g1, . . . , gn)
is contained in I. For each Jordan algebra with trace (J, τ), the ideal of its trace identities is a TTr -ideal, in
the sense that is an ideal closed under the endomorphisms of the free algebra with trace.

The trace identity f ≡ 0 follows from the trace identities gi ≡ 0, i ∈ Λ, if f lies in the least TTr -ideal
containing all gi, i ∈ Λ. The latter ideal will be denoted as ⟨gi | i ∈ Λ⟩Tr. As in the graded and ordinary case,
in characteristic 0, the TTr -ideal TTr (J, τ) is generated, as a TTr-ideal, by its multilinear trace polynomials
and when the field is infinite by this multihomogenenous ones.

Vasilovsky [37] proved that all trace identities of Bm follow from the identities

f2(x) = x2 − Tr (x)x+ (1/2)(Tr(x)2 − Tr (x2)),(31)

Lm+1 =
∑

σ∈Sm+1

(−1)σ(xσ(m+1) − (1/2)Tr (xσ(m+1)))

m∏
k=1

H(xσ(k), yk).(32)

Here H(x, y) = Tr (xy) − (1/2)Tr (x)Tr (y) and Lm+1 = L(x1, . . . , xm+1, y1, . . . , ym), m = 2, 3, . . . . More
precisely, the author proved the following results.

Theorem 4.1. Let K be an infinite field of characteristic different from 2.
(1) [37, Theorem 1] All trace identities of the Jordan algebra Bm, for any positive integer m > 1, follow

from the polynomials (31) and (32).
(2) [37, Theorem 2] All trace identities of the Jordan algebra B∞ follow from the polynomial (31).

Remark 4.2. It is easily seen that

(x− (1/2)Tr(x))(y − (1/2)Tr(y)) = (1/2)H(x, y),

modulo the T -ideal with trace generated by (31).

4.1. Computing the T -ideal of identities with trace. We start by the following proposition that relates
the trace identities of Bm with the ones of Jn,k.

Proposition 4.3. Let Jn,k = Bn−k ⊕Dk be the decomposition of Jn,k into direct sum of the non-degenerate
part of the algebra plus the degenerate part with k > 1. A multilinear trace polynomial f ∈ G(X) is a trace
identity of (Jn,k, tr) if and only if f ∈ TTr (Bn−k, tr) and

(33) fxi = f(n1, . . . , ni−1,mi, ni+1, . . . , ndegf ) ≡ 0,

for all 1 ≤ i ≤ deg f and for all nj ∈ Bn−k, j ̸= i, mi ∈ Dk.

Proof. If f ∈ TTr(Jn,k), then f ∈ TTr(Bn−k) since Bn−k is a trace subalgebra of Jn,k. Moreover, condition
(33) trivially holds and we are done.

17



Conversely, let us suppose that the multilinear trace polynomial f = f(x1, . . . , xr) ∈ TTr(Bn−k) satisfies
condition (33). Since f is multilinear, one can evaluate every variable xi by elements from B∪{1}. Moreover,
as Dk is a trace ideal of (Jn,k, tr) and D2

k = 0, any monomial in f that contains some element of Dk inside
of a trace or has more than one element in Dk outside is automatically zero. Hence we are done, since
f ∈ TTr(Bn−k) and the condition (33) holds. □

Let I be the T -ideal with trace generated by the trace polynomial (31). In [37], it was proved that every
trace polynomial can be represented modulo ⟨f2⟩Tr in the following way:∑

α0̂,1,...,sâ0Tr (a1) · · ·Tr (as),

where s ≥ 0 and a0, a1, . . . , as are monomials in J(X) such that deg(a0) ≤ 1 and deg(ai) ≤ 2, 1 ≤ i ≤ s.
The main goal of this section is to describe a basis for all trace identities of (Jn,k, tr).

Lemma 4.4. If K is an infinite field of characteristic different from two, then the polynomial (31) is a trace
identity of the Jordan algebra (Jn,k, tr), for any k and n > 1.

Proof. The complete linearization of (31) is

(34) h = 2xy − (Tr(x)y + Tr(y)x) + (Tr(xy)− Tr(x)Tr(y)).

Since h is multilinear, all variables of h can be evaluated on elements from B ∪ {1}. Thus, it is enough to
verify that the polynomial h satisfies condition (33) of Proposition 4.3. Notice that h is symmetric with
respect to the variables x and y, hence we compute hx only.

Let φ be a substitution such that φ(x) = d ∈ D and φ(y) = 1, then

φ(h) = 2d− (tr(d)1 + tr(1)d) + (tr(d · 1)− tr(d)tr(1)) = 2d− 2d = 0.

Now let φ′ be a substitution such that φ′(x) = d and φ′(y) = e ∈ N \ {1}, then we get easily that φ(h) = 0.
Therefore condition (33) holds and the proof this lemma is complete. □

The following result is a immediate consequence of the above lemma together with Theorem 4.1.

Theorem 4.5. Over an infinite field of characteristic different from 2, all trace identities of the Jordan
algebra J∞,k, for any integer k > 0, follow from the polynomial

f2(x) = x2 − Tr (x)x+ (1/2)(Tr(x)2 − Tr (x2)).

We now restrict our attention to the case n finite. Consider the evaluation φ such that φ(xn−k+1) = d
and φ(xj) = φ(yj) = ej for all 1 ≤ j ≤ n, where e1, e2, . . . , en−k are distinct elements of N , then the only
monomial in Ln−k+1 which is non-zero under this evaluation is xn−k+1Tr(x1y1) · · ·Tr(xn−kyn−k) and its
evaluation is 2n−kd. We conclude that the polynomial (32), where m = n−k, is not a trace identity for Jn,k.

Also in the case of trace polynomials, we can generalize the definition of Capelli-type polynomial of order l.
We say that a trace polynomial f ∈ G(X) is Capelli-type of order l if f is linear and alternating in l variables.
It is clear that f vanishes whenever the set of alternating variables is substituted for linearly dependent
elements. Hence if J is a Jordan algebra with trace of dimension r then all Capelli-type polynomials with
trace of order m where m ≥ r + 1 are trace identities of J.

Remark 4.6. As in Lemma 2.2, one can deduce the following fact. Two TTr-ideals I and Q are equal modulo
the Capelli-type polynomials of order r+1 in G(X) if and only if I(m) = Q(m), where I(m) = I∩G(x1, . . . , xm)
and Q(m) = Q ∩G(x1, . . . , xm). See for example [8, Remark 5.4].

Due to Remark 4.6 and Proposition 4.3, over a field of characteristic zero, a complete description of a basis
for TTr(Jn,k, tr) as TTr-ideal depends on the Capelli-type trace polynomials of order n−k+1 in TTr(Bn−k, tr)
which are also in TTr(Jn,k, tr). Thus, from now on K denotes a field of characteristic zero.

Lemma 4.7. Every Capelli-type polynomial of order n − k + 1 which is a multilinear trace identity for
(Jn,k, tr) is a consequence of

Nn−k+1 =
∑

σ∈Sn−k+1

(−1)σ
n−k+1∏
i=1

H(xσ(i), yi).
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Proof. Clearly Nn−k+1 is a trace identity Capelli-type for (Jn,k, tr). Now let f be a multilinear Capelli-type
polynomial of order n − k + 1 in G(X) which is a trace identity for TTr(Jn,k, tr). Proposition 4.3 implies
that we may assume f ∈ TTr(Bn−k) satisfying condition (33).

If f has even degree, then by the proof of [37, Theorem 1], we have that f is a consequence of Nn−k+1.
Therefore, we will now focus on the case where f has odd degree, denoted as 2l + 1. Moreover, we can
suppose l > n, since Ln−k+1 is not an element of TTr(Jn,k, tr). By using again the proof of [37, Theorem 1],
we can write

f =
∑
i0,k,l

αk,l
i0
(xi0 − (1/2)Tr(xi0))

∏
r,l≥1

H(xr, xl).

Notice that if x0 is a new variable, then

g = (x0 − (1/2)Tr(x0))f ≡
∑
i0,k,l

αk,l
i0
H(x0, xi0)

∏
r,l≥1

H(xk, xl),

modulo I. In this case, the polynomial g is still a trace identity of (Jn,k, tr). Since this identity holds in
Bn−k, we have ∑

i0,r,l

αr,l
i0
(vr, vl) = 0,

where (vr, vl) = vr ◦vl is the inner product on V ′ defined before in Theorem 2.16. Recall also that by Remark
2.18, the algebra of invariants of the orthogonal group K[(vi, vj)] is generated by polynomials of the form

fT = fT (1)fT (2) · · · fT (r) ,

where T is a doubly standard tableau with rows T (1), . . . , T (r) and

fT (i) =
∑

σ∈Smi

(−1)σ(vpi1
, vqiσ(1)

) · · · (vpimi
, vqiσ(mi)

),

with T (i) = (pi1 . . . pimi
| qi1 . . . qimi

), for all 1 ≤ i ≤ r. Using the same arguments as in Proposition 3.10, if
T (1) is a double 0-tableau with µ[T (1)] = n+ 1 and µ[T (2)] < n− k+ 1 (if it exists), then g is zero in G(X).
Hence the polynomial g is a linear combination of polynomials of the form

(i) (x0 − (1/2)Tr(x0))Ln−k+1Nn−k+1

∏
H(zk, zj),

(ii) (x0 − (1/2)Tr(x0))(xi − (1/2)Tr(xi))Nn−k+1

∏
H(zr, zj),

since in a standard tableau the leftmost entry of the first row must correspond to x0. Furthermore, modulo
the trace identities of Bn−k, we have that f is a linear combination of trace polynomials of the form

(i) Ln−k+1Nn−k+1

∏
H(zr, zj);

(ii) (xi − (1/2)Tr(xi))Nn−k+1

∏
H(zr, zj),

since the form tr is non-degenerate on Bn−k. Then the result follows, since f is a polynomial in G(X). □

Now we have the ingredients to prove the main result of this section.

Theorem 4.8. Let K be a field of characteristic 0 and let n and k be positive integers, where 1 < n < ∞.
Every trace identity of the Jordan algebra (Jn,k, tr) follows from the polynomials

f2(x) = x2 − Tr (x)x+ (1/2)(Tr(x)2 − Tr (x2)),

Nn−k+1 =
∑

σ∈Sn−k+1

(−1)σ
n−k+1∏
i=1

H(xσ(i), yi).

Here H(x, y) = Tr (xy)− (1/2)Tr (x)Tr (y).

Proof. We denote by CapTr
n−k+1 the trace ideal of all Capelli-type trace polynomials of order n− k + 1 that

are trace identities for (Jn,k, tr) and by I the T -ideal with trace generated by the trace polynomial f2.
Theorem 4.1 implies I = TTr(Jn,k, tr), modulo CapTr

n−k+1.
Assuming that Q is the TTr-ideal generated by f2 and Nn−k+1, we have Q ⊆ TTr(Jn,k, tr). On the other

hand, as charK = 0, for any multilinear polynomial f ∈ TTr(Jn,k, tr), we get f = g + h, where g ∈ I and
h ∈ CapTr

n−k+1. Lemma 4.7 implies that any Capelli-type trace polynomial p of order n−k+ 1, which lies in
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TTr(Jk,n), is a consequence of Nn−k+1, modulo I, i.e., p ∈ Q. In particular, h ∈ Q, and so f ∈ Q. Thus, we
get the desired conclusion. □

We can also generalize the Specht problem to classes of trace algebras. In other words, the ideal of trace
identities of (A, τ) satisfies the Specht property if each T -ideal with trace containing TTr(A, τ) is finitely
generated, as a TTr-ideal.

Let us mention that the variety of associative algebras with trace generated by the n×n matrices as well
as the variety of the Jordan algebras with trace generated by Bn both have the Specht property. The former
result was deduced by Razmyslov [29], and Fidelis, Diniz, and Koshlukov established the latter in [8]. These
are the only known examples so far, although in [8] it was proved that under some additional restrictions
on the algebra A, each ascending chain of TTr-ideals I1 ⊆ I2 ⊆ I3 ⊆ . . . of the algebra G(X), containing
TTr(A), stabilizes. Finally, as in the graded case, it is easy to see that TTr(Bn−k+1) ⊆ TTr(Jn,k) holds, for
all n > 1 and k > 0.

Due to these comments we have just established the following result.

Theorem 4.9. Over a field of characteristic zero, the TTr-ideal TTr(Jn,k, tr) satisfies the Specht property,
for all positive integers n and k satisfying 1 ≤ n < ∞ and k > 0.

We conclude this paper by making some short consideration about the so-called embedding problem. To
better understand it, we have to make a brief comment on the theory of invariants.

Let (A, tr) be an algebra with trace, let Ak = A⊕· · ·⊕A, k times, be the direct sum of k copies of A and
let G ⊆ AutKA be an algebraic group acting diagonally on Ak. If one considers the algebra A of polynomial
functions Ak → A, then G acts also on A as follows. If f ∈ A, then

fg(a1, . . . , ak) = g · f(g−1 · a1, . . . , g−1 · ak),

for all g ∈ G and for all a1, . . . , ak ∈ A. Therefore, f = fg for all g ∈ G means that f is a G-equivariant
map.

Denote by Ra, respectively La, the operator of right, respectively left, multiplication on A by the element
a ∈ A and denote, as usual, by EndKA the K-algebra of all linear transformations on the vector space A.
Every element b = b(x1, . . . , xk) ∈ K(x1, . . . , xk) defines the following functions on Ak :

Rb, Lb : A
k → EndKA,

by means of Rb(a1, . . . , ak) = Rb(a1,...,ak) and Lb(a1, . . . , ak) = Lb(a1,...,ak). Finally, denote by K[Ak] the
algebra of polynomial functions Ak → K and let Trk be the subalgebra of K[Ak] generated by the set

{tr(Th1
· · ·Thn

) | T ∈ {R,L}, h1, . . . , hn ∈ K(X)} .

The description of the generators of the algebra of invariants

K[Ak]G = {f ∈ K[Ak] | fg = f for all g ∈ G}

is one of the main problems of the classical Invariant Theory. It is often referred to as the First Fundamental
Theorem of Invariant theory. We also recall for completeness that the Second Fundamental Theorem deals
with the description of the relations among the generators. If we consider G as the automorphism group of
A, it is clear that Trk ⊆ K[Ak]G. It is natural to ask whether Trk = K[Ak]G. Such equality is not valid in
general, although holds for many important cases. For instance, the equality holds for the algebra Mn(K)
of n × n matrices over K (see [26, 28]). Popov in [25, subsection 4.7] constructed a simple algebra A such
that Trk ⊊ K[Ak]G, a proper inclusion.

In [8], the authors consider A as being a central simple finite dimensional associative or Jordan algebra
over K. They take the generic trace Trd on A and denote by Tr′k the subalgebra of K[Ak] generated by
the elements Trd (v) = Trd ◦ v, where v ∈ K(y1, . . . , yk), the free algebra on the set of k free generators y1,
. . . , yk. Notice that Tr′k ⊆ K[Ak]G. In [8], Fidelis, Diniz and Koshlukov considered algebras that satisfy the
following condition:

(C1) Let G be an algebraic linear reductive non-trivial group. If G is the group of automorphisms of the
central simple finite dimensional algebra A then Tr′k = K[Ak]G.

In the same paper, the authors obtained the following theorem.
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Theorem 4.10. [8, Theorem 4.7] Let A be a central simple finite dimensional associative or Jordan algebra
that satisfies the conditions (C1). Assume that R is an algebra with trace belonging to the same variety of
algebras as A, and that satisfies all trace identities of A. Then there exists a commutative–associative algebra
C such that R can be embedded into A⊗K C as a K-algebra.

Here an algebra will be called commutative–associative if it is a commutative algebra in the variety of all
associative algebras over K.

A question that seems to be interesting is whether the latter result holds in the case of infinite dimension.
Moreover, an important tool was the construction of universal maps. More precisely, let A and R be algebras
in a same variety V such that A is a central simple power associative algebra. In [8], it was proved that if A
is of finite dimension, then there is an universal map

j : R → A⊗K S,

where S is a commutative–associative algebra, satisfying the following universal property: given a homomor-
phism ς : R → A⊗K F , for some commutative–associative algebra F , there exists an unique homomorphism
η : S → F making the diagram

R

j

��

ς // A⊗K F

A⊗K S

ηA

88 ,

commutes, where ηA is the map induced by η. The pair (S, j) is called A-universal map for R. This pair has
an important function: the entries of the elements j(r), for all r ∈ R, together with the element 1, generate
the algebra S. In particular, assuming the projection map πn−k : Jn,k → Bn−k ≃ (Jn,k/Dk), it is easy to
verify that the pair (K,πn) is Bn−k-universal map for Jn,k for all n > 1 (in variety of all Jordan algebra).
Such property is even obtained for n = ∞.

Our final goal, in this work, is to exhibit an example for which the embedding problem solved in Theorem
4.10 is not valid in general. Notice that Theorem 4.5 implies that the algebras J∞,k and B∞ are PI-equivalent
as trace algebras.

In order to simplify the notation, from now on let B = B∞.
Clearly Remark 2.18 also applies to B. Hence K[Bl]G can be expressible in terms of scalar products, i.e.,

it is generated by TrXi and Tr (XiXj), where each Xl denotes the projection given by (a1, a2, . . .) 7→ al on
the l-th coordinate. We conclude that B satisfies (C1).

Now we suppose that the trace algebra (B, tr) satisfies Theorem 4.10. By Theorem 4.5, there exists a
commutative–associative algebra Ck (which depends on the integer k > 1) such that J∞,k can be embedded
into B ⊗K Ck as a K-algebra. In particular, J∞,1 ⊆ B ⊗K C1, if k = 1. On the other hand, if we let F be
the field of fractions of C1, then we get

J∞,1 ⊗K F ⊇ B ⊗K F = B ⊗K (C1 ⊗C1 F ) ≃ (B ⊗K C1)⊗C1 F ⊇ (B ⊗K C1)⊗K F.

Here the first inclusion is valid because B ⊆ J∞,1 and the last one follows from the restriction of scalars
induced by the inclusion map K ↪→ C1. Therefore,

J∞,1 ⊗K F ⊆ (B ⊗K C1)⊗K F ⊆ B ⊗K F ⊆ J∞,1 ⊗K F.

We conclude J∞,1 ⊗K F = B ⊗K F , which is a contradiction.
Hence we can summarize the previous arguments in the following theorem.

Theorem 4.11. In the variety of unitary Jordan K-algebras, the finiteness hypothesis of Theorem 4.10 is
essential.

5. Open problems

Throughout this section we relate some possible generalizations of the results presented in this paper.
Here our intention is to motivate future research on the subject. We believe we have grounds to raise the
following conjectures.
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Conjecture 5.1. Let K be an infinite field of characteristic different from 2,3,5 and 7. The polynomials

([x, y]2, z, t),∑
σ∈S3

(−1)σ(xσ(1), (xσ(2), x, xσ(3)), x),∑
σ∈Sn−k+2

(−1)σ(xσ(1), y1, xσ(2), . . . , yn, xσ(n−k+1), yn−k+1, xσ(n−k+2)),∑
σ∈Sn−k+1

(−1)σ(xσ(1), y1, xσ(2), . . . , yn−1, xσ(n−k))(yn−k, xσ(n+1), yn−k+1),

form a basis of the T -ideal of polynomial identities for the Jordan algebra Jn,k, with k ≥ 1 and 1 < n < ∞.

Conjecture 5.2. Let K be an infinite field of characteristic different from 2, then any weak identity of the
pair (Jn,k, V ) follows from the weak identiies

(x1x2, x3, x4)∑
σ∈Sn−k+1

(−1)σ(y1xσ(1))(y2xσ(2)) · · · (yn−k+1xσ(n−k+1)).

Conjecture 5.3. Let K be an infinite field of characteristic different from 2. The T2-ideal of the 2-polynomial
identities of the Jordan algebra Jn,k with the scalar grading, where n is a positive integer and k > 0, is
generated by the 2-polynomials from

(y, u1, u2)∑
σ∈Sn−k+1

(−1)σ(zn−k+2zσ(1))(zn−k+3zσ(2)) · · · (z2(n−k)+3zσ(n−k+1)),

where u1, u2 ∈ Y ∪ Z.

Conjecture 5.4. Let K be an infinite field of characteristic different from 2 and let n and k be positive
integers, where 1 < n < ∞ and k > 0. Every trace identity of the Jordan algebra (Jn,k, tr) follows from the
polynomials

f2(x) = x2 − Tr (x)x+ (1/2)(Tr(x)2 − Tr (x2)),∑
σ∈Sn−k+1

(−1)σ
n−k+1∏
i=1

(Tr (xσ(i)yi)− (1/2)Tr (xσ(i))Tr (yi)).

Although we have enough evidence to believe that these results may be true, the techniques developed in
this paper are not enough to prove such conjectures, since the use of multilinear polynomials was essential
in order to get our main theorems.
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