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Abstract

Modelling the tensile behaviour of Fabric Reinforced Cementitious Matrix (FRCM) is

not a straightforward task due to the inner complexity of the mechanics of this kind of

composite materials. In fact, after that the matrix is cracked, the compatibility between

the fiber and the surrounding mortar is lost and the system behaves as two separate ele-

ments connected by a brittle interface. For this reason, several research studies proposed

computational approaches for evaluating the tensile behaviour of FRCM composites, usu-

ally referring to brick-based 3D Finite Element Models (FEM) or to complex numerical

procedures. This paper shows the formulation of a simplified coupled truss element for

modelling the tensile behaviour of FRCM composites. The proposed element includes

the interface slip between fiber and matrix and the brittle failure of the fabric and allows

to describe the response of the system between the cracks in closed form. The proposed

element is also adopted for assessing the tensile constitutive response of FRCMs through

a simplified assembly procedure, proving to be reliable and computationally efficient.
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1. Introduction1

The use of Fabric Reinforced Cementitious Matrix (FRCM) composites has become2

increasingly popular for applications in masonry structures in the last ten years [1]. Its3

popularity depends especially from the advantages arising from their applications when4

applied on masonry surfaces of historical buildings, especially due to the good compat-5

ibility between the inorganic matrix and the masonry substrate. For this reason, a huge6

amount of research works was recently carried out for characterizing the constitutive be-7

haviour of these materials, with particular reference to the tensile behaviour and the bond8

with masonry [2][3].9

The tensile behaviour of FRCM composites proved to be complex and affected from10

the interaction between matrix and fabric. In fact, after that matrix is cracked, the com-11

patibility between fiber and mortar is lost and the fabric tends to slip with respect to the12

surrounding mortar. Failure can be reached due to the tensile breakage of the fiber yarns13

or due to the de-bonding at the the fabric-matrix interface.14

The experimental studies available in the recent literature and concerning the mechan-15

ical characterization of FRCM composites highlighted a wide variability of results due to16

the great number of variables involved, including the nature of the fiber, matrix grade, test17

set-up, the treatment of the fabric surface. As a consequence, a huge amount of research18

work has been carried out in the last years, investigating on the effect of the different key19

parameters. Numerous studies were performed on the kind of fibre, such as basalt [4]20

[5] [6] [7] [8], carbon [9] [10] [11], glass [9] [12] and Polybenzoxazole (PBO) [13] [14].21

Other studies investigated the role of the test set-up, analyzing the role of the boundary22

loading conditions, such as the clevis or clamping grip [15] [16] or the capabilities of the23

Digital Image Correlation (DIC) for providing more detailed data on the field of strains or24

displacements [2] [8].25

2



In this background, despite several experimental studies were performed on this topic,26

fewer studies addressed analytical or numerical approaches for modelling the tensile be-27

haviour of FRCM strips. Simplified analytical models were proposed in the past [4] [17],28

aiming to model the behaviour of the composite with a multilinear shape, following the29

well-known rules adopted for reinforced concrete members. Other works followed a nu-30

merical approach, often based on 3D Finite Element (FE) models. In this context a FE31

multiscale approach was proposed by Bertolesi et al. [13] for modelling the bond be-32

haviour with the substrate, while Monaco et al. [18] [19] modelled the tensile behaviour of33

FRCM by adopting a cohesive interface between matrix and fabric. Both works adopted34

the Concrete Damage Plasticity model for simulating the tensile behaviour of the matrix35

and assumed a bilinear law with damage for the interface. More recently, a simplified36

uniaxial model was proposed by Grande and Milani [20], who also proposed recently [21]37

numerical strategies to solve the governing equations of uniaxial models of FRCM strips38

under different loading conditions.39

Despite these numerical approaches provide a detailed mechanical response of the40

FRCM systems, they require a complex calibration of the model for assessing the input41

variables, which are often unknown and should be empirically or tentatively estimated,42

with the risk of including unavoidable uncertainties. Additionally, the 3D brick-based43

FE simulations require a strong computational cost, including long calculation time and44

numerical convergence issues, such as mesh sensitivity, hourglassing or locking.45

In this context, this paper presents a novel formulation of a coupled truss element for46

calculating the tensile response of FRCM strips. The governing equation of the element47

is obtained in strong form by analyzing the force transmission mechanism between fabric48

and matrix within the crack spacing. The two phases are modeled as two truss elements49

connected by a pure shear interface, under the assumption of brittle linear behaviour of50

materials and interface. Previous studies [22] [23] highlighted that the load transfer mech-51
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anism in FRCM composites is more complex than only shear stress transfer at the fabric to52

matrix interface. The textile of the FRCM systems is multidirectional, generally bidirec-53

tional, fabric and the mortar-textile interlock at the voids of fabric known to be one of the54

stress-transfer mechanisms. However, the proposed paper aims to provide a simple model55

for achieving the local and global response, respecting a phenomenological/empirical for-56

mulation of the interface, which respects the experimental observation. The formulation57

allows to achieve the local response within the crack spacing in terms of elongations, in-58

ternal forces and shear stress at the interface. The proposed element is therefore adopted59

for assembling a procedure for calculating the tensile response of FRCM strips. Results60

are finally compared with experimental results available in the literature, showing good61

agreement. The proposed procedure keeps the accuracy of a formulation capable of ob-62

taining the local and global response of the composite material but with the advantage of63

reducing the computational cost with respect to brick-based 3D FEM analyses. Addition-64

ally, it requires the calibration of only one mechanical parameter i.e. the shear stiffness of65

the interface k , which is here proposed as a function of the mechanical properties of the66

fabric and of the number of textile layers adopted.67

2. Element formulation68

The proposed formulation is based on the study of a part of FRCM strip between two69

successive cracks with length equal to s (Figure 1). It is assumed that the behaviour of70

the composite between the cracks can be represented by two sub-elements, represented71

by the matrix and the fabric, each one with truss behaviour and with axial stiffness equal72

to EmAm and EfAf respectively, as shown in Figure 1. The two elements are connected73

by a continuous shear interface, with stiffness k ,for sake of simplicity the interactions74

with transverse bundles of bidirectional textile are neglected, according to experimental75
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Figure 1: Coupled truss model

evidence [9]. All the materials are assumed to be elastic with a pure brittle constitutive76

law. The axial elongations of the fiber and matrix are denoted as uf (x) and um(x).77

Under the assumptions of Figure 2, the equilibrium equation of the mortar layer can78

be written as79

d2um(x)

dx2
=

px(x)

EmAm
(1)

being px(x) the shear force per unit length transferred from the fiber through the interface.80

The constitutive law of the interface is assumed to be elastic with pure brittle behaviour,81

which means that a linear relation can be established between the shear stress and the82

relative axial elongation of the elements. In this way, the shear stress per unit length is83

expressed as84

px(x) = τ(x)ti = k(uf (x)− um(x))ti (2)

where ti is the depth of the interface. If Eq.2 is assumed, the equilibrium equation of the85
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Figure 2: Internal forces and sign assumptions

matrix is written as86

d2um(x)

dx2
= − k

EmAm
(uf (x)− um(x))ti (3)

The equilibrium of the fabric can be expressed with similar considerations, leading to87

the following differential form of the equilibrium88

d2uf (x)

dx2
=

k

EfAf
(uf (x)− um(x))ti (4)

Eqs.3 and 4 represent a system of two ordinary differential equations for calculating

the axial response of the system in terms of uf (x) and um(x). A convenient expression of

this system can be written in the following form

d2um(x)

dx2
+ β2

m(uf (x)− um(x)) = 0 (5a)

d2uf (x)

dx2
− β2

f (uf (x)− um(x)) = 0 (5b)

where βm and βf are the two relative stiffness parameters between the mortar or the fabric
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and the interface

βm =

√
kti

EmAm
(6a)

βf =

√
kti
EfAf

(6b)

and observing that from a dimensional point of view both parameters are the inverse of a89

length.90

The two equations of the system can be coupled together by considering the relation91

between the functions um(x) and uf (x) from Eq.5a92

uf (x) = um(x)−
1

β2
m

d2um(x)

dx2
(7)

and its second order derivative93

u′′f (x) = −d
2um(x)

dx2
− 1

β2
m

d4um(x)

dx4
(8)

If Eq.8 is introduced in Eq.5b, the system in Eqs. 5 is replaced by a single fourth order94

differential equation95

d4um(x)

dx4
+
d2um(x)

dx2

(
1−

β2
f

β2
m

)
= 0 (9)

which represents the strong form of the equilibrium, ruling the axial behaviour of the the96

two trusses coupled by a continuous shear interface. It is observed that Eq.9 can be solved97

in um(x), obtaining the field of axial elongations in the fabric from Eq.7. The solution of98

the homogeneous equation Eq.9 belongs to the following general form99

um(x) = c1
eηx

η2
+ c2

e−ηx

η2
+ c3x+ c4 (10)

where100

η =
√
β2
f + β2

m (11)
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It should be noted that when the interface is infinitely deformable (i.e. k = 0), Eqs.5101

represent the classic form of the equilibrium of two unloaded truss elements and Eq.10102

describes the linear trend of the elongations.103

Boundary conditions (BC) are enforced for particularizing Eq.10 and obtaining the

solution of the scheme of Figure 1. In particular, compatibility conditions (essential BC)

along the symmetry axis (x = 0) are enforced by considering that elongations are equal to

zero

um(0) = 0 (12a)

uf (0) =
d2um(x)

dx2

∣∣∣
x=0

= 0 (12b)

Additionally, equilibrium conditions need to be imposed at the ends of the two trusses.

Reminding that the axial force inside the crack (x = l) is carried only by the fabric, the

equilibrium conditions (natural BC) are written as follow

Nm(l) =
dum(x)

dx

∣∣∣
x=l

= 0 (13a)

Nf (l) =
duf (x)

dx

∣∣∣
x=l

kti
β2
f

= F (13b)

being F the overall axial force inside the crack sustained by the fabric.104

The solution achieved in this way is expressed by the following function105

um(x) = F
e−ηxβ2

fβ
2
m(e

ηl − eη(l+2x) + ηx(eηx + eη(2l+x)))

(1 + 2e2ηl)ktiη3
(14)

Eqs.14 and 7 represent the solution of the system. It should be noted that as expected106

the response of each component is linearly dependent from the value of applied force in107

the fabric and consequently, the functions um(x) and uf (x) can be normalised with respect108

to F and adopted as general solutions for any value of force.109
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Finally, the trend of the axial force in the two trusses is found through the first order

derivative of the axial elongations. In particular,

Nm(x) =
kti
β2
m

dum(x)

dx
(15a)

Nf (x) =
kti
β2
f

duf (x)

dx
(15b)

If Eq.14 and 7 are introduced in Eq.15, the following expressions hold110

Nm(x) = Fβ2
f

e−ηx(eηx − eηl + eη(2l+x) − eη(2l+x))

η2(1 + e2ηl)
(16a)

Nf (x) = F
e−ηx(β2

fe
ηl + β2

fe
η(2x+l) + β2

me
ηx + β2

me
η(2l+x))

η2(1 + e2ηl)
(16b)

It is observed that the fields of the axial force Nm(x) and Nf (x) are only a function111

of the relative stiffness parameters βf , βm and of the half crack spacing l, being linearly112

dependent from the F .113

2.1. Numerical applications114

Fig.3 shows the results of a numerical example, referring to an FRCM strip with βm =115

0.01, βf = 0.032 and s = 2l = 200mm. Results are reported in normalised form with116

respect to F . The theoretical prediction of local effects in mortar and fabric layers seems117

to be in good agreement with experimental evidences, as can be observed in the study118

proposed by Saidi et Gabor [24]. It is observed as the trend of the axial elongations is119

more marked in the fabric with respect to the mortar. The trend of axial elongation in120

the fiber is almost linear in the central part of the specimen and tends to an exponential121

amplification near the loaded ends. Conversely, the slope of the axial elongation in the122

matrix assumes a constant value near the extremities of the strip. Fig.3(b) shows the trend123

of the normalised shear stress at the interface. It is observed that this trend reflects that124
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(a) Normalised axial elongations (b) Normalised shear stress

(c) Axial force

Figure 3: Numerical example for βm = 0.01, βf = 0.032, s = 2l = 200mm.

of the relative slip, calculated as uf (x) − um(x), multiplied for a magnification factor125

(i.e. the shear stiffness of the interface k). The shear stress tends to intensify at the ends126

of the element, near the cracks, due to the high value of the axial force sustained by the127

fiber in that zones. Finally, Fig.3(c) shows the trend of the normalised axial force in the128

two elements. It is observed as the axial load F entirely carried by the fabric for x = l129
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steeply decreases along the fiber down to its minimum value in correspondence of x = 0.130

Conversely, the axial force in the matrix Nm(x) tends to increase from the crack x = l to131

the middle section x = 0. It is observed that in this section the matrix carries a value of132

axial load equal to about the 40% of F . This trend of the axial force shows that the two133

elements interact through the interface and the transition of the axial stress from the fiber134

to the matrix is related to the shear stiffness of the interface k.135

This mechanism is clear by comparing the results of Fig.3 with those reported in Fig.4.136

This last refers to an element with βm = 0.0045, βf = 0.013 and the same crack spacing of137

the previous example. It is observed that these lower values of βm and βf are obtained by138

adopting lower values of interface stiffness k. Results confirm that the contribution of the139

mortar becomes less evident for a more deformable interface (Fig.4(a)). The elongations in140

the matrix assume low values with respect to those in the fabric, and the trend of these last141

tends to be linear for lower value of k. As a consequence, the shear stresses are reduced142

with respect to the previous example, due to the increased deformability of the interface143

(Fig.4(b)). The trend of the shear stress almost reproduces that of the displacements in the144

fabric, and the interface is more uniformly stressed along its length with lower value of145

stresses. This fact is reflected in terms of axial force, as shown in Fig.4(c). As expected,146

the contribution of the matrix is less evident in this case. The values of axial force in the147

mortar are lower with respect to the previous case, due to the lower ability of the interface148

in transferring the stress from the loaded element to the matrix.149

The effect of the interface stiffness on the force transmission of the element can be150

observed in Fig.5, which shows the normalised interface shear stress and the axial force in151

the fabric for different values of k, from 2 to 12 N/mm3. It is worth noting that the shear152

stress keeps a similar trend in the central zone of the strip for the different values of k.153

When k increases, the slope of the function tends to rise suddenly and the response proves154

to be less sensitive to the value of the interface stiffness, as shown from the curves which155
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(a) Normalised axial elongations (b) Normalised shear stress

(c) Axial force

Figure 4: Numerical example for βm = 0.0045, βf = 0.013, s = 2l = 200mm.

tend to be closer.156

3. Model implementation157

The proposed formulation of the coupled truss element can be exploited for calculating158

the constitutive tensile response of FRCM strips.159
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(a) Normalised shear stress

(b) Normalised axial force in the fabric

Figure 5: Parametric example for different values of k.

On the basis of the results presented in the previous section, it is possible to calculate160

the tensile load Fcr corresponding to the formation of a crack in correspondence of x = 0.161

In particular, the maximum axial stress in the matrix Nm(0)/Am can be imposed to be162
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equal to the tensile strength of the mortar fmt. The following relation holds163

Nm(0) = fmtti
k

Emβ2
m

= εmt
kti
β2
m

= Fmt (17)

being εmt the ultimate tensile strain of the matrix, and labelling Fmt the axial tensile ca-164

pacity of the matrix within the strip.165

If Nm(0) is evaluated through Eq.16a for x = 0, Eq.17 can be considered an equa-166

tion with a single unknown variable Fcr, which solution is represented by the following167

expression:168

Fcr
Fmt

=
(e2ηl + 1)η2

(eηl − 1)2β2
f

(18)

Finally, the stiffness of the system is obtained by dividing the value of Fcr for the value169

of uf (x) calculated for x = l and for F = Fcr.170

Kcr

EfAf
=

η3Cosh(ηl)

ηlβ2
mCosh(ηl) + β4

fSinh(ηl)
(19)

Eq.19 represents the normalised axial stiffness of the coupled truss element considering171

the interaction between matrix and fabric. It is observed that both normalised expressions172

18 and 19 depend only by the relative stiffness parameters βf and βm and from the half173

crack spacing l.174

On the basis of the previous expressions, an easy procedure can be followed to calcu-175

late the axial force vs. displacement response of a FRCM strip. The procedure is based on176

the progressive assumption of the crack spacing s and number of cracks nc, hypothesizing177

that the strip can be modeled by ne series trusses (Fig.6).178

The procedure can be resumed with the following points:179

• the crack spacing at the first step sI is assumed to be equal to the length of the strip180

L -i.e. two cracks are formed at the ends (nIc = 2)-;181
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Figure 6: Series truss model

• the system is therefore made by nIe = nIc − 1 = 1 truss with stiffness equal to182

KI = Kcr evaluated through Eq.19;183

• the force carried by the system F I is calculated through Eq.18, assuming that a new184

crack is opened for x = 0;185

• the elongation is therefore easily calculated uI = F I/KI ;186

• the procedure is repeated from the first point, and for the general i-th step the fol-187

lowing expressions can be considered:188
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nie = 2(i−1) (20a)

nic = nie + 1 (20b)

si = L/nie (20c)

1

Ki
=

nie
Kcr

(20d)

• the procedure is interrupted when the force F i exceeds the tensile strength of the189

textile or when the shear stress τ i is greater than the maximum value assumed at the190

interface.191

The use of Eq.20 together with the generalized expressions of the force Eq.18 and192

stiffness Eq.19 allows to evaluate the post-cracking tensile response of FRCM strips and193

to assess the number of cracks at failure.194

Fig.7 shows two examples of application of the proposed model for a strip length195

of L = 200 mm, considering the two cases mentioned above of stiff (Fig.7(a)) and de-196

formable interface (Fig.7(b)). The response is reported in terms of normalised axial force197

F/Fmt as per Eq.18, while the axial elongation is normalised with respect to the ultimate198

displacement of the mortar εmtL. This kind of representation is due to the fact that it de-199

pends only by the parameters βf , βm and by the length of the strip L. The first point of200

the curve corresponding to the formation of the first crack is calculated by the well known201

expressions202

F1stcr = fmt

(
Am +

Ef
Em

Af

)
(21a)

u1stcr =
F1stcr

EmAm + EfAf
L (21b)

It is clear to observe that the behaviour of the two samples is completely different.203

The example with stiff interface (Fig.7(a)) shows a progressive hardening response, due204
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(a) βm = 0.01, βf = 0.032 (b) βm = 0.0045, βf = 0.013

Figure 7: Normalised axial load vs. normalised elongation response L=200 mm

to the stiffening behaviour provided by the mortar. In this case, as the number of cracks205

increases, the system tends to become stiffer. The axial load increases up to the maximum206

tensile capacity of the fabric. Differently, the example with deformable interface (Fig.7(b))207

shows a limited tensile capacity, due to the fact that the contribution of the matrix can be208

considered negligible. Consequently, the system tends to face larger displacements with209

negligible contribution in terms of force and failure is reached due to the excessive slip210

between fabric and matrix.211

3.1. Calibration of the interface stiffness212

As discussed in the previous section, the representation of the tensile constitutive be-213

haviour in dimensionless form is dependent only by the numerical parameters βf and βm.214

However, a reliable calculation of the tensile load vs. elongation curve needs a calibration215

of the dimensional parameters needed for calculating βf and βm - i.e. Af , Am and k.216

In the current study, the area of the transverse cross section of the fabric Af is assumed217
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to be equal to the conventional equivalent area of a lamina of dry textile. This assumption,218

despite simplified, is coherent with the common conventional models adopted in the tech-219

nical codes, especially for FRP composites. It is also observed that this assumption is an220

approximation of the area of the yarns, which makes possible to calculate the area of the221

fabric based on dimensional parameters. Coherently with this hypothesis, the thickness of222

the interface ti is assumed equal to twice the width of the sample.223

Finally, the model requires the definition of the interface stiffness k. It should be noted224

that this parameter can be considered as a function of the nature of the fiber and of the225

matrix. In fact, in general, the stiffness of a zero-thickness interface between two layers226

can be assessed as227

k =
G

tp
(22)

being G the lower shear modulus of the two layers and tp is the thickness of the process228

zone of the interface. In the context of the tensile behaviour of FRCM strips, the process229

zone of the interface can be considered equal to the cortical thickness of yarns embedded230

by the matrix. Obviously, tp can be considered a function of the type of fiber and of its231

external treatment (coated or uncoated). For this reason, the parameter k is here calibrated232

as a function of the mechanical ratio of fabric ω, defined as233

ω =
Afft
Amfmt

(23)

being ft the tensile strength of the fabric.234

This parameter includes indirectly the shear deformability of the matrix through its235

tensile strength fmt and the number of layers through the value of Af . The value of the236

interface stiffness is therefore calibrated experimentally by evaluating the trend of k as237

a function of ω for different types of fiber. In particular, for each experimental data the238

value of k was evaluated as the optimal value which minimizes the difference between239

the experimental Ecr,exp and the theoretical Ecr,th value of dissipated energy during the240
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post-cracking stage, this last calculated as the area under the tensile force vs. elongation241

response after first cracking. Table 1 shows the overall experimental database adopted

Figure 8: Calibration of k as a function of ω

242

for calibrating the value of k. The database includes the mechanical properties of fiber,243

matrix and the corresponding values of ω. The result of the calibration is shown in terms244

of ratio Ecr,exp/Ecr,th, and the resulting value of k. Basalt, carbon and glass FRCM were245

considered with different yarn treatment and for a wide range of ω. It is worth noting that246

PBO FRCM was not included in this database due to the different behaviour with the other247

types of fibres.248

Fig.8 shows the results of the correlation between k and ω for all the considered data,

grouped for kind of fibers and referring literature work. The graph shows that all the sets

of experimental data can be fitted with good accuracy by a linear regression model, which
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equation depends on the kind of fiber. The application of the least squares approximation

of the trend leads to the following results

k = 1.743ω + 6.098 for coated carbon (24a)

k = 0.827ω + 1.251 for basalt (24b)

k = 0.048ω − 0.057 for glass (24c)

The reliability of these best fitting curves is confirmed by the values of the coefficient249

of determination R2 reported in Fig.8. Values over 90% are obtained for all the cases,250

confirming that ω can be considered the independent variable for the calculation of k and251

given kind of fiber. It is observed that only two results were in contrast with the linear252

trend, as highlighted in the graph due to the application of a treatment on the yarns. Eq.24253

are therefore valid only for coated carbon and fibers without adhesion promoter at the254

interface. Further experimental studies need to be addressed for verifying the application255

of a linear regression model on these systems.256

4. Comparison with experimental results257

The model was validated against the experimental results shown in Table 1. In the258

following only some examples are shown in graphical form for the sake of brevity.259

Fig.9 shows the comparison between experimental data and theoretical predictions for260

basalt FRCM specimens with the experimental data achieved by Larrinaga et al. [4] and261

D’Anna et al. [8]. It is clear to observe that good agreement is generally obtained be-262

tween predictions and experimental results. The model is able to consider the effect of263

the number of layers and it tends to slightly underestimate the response for the data of264

D’Anna et al. [8] especially for greater number of layers, while a negligible overestima-265

tion is observed for low number of layers for the data of [4]. It is also worth observing that266
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(a) One layer [8] (b) Two layers [8]

(c) Three layers [8] (d) Data of [4]

Figure 9: Comparisons with experimental data for basalt FRCM
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for specimens tested by D’Anna et al. [8] the model provides an estimated step of cracks267

equal to about 31 mm, 25 mm and 19 mm for one, two and three layers respectively, while268

the experimental values of cracks spacing are 37 mm, 16 mm, and 11 mm for one, two and269

three layers respectively.270

Similarly Fig.10 shows the comparison between predictions and experimental data271

available in the literature [9][10][11] for carbon FRCM specimens. Also in these cases272

the proposed procedure is capable of catching the average experimental response for dif-273

ferent number of layers and for different sources of the experimental data. It is also worth274

observing that as expected the value of k increases for greater number of layers. Fig.11275

shows similar comparisons for Glass FRCM specimens. Experimental data refer to the276

works of Bellini et al. [9], Bramato et al. [12] and Donnini et al. [26] . It is observed that277

lower values of k are associated to the tensile behaviour of the specimens, which usually278

shows a bilinear response with a negligible second stage. The model overestimates the279

first branch of the response for the cases of Fig.11(a) and 11(b), probably due to the un-280

certainties about the mechanical properties of the constituent materials, but fits well the281

experimental response in the last stage for all the data.282

Tensile behaviour requires to take into account complex mechanisms. However, the283

proposed simplified theoretical model is able to simulate fairly well the behaviour of284

FRCM composites. It should be observed that the same experimental data were used285

for the calibration of k and therefore a more reliable validation should be made with new286

experimental results outside from the considered database.287

5. Conclusions288

This paper presented the proposal of a truss element for modelling the tensile response289

of FRCM strips. The model was formulated by studying the mechanics of force trans-290

mission between fabric and matrix within the crack spacing, assuming that the two phases291
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(a) Data of [9] carbon fibers with adhesion pro-

moter

(b) Data of [9] dry carbon

(c) Data of [10] coated carbon (d) Data of [11] coated carbon

Figure 10: Comparisons with experimental data for Carbon FRCM

can be studied as truss elements connected through a shear interface. The definition of the292

coupled truss allows to set a procedure for obtaining the tensile response of the composite293

material, under the assumption of linear behaviour of fabric, matrix and interface.294
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(a) Data of [9] glass fibers with adhesion promoter (b) Data of [9] coated glass fibers

(c) Data of [12] coated glass fibers (d) Data of [26] coated glass fibers

Figure 11: Comparisons with experimental data for Glass FRCM

On the basis of the obtained results and for the range of analyzed variables, the follow-295

ing conclusions can be drawn:296

• the numerical parameters βm and βf rule the force transmission mechanism between297
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matrix and fabric. Force in the fabric and interface shear stress tend to intensify in298

correspondence of the cracks for greater values of k (i.e. stiffer interface);299

• the normalised representation of the tensile response of FRCM strips F/Fmt vs.300

u/(εmtL) proved to be dependent only by the numerical parameters βm, βf and301

from the length of the strip L;302

• it should be considered that previous studies showed that the form of textile rein-303

forcement cross-section has a substantial influence on the load carrying capacity of304

FRCM. However the parameter k can be considered a function of the mechanical305

ratio of fabric reinforcement ω and from the nature of the fiber. The experimental306

calibration of k allows to find a linear variation of k as a function of ω for differ-307

ent kinds of fiber. However, this correlation proved to be affected by the treatment308

of the yarns and different results can be achieved for fibers applied with adhesion309

promoter;310

• the proposed procedure was validated against experimental results available in the311

literature, proving to be reliable. It should be noted that the validation was made312

against experimental data included in the database for the calibration of k and for this313

reason, further experimental investigation should be made for a broader validation314

of the model.315
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Table 1: Experimental database

Ref. ID Fiber Mortar k Ecr,exp

Ecr,th
ω

sample Type Ef [GPa] Type fmt[MPa] [N/mm3]

[4] TB1 Basalt 67 cement-based 2.48 5 1.06 5.7

TB2 Basalt 67 cement-based 2.48 10 0.98 11.4

TB3 Basalt 67 cement-based 2.48 15 0.99 17.1

TB4 Basalt 67 cement-based 2.48 18 1.07 22.7

[5] FRCM 1 Coated basalt 110 cement-based 0.80 0.8 0.85 8.6

FRCM 1 Coated basalt 116 cement-based 1.50 4 1.09 4.0

FRCM 1 Coated basalt 111.5 cement-based 1.30 6 0.99 5.1

FRCM 2 Coated basalt 111.5 lime-based 1.20 6.5 1.16 5.4

FRCM 2 Coated basalt 107 lime-based 1.00 12 1.03 12.6

FRCM 3 Coated basalt 71.3 lime-based 1.30 7 1.12 5.9

FRCM 4 Coated basalt 89 lime-based 0.50 0.5 0.97 8.5

FRCM 4 Coated basalt 51 lime-based 0.50 3 1.06 3.0

FRCM 4 Coated basalt 45.3 lime-based 1.00 3 0.96 3.7

FRCM 4 Coated basalt 45.3 lime-based 0.80 3 1.07 4.6

[8] 1L Basalt 83 cement-based 2.00 5 1.24 5.8

2L Basalt 83 cement-based 2.00 10 1.17 9.6

3L Basalt 83 cement-based 2.00 20 1.21 19.5

[9] CP Carbon(∗) 240 hydraulic lime-based 1.92 20 1.14 9.0

CD Carbon 240 hydraulic lime-based 2.91 0.1 1.36 5.1

GP Glass(∗) 65 hydraulic lime-based 1.92 6 0.94 5.2

GC Coated glass 70 hydraulic lime-based 2.00 0.08 0.88 3.3

[10] R- C170CC Coated carbon 219 cement-based 3.35 15 1.14 6.7

[11] L1 Coated carbon 196.4 cement-based 2.50 12 0.79 3.91

L2 Coated carbon 196.4 cement-based 2.50 15 0.96 5.1

L4 Coated carbon 196.4 cement-based 2.50 22 1.01 7.8

[12] 1L Coated glass 108 lime-based 1.00 0.3 1.19 10.6

2L-3 Coated glass 108 lime-based 2.00 0.55 1.06 12.9

3L-3 Coated glass 108 lime-based 2.20 0.55 1.05 13.2

2L-5 Coated glass 108 lime-based 2.50 0.25 0.81 5.7

3L-5 Coated glass 108 lime-based 2.50 0.35 0.93 6.9

2L-10 Coated glass 108 lime-based 1.10 0.25 0.99 6.4

3L-10 Coated glass 108 lime-based 1.50 0.3 0.96 5.3

[25] FRCM 6 Coated carbon 187 cement-based 3.35 12 1.26 2.6

FRCM 6 Coated carbon 219 cement-based 4.00 9 1.12 2.22

[26] Ref Coated glass 67.58 cement-based 0.80 0.1 0.84 4.3

S-40 Coated glass 67.87 cement-based 0.80 0.1 0.90 4.0

A-40 Coated glass 69.37 cement-based 0.90 0.08 0.87 2.9

FT Coated glass 66.21 cement-based 0.80 0.09 0.86 4.0

(∗) Adhesion promoter
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