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Microbe-mediated alterations in floral nectar: 
consequences for insect parasitoids
Antonino Cusumano1 and Bart Lievens2

Floral nectar is frequently colonized by microbes among which 
bacteria and yeasts are the most abundant. These microbes 
have the ability to alter nectar characteristics with 
consequences for the whole community of flower-visiting 
insects. Recent research carried out on natural enemies of 
insect herbivores has shown that microbe-mediated changes in 
nectar traits can influence the foraging behavior and life history 
traits of parasitoids. The production of microbial volatile organic 
compounds can affect the attraction of parasitoids to nectar, 
while changes in sugar and amino acid composition can impact 
their longevity. Future research should focus on understanding 
the effects of nectar microbial colonization on parasitoid 
reproduction, with a specific emphasis on the interactions 
among different microbial taxa known to co-occur in floral 
nectar. Overall, this review highlights the importance of 
considering the role of nectar-inhabiting microbes in shaping 
the interactions between parasitoids and their food resources.
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Introduction
Insect parasitoids at the adult stage rely on sugar-rich 
resources for their energetic and nutritional needs. Such 
resources can be either plant-derived (e.g. floral nectar, 
extrafloral nectar, pollen, and plant guttation) or they can 
be acquired from other insects such as hemipterans that 
produce honeydew [1–3]. In particular, floral nectar is 
widely utilized by a diverse range of parasitoids that are, 

in addition to pollinators, well-known flower-visiting 
insects [4,5].

Floral nectar is not only exploited by flower-visiting in
sects such as pollinators and parasitoids. It is also ubi
quitously colonized by specialized microorganisms that 
are adapted to its high osmotic pressure, low nitrogen 
availability, and presence of defensive metabolites [6–8]. 
Unraveling how microbial colonization of nectar affects 
floral traits is crucial for parasitoid ecology because the 
metabolic activity of nectar-inhabiting microbes can 
potentially impact the benefits that flowering plants 
provide to parasitoids. For instance, the presence of 
nectar-inhabiting microbes can lead to shifts in the sugar 
composition of nectar, such as a transition from sucrose- 
to fructose-dominant nectars [9,10]. Thus, the interplay 
between flowering plants and parasitoids should not be 
simply considered as a bipartite interaction but instead it 
should be viewed in the framework of a tripartite in
teraction among plants, insects, and microbes [11]. The 
emerging pattern is that microbial communities in floral 
nectar can act as important ‘hidden players’ in parasitoid 
nutritional ecology.

Microorganisms found in floral nectar can be categor
ized into two groups: occasionally present microbes and 
stably associated microbes [8,12]. Occasionally present 
microbes may come from the environment or the plant 
phyllosphere, but they are not well-adapted to survive 
and reproduce in nectar. By contrast, stably associated 
microbes are specialized to thrive in sugar-rich en
vironments such as flower nectar. Among these spe
cialist microbes, ascomycetous yeasts of the genus 
Metschnikowia are often the most commonly observed 
and dominant in floral nectar [6,8]. Also, bacteria from 
the phyla Actinobacteria, Bacillota, and Pseudomona
dota are frequently associated with floral nectar [6,8]. 
For more comprehensive information about the di
versity of nectar-inhabiting microbes as well as how 
microbial communities are established in nectar, 
see [13].

This review aims to explore the role of nectar-inhabiting 
microbes in parasitoid ecology. We will explore how the 
chemical composition and nutritional value of nectar can 
be modified by microbial metabolic activity, potentially 
altering nectar attractiveness and suitability as a food 
source for insect parasitoids. Specifically, we will tackle 
the following questions: 1) how do nectar-inhabiting 
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microbes affect localization of food resources by insect 
parasitoids? and 2) how do nectar-inhabiting microbes 
affect the quality of the food resources exploited by in
sect parasitoids?

Studying the role of microbes in floral nectar is not only 
important for unraveling the ecological dynamics of 
parasitoids in their search for food but also holds strong 
implications for biological pest control. Many parasitoids 
serve as excellent natural enemies of agricultural pests, 
but their use is still applied on a limited scale and more 
improvement is required [14]. Thus, understanding how 
microbial colonization of floral nectar affects the perfor
mance of insect parasitoids can pave the way toward the 
development of more effective sustainable pest man
agement strategies. Although the focus of this review is 
on nectar-inhabiting microorganisms, it is worth noting 
that microbial colonization of food resources also extends 
to other food sources encountered by insect parasitoids 
such as pollen [15–18], insect honeydew [19,20], and 
extrafloral nectar [21]. However, little to virtually 
nothing is known about the impact of microorganisms 
associated with pollen, insect honeydew, and extrafloral 
nectar on parasitoids, despite the potential significant 
role that these additional food sources may play in sa
tisfying the energetic and nutritional needs of foraging 
parasitoids.

Microbe-mediated effects on nectar traits and 
consequences for parasitoids
Effects on foraging behavior
The foraging behavior of insect parasitoids has been the 
focus of several studies in the last decades (see reviews 
by [22–25]). However, while foraging for hosts has been 
intensively investigated, how parasitoids search for food 
resources has received limited attention. One key aspect 
of parasitoid foraging behavior is the ability to detect and 
respond to floral cues that indicate the presence of nectar 
[1,11]. These cues include visual cues such as the color 
and shape of flowers, as well as olfactory cues emitted by 
the flowers. The olfactory stimuli, often in the form of 
volatile organic compounds (VOCs), play a crucial role in 
attracting parasitoids to the flowers [11]. These VOCs 
can act as long-range attractants, guiding parasitoids to
ward potential food sources. To increase their chances of 
finding floral resources in unknown environments, it has 
been suggested that parasitoids respond to common 
floral volatile compounds shared among different plant 
species [1,11]. This is because the chemical diversity of 
flower-associated volatile compounds is extensive 
[26,27], and it is rather unlikely that parasitoids have 
evolved innate preferences for specific compounds. In
stead, it is expected that parasitoids refine their ability to 
recognize suitable flowers through experience gained 
during foraging [28].

Figure 1  
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Impact of nectar-inhabiting microbes on insect parasitoids. (a) Nectar-inhabiting microbes can affect parasitoids’ foraging behavior by altering nectar 
scent. This is likely to occur when parasitoids are far from their food resources, because microbial metabolic activity can result in the production of 
mVOCs. (b) Once a flower has been located, nectar-inhabiting microbes can affect parasitoids’ performance (i.e. longevity and/or reproduction) when 
feeding on microbe-contaminated nectar. Microbe-induced changes of nectar chemistry include alteration of sugars and amino acid composition.  
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There is increasing evidence that fermentation by 
yeasts and bacteria can alter floral nectar odors [29–32]
(Figure 1a). Nectar-inhabiting microbes have a dual 
effect on the composition of VOCs associated with 
floral nectar. First, they can modify the constitutive 
blends of VOCs emitted by sterile floral nectar. 
Second, microbial metabolic activity can result in the 
production of de novo volatiles in nectar, also known as 
‘microbial volatile organic compounds’ (mVOCs). In a 
study focused on comparing parasitoid responses 
under controlled laboratory conditions to nectar fer
mented by yeasts with a different degree of speciali
zation, it was found that the specialists Metschnikowia 
reukaufii and the congeneric M. gruessii modified the 
scent of nectar substantially, attracting the aphid 
parasitoid Aphidius ervi [31,33] (Supplementary 
Table 1). Among the generalist yeasts — that are as
sociated with a wide variety of habitats — only Aur
eobasidium pullulans induced a strong parasitoid 
attraction, whereas the odors of nectar fermented by 
Hanseniaspora uvarum or Sporobolomyces roseus did not 
elicit a response or even repelled the parasitoid 
[31,33]. The specific volatiles produced by yeasts that 
trigger parasitoid attraction are still unknown, al
though 3-methyl-1-butanol and 2-phenylethanol have 
been suggested to play a role [31].

In another study, the foraging behavior of the egg 
parasitoid Trissolcus basalis was investigated in re
sponse to mVOCs emitted by bacteria isolated from 
the floral nectar of buckwheat (Fagopyrum esculentum), 
a plant known to produce high-quality nectar and 
largely used in conservation biological control to sup
port pest natural enemies [34–37]. Behavioral assays 
indicated that the egg parasitoid was attracted to odors 
of nectar fermented by four bacterial strains (identi
fied as Staphylococcus epidermidis, Terrabacillus sacchar
ophilus, Pantoea sp., and Curtobacterium sp.), out of the 
14 strains isolated from buckwheat nectar 
(Supplementary Table 1). Although chemical analysis 
revealed qualitative differences in the volatile blend 
composition of the bacteria-fermented nectars, 
mVOCs such as butanediols are surprisingly unlikely 
to play a role because they were emitted by strains 
that failed to elicit egg parasitoid attraction. Instead, 
this finding implies that T. basalis is mostly guided by 
quantitative changes in nectar odor composition in
duced by bacterial fermentation [32].

So far, only a handful of studies have been carried out to 
investigate how mVOCs associated with microbe-fer
mented nectar affect parasitoid foraging decisions, which 
makes it difficult to draw general conclusions. Despite 
the paucity of studies available now, the emerging pat
tern is that both yeasts and bacteria have the potential to 
impact parasitoids’ olfactory responses, leading to en
hanced attraction [31–33].

Effects on fitness-related traits
To fulfil their nutritional and energetic demands, adult 
parasitoids rely on floral nectar as an essential food re
source [5]. Nectar serves as a rich source of energy, 
providing sugars and other nutrients that are crucial for 
the survival and reproductive success of parasitoids 
[38,39]. By consuming nectar, parasitoids can replenish 
their energy reserves and increase their longevity that 
can in turn increase the performance of parasitoids as 
biological control agents [34,40]. The sugars in floral 
nectar, primarily sucrose, glucose, and fructose, provide 
parasitoids with resources that can sustain energy-de
manding activities such as flight and foraging. Nectar 
also contains amino acids, organic acids, vitamins, and 
minerals, which supplement the parasitoids’ diet and 
support their physiological processes [49].

Previous studies have shown that yeasts and bacteria can 
alter the quality of floral nectar. Microbe-mediated 
changes in nectar traits can include changes in sugar 
concentration and sugar profiles, shifts in amino acid 
concentration and composition, alteration of nectar pH, 
and production of secondary metabolites [41] (Figure 
1b). Interestingly, bacteria and yeasts may have con
trasting effects on nectar quality. For instance, in nectar 
of the sticky monkey plant (Diplacus aurantiacus), fer
mentation by the yeast M. reukaufii decreased amino acid 
levels without affecting sugar composition, whereas the 
bacterium Gluconobacter sp. increased amino acid con
centrations and led to a higher proportion of mono
saccharides [42]. Owing to contrasting microbe-mediated 
alterations of nectar chemistry, parasitoid performance 
may vary, depending on both parasitoids’ specific nu
tritional needs and on which microbial taxa are dominant 
in the consumed nectar. Studies carried out on yeasts 
and bacteria using A. ervi as model parasitoid species 
have shown that parasitoid longevity can be enhanced, 
decreased, or remains unaffected when parasitoids are 
fed microbe-fermented nectar [31,43] (Supplementary 
Table 1). In the case of bacteria, the longevity of the 
parasitoid A. ervi was increased when adult wasps were 
offered Lactococcus-fermented nectar, while a negative 
effect was displayed when Asaia-fermented nectar was 
consumed [43]. In the case of yeasts, changes in nectar 
chemistry caused by specialist yeasts (M. reukaufii and M. 
gruessii) did not affect A. ervi’s longevity, whereas the 
wasps showed a reduction in longevity when fed nectar 
previously colonized by generalist yeasts (A. pullulans, H. 
uvarum, and S. roseus) [31].

As such, it is clear that there is emerging evidence in
dicating that bacteria and yeasts affect nectar quality 
with important consequences for parasitoid longevity. 
Nonetheless, how other fitness-related traits such as fe
cundity are shaped by microbe-fermented nectar is still 
largely unknown and should be explored in future stu
dies. This is especially important from an application 
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point of view, taking into account that the performance 
of insect parasitoids as biological control agents largely 
depends on their reproductive abilities.

Conclusions
In this review, we raise awareness about the importance 
of nectar-inhabiting microbes as hidden players that can 
shape olfactory responses and life history traits of insect 
parasitoids. Nevertheless, this is just the ‘tip of the 
iceberg’ as it is also imperative to broaden our under
standing of the impact of microorganisms occurring in 
other parasitoids’ exploited food sources, including 
honeydew, extrafloral nectar, pollen, and plant guttation.

To date, whether nectar-inhabiting microbes are bene
ficial for parasitoids is still debatable. Because microbes 
thriving in nectar can be seen as parasitoids’ competitors 
that deplete sugar-rich resources, microbial activity can 
result in a reduction of nectar quality. Consequently, 
microbial colonization might be detrimental for para
sitoid species, especially for those that mature yolk-rich 
eggs and thus have high nutritional demands. On the 
contrary, microbial fermentation may result in de novo 
production of nutrients, including essential amino acids 
and vitamins, which could be beneficial for parasitoids. 
Research efforts should be made to extend the number 
of case studies in order to understand under which 
conditions microbes act as competitors or mutualists of 
parasitoids. Based on the work done with aphid para
sitoids (and pollinators [44]), it can be hypothesized that 
specialist microbes such as Metschnikowia yeasts are 
beneficial. Because such yeasts largely depend on flower 
visitors to disperse and colonize novel habitats, they 
should attract parasitoids toward rewarding flowers 
without impairing nectar quality in order to maximize 
the chance of dispersion [31,45].

In addition of being important for fundamental studies 
on parasitoid ecology, understanding how nectar-in
habiting microbes affect parasitoid performance as pests’ 
natural enemies is highly relevant in conservation bio
logical control. In order to sustain resident natural ene
mies, one of the most common practices in conservation 
biological control consists of introducing flowering plants 
into agro-ecosystems [51,52]. Such flowering resources 
are generally selected based on classical plant traits such 
as nectar accessibility and quality, flowering time, and 
duration [53]. Nonetheless, we should also consider the 
microbial perspective as an additional plant selection 
criterion. For example, it may be beneficial to select 
plants based on their likelihood to host microbial con
sortia known to be beneficial for parasitoids [54]. Alter
natively, we could explore the possibility of spraying 
plant flowers with natural or synthetic microbial com
munities in order to enhance parasitoid efficiency in 

biological pest control [55]. Further research is needed 
to investigate the potential value of such scenarios.

Future research
To further advance our understanding of these plan
t–insect–microbe interactions, future research should be 
conducted under more realistic ecological conditions. 
We foresee three lines of research, which are highlighted 
below: 

(1) Currently, our knowledge about the role of nectar- 
inhabiting microbes in parasitoid ecology is based on 
experimental work carried out with cell-free fer
mented nectar, so only indirect microbe-mediated 
effects have been studied. However, in natural 
conditions, parasitoids ingest both nectar and the 
associated microbial cells. For example, it is known 
that some nectar specialists (e.g. Metschnikowia spp.) 
have been detected inside the parasitoids’ body [46]. 
Whether ingested microbial cells can have probiotic 
effects on parasitoids’ gut microbiota is not known 
and should be explored in the near future.

(2) Studies on the effects of nectar-inhabiting microbes 
on insect floral visitors have often been conducted 
with isolated strains of bacteria or yeasts. However, it 
is important to recognize that these two taxa often 
co-occur in nectar [7]. Therefore, future research 
efforts should focus on understanding how interac
tions between yeasts and bacteria shape parasitoid 
nutritional ecology.

(3) The effect of microbial activity on parasitoid per
formance has been tested with simplified synthetic 
nectar solutions composed of a mixture of sugars and 
amino acids. However, natural nectar is much more 
than a simple feeding reward [47], as it also contains 
secondary metabolites such as phenolics and pro
teins that can have antimicrobial properties [48–50]. 
How secondary metabolites affect colonization and 
activity of nectar-inhabiting microbes and whether 
these compounds further modulate microbe-medi
ated effects on parasitoid fitness remains to be 
tested.
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